Statistical concept / technique |
Neuroscience application |
Point processes; conditional intensity functions | Neural
spike trains; photon-limited image data |
Time-rescaling theorem for point processes | Fast
simulation of network models; goodness-of-fit tests for spiking
models |
Bias, consistency, principal components | Spike-triggered
averaging; spike-triggered covariance |
Generalized linear models | Neural encoding models
including spike-history effects; inferring network connectivity |
Regularization; shrinkage estimation | Maximum a posteriori
estimation of high-dimensional neural encoding models |
Laplace approximation; Fisher information | Model-based
decoding and information estimation; adaptive design of optimal
stimuli |
Mixture models; EM algorithm; Dirichlet processes |
Spike-sorting / clustering |
Optimization and convexity techniques | Spike-train
decoding; ML estimation of encoding models |
Markov chain Monte Carlo: Metropolis-Hastings and hit-and-run
algorithms | Firing rate estimation and spike-train
decoding |
State-space models; sequential Monte Carlo / particle
filtering | Decoding spike trains; optimal voltage
smoothing |
Fast high-dimensional Kalman filtering | Optimal smoothing of
voltage and calcium signals on large dendritic trees |
Markov processes; first-passage times; Fokker-Planck equation |
Integrate-and-fire-based neural models |
Hierarchical Bayesian models |
Estimating multiple neural encoding models |
Amortized inference |
Spike sorting; stimulus decoding |
Date |
Topic |
Reading |
Notes |
Sept 6, 13 | Intro and
overview | Paninski and
Cunningham,
`18; International
Brain Lab,
'17, '22, '23a, '23b | Slides here. |
Sept 20 | No class | | |
Sept 27 | Optogenetic circuit
mapping | Hu
et al '09, Shababo
et al '13, Hage
et al
'19, Triplett
et al
'22, Antin
et al
'23, Triplett
et al '23 | Guest
lecture
by Marcus
Triplett. Slides here. Background slides on Gaussian processes by
J. Cunningham here. |
Oct 4 | Dendritic imaging
data | Huys et
al
'06; Paninski
'10; Sun
et al
'19; Gonzalez
et al '24; Park
et al
'24; Wong-Campos
et al '24; Deistler
et al '24 | Guest
lecture
by Ben
Antin; slides here. |
Oct 11, 18 | Behavioral video
analysis | DeepLabCut, MoSeq,
PS-VAE, SLEAP,
Lightning-Pose, Blau
et al '24 | Guest
lecture
by Matt
Whiteway. Slides here;
video here. |
Oct 25, Nov 1 | Signal acquisition: spike sorting | Lewicki
'98; Calabrese
and Paninski
'11, Lee
et al
'20; Boussard
et al
'21, Pachitariu
et al
'24; Windolf
et al '24 | EM
notes; Blei et al review
on variational inference. Guest lecture
by
Charlie
Windolf. Slides here
and here. |
Nov 8 | Presentations of project ideas | Just two
minutes each |
|
Nov 15, 22 | Signal acquisition: single-cell-resolution functional imaging | Overview: Pnevmatikakis
and Paninski '18 Compression and
denoising: Buchanan
et al
'18, Eom
et al '23, Laine et al '19
Demixing: Pnevmatikakis
et al '16; Zhou
et al
'18; Friedrich
et al
'17b; Lu
et al
'17; Giovanucci et al
'17; Charles
et al
'19, Pasarkar
et al '23; Saxena
et al '20
Deconvolution: Deneux
et al '16; Picardo
et al
'16; Friedrich
et al
'17a; Berens
et al
'18, Rupprecht
et al '21 Wei
and Zhou et al '19 | HMM
tutorial
by Rabiner; HMM
notes. Guest lecture
by Amol Pasarkar. Slides here. |
Nov 29 | No class (University holiday) | |
Happy thanksgiving! |
Dec 6 | Decoding
methods | Gallego
et al '20, Zhang
et al '23, Azabou et
al
'23, Zhang
et al '24a, Zhang
et al
'24b, Posani,
Wang et al '24 |
Guest lecture
by Yizi Zhang. Slides here. |
Dec 13, 20 | Project presentations | |
E-mail me your report as a pdf by
Dec 20. |