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1 Discrete-time, homogeneous hidden Markov models (HMMs)

One key application of the “hidden data” framework we developed in the last chapter is to the
hidden Markov model (HMM). HMMs have widespread applications in time-series analysis,
notably in speech processing, bioinformatics, and control theory, and we will describe a wide
variety of applications in neuroscience in the next three chapters. As usual, before diving into
the details of these applications, first we must develop some basic analytical tools.

Hidden Markov models are appropriate for describing time-series data that are produced
from a system that transitions in a random, Markovian manner between some number of
states: these transitions are not observed (hidden), hence the name HMM. In particular, an
HMM is described by two random variables at every point in time t: the hidden state qt

and the observed emission yt (see Fig. 1). For clarity, in this chapter we will begin with the
simplest case, in which: 1) time is measured in discrete steps 2) the state variable qt can
take on one of N discrete states 1, . . . , N ; and 3) the transition and emission probabilities
(defined more explicitly below) are independent of time. In this case, we say that (Q, Y ) =
({q1, q2, . . . , qt}, {y1, y2, . . . , yt}) forms a homogeneous, discrete-time Markov chain. (We will
see that each of these assumptions may be relaxed significantly.) We will discuss a number
of examples shortly.

More precisely, a homogeneous, discrete-time Markov chain has the following two charac-
teristics: first,

p(qt|qt−1, . . . , q1) = p(qt|qt−1), (1)

that is, the future is independent of past given the present (this is a Markov assumption),
and second,

αnm ≡ p(qt = m|qt−1 = n) = p(qs = m|qs−1 = n), ∀t, s ∈ (1, . . . , T ), (2)

i.e., the probability of transitioning from state n to state m is constant (homogeneous) as a
function of time t. All homogeneous, discrete-time Markov chains can then be completely
described by matrices α with the properties that

0 ≤ αnm (3)

and
N
∑

m=1

αnm = 1, (4)

since each row is a discrete probability distribution.
In an HMM, the sequence of states, Q ≡ q1, . . . , qT , is assumed to evolve only with

reference to itself, but not with reference to the sequence of emissions, Y ≡ y1, . . . , yT . That
is, the next state is independent of the previous emissions given the previous state,

p(qt|qt−1, yt−1, . . . , y1) = p(qt|qt−1) (5)

Conversely, the probability distribution of the emission variable does depend on the current
state, but does not depend on any previous (or future) state or emission given the current
state (another Markov assumption),

p(yt|qt, qt−1, . . . , q1, yt−1, . . . , y1) = p(yt|qt) (6)

0Thanks to Sean Escola for his help preparing these notes; the sections on multistate GLM are adapted
directly from (Escola and Paninski, 2008).
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The traditional HMM framework also assumes that the emission probability distributions,
like the transition probability distributions, are time-homogeneous,

ηnk = p(yt = k|qt = n) = p(ys = k|qs = n), ∀t, s ∈ (1, . . . , T ) (7)

though again, we will see that the last two assumptions can be relaxed significantly. The η
matrices have the same constraints as the α matrices,

0 ≤ ηnk (8)

and
K
∑

k=1

ηnk = 1 (9)

for a system with K discrete emission classes 1, . . . , K.
The dependency structure encapsulated in the Markov and time-homogeneity assumptions

(Eqs. 1, 2, 6, and 7) are illustrated in the graphical model shown in Fig. 1. The following
factorized distribution over the sequence of states and the sequence of emissions is the full
probabilistic description of an HMM:

log p(Q, Y ) = log

(

p(q1)
T
∏

t=2

p(qt|qt−1)
T
∏

t=1

p(yt|qt)

)

(10)

or, more concretely,

log p(Q, Y |α, η, ~π) = log πq0 +

T
∑

t=2

log αqt−1qt
+

T
∑

t=1

log ηqtyt
(11)

where the N ×N α matrix and the N ×K η matrix are as defined above, and the N -element
π vector is the initial state distribution (i.e. πn ≡ p(q0 = n)).

As usual, we would like to infer the parameters of the model α, η, and π (or collectively
θ = (α, η, π)) from the observed data, e.g. by maximizing the log-likelihood. In an HMM
the sequence of states Q is unknown (hidden) and must be integrated out of the complete
log-likelihood equation to yield the incomplete log-likelihood:

L (θ|Y ) = log
∑

Q

p(Q, Y |θ) = log
∑

Q

(

πq0

T
∏

t=2

αqt−1qt

T
∏

t=1

ηqtyt

)

(12)

The sum in Eq. 12 is over all possible paths along the hidden Markov chain during the course
of the time-series, and thus calculating the likelihood would appear to have an exponential
computational time-complexity (O

(

NT
)

, since the number of possible paths Q is NT ). Luck-
ily, it is possible to derive a recursive algorithm for computing this likelihood (allowing us
to evaluate the likelihood in linear instead of exponential time); moreover, each iteration of
the EM algorithm in this setting may also be performed in linear time. Before we get to the
details of these computations, however, let’s discuss a few examples.
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Figure 1: Schematic illustration of several of the HMMs discussed here. In each case, nodes
colored aqua are hidden; light blue nodes are observed. We represent the models in directed
graphical model form: an arrow from one node x to another node y indicates that x is a
“parent” of y: parents and children satisfy the probabilistic relationship p(x1, x2, . . . xN ) =
∏

i p(xi|parents of xi). See (Jordan, 1999) for more details. A: Basic HMM structure. B:
An HMM in which the output yt and the next hidden state qt+1 depend on both qt and
the observed side-information st (e.g., this side information could be the observed stimulus,
s(t) = ~x(t)). C: An autoregressive HMM, in which yt and qt+1 depend on the hidden state
qt, the side information st, and the past observed output yt−1.

1.1 Example: the switching Poisson model is a simple model for spike
trains which flip between a few distinct firing states

In the switching Poisson model, we imagine that the neuron whose spike train we are observing
is a Poisson process whose rate λ is flipping randomly between one of N states (we might think
of each of these distinct firing rate states as corresponding to different attentive or behavioral
states (Rubin, 2003; MacLean et al., 2005; Bezdudnaya et al., 2006))1. In particular, if λ(t)
forms a Markov chain, then we can identify qt = λ(t), and yt as the observed spike count in
some small bin at time t,

yt ∼ Poiss(λ(t)dt).

1This kind of point process model — in which the conditional intensity function is itself a random variable
— is known as a “doubly stochastic process,” or “Cox process” (Cox, 1955; Snyder and Miller, 1991; Sahani,
1999; Moeller and Waagepetersen, 2004).
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Figure 2: Illustration of the switching Poisson model (simulated data). A: The observed
discretized spike train y(t). B: The true underlying hidden state sequence Q. C: The com-
puted forward-backward probabilities p[qt = 2|Y ]. D: The Viterbi path (most likely path
Q given observed sequence Y ). E: Three i.i.d. samples from p(Q|Y ), computed using the
forward-backward method. The firing rates here were λ1 = 0.5 and λ2 = 10 Hz, while the
transition rate from q = 1 to q = 2 was 1 Hz (symmetric transitions were used for simplicity).
Note that both the Viterbi path arg maxQ P (Q|Y ) and the conditional mean path E(Q|Y )
track the true Q fairly well; a few quick jumps in the true Q are missed due to the smoothing
properties of these algorithms under the low transition rates used here.

This gives us a nice simple HMM that we can then fit to data. See Fig. 2 for an illustration.
A slight generalization of this model was developed by (Gat et al., 1997) (see also (Jones

et al., 2007; Kemere et al., 2008) for more recent examples): in this case, the spike trains of
multiple neurons were observed simultaneously. Each individual spike train i was modeled as
an independent Poisson process with rate λi(t), and it was assumed that the vector of firing
rates ~λ(t) was itself a Markov chain (and in particular, this vector could take on only some
finite number N of values). (Gat et al., 1997) fit this model to data recorded from the frontal
cortex of an awake, behaving monkey and were then able to analyze changes in the firing
rate state that were correlated with experimentally-observable behavioral parameters (e.g.,
reaction time). We will discuss further generalizations of this model below.
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Figure 3: Illustration of the ion channel HMM (simulated data). A: The observed conductance
sequence y(t). B: The true underlying hidden state sequence Q. C: The computed forward-
backward probabilities p[qt = 2|Y ]. D: The Viterbi path (most likely path Q given observed
sequence Y ). E: Three i.i.d. samples from p(Q|Y ), computed using the forward-backward
method. The mean conductances here were µ1 = 0 and µ2 = 1, with σ1 = σ2 = 1, while the
transition rate from q = 1 to q = 2 was 1 Hz (symmetric transitions were used for simplicity).

1.2 Example: ion channels are often modeled as HMMs

The standard model for ion channels is as follows (Colquhoun and Hawkes, 1982; Hawkes,
2004): the channel has some finite number N of stable configurations, and the channel will flip
randomly between these states. The biophysical properties of the channel (e.g., conductivity
to a given ion species, or sensitivity to a given drug or voltage perturbation) depend on
the configuration state. It is generally very difficult to observe the configuration of the ion
channel directly (these shape measurements are typically done via crystallographic techniques,
which preclude dynamic measurements of state), but we may be able to make detailed, high-
frequency observations of the conductivity of the channel (via single-channel patch clamp
techniques (Sakmann and Neher, 1995)). Here it is natural to label the configuration at time
t as the hidden state qt, and the conductivity as the observation yt. It is often reasonable to
model the emission probabilities as

yt|qt ∼ N (µ(qt), σ
2(qt)),

i.e., Gaussian with a state-dependent mean and variance (Fredkin and Rice, 1992; de Gunst
et al., 2001). See Fig. 3 for an illustration.
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1.3 Computing the likelihood in an HMM; forward and backward proba-
bilities

2 As mentioned above, the key idea for computing the likelihood p(Y |θ) efficiently is to make
use of the special structure of the HMM to perform the necessary marginalizations recursively.
In particular,

p(Y |θ) =
∑

Q

p(Q, Y |θ)

=
K
∑

q1=1

K
∑

q2=1

. . .
K
∑

qT =1

p(q1)

(

T
∏

t=2

p(qt|qt−1)

)(

T
∏

t=1

p(yt|qt)

)

.

The main thing to notice is that we can rearrange the sums here to make the computations
much more efficient:

p(Y |θ) =
∑

qT

p(yT |qT )
∑

qT−1

p(qT |qT−1)p(yT−1|qT−1)
∑

qT−2

. . .
∑

q2

p(q3|q2)p(y2|q2)
∑

q1

p(q2|q1)p(y1|q1)p(q1); (13)

this formula can easily be computed recursively. In particular, if we define the “forward”
probabilities as

an(t) ≡ p(y1, . . . , yt, qt = n|θ), (14)

then we may compute these forward probabilities recursively by

an(1) = πnηny1 (15)

and

an(t) =

(

N
∑

m=1

am(t − 1)αmn

)

ηnyt
, t > 1, (16)

which involves O(NT ) computation instead of O(TN ). Marginalizing over the hidden state
in the final forward probabilities yields the likelihood,

L(θ|Y ) = log
N
∑

n=1

an(T ). (17)

(Note that all we really have done here is implement equation (13).)
Alternately, we may introduce the “backward” probabilities

bn(t) ≡ p(yt+1, . . . , yT |qt = n, θ). (18)

These can also be computed recursively by

bn(T ) = 1 (19)

and

bn(t) =
N
∑

m=1

αnmηmyt+1bm(t + 1) (20)

2Much of the following couple sections is directly adapted from (Rabiner, 1989).
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which again requires linear time-complexity in T . (We may obtain the likelihood, again, by
marginalizing

L(θ|Y ) = log
∑

n

p(y2, . . . , yT |q1 = n, θ)p(q1 = n|θ)p(y1|q1 = n, θ) = log
∑

n

bn(1)πnηny1 ,

but typically we just use the forward probabilities and formula (17) for simplicity.)

1.4 Maximizing and sampling from the state sequence given observed out-
puts

Before we get to the EM algorithm for optimizing the likelihood of the HMM parameters, it
is worth discussing two more important related problems. First, how do we determine the
most likely state sequence Q given the observation Y ,

arg max
Q

p(Q|Y )?

Again, while at first blush it would appear that we might need to search over all possible paths
Q to solve this problem (a task whose complexity grows exponentially in T ), it turns out to
be possible to perform this optimization recursively and quite efficiently (Viterbi, 1967). This
recursive method is a special case of the “dynamic programming” technique due to Bellman
(Bellman, 1957): since the likelihood p(Q, Y ) = p(q1, q2, . . . , qt, y1, y2, . . . yt) depends on Q
and Y only through the “local” terms p(yt|qt) and p(qt|qt−1), we may solve for the optimal
Q by using (cheap) local inductive computations instead of (exponentially expensive) global
search. The key idea is that, to solve for the optimal path up to time step t + 1, we only
need to keep track of the state qt of the optimal path at time t, along with the likelihood of
this best path up to time t, but given these two pieces of information we do not need to keep
track of the state at previous times t − 1, t − 2, etc.

To make this more explicit, define the intermediate quantity

δt(n) = max
q1,q2,...,qt−1

p(q1, q2, . . . , qt−1, qt = n, y1, y2, . . . yt);

this is proportional to the likelihood along the optimal path up until time t which is con-
strained to end on state i at time t. Now it is straightforward to derive the induction

δt+1(m) =
(

max
n

δt(n)αnm

)

ηmyt+1 ;

i.e., given a list of most likely paths that end at state n at time t, we may easily compute the
most likely paths that end at any other arbitrary state m at time t + 1 (this is the easy local
computation we referred to above). If we initialize

δ1(n) = πnηny1 ,

run the recursion forward to t = T , and then maximize the final likelihood value

max
n

δT (n),

then it is easy to backtrack iteratively from time t = T to t = 1, selecting the state which
maximized δn(t) given the optimal state at each time t + 1. This provides us with a path
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which optimizes the full likelihood p(Q|Y ) (the “Viterbi” path, after (Viterbi, 1967), who
proposed this inductive algorithm); the total complexity of the algorithm is O(N2T ). Finally,
note that the optimization at each time step may have a nonunique solution (and therefore
the optimal path may be nonunique), but nevertheless the algorithm is guaranteed to find a
globally optimal solution; moreover, it is easy to modify the algorithm to collect the top k
paths for some k > 1, simply by keeping track of the k best paths at each time t, instead of
just the best path.

The above discussion defines optimality in terms of the likelihood p(Q|Y ). If instead
we use a different definition of optimality — e.g., if we choose the path that maximizes
the expectation of the number of correctly predicted states, i.e., the expectation of the cost
function,

C(Q, Q′) ≡
∑

t

1(qt 6= q′t),

then we find that the optimal path is instead

qt = arg max
n

p(qt = n|Y, θ).

Thus we choose qt to maximize the marginal probabilities p(qt = n|Y, θ) instead of the full
joint probability p(Q|Y, θ), where the marginals p(qt = n|Y, θ) may be computed as

p(qt = n|Y, θ) =
p(qt = n, Y |θ)

p(Y |θ)
=

p(qt = n, Y1,t|θ)p(Yt+1,T |qt = n, θ)

p(Y |θ)
=

an(t)bn(t)

p(Y |θ)
, (21)

where we have already discussed how to compute the likelihood p(Y |θ) =
∑N

n=1 an(T ); the
first equality here is by Bayes, the second is by the Markov property of the model, and the
third is by definition of an(t) and bn(t).

Of course, these two solutions to the problem of optimizing the path are not the same
in general, since the latter solution cares only about individual states, while the Viterbi
path cares about sequences (and therefore about the transitions between states as well). For
example, it is possible to construct examples for which the optimal individual-sense path is
actually impossible (because one of the transitions is illegal, i.e., αnm = 0) and therefore least
likely in the full-sequence sense.

What if we want to sample from the posterior p(Q|Y ) instead of computing the optimal
path? This may be done easily using an alternate version of the forward-backward method
in which we sweep forward first and then sample backwards (c.f. the approach above, in
which the forward and backward steps may be computed completely independently of each
other; we will discuss this alternate coupled forward-backward method in much more detail in
the context of state-space models in the next chapter). We begin by computing the forward
probabilties an(t). Then, to construct samples from Q, we recurse backwards: for each desired
sample path initialize qT by drawing a sample from the distribution

qT ∼ p(qT = n|Y ) =
an(T )

∑

n an(T )
,

10



then for T > t > 0, sample backwards,

qt ∼ p(qt|Qt+1:T , Y )

= p(qt|qt+1, Y )

=
1

Z
p(qt, qt+1, Y )

=
1

Z
p(qt+1|qt)p(qt|Y )

=
1

Z
αqtqt+1aqt

(t).

Thus sampling on each time step t simply requires that we draw independently from a simple
discrete distribution, proportional to the product in the last line. Once this product has been
computed, this sampling can be done using standard methods. A nice feature of this method
is that the forward probabilities an(t) may be precomputed for all t via a single forward step;
this only has to be done once, no matter how many sample paths are required. Putting the
samples together, for 0 < t ≤ T , clearly gives a sample from p(Q|Y ), as desired.

Instead of computing the forwards probabilities and then sampling backwards we could,
of course, compute the backwards probabilities and then sample forwards. Again, the key
is just to note that we can draw a sample path from p(Q|Y ) by recursively sampling from
p(qt+1|Q1:t, Y ), and the latter can be written in the simple form

p(qt+1|Q1:t, Y ) = p(qt+1|qt, Yt+1:T ) =
1

Z
p(qt+1|qt)p(Yt+1:T |qt+1).

This formulation makes explicit a very important point: an HMM conditioned on its outputs
remains a Markov chain, but with transition probabilities proportional to p(qt+1|qt)p(Yt+1:T |qt+1)
instead of the original p(qt+1|qt). We will see a number of applications of this insight below.

See Figures 2 and 3 for illustrations of these computations, as applied to the switching
Poisson and ion channel models discussed above3.

3Figures 2 and 3 were created using Kevin Murphy’s Matlab HMM toolbox,
www.cs.ubc.ca/∼murphyk/Software/HMM/hmm.html.
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1.5 Expectation-Maximization algorithm for the HMM

Deriving the EM algorithm for the HMM parameters is fairly straightforward4. As usual, we
compute the expected complete log-likelihood:

〈log p(Q, Y |θ)〉 =

〈

log πq0 +
T
∑

t=2

log αqt−1qt
+

T
∑

t=1

log ηqtyt

〉

p(Q|Y,θ̂(i))

=

〈

log πq0

〉

p(Q|Y,θ̂(i))

+

T
∑

t=2

〈

log αqt−1qt

〉

p(Q|Y,θ̂(i))

+

T
∑

t=1

〈

log ηqtyt

〉

p(Q|Y,θ̂(i))

=

〈

log πq0

〉

p(q0|Y,θ̂(i))

+

T
∑

t=2

〈

log αqt−1qt

〉

p(qt−1,qt|Y,θ̂(i))

+

T
∑

t=1

〈

log ηqtyt

〉

p(qt|Y,θ̂(i))

=
N
∑

n=1

p(q0=n|Y, θ̂(i)) log πn +
T
∑

t=2

N
∑

n=1

N
∑

m=1

p(qt−1=n,qt=m|Y, θ̂(i)) log αnm

+
T
∑

t=1

N
∑

n=1

p(qt=n|Y, θ̂(i)) log ηnyt
. (22)

From equation (22) it is clear that, to perform the M-step (or, recalling the connection between
the gradient of the expected complete log-likelihood and the gradient of the log-marginal
likelihood (Salakhutdinov et al., 2003), to compute the gradient ∇θ log p(Q|θ)), we need only
compute the single and pairwise marginal distributions p(qt|Y, θ̂(i)) and p(qt−1, qt|Y, θ̂(i)), given
respectively by equation (21) and

p(qt = n, qt+1 = m|Y, θ) =
p(qt = n, qt+1 = m, Y |θ)

p(Y |θ)

=
p(qt = n, Y1,t|θ)p(qt+1 = m|qt = n, θ)p(Yt+1,T |qt+1 = m, θ)

p(Y |θ)

=
an(t)αnmηmyt+1bm(t + 1)

p(Y |θ)
, (23)

where the derivation follows that of equation (21) closely.
In the simple case of static α and η matrices in a time-homogeneous HMM, it is possible to

derive analytic solutions for the next parameter setting θ̂i+1 in each M-step. More generally,
ascent techniques can be employed to maximize equation (22), as we will describe at length
below. However, the analytic solution for the next parameter setting of the initial state
distribution π is useful in the general case. This is found by introducing a Lagrange multiplier

4The EM algorithm for HMMs is often called the “Baum-Welch” algorithm, after (Baum et al., 1970).
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ϕ to guarantee that
∑

n πn = 1, and then setting the gradient of equation (22) to zero.

0 =
∂

∂πn

(

〈log p(Q, Y |θ)〉
p(Q|Y,θ̂(i)) − ϕ (

∑

n πn − 1)
)

=
∂

∂πn

( N
∑

n=1

p(q0 = n|Y, θ̂(i)) log πn +
T
∑

t=2

N
∑

n=1

N
∑

m=1

p(qt−1 = n, qt = m|Y, θ̂(i)) log αnm

+
T
∑

t=1

N
∑

n=1

p(qt = n|Y, θ̂(i)) log ηnyt
− ϕ (

∑

n πn − 1)

)

= p(q1=n|Y, θ̂(i))
1

πn
− ϕ

=⇒ πn =
p(q1=n|Y, θ̂(i))

ϕ
. (24)

Since π and p(q1 = n|Y, θ̂(i)) must both sum to one, we have the update

π̂(i+1)
n = p(q1=n|Y, θ̂(i)). (25)

A similar derivation establishes the following M-step updates for the transition and emis-
sion matrices:

η̂(i+1)
nm =

∑T
t=1 1(yt = m)p(qt = n|θ̂(i), Y )
∑T

t=1 p(qt = n|θ̂(i), Y )

and

α̂(i+1)
nm =

∑T−1
t=1 p(qt = n, qt+1 = m|θ̂(i), Y )
∑T−1

t=1 p(qt = n|θ̂(i), Y )
.

Again, all of the necessary ingredients here have been computed in the E-step, as described
above; moreover, as in our previous applications of the EM formalism, the solutions for
each of the three parameters π, η, and α have natural interpretations as weighted versions
of the fully-observed maximum likelihood estimates; that is, we replace observations of the
hidden states qt in the fully-observed setting with the “pseudo-observations” p(qt = n|θ, Y ),
p(qt = n, qt+1 = m|θ, Y ), and so on. For example, the usual sample size T is replaced by the
sum of weights

∑T
t=1 p(qt = n|θ̂(i), Y ).

It is also straightforward to incorporate more special structure into the model in these
EM updates. As an example, recall the multineuronal switching Poisson model introduced
by (Gat et al., 1997; Jones et al., 2007; Kemere et al., 2008). In this case, the emission
probability p(yt|qt) was assumed to have a special form:

p(yt|qt) = p(n1(t), n2(t), . . . nC(t)|λ1(t), λ2(t), . . . , λC(t)) =
C
∏

j=1

eλj(t)dt(λj(t)dt)nj(t)

nj(t)!
,

where nj(t) is the spike count from neuron j at time t and C is the total number of observed
cells. Here the updates for π and α remain the same, but instead of updating a full matrix η
encoding the conditional probabilities of any possible combination of vector spike counts ~n(t)
given the state qt, we only need to compute the much smaller C ×K matrix of rates λj given
q. If we compute the M-step for these conditional rates, we obtain

(

λ̂j |q = m
)(i+1)

=
1

dt

∑T
t=1 ni(t)p(qt = m|θ̂i, Y )
∑T

t=1 p(qt = m|θ̂(i), Y )
;
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thus, as usual in the Poisson setting, the update for λj is computed in terms of a weighted

expectation of nj , and once again each sample is weighted by p(qt = m|θ̂(i), Y ).
Similarly, in the case of the ion channel model with state-dependent noise, we have the

updates

µ̂(m)(i+1) =

∑T
t=1 ytp(qt = m|θ̂(i), Y )
∑T

t=1 p(qt = m|θ̂(i), Y )

and

σ̂2(m)(i+1) =

∑T
t=1[yt − µ̂(m)]2p(qt = m|θ̂(i), Y )
∑T

t=1 p(qt = m|θ̂(i), Y )

for the state-dependent conductance mean and variance, respectively; these are weighted
versions of the standard sample mean and variance.

We should emphasize here that, while the M-step has a nice unique solution in each of
the cases we have encountered so far, there may in fact be multiple maximizers of the full
marginal likelihood p(Y |θ). In fact, a simple symmetry argument shows that local maxima of
the likelihood must exist in all but the simplest HMMs, since the likelihood is invariant with
respect to relabelings of the state. Thus initial conditions (or alternately, restrictions on the
parameter space to restore identifiability of the model) play an important role in optimizing
the likelihood of HMMs.

1.6 Example: including Markovian refractory effects in spike-sorting algo-
rithms

In low-SNR extracellular recordings, simple spike-sorting methods can often lead to inferred
spike trains with “refractory violations”: interspike intervals less than some assumed minimum
absolute refractory period (typically taken to be 1-2 ms). We can deal with these violations
systematically by introducing a simple Markov model for neural refractoriness, and then
estimating the sequence of spike times by inference in a corresponding HMM model, where
the observations yt are given by the observed voltage, mapped into a convenient feature space.
(Recall the discussion of the spike sorting problem in the chapter on the EM algorithm.)

For simplicity, assume that just one neuron is present on the electrode; thus we simply
have to perform a binary discrimination task, separating spikes from non-spikes in each time
bin. Now we introduce a simple Markov model for refractoriness: if the hidden state qt = 1,
then the neuron fires with probability λ, but if qt is in any other state then we assume the
neuron can not fire. (Of course this simple model may be generalized, e.g. by including states
in which the firing rate is at some intermediate level between zero and λ (Escola and Paninski,
2008), but we will stick to the simpler model for now.) When the neuron spikes, the state
moves from qt = 1 to qt = 2, say, and then follows Markovian dynamics to eventually proceed
back to state 1. The transition matrix α here determines the shape of the interspike interval
distribution:

p(spike at time t|spike at time 0) = r(t) ∗ geo(λdt),

where r(t) denotes the distribution of “first return” times, at which qt first returns to the
firing state qt = 1 given a spike5, ∗ denotes discrete convolution, and geo(q) denotes the
geometric distribution with parameter q. Here the convolution form for the ISI distribution

5The first return time distribution can be easily calculated by taking powers of the transition matrix α; we
will discuss related computations in much more depth in the continuous-time setting, in section 4.
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follows from the fact that the time at which a spike occurs, given that qt = 1, is independent
of the time at which qt returned to state 1.

Finally, we need to define the emissions probabilities: if we are using a mixture-of-
Gaussians classifier, as described previously, then the emissions probabilities are simply Gaus-
sian:

p(yt|qt = 1) = N (µ1, C1),

and
p(yt|qt 6= 1) = N (µ0, C0);

i.e., µ1 and C1 are the mean and covariance of the voltage features yt given a spike, and µ0

and C0 are the mean and covariance given no spike.
The EM algorithm for this model may be derived following the outline described above.

The E step remains unchanged; we simply run the forward-backward algorithm to compute
the sufficient statistics involving p(qt|Y ). The M step is only slightly modified. Since there is
only one spiking state, we update

µ̂
(i+1)
1 =

∑T
t=1 ytp(qt = 1|θ̂(i), Y )
∑T

t=1 p(qt = 1|θ̂(i), Y )

and

Ĉ
(i+1)
1 =

∑T
t=1[yt − µ1][yt − µ1]

T p(qt = 1|θ̂(i), Y )
∑T

t=1 p(qt = 1|θ̂(i), Y )
,

as before, and

µ̂
(i+1)
0 =

∑T
t=1 ytp(qt 6= 1|θ̂(i), Y )
∑T

t=1 p(qt 6= 1|θ̂(i), Y )

and

Ĉ
(i+1)
0 =

∑T
t=1[yt − µ1][yt − µ1]

T p(qt 6= 1|θ̂(i), Y )
∑T

t=1 p(qt 6= 1|θ̂(i), Y )
.

The updates for the transition matrix α remain unchanged.
See (Herbst et al., 2008) for further details; these authors show that a similar HMM

approach can help resolve very noisy spike observations and reduce refractory violations.
In particular, if the transition matrix α is chosen to have a “ring” structure, in which qt

transitions deterministically from state i to i + 1, then the spike train corresponding to the
Viterbi path arg maxQ p(Q|Y ) will by construction contain no interspike intervals shorter than
K time steps. In addition, extensions to multiple neurons are possible, but make the method
much more computationally difficult, and some approximations become necessary in practice;
again, see (Herbst et al., 2008) for details.

2 Multistate generalized linear models for spike trains: ex-
tending the switching Poisson model

Clearly the switching Poisson model we introduced above is oversimplified: neither stimulus-
dependent nor spike history-dependent terms are included in the model. Thus it is natural
to ask how we might generalize the switching Poisson model to make it more useful for the
analysis of real neural data. In particular, we would like to combine the strengths of the GLM
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approach with those of the HMM approach, if possible. For example, neurons might plausibly
have not only state-dependent baseline firing rates (as in the switching Poisson model) but
also state-dependent receptive fields (Bezdudnaya et al., 2006) and state-dependent spike
train properties (for example, tonic and burst modes of cells in the thalamus (Sherman, 2001)
and up-and-down states in the cortex (MacLean et al., 2005)). Moreover, it is easy to think
of models in which the transition probabilities between states are themselves stimulus (and
spike-history) dependent. It turns out to be fairly straightforward to incorporate all of these
effects in a single, tractable GLM-HMM model.

To get this to work, we need to make three specific generalizations of the basic homoge-
neous HMM we introduced above. In particular, we want to allow the emission and transition
probabilities to be: 1) time-dependent; 2) dependent on the stimulus ~x(t); 3) autoregressive,
in the sense that the emissions and transitions no longer just depend on the value of the state
q at time t, but also on past observed values of ys, s < t. We address each of these issues in
turn.

2.1 Extension to the case that firing and transition rates are time-dependent

The extension to the time-dependent case is trivial for the emission matrix; as before, we
model yt as a point process with conditional intensity function λn(t), where again n indexes
the state.

The extension for the transition matrix α is slightly more complicated: whereas for the
spike count emissions it is perfectly reasonable to allow yt to be larger than one (if dt is large
enough), for the transitions it is inconvenient to allow multiple transitions to occur from state
n to state m during a single time-step t. To sidestep this issue, we introduce the following
model,

αnm(t) =























λ′
nm(t)dt

1 +
∑

l 6=n λ′
nl(t)dt

m 6= n

1

1 +
∑

l 6=n λ′
nl(t)dt

m = n,

(26)

where λ′
nm(t) is the instantaneous “pseudo-rate” of transitioning from state n to state m.

This definition of α is convenient because it restricts transitions to at most one per time-step
and does not violate Eq. 4; as we will see below, this form of α also simplifies computations
in the continuous-time limit dt → 0.

2.2 Including stimulus and spike history dependence

One natural model for the firing rates λn(t) and the transition rates λ′
nm(t) is the GLM

λ′
nm(t) = g

(

~k′
nm · ~x(t) + b′nm

)

(27)

and
λn(t) = f

(

~kn · ~x(t) + bn

)

(28)

where as usual ~x(t) denotes the spatiotemporal stimulus at time t, ~k′
nm and ~kn are weight

vectors that describe the neuron’s preferences in stimulus space for transitioning and firing
respectively, b represents a constant (scalar) offset term, and g(.) and f(.) are nonlinear
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rate functions mapping real scalar inputs to non-negative scalar outputs. The ~kn stimulus
filters for firing are the K linear “receptive fields” associated with each of the K states of
the neuron. In the degenerate case where K = 1, the model reduces to a standard linear-
nonlinear-Poisson (LNP) model, and ~k1 becomes the canonical receptive field. The ~k′

nm

stimulus filters for transitioning are, by analogy, “receptive fields” for transitioning, and since
there are K(K−1) of these, there are K2 total transition and firing stimulus filters describing
the full model.

The manner in which spike history dependence enters into the rate equations is, as in the
standard GLM setting, mathematically equivalent to that of the stimulus dependence. For
convenience, define ~γ(t) as the vector of the spike-counts for each of the J time-steps prior to
t,

~γ(t) ≡ (yt−1, . . . , yt−J)T (29)

Then the transition and firing rate equations are modified by additional linear terms as

λ′
nm(t) = g

(

bnm + ~k′
nm · ~x(t) + ~h′

nm · ~γ(t)
)

(30)

and
λn(t) = f

(

bn + ~kn · ~x(t) + ~hn · ~γ(t)
)

(31)

where ~h′
nm and ~hn are weight vectors that describe the neuron’s preferred spike-history pat-

terns for transitioning and firing, respectively. (As usual, by forming a suitable design matrix
X we may treat the stimulus, spike history, and constant offset parameters in a unified way.
Therefore we will only treat the case of fitting ~k below; the case of fitting (~k,~h, b) simultane-
ously may be handled in exactly the same way.)

2.3 Example: computing the spike-triggered average in the multistate
model

Certain computations remain fairly straightforward in this multistate model. As an example,
let’s take a look at the spike-triggered average in this model. For simplicity, let’s assume
that: 1) the stimuli ~xt are i.i.d. (no temporal stimulus correlations); 2) the stimulus filters are
instantaneous (~kn and ~k′

nm do not implement any temporal filtering); and 3) all spike-history
terms are set to zero (e.g., given the hidden state sequence qt, spikes are generated by an
inhomogeneous Poisson process).

Now we want to compute the expectation of the stimulus ~xt at time t given the event su:
a spike occurs at time u, with u > t. We compute directly:

E(~xt|su) =
1

p(su)

∫

p(~xt, su)~xtd~xt

=
1

p(su)

∫

∑

qt,qt+1

p(~xt, su, qt, qt+1)~xtd~xt

=
1

p(su)

∫

∑

qt,qt+1

p(qt+1|qt, ~xt)p(~xt)p(qt)p(su|qt+1)~xtd~xt. (32)

All of the terms in the last line may be computed readily. In particular, we may compute
p(su|qt+1) via the backwards recursion, if we use the fact that the spike sequence st and the
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state sequence qt form an HMM after marginalizing over the i.i.d. stimulus sequence ~xt. We
just need to compute the marginal emission probability

p(st|qt) =

∫

p(st, ~xt|qt)d~xt =

∫

p(st|qt, ~xt)p(~xt)d~xt

and the marginal transition probabilities

p(qt+1|qt) =

∫

p(qt+1, ~xt|qt)d~xt =

∫

p(qt+1|qt, ~xt)p(~xt)d~xt,

which may be reduced to a series of one-dimensional numerical integrals, in general. Finally,
the stationary distributions p(qt) and p(su) can be computed directly from the top eigenvector
of the marginal transition matrix p(qt+1|qt), and the terms p(~xt) = p(~x) and p(qt+1|qt, ~xt) are
both given; the integral and sums in equation (32) can again be reduced to a series of one-
dimensional numerical integrals.

Interestingly, we find that in general E(~xt|su) will be an exponentially-decaying function
of the time delay u − t (due to the recursive definition of the backwards density p(su|qt+1)),
even though the stimulus filters {~k} do not contribute any temporal filtering themselves.

2.4 Parameter estimation via EM

Again, we may write down the expected complete log-likelihood,

〈log p(Q, Y |θ)〉 =
T
∑

t=2

K
∑

n=1

K
∑

m=1

p(qt−1=n,qt=m|Y, θ̂(i)) log αnm +
T
∑

t=1

K
∑

n=1

p(qt=n|Y, θ̂(i)) log ηnyt

+
K
∑

n=1

p(q1=n|Y, θ̂(i)) log πn. (33)

The E-step, as in the vanilla HMM case, corresponds to running the forward-backward al-
gorithm to compute the single and pairwise marginals p(qt|Y, θ̂(i)) and p(qt−1, qt|Y, θ̂(i)): the
forward-backward algorithm is completely unchanged here once we substitute

p (yt|qt, qt−1, . . . , q1, yt−1, . . . , y1, ~x(t)) = p (yt|qt, ~x(t), ~γ(t))

instead of just p(yt|qt), and

p (qt+1|qt, yt, . . . , y1, ~x(t)) = p (qt+1|qt, ~x(t), ~γ(t)) ,

instead of just p(qt+1|qt).
For the M-step, we may address each of the three terms in equation (33) individually, since

to update α we need only optimize the first term, and to update η we need only optimize the
second term, etc. The last term is the easiest: to update π, we simply employ equation (25)
again.

The second term is also fairly straightforward:

T
∑

t=1

K
∑

n=1

p(qt=n|Y, θ̂(i)) log ηnyt
=

T
∑

t=1

K
∑

n=1

p(qt=n|Y, θ̂(i)) log

(

f
(

~kn · ~x(t)
)

dt
)yt

e−f(~kn·~x(t))dt

yt!

=
T
∑

t=1

K
∑

n=1

p(qt=n|Y, θ̂(i))
(

yt log f
(

~kn · ~x(t)
)

− f
(

~kn · ~x(t)
)

dt
)

+ const.
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Figure 4: Example fits of the multistate GLM parameters to simulated data. Simulated
neuron is a two-state GLM; in one state, the cell was “attentive” (i.e., the spiking probability
depended on the stimulus), and in the other state, the filter ~k was zero and therefore the
cell ignored the stimulus completely. A-B: True and inferred transition filters. C: True and
inferred emission filter in the attentive state. The estimated filter ~k for a standard (single-
state) GLM is shown for comparison; note that this estimated filter is a nonlinear combination
of the stimulus and emissions filters, and leads to poor predictive performance overall. 1000
seconds of data (white noise stimuli) were used for the fitting, with firing rates of about 20−30
Hz; ten experiments were performed to assess the variability of the fits (mean ± s.d. shown).

This is just a weighted version of our standard GLM point process loglikelihood, and may be
optimized easily via gradient ascent under the usual convexity and log-concavity conditions
on f(.), since the weights p(qt = n|Y, θ̂(i)) are nonnegative. Conveniently, the optimizations
for each ~kn may be performed in parallel.
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The first term is a little more novel:
∑T

t=2

∑K
n=1

∑K
m=1 p(qt−1=n,qt=m|Y, θ̂(i)) log αnm

=
T
∑

t=2

K
∑

n=1















∑

m6=n

p(qt−1=n,qt=m|Y, θ̂(i)) log
g
(

~k′
nm · ~x(t)

)

dt

1 +
∑

l 6=n g
(

~k′
nl · ~x(t)

)

dt

+ p(qt−1=n,qt=n|Y, θ̂(i)) log
1

1 +
∑

l 6=n g
(

~k′
nl · ~x(t)

)

dt















∼
T
∑

t=2

K
∑

n=1







∑

m6=n

p(qt−1=n,qt=m|Y, θ̂(i)) log g
(

~k′
nm · ~x(t)

)

− p(qt−1=n|Y, θ̂(i)) log
(

1 +
∑

l 6=n g
(

~k′
nl · ~x(t)

)

dt
)






,

since
∑

m p(qt−1 = n, qt = m|Y, θ̂(i)) = p(qt−1 = n|Y, θ̂(i)). Here we need to impose stronger
conditions on g(.) to ensure concavity of this objective function with respect to the parameters
~k′

nm: for example, it is sufficient that g(.) = exp(.) (Escola and Paninski, 2008).
Just as in the homogeneous, stimulus-independent HMM case, while the M-step has a

well-defined global maximum, the likelihood p(Y |θ) itself may have local maxima. Thus
choosing an initialization for θ is more important than in the simpler GLM setting. See Fig. 4
for example fits estimated from simulated data, and (Escola and Paninski, 2008) for further
analyses and discussion.

3 Non-Markovian models for identifying “up” and “down”
states in spike trains

Fill in later; (Escola and Paninski, 2008); also Kass and Chen et al

4 Continuous-time Markov chains

Above we discussed how to compute the probabilities of various events related to Markov
chains in discrete time. However, in certain circumstances it is advantageous or more natural
to work in continuous time instead. For example, as we will see, certain computations may
be done analytically in continuous time but only numerically in discrete time. In addition,
certain formulas take on more intuitive forms in the continuous limit. Thus in this section
we will develop some of the continuous-time analogs for the methods we presented in the
previous chapter.

Before we dive into the topic of continuous-time hidden Markov chains, it is useful to
review the theory of continuous-time, fully-observed Markov chains. As we will see, there are
a number of close connections between continuous-time Markov chains and point processes:
the Poisson process is in fact a canonical example of a continuous-time Markov chain. In
addition, the intuition and tools we develop in the discrete-space setting will be useful in the
continuous-space applications (notably the noisy integrate-and-fire model and related Cox
process) we’ll discuss later.

In discrete time, the transition matrix αnm plays the key role: in particular, we know
that to obtain the probability distribution on states at some time t steps in the future, we
need only apply the transition matrix t times to the vector describing our current probability
distribution on states. In continuous time, it doesn’t make as much sense to talk about the
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probability of being in state m one “time step” after being in state n, but we can certainly
talk about rates of change, for example the rate of probability mass flowing from state n to
state m at time t.

A physically reasonable Markov chain X(t) will satisfy

P (X(t) = m|X(0) = n) =

{

1 + Annt + o(t) n = m

Anmt + o(t) i 6= m
, t → 0,

with Ann ≤ 0 and Anm ≥ 0, n 6= m. That is, the probability that system will remain in state
n some short time t after being observed in state n will approach 1 as t becomes small. So
we will focus on the rate Ann at which this probability goes to one, and the corresponding
rates Anm at which the probability that the system will be in state m at time t goes to zero.

In particular, we may form derivatives as usual and define

Anm = lim
tց0

P (X(t) = m|X(0) = n)

t
;

we call this matrix the “generator” of the process X(t). Here Anm describes the rate at which
X(t) jumps from state n to state m. Clearly we must have

∑

m

Anm = 0 ∀n,

since otherwise mass would be created (i.e., P (X(t) = m|X(0) = n) would not sum to one);
thus

Ann = −
∑

m:n6=m

Anm.

In the case that state n is absorbing, for example — i.e., X(t) might jump into state n but
then never leaves — Anm = 0 for all m.

As a simple example, let’s look once again at the homogeneous Poisson process N(t) with
rate λ. (Recall that N(t) denotes the counting process: the number of spikes falling before
time t.) We have that

P (N(t) = m|N(0) = n) =

{

exp(λt)(λt)m−n/(m − n)! n ≤ m

0 n > m
;

we may easily calculate that the generator for this case is

Anm =











−λ n = m

λ n = m − 1

0 otherwise.

(Note that the state space of the Poisson process, the nonnegative integers, is infinite. In
general, Markov chains with infinite state spaces do present some mathematical subtleties
(Karlin and Taylor, 1981; Norris, 2004), but the examples we will be looking at will pose no
major analytical problems.)

Recall that the times between changes of state (jumps) in the Poisson process were expo-
nentially distributed, with rate λ. In the more general case, an identical argument shows that
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the waiting time for a jump away from state n is exponential with rate −Ann, and given that
a jump from state n has occurred at time t, the conditional probability of the jump target is
just

P (X(t+) = m|X(t−) = n, jump at t) = Anm/
∑

m:n6=m

Anm; (34)

thus when the system decides to jump, it chooses its jump target with probability exactly
proportional to Anm. This gives a straightforward recursive algorithm for sampling from
the chain: given X(t) = n, jump to state m at time t + s, where s is an independent
exp(−Ann) random variable and m is chosen according to equation (34). Just as in the
Poisson case (where the corresponding algorithm is given by the time-rescaling theorem),
this algorithm is much more efficient than the obvious discrete-time approximation (in which
we sample from a Markov chain in steps of some sufficiently small dt and transition rates
P (m|n) = Anmdt, m 6= n).

Now we know when we hear “rates” that a differential equation is lurking in the back-
ground. Here we have the linear ODE

∂ ~P (t)

∂t
= AT ~P (t),

with initial conditions ~P (0), where ~P (t) denotes the vector

~P (t)n ≡ P (X(t) = n)

(we will give a detailed derivation of a more general version of this ODE shortly); as usual,
this linear equation has a solution of (matrix) exponential form,

~P (t) = exp(tA)T ~P (0).

Thus to compute the marginal probability P (X(t) = n) for any arbitrary time in the future we
need simply compute a matrix exponential and then perform a matrix-vector multiplication;
this is the analog in discrete time of multiplying by the t-th power of the transition matrix α.

4.1 The MLE for the transition rate matrix A generalizes the MLE for the
firing rate λ in the Poisson process

How do we estimate A from data? As usual, we start by writing down the likelihood. Since
continuous-time Markov chains generalize the Poisson process, it’s natural to expect that we
can mimic the derivation of the point process likelihood here. Namely, we discretize time in
bins of width dt and then let dt → 0. The discretized likelihood of A is

Ldiscrete(A) =
∏

j′

[1 + AX(tj′ )X(tj′+dt)dt + o(dt)]
∏

j

[AX(tj)X(tj+dt)dt + o(dt)],

where j indexes all time points where a transition is observed in X(t) and j′ indexes all other
times. As before, when we expand the logarithm and take limits, we have

L(A) = lim
dt→0

∏

j′

[1 + AX(tj′)X(tj′+dt)dt + o(dt)]
∏

j

[AX(tj)X(tj+dt)dt + o(dt)]

∝
∏

j

exp[wjAX(tj)X(tj)]AX(tj)X(tj+1),
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where wj denotes the j-th waiting time, the length of time between observed transitions j
and j + 1. (These waiting times are exponentially distributed with parameter −AX(tj)X(tj),
as discussed above.)

Now the MLE Â can be constructed easily. Using the exponential representation, it’s easy
to see (using the usual MLE for exponentially-distributed data) that

Ânn = −(w̄n)−1,

with w̄n defined as the mean observed waiting time in state n; this generalizes the MLE for
the rate λ in the Poisson process. Now

Ânm = −ÂnnNnm/
∑

m:n6=m

Nnm,

where Nnm is the observed number of transitions from state n to m. Clearly
∑

m Ânm = 0,
as desired.

See e.g. (Karlin and Taylor, 1981; Norris, 2004) for more details on continuous-time
Markov chains with discrete state spaces.

4.2 Example: voltage-gated ion channels with time-dependent transition
rates

In the case of voltage-gated ion channels, the transition matrix A depends explicitly on the
voltage V (where the voltage signal V (t) is assumed fully and noiselessly observed for now),
and therefore A(V (t)) is now a function of time; thus we modify the above equation to the
possibly inhomogeneous counterpart

∂ ~P (t)

∂t
= A(V (t))T ~P (t),

with solution

~P (t) = exp(

∫ t

0
A(V (s))ds)T ~P (0).

(Note that when A(t) is in fact constant, this reduces to our original time-homogeneous
formula.)

Sampling from this model may be performed, once again, by time-rescaling. We recurse
as follows: draw uj ∼ exp(1). Given that X is in state Xj after j transitions, solve the
time-rescaling equation

uj = −

∫ tj+1

tj

AXjXj
(V (t))dt

for tj+1; this gives us the time of the next transition tj+1. Choose the next state of X (that
is, the state which X jumps to at time tj+1 according to the probability mass function

P (X(t+j+1) = m|X(t−j+1) = n, jump at tj+1) = Anm(V (tj+1))/
∑

l:l 6=n

Anl(V (tj+1))

= n, jump at tj+1) = −Anm(V (tj+1))/Ann(V (tj+1)),

and continue recursively.
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5 Continuous-time HMMs

We now turn to hidden Markov models whose underlying Markov chains evolve (and whose
observations are recorded) in continuous time. It is interesting to note, before we move on,
that the direct analog of hidden Markov models on discrete state spaces don’t make much
sense in continuous time; since the hidden process qt remains constant for nonzero lengths of
time, we would effectively see an infinite number of observations from yt, and would therefore
be able to determine qt deterministically. (Compare Figs. 2 and 3; the example with Gaussian
observations — where the parameters of the Gaussian are independent of the timestep dt —
is much more informative than the example in which the observations are given by a Poisson
process, where the information per bin scales with dt.) Thus the HMMs we will examine will
have a slightly modified structure, in which the observations yt are not “infinitely informative”
for the hidden process qt.

As in the discrete setting, there are several key problems that we need to solve given
observations Y : what is the likelihood p(Y |θ)? How can we efficiently compute the forward
probabilities P (qt, Y0:t), or the forward-backward probabilities P (qt|Y0:T ), t < T? Many of
these problems can be solved by fairly direct adaptations of the corresponding discrete-time
algorithms; however, the following examples will illustrate a few cases in which it is more
enlightening and computationally efficient to work directly in continuous time.

5.1 Example: the switching Poisson process in continuous time

We have already discussed this model at length in discrete time. Let’s look at a special case
in which the continuous-time formalism becomes useful: let λ1 = 0 and λ2 = λ > 0. Then yt

becomes a renewal process, and we may profitably apply renewal theory to understand the
behavior of the model. For example, the cdf of the interspike intervals here is simply

F (t) =
[

exp(tA)T π
]

3
,

with π = (0 1 0)t and

AT =





−a b 0
a −b − λ 0
0 λ 0



 ,

where λ is the rate of the Poisson process when X is in state two (recall that the rate in state
one is zero), and a, b determine the transition rates for qt (a is the transition rate from state 1
to state 2, and b is the transition rate in the opposite direction). One way to look at this is as
an augmented Markov chain X(t) such that states one and two are as for our original process
H, and state three corresponds to having just seen a spike. X begins at state two (since we
just observed a spike, we know we must be in the state in which spikes occur with a positive
rate), then can either jump into state one or state three. State three is absorbing and signifies
that a spike just occurred; since we are only interested in the first spike, we do not allow X
to re-enter the spiking state after a spike has been observed. Clearly this augmented-chain
approach generalizes to the case that X(t) has more than two states.

From the cdf, we may as usual derive the pdf by differentiating:

p(t) =
∂

∂t

[

exp(tA)T π
]

3
=
[

AT exp(tA)T π
]

3
,
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and since this is a renewal process, we may sample from yt (by drawing i.i.d. from this
p(t)) without ever sampling from qt. We may also compute the autocorrelation function and
asymptotic mean firing rate using standard renewal theory tools:

p(spike at t|spike at 0) =
∑

i>0

p(t)∗i,

where p(t)∗i indicates the i-fold convolution of p(t) (p(t)∗1 = p(t)) and

lim
t→∞

p(spike at t) = (

∫

tp(t)dt)−1.

5.2 Example: ion channel models in continuous time

Another important case in which Y is not completely informative about Q is when the emis-
sions probabilities are equal, p(yt|qt = n) = p(yt|qt = m), for one or more pairs of states
(n, m). This case has been well-studied in the context of ion channel models (Colquhoun and
Hawkes, 1982; Ball and Sansom, 1989; Ball and Rice, 1992; Hawkes, 2004).

The simplest example of an HMM in this case is as follows. Let the observed current yt

have two possible values: high or low current (we assume this current is observed noiselessly
for now, although of course this assumption may be relaxed as well (Chung et al., 1990;
Venkataramanan and Sigworth, 2002)). Let the channel have K states, with the first k of
these states passing high current and the remaining K − k states passing low current. Then
A may be partitioned in the block form

A =

(

Ahh Ahl

Alh All

)

.

Now let’s imagine we have observed a set of transition times {ti}, from low to high currents
or vice versa, perhaps with some gaps in the record (marked by transitions from observed to
unobserved).

Let’s start with the simplest case: we observe the current fully and see no transitions;
the current is high throughout the observation period, [0, T1). By a simple adaptation of our
usual arguments (compute the forward probabilities, then let dt → 0), it’s not hard to see
that the forward distribution is

an(t) = P (X(t) = n, Y0:t) =

[(

exp(tAhh)T 0
0 0

)

π

]

n

, 0 < t < T1,

where π denotes the initial probability vector; the zeros in the above matrix are due to the
fact that we know that the channel must be in the high-current state on the observation
interval [0, T1).

Now what if we see a transition from high to low current at time T1? We form a(T−
1 ) by

the above method, and then obtain

P (X(T1) = n, Y0,T1) ∝

[(

0 Ahl

0 0

)

a(T−
1 )

]

n

=

[(

0 Ahl

0 0

)(

exp(T1Ahh)T 0
0 0

)

π

]

n

.

Similarly, if following this transition at time t1 we observe T2 time units of low current, we
may compute

P (X(t) = n, Y0,t) ∝

[(

0 0
0 exp(tAll)

T

)(

0 Ahl

0 0

)(

exp(T1Ahh)T 0
0 0

)

π

]

n

, T1 < t < T1+T2.
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Finally, if we make no observation in the next time interval, [T1 + T2, T1 + T2 + T3], we
simply use the marginal dynamics p(qt|qt−1) to propagate the forward probabilities (that is,
the term p(yt|qt) is independent of qt, and therefore may be neglected):

P (X(t) = n, Y0,t) ∝

[

exp[(t − T2 − T1)A]T
(

0 0
0 exp(T2All)

T

)(

0 Ahl

0 0

)(

exp(T1Ahh)T 0
0 0

)

π

]

n

,

T1 + T2 < t < T1 + T2 + T3.
In general, given any sequence of observed transitions from low to high current and vice

versa and unobserved intervals, we may simply iterate these simple propagate and transition
steps; see (Hawkes, 2004) for details. As usual, we obtain the marginal likelihood by summing
over the forward distribution,

P (Y0:T ) =
∑

an(T ).

The key point is that these continuous-time techniques allow us to perform all of these
likelihood computations with just a few simple matrix operations; on the other hand, the
discrete-time analog, in which we would compute the forward probabilities by recursing equa-
tion (16) with some sufficiently small timestep dt, requires O(T/dt) computations, which is
clearly inefficient if dt is very small (as is often the case, since the accuracy of the computation
increases as we decrease dt).

5.3 Example: multiple ion channels; functions of continuous-time Markov
chains

The above discussion assumed that we had access to the current through a single channel.
More generally, of course, a given patch of membrane may contain many different channels.
The above analysis may be generalized directly to the case of N channels by working with the
joint distributions P ( ~X(t)), but this quickly becomes unwieldy as N increases. An alternate
(moment-based) solution may be constructed using basic Markov chain theory, instead of the
more sophisticated but computationally intensive HMM technology we have been developing.

Imagine that there are N different channels in our patch of membrane (where N might be
quite large, and unknown), and that each channel evolves independently of the others (this
approximation makes some sense in a voltage-clamp setting, where the currents passed by
one channel are not allowed to perturb the voltage, and therefore the behavior of the other
possibly voltage-sensitive channels in the patch). In this context it makes sense to look at
bulk quantities, such as the mean and covariance of the current passed as a function of time,
since means and covariance functions will add linearly if the channels’ behavior is mutually
independent. If the total membrane current at time t is given by

I(t) =
∑

j

ajIj(t),

where j indexes the different channel types and aj ≥ 0 denotes the density of the j-th channel
type in the observed membrane patch, then

E[I(t)] =
∑

j

ajE[Ij(t)]

and
Cov

[

I(s), I(t)
]

=
∑

j,j′

ajaj′Cov
[

Ij(s), Ij′(t)
]

.
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We will assume stationarity here, to keep the notation somewhat manageable: i.e., E[I(t)] =
E[I(0)] and Cov[I(s), I(s + t)] = Cov[I(0), I(t)].

Now computing the first two moments E[Ij(0)] and E[Ij(0)Ij(t)] of the current passed by
j-th channel type is fairly straightforward, if we recognize these quantities as expectations of
a function of a Markov chain. Begin with the mean E[Ij(0)]: we have

E[Ij(0)] =
∑

n

Pj(n)I(n, j),

where I(n, j), the current passed by channel j in state n, may be seen as a simple function
of the Markov chain Xj(t), and

Pj(n) = lim
t→∞

P (Xj(t) = n),

the equilibrium distribution that the channel is in state n. If we assume that the transition
matrix Aj is diagonalizable, with a single zero eigenvalue (with corresponding eigenvector
~q0,j), then the usual exponential representation of P (Xj(t) = n) shows that

Pj(n) = q0,j(n),

and therefore we have the explicit solution

E[Ij(0)] =
∑

n

q0,j(n)I(n, j).

For the second moment, write

E[Ij(0)Ij(t)] =
∑

n

Pj(n)I(n, j)E[Ij(t)|Xj(0) = n],

and
E[Ij(t)|Xj(0) = n] =

∑

m

I(m, j)p(Xj(t) = m|Xj(0) = n);

the latter probability may be computed, as usual, by the exponential representation

p(Xj(t) = m|Xj(0) = n) =
[

(

eAjt
)T

δn

]

m
,

where δn denotes the Kronecker delta on n.
Once we have computed these expectations E[Ij(0)] and E[Ij(0)Ij(t)], we may fit aj

using a moment-matching technique: we choose aj ≥ 0 such that the predicted moments
∑

j ajE(Ij(0)) and
∑

j ajE(Ij(0)Ij(t)) match the observed moments E(I(0)) and E(I(0)I(t))
as closely as possible (this may be considered a “method of moments” estimator (Schervish,
1995)). Equivalently, since we have assumed stationarity, we may attempt to fit the empirical
power spectrum (i.e., work with the autocovariance of I(t) in the frequency domain instead of
the time domain). See e.g. (DeFelice, L., 1981; Colquhoun and Hawkes, 1982; Manwani and
Koch, 1999; Steinmetz et al., 2000; Hawkes, 2004) for details, related work, and extensions.
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6 Multistate generalized linear models for spike trains in con-
tinuous time

We discussed several advantages of the continuous-time formalism above. One primary ad-
vantage is computational. If we return to the multistate GLM context and examine the
computational requirements of the EM algorithm, for example, we see that we need to cal-
culate the forward and backward probabilities for every time-step t, possibly at a short time
scale dt (e.g., ∼ 1 ms, if we are interested in short timescale spike history effects). This can
quickly lead to high demands on memory and computation time, just to calculate the E-step.
It turns out to be possible to reduce these computational requirements by making use of the
differential-equation formulation of continuous-time HMMs, as we will discuss in detail below.

We begin by deriving the appropriate rate matrices (the dt → 0 limits of the transition
and emission matrices α(t) and η(t); we will suppress the dependence of these matrices on dt
where possible to reduce notation):

lim
dt→0

αnm(t) = lim
dt→0

λ′
nm(t)dt

1 +
∑

l 6=n λ′
nl(t)dt

= λ′
nm(t)dt m 6= n. (35)

For the diagonal terms, a Taylor expansion of 1/(1 + x) yields

lim
dt→0

αnn(t) = lim
dt→0

1

1 +
∑

l 6=n λ′
nl(t)dt

= 1 −
∑

l 6=n

λ′
nl(t)dt; (36)

note that
∑

m

lim
dt→0

αnm(t)

dt
= 1,

as it must. We therefore define the rate matrix A as

Anm(t) =

{

λ′
nm(t) m 6= n

−
∑

l 6=n λ′
nl(t) m = n.

(37)

Then α can be written as
α(t) = I + A(t)dt + o(dt), (38)

where I is the identity matrix.
We may handle the dt → 0 limit of η similarly:

lim
dt→0

ηni(t) = lim
dt→0

(λn(t)dt)i e−λn(t)dt

i!
i = 0, 1, 2, . . . (39)

Thus,
lim
dt→0

ηn0(t) = lim
dt→0

e−λn(t)dt = 1 − λn(t)dt, (40)

lim
dt→0

ηn1(t) = lim
dt→0

(λn(t)dt) e−λn(t)dt = λn(t)dt, (41)

and
lim
dt→0

ηnk(t) = lim
dt→0

(λn(t)dt)k e−λn(t)dt/k! = o(dt), ∀k > 1.

Thus, as dt → 0, there will never be more than one spike per dt, and so the η matrix reduces
to a simple two-column matrix (as usual, the Poisson distribution effectively becomes a binary
distribution in this limit).
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Now we calculate our forward probabilities in continuous time. For time intervals in which
no spike was observed, from Eq. 16 we have

an(t) = ηn0(t)

(

K
∑

m=1

αmn(t)am(t − dt)

)

= (1 − λn(t)dt)

(

K
∑

m=1

αmn(t)am(t − dt)

)

(42)

which can be written in matrix form as

~a(t) =
(

I − diag(~λ(t))dt
)

αT (t)~a(t − dt)

=
(

I − diag(~λ(t))dt
)

(I + A(t)dt)T ~a(t − dt) + o(dt)

= ~a(t − dt) +
(

AT (t) − diag(~λ(t))
)

~a(t − dt)dt + o(dt);

collecting terms of order dt yields a nice linear differential equation,

∂~a(t)

∂t
=
(

AT (t) − diag(~λ(t))
)

~a(t); (43)

this generalizes the ODE for ~P (t) we discussed in the last section. Therefore if ti−1 and ti are
consecutive spike times, and we know ~a(t+i−1), we may determine ~a(t−i ) by simply evolving
this ODE forward to time ti. Now we just need to compute the update at the spike times ti:

~a(t+i ) =
(

diag(~λ(ti))dt
)

αT (ti)~a(t−i )

=
(

diag(~λ(ti))dt
)

(

I + AT (ti)dt
)

~a(t−i )

∝ diag(~λ(ti))~a(t−i ) + o(dt).

Note that the resulting update rule,

~a(t+i ) = diag(~λ(ti))~a(t−i ) (44)

is discontinuous at the spike time, whereas it is clear from the ODE representation that ~a(t)
is a smooth function of t between the spike times. Finally, ~a(0) is initialized as ~π.

The backward probabilities may be adapted to the continuous time setting in an analogous
manner. Between spikes times we have the update

bn(t − dt) =
K
∑

m=1

αnm(t)ηmyt
(t)bm(t)

=
K
∑

m=1

αnm(t)(1 − λn(t)dt)bm(t) (45)

which in matrix form becomes

~b(t − dt) = α(t)
(

I − diag(~λ(t))dt
)

~b(t)

= (I + A(t)dt)
(

I − diag(~λ(t))dt
)

~b(t)

= ~b(t) −
(

diag(~λ(t)) − A(t)
)

~b(t)dt,
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yielding the differential equation

d~b(t)

dt
=
(

diag(~λ(t)) − A(t)
)

~b(t). (46)

The spike-time update follows exactly as before:

~b(t−i ) = diag(~λ(ti))~b(t
+
i ) (47)

The initialization of the backward probabilities remains unchanged from the discrete case,
~b(T ) = ~1.

As in the discrete-time case, the log-likelihood may be calculated as

L(θ|Y ) = log p(Y |θ) = log
K
∑

n=1

an(T ), (48)

and the individual marginal distributions of p(Q|Y, θ) are given by

p(q(t)=n|Y, θ) =
an(t)bn(t)

p(Y |θ)
. (49)

While both the forward and backward probabilities jump discontinuously at spike times ti,
the marginals p(q(t)=n|Y, θ) are continuous at all times t (assuming that the stimulus ~x(t) is
smoothly varying), as can be seen by noting that

p(q(t−i ) = n|Y, θ) =
an(t−i )bn(t−i )

p(Y |θ)
=

an(t−i )λn(ti)bn(t+i )

p(Y |θ)
=

an(t+i )bn(t+i )

p(Y |θ)
= p(q(t+i ) = n|Y, θ); (50)

clearly the marginals are continuous between spike times, since both the forward and backward
probabilities are.

Here it is worth noting the computational advantages of the continuous-time formulation:
since the majority of time-steps are associated with the trivial “no spike” emission, it is
clearly advantageous to consider numerically efficient methods for computing the forward
and backward updates at these times. It is clear that the standard method for performing
these updates, as detailed in equations (42) and (45), corresponds to a simple Euler scheme for
solving the ODEs (43) and (46), respectively. Utilizing more efficient schemes (e.g., Runge-
Kutta with adaptive time steps (Press et al., 1992)) can potentially lead to much more efficient
computation.

Finally, to compute the E-step, we need to consider the pairwise marginals p(q(t), q(s)|Y, θ).
Here it is useful to define the conditional transition rates rn→m(t):

rn→m(t) ≡ lim
dt→0

p(q(t)=m|q(t − dt)=n, Y, θ)

dt

= lim
dt→0

p(q(t)=m,q(t − dt)=n|Y, θ)

p(q(t − dt)=n|Y, θ)dt

= lim
dt→0

an(t − dt)αnm(t)ηmyt
(t)bm(t)/p(Y |θ)

an(t − dt)bn(t − dt)dt/p(Y |θ)

= lim
dt→0

αnm(t)ηmyt
(t)bm(t)

bn(t − dt)dt
. (51)
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Between spike times, Eq. 51 becomes

rn→m(t) = lim
dt→0

λ′
nm(t)dt(1 − λm(t)dt)bm(t)

bn(t − dt)dt

= λ′
nm(t) ·

bm(t)

bn(t)
(52)

and at spike times,

rn→m(ti) = lim
dt→0

λ′
nm(ti)dtλm(ti)dt · bm(ti)

bn(t−i )dt

= lim
dt→0

λ′
nm(ti) · λm(ti)dt · bm(ti)

λn(ti)dt · bn(ti)

= λ′
nm(ti) ·

λm(ti)

λn(ti)
·
bm(ti)

bn(ti)
. (53)

Equations (52) and (53) have an intuitive explanation. Between spikes, rn→m(t) (the rate of
transition from state n to state m, given the stimulus and the observed spike train) is equal
to λ′

nm(t) (the transition rate at time t given the stimulus but no observations of the spike
train) scaled by the ratio of the probabilities of the future given that the current state is
m versus n. In other words, if the remainder of the spike-train can be better explained by
having the neuron in state m than in state n at time t, the rate should be increased beyond
λ′

nm(t); otherwise it should be reduced. At the spike-times, the additional information of
knowing that a spike occurred further scales the expected transition rate by the ratio of the
firing rates between the two states, which is equal to the ratio of the firing rate in each state.
As is obvious from equations (52) and (53), rn→m(t) is discontinuous at the spike-times, but
continuous between spikes.

Now we have all the ingredients in hand necessary to derive the M-step. We have the
same three terms to maximize as in the discrete-time setting. The update for π requires us
to maximize

∑K
n=1 p(q(0)=n|Y, θ̂(i)) log πn, exactly as before. The update for the emissions

parameters required that we optimize a function of the form
∑T

t=1

∑K
n=1 p(qt=n|Y, θ̂(i)) log ηnyt

in the discrete-time case; here, this term reduces to

K
∑

n=1





∑

i∈spikes

wn(t) log λn(ti) −

∫ T

0
wn(t)λn(t)dt



, (54)

where we have abbreviate wn(t) = p(q(t) = n|Y, θ̂(i)); this objective function clearly retains
all the usual concavity properties in ~k, by the nonnegativity of wn(t).
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Finally, to update the transition matrix α, we optimize the function

T
∑

t=2

K
∑

n=1

K
∑

m=1

p(q(t − 1)=n,q(t)=m|Y, θ̂(i)) log αnm(t)

=
T
∑

t=2

K
∑

n=1







∑

m6=n

p(q(t − 1)=n,q(t)=m|Y, θ̂(i)) log(λ′
nm(t)dt)

+ p(q(t − 1)=n,q(t)=n|Y, θ̂(i)) log
(

1 −
∑

l 6=n λ′
nl(t)dt

)







=
T
∑

i=1

K
∑

n=1









∑

m6=n

wn(t)rn→m(t)dt(log λ′
nm(ti) + log dt)

− wn(t)
∑

l 6=n

λ′
nl(ti)dt









+ o(dt)

∼
K
∑

n=1

∑

m6=n

∫ T

0
wn(t)

(

rn→m(t) log λ′
nm(t) − λ′

nm(t)
)

dt; (55)

once again, the connections to the point-process loglikelihood should be clear. It is interesting
to note that the GLM concavity conditions for this α update are more permissive in the
continuous than in the discrete case: as equation (55) makes clear, in the continuous setting
it is enough that the nonlinearity g(.) in the definition of λ′(t) is convex and log-concave
(recall that the necessary conditions were stronger in the discrete case).
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