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Signal detection in degree corrected ERGMs
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In this paper, we study sparse signal detection problems in “degree corrected” Exponential Random Graph Models
(ERGMs). We study the performance of two tests based on conditionally centered sum of degrees/maximum of
degrees, for a wide class of such ERGMs. The performance of these tests match the performance of corresponding
uncentered tests in the β model (Ann. Statist. 46 (2018) 1288–1317). Focusing on the degree corrected two star
ERGM, we show that improved detection is possible at “criticality” using a test based on (unconditional) sum of
degrees. In this setting we provide matching lower bounds in all parameter regimes, which is based on correlations
estimates between degrees under the alternative, and is of possible independent interest.
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1. Introduction

Studying network models has a long and rich history in Statistics, with applications across various
disciplines such as Social Science, Biology, Neuroscience, Climatology, and Ecology, to name a few.
One of the most well known network models is the Exponential Random Graph Model (which are often
abbreviated as ERGM). ERGMs originated in the Social Science Literature (c.f. Anderson, Wasserman
and Crouch (1999), Frank and Strauss (1986), Holland and Leinhardt (1981), Robins et al. (2007),
Wasserman and Faust (1994), Wasserman and Pattison (1996) and the references there-in), and have
since then received considerable attention in Statistics and Probability (c.f. Chatterjee and Diaconis
(2013), Chatterjee, Diaconis and Sly (2011), Götze, Sambale and Sinulis (2021), Mukherjee, Mukherjee
and Sen (2018), Mukherjee, Mukherjee and Yuan (2018), Schweinberger and Stewart (2020), Shalizi
and Rinaldo (2013) and references there-in). ERGMs represent exponential families of distributions
that are defined on the space of simple labeled graphs with a finite dimensional sufficient statistics,
which are usually taken to be subgraph counts. The simplest class of examples under this framework
consists of the one parameter ERGM, which admits a one dimensional sufficient statistic. Below we
start by introducing such a one parameter ERGM:

Letting Gn denote the set of all simple labeled graphs G with vertex set [n] := {1,2, ...,n}, we consider
the following probability mass function on Gn:

Pn,θ (G) :=
1

Zn(θ,H) exp
{
θ

N(H,G)
nζ−2

}
. (1)

Here

(i) H is a graph of fixed size (such as an edge, triangle, cycle, star, etc.),
(ii) N(H,G) is the number of copies of the graph H in the graph G,
(iii) ζ is the number of vertices in the graph H,
(iv) θ is a real valued parameter,
(v) Zn(θ,H) is the normalizing constant.

In particular if the graph H is an edge, then N(H,G) is the number of edges in G. In this case, the
model in (1) reduces to an Erdős-Rényi model, where the edges of the graph G are i.i.d from a suitable
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Bernoulli distribution. For any other choice of H, the model in (1) is not an Erdős-Rényi model since
one allows nontrivial dependence between the edges. An ERGM can thus be thought of as a natural
generalization of the Erdős-Rényi model, which allows for growing degrees of dependence between
edges through the term N(H,G). It is natural to allow for this dependence while modeling networks, to
incorporate features like “friends of friends are more likely to be friends”. However, one drawback of
ERGMs (or at least the model introduced in (1)) is that the edges of the random graph are still jointly
exchangeable, in the sense that permuting the labels of vertices of G does not change the distribution
of the graph G. Consequently each coordinate of the degree sequence (d1, . . . ,dn) marginally has the
same distribution for all i ∈ [n]. This may not be desirable for modeling networks where there are
a few vertices of very high degree (see Bhamidi, Steele and Zaman (2015)), when compared to the
remaining vertices. Such a feature is often present in social networks, where the vertex corresponding
to a popular/famous person has a very high degree compared to the remaining vertices.

One model which captures degree heterogeneity is the β-model of social networks (c.f. (Blitzstein
and Diaconis, 2011, Chatterjee, Diaconis and Sly, 2011, Chatterjee and Mukherjee, 2019, Mukherjee,
Mukherjee and Sen, 2018, Rinaldo, Petrović and Fienberg, 2013) and references there-in). The β-model
is defined by the following p.m.f. on Gn:

Pn,β(G) :=
1

Zn(β)
exp

{ n∑
i=1

βidi
}
. (2)

Here

(i) (d1, . . . ,dn) is the degree sequence of the graph G.
(ii) β = (β1, . . . , βn)T ∈ Rn is a vector valued parameter,
(iii) Zn(β) is the normalizing constant.

In this model, for each vertex i ∈ [n] there is a real valued parameter βi which controls the effect of
the ith vertex, and consequently the typical size of the degree di . This allows for heterogeneity among
the degrees. A large value of βi results in a large value of the degree of the ith vertex, and vice versa.
One drawback of the β-model (2) is that the edges of the graph G are no longer dependent. This is
not immediate from (2), but is not hard to check (see for e.g. Chatterjee, Diaconis and Sly (2011)).
Thus although the β-model allows for degree heterogeneity, it does not involve dependence between
the edges.

A natural way to retain both the dependence between edges and the heterogeneity of the degrees is
to consider an exponential family which has both the terms θN(H,G) and

∑n
i=1 βidi in the exponent.

Indeed, dependence between edges is present because of the term θN(H,G), and degree heterogeneity
is present because of the term

∑n
i=1 βidi . Such a model, which we introduce formally below, can be

thought of as a degree corrected ERGM.

1.1. Degree corrected ERGMs

As before, let Gn denote the set of all simple labelled graphs G with vertex set [n] := {1,2, ...,n}. Given
a graph G ∈ Gn, by slight abuse of notation we use G to also denote the adjacency matrix of G, defined
as follows:

Gi j =

{
1 If an edge is present between vertices i and j in G,
0 If no edge is present between vertices i and j in G. (3)

For any edge e = (i, j) we set Ge =Gi j by convention. Thus, we encode presence or absence of edges by
{0,1}. By convention, set Gii := 0, and note that G is a symmetric n× n matrix with 0 on the diagonal,
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and {0,1} entries on the off-diagonals. Let (d1,d2, · · · ,dn) denote the labeled degree sequence of the
graph G, defined by

di :=
n∑
j=1

Gi j,1 ≤ i ≤ n.

Let H be a fixed connected subgraph with ζ := |V(H)| ≥ 2, where V(H) denotes the set of vertices of
H and |V(H)| denotes its cardinality. In particular, this means H is not an isolated vertex. Assume that
the vertices of H are labeled as [ζ] = {1,2, . . . , ζ }. Let In denote the the set of all 1-1 maps from [ζ] to
[n]. For any G ∈ Gn, let N(H,G) denote the number of copies of H in G, defined by

N(H,G) =
∑
ι∈In

∏
(i, j)∈E(H)

Gι(i),ι(j),

where E(H) := {(a,b) ∈ V(H) : (a,b) is an edge in H} is the edge set of H. As for illustration, the ex-
pression of N(H,G) when H is an edge, a triangle, and a two star (to be denoted by K2,K3,K1,2 respec-
tively) are given by:

N(K2,G) =
∑
i�j

Gi j = 2
∑
i< j

Gi j =

n∑
i=1

di,

N(K3,G) =
∑
i�j�k

Gi jG jkGki = 6
∑

i< j<k

Gi jG jkGki,

N(K1,2,G) =
∑
i�j�k

Gi jGik = 2
n∑
i=1

∑
j<k

Gi jGik = 2
n∑
i=1

(
di
2

)
.

Here, by a two star, we mean a path of length 2, which has 3 vertices and 2 edges. Given a parameter
θ > 0 and vector β = (β1, β2, ..., βn) ∈ Rn, we subsequently define a probability mass function on Gn by
setting

Pn,θ,β(G) :=
1

Zn(β, θ,H)exp
{ θ

nζ−2 N(H,G) +
n∑
i=1

βidi
}
, (4)

where as usual Zn(β, θ,H) is the normalizing constant. The scaling nζ−2 ensures that the resulting
model is nontrivial as n →∞ (c.f. Chatterjee and Diaconis (2013)). If βi = β0 for some β0 ∈ R free of i,
then the model in (4) is an Exponential Random Graph Model with two sufficient statistics N(H,G) and
E(G), where E(G) = 1

2 N(K2,G) is the number of edges in the graph G. In this case the random graph
G represents a bivariate exchangeable array. More precisely, for any permutation π ∈ Sn the graph Gπ

defined by Gπ(i, j) := Gπ(i),π(j) has the same distribution as G, i.e. Gπ
D
= G. The vector of parameters

β, therefore, measures the individual effects of each vertex, and for a general vector β a random graph
G from the model (4) is no longer exchangeable. For θ > 0, the term N(H,G) ensures that there is
positive dependence among the edges in G, in the sense that conditional on presence of an edge, any
other edge is more likely to be present. If θ = 0, the model (4) reduces to the β-model as in (2), in which
all edges Gi j are independent, with

Pn,0,β(Gi j = 1) = eβi+β j

1 + eβi+β j
.
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Thus the model in (4) combines the features of the β-model and traditional ERGMs. We will use the
term degree corrected ERGM to refer to the model (4).

1.2. Hypothesis testing problem for β

Given the model (4), a natural question is to carry out inference regarding the vector β. In the setting
where θ = 0, the problem of estimation of β using the MLE β̂ML was studied in Chatterjee, Diaconis
and Sly (2011), where the authors gave bounds on | | β̂ML − β | |∞. The question of testing of the grand
null hypothesis β = 0 versus non negative sparse alternatives was studied in Mukherjee, Mukherjee
and Sen (2018), where the authors show that the form of the consistent test depends on the sparsity
level and strength of the signal. Since both these papers assumed θ = 0, the edges of the graph G were
independent, which was used significantly in the proofs of the results. A natural question is whether
one can extend these results in the presence of dependence between edges. In this paper, we study the
question of testing the grand null hypothesis β = β01 against sparse one sided alternatives, when the
parameter β0 ∈ R, θ > 0 and the graph H are known. Essentially we want to test the null hypothesis that
all nodes in the network are equally popular (i.e. have the same βi), versus the alternative hypothesis
that there is a small hub of nodes which are more popular (have a higher value of βi) compared to the
baseline popularity β0 of the remaining nodes. In section 1.4 we briefly discuss what can go wrong if
the parameter β0 is not assumed to be known. Below we formally introduce the testing problem.

Let β0 ∈ R be known. Let G be a graph drawn from the probability distribution (4), and for a known
θ > 0 and given β0 ∈ R we consider the following hypothesis testing problem:

H0 : β = β01 vs H1 : β ∈ Ξ(s,A). (5)

Here under the null hypothesis we have βi = β0 for all i ∈ [n] and we denote this null probability
measure as Pn,θ,β0 . The set of vectors Ξ(s,A) in the alternative hypothesis H1 is defined as

Ξ(s,A) :=
{
β = β01 + μ : |suppμ | ≥ s, and min

i∈suppμ
μi ≥ A

}
. (6)

In words, under the alternative hypothesis there is a sparse set S of size s, such that βi ≥ β0 + A if
i ∈ S, and βi = β0 if i � S. Our main goal of this paper is to study the effect of the nuisance parameter θ
on the hypothesis testing problem (5). For studying the proposed hypothesis testing problem, here we
adopt an asymptotic minimax framework similar to (Mukherjee, Mukherjee and Sen, 2018, Mukher-
jee, Mukherjee and Yuan, 2018), which is introduced below (see also (Burnašev, 1979, Ingster, 1994,
Ingster, Ingster and Suslina, 2003)).

Suppose Tn : Gn �→ {0,1} is a non-randomized test function. If Tn = 1, we reject the null hypothesis
H0, and if Tn = 0, we do not reject the null hypothesis H0. Define the risk of test Tn(G) as the sum of
type I and type II errors, as follows:

R(Tn,Ξ(s,A),β) := Pn,θ,β0(Tn(G) = 1) + sup
β∈Ξ(s,A)

Pn,θ,β(Tn(G) = 0). (7)

Given a sequence of test functions {Tn}n≥1 for the testing problem (5), we call {Tn}n≥1 as

(i) Asymptotically Powerful, if

lim
n→∞

R(Tn,Ξ(s,A),β) = 0; (8)
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(ii) Asymptotically not Powerful, if

lim inf
n→∞

R(Tn,Ξ(s,A),β) > 0; (9)

(iii) Asymptotically Powerless, if

lim
n→∞

R(Tn,Ξ(s,A),β) = 1. (10)

By definition, both type I and type II errors converge to 0 for asymptotically powerful tests. Also, if a
sequence of tests is asymptotically powerless, then it is also asymptotically not powerful, and so (iii) is
a stronger notion than (ii).

1.3. Main results

In this section we present and discuss our main results. To that end, we first consider general degree
corrected ERGMs and analyze the performance of two natural tests. We then focus on a particular
degree corrected ERGM, where the graph H is a two star. In this setting we show that the general tests
studied above attains the “optimal detection boundary” for all configurations (θ, β0) barring a specific
point, which we refer to as the critical point/configuration. At this point, using a slightly different test
from the ones studied under the general ERGM framework, we are able to detect much lower signals,
compared to the independent case (θ = 0).

1.3.1. General degree corrected ERGMs

In this section, we discuss the hypothesis testing problem (5) in the setting of general degree corrected
ERGMs as in (4). Specifically, we will show how signal density and strength (s,A) coordinate together
to determine the threshold for testing efficiency. Two natural test statistics for this problem are the sum
of degrees

∑n
i=1 di , and the maximum degree maxi∈[n] di . However, because of dependence, it is very

difficult to calibrate the cut-off for these statistics, as they depend on the parameter θ in a nontrivial
way. To counter this, we use conditionally centered versions of the sum of degrees, and the maximum
degree, similar to what was done in Mukherjee, Mukherjee and Yuan (2018).

Our first theorem studies the performance of a test based on conditionally centered sum of degrees.
For stating the result we require a few notations.

Definition 1.1. Let E := {(i, j) : 1 ≤ i < j ≤ n} be the set of all edges in the complete graph Kn. For any
e = (i, j) ∈ E, let Ne(H,G) denote the number of copies of H in the graph G which contains the edge
e, and let Ne, f (H,G) denote the number of copies of H in the graph G which contains both the edges
e, f .

Setting ψ(x) := ex

1+ex for x ∈ R, for any e = (i, j) ∈ E we have

En,θ,β

(
Ge

��G f : f � e
)
= ψ(θte(H,G) + βi + βj ), (11)

where te(H,G) := Ne (H ,G)
nζ−2 .

Since our results are asymptotic in nature, below we introduce some standard notations, to be used
in the remainder of the paper.
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Definition 1.2. Given two sequences of real numbers {an}n≥1 and {bn}n≥1, we will use the notation
an =O(bn) or an � bn to imply the existence of a positive finite constant c free of n, such that an ≤ cbn.
We use the notation an � bn (an 	 bn) to imply limn→∞

an
bn
=∞ (limn→∞

an
bn
= 0 respectively).

Theorem 1.1. With G from the model (4), consider the hypothesis testing problem described in (5)
with (θ, β0) known. If sA →∞, then for any sequence Ln such that n 	 Ln 	 nsA the conditionally
centered sum of degrees test Tn(G) given by

Tn(G) =
⎧⎪⎪⎨⎪⎪⎩ 1 if

∑
e∈E

[
Ge − En,θ,β0

(
Ge

��G f : f � e
) ]

> Ln,

0 otherwise,

is asymptotically powerful.

In settings where the signal size s is small, a test based on the conditionally centered maximum of
degrees can sometimes detect lower signals. The performance of this test is studied in our second result.

Theorem 1.2. With G from the model (4), consider the hypothesis testing problem described in (5)

with (θ, β0) known. Then there exists constants κ,C such that if A ≥ κ

√
logn
n and Ln = C

√
n log n, then

the conditionally centered maximum degree test defined by

Tn(G) =
{

1 if max
i∈[n]

∑
e
i

[
Ge − En,θ,β0

(
Ge

��G f : f � e
) ]
> Ln,

0 otherwise,

is asymptotically powerful.

Note that the conditionally centered sum test of Theorem 1.1 requires A � 1
s to be asymptotically

powerful, whereas the conditionally centered max test of Theorem 1.2 requires A ≥ κ

√
logn
n for the

same. Comparing the two thresholds 1
s and κ

√
logn
n of these two tests yields that the conditionally

centered maximum degree test is better (has a lower detection boundary) for sparser alternatives (more
precisely, s 	

√
n

logn ), whereaas the conditionally centered sum of degrees test is better for denser

alternatives (s �
√

n
logn ). This is similar to the findings of Mukherjee, Mukherjee and Sen (2018),

where it was shown that optimal rate detection is obtained by the sum of degrees if s = nb with b > 1/2
(see (Mukherjee, Mukherjee and Sen, 2018, Theorem 3.1)), and by the maximum degree test if b < 1/2
(see (Mukherjee, Mukherjee and Sen, 2018, Theorem 3.3)).

1.3.2. Degree corrected two star ERGM

In Theorems 1.1 and 1.2, there is no effect of the nuisance parameter θ on the detection rate of the tests.
To demonstrate that the best possible detection rate can change depending on the value of θ, we study
in detail the degree corrected two star ERGM, The two star is the graph K1,2, which is a path of length
3. For notational and computational convenience, for the degree corrected two star ERGM our edge
variables take values in {−1,1} instead of {0,1}. More precisely, given a graph G ∈ Gn, our adjacency
matrix Y is now defined as follows:

Yi j =
{

1 if (i, j) is an edge in G,
−1 otherwise.
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As before, we set Yii = 0 by convention. Thus Y is a symmetric matrix with {−1,1} entries, and 0 on
the diagonal. Let (k1, k2, · · · , kn) denote the labeled “degree sequence” of the graph Y , i,e,

ki :=
n∑
j=1

Yi j,1 ≤ i ≤ n.

The following display introduces the degree corrected two star ERGM as a p.m.f. on {−1,1}

(
n
2

)
:

Pn,θ,β(Y ) =
1

Zn(β, θ)
exp

{
θ

n − 1
Ñ(K1,2,G) + 1

2

n∑
i=1

βiki

}
, (12)

where

Ñ(K1,2,G) :=
n∑
i=1

∑
j<k

Yi jYik =
1
2

n∑
i=1

k2
i −

n(n − 1)
2

.

Having observed Y , consider the same hypothesis testing problem (5) as above. For the sake of clarity
of presentation, in this section we parametrize the signal size s and signal strength A by nb and nt

respectively, where b ∈ (0,1) and t < 0. The detection boundary for this problem demonstrates a phase
transition depending on the nuisance parameter θ. Stating this requires the following partitioning of the
parameter space for (θ, β0):

Definition 1.3.

• Let Θ1 =Θ11 ∪Θ12, where Θ11 := (0,1/2) × {0}, and Θ12 = {(θ, β0) : θ > 0, β0 � 0}.
• Let Θ2 := (1/2,∞) × {0}.
• Let Θ3 := (1/2,0).

Note that Θ1 ∪Θ2 ∪Θ3 = (0,∞) ×R.

Our first lower bound result describes the detection boundary for the degree corrected two star
ERGM if (θ, β0) ∈ Θ1. Recall the notions of asymptotically powerful and asymptotically powerless
from (8) and (10) respectively.

Theorem 1.3. Let Y be an observation from from (12), and assume (θ, β0) ∈ Θ1 is known. Consider the
hypothesis testing problem described in (5) with s = nb and A = nt for ∈ (0,1) and t < 0.

(a) If b ≥ 1
2 and b+ t < 0, all tests are asymptotically powerless.

(b) If b ≥ 1
2 and b+ t > 0, then the conditionally centered sum test of Theorem 1.1 is asymptotically

powerful.
(c) If b < 1

2 and t + 1
2 ≤ 0 then all tests are asymptotically powerless.

(d) If b < 1
2 and t + 1

2 > 0 then the conditionally centered max test of Theorem 1.2 is asymptotically
powerful.

Our second lower bound result describes the detection boundary for the degree corrected two star
ERGM if (θ, β0) ∈ Θ2. Recall the definition of asymptotically not powerful from (9).

Theorem 1.4. Let Y be an observation from from (12), and assume (θ, β0) ∈ Θ2 is known. Consider the
hypothesis testing problem described in (5) with s = nb and A = nt for ∈ (0,1) and t < 0.
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(a) If b ≥ 1
2 and b+ t < 0, all tests are asymptotically not powerful.

(b) If b ≥ 1
2 and b+ t > 0, then the conditionally centered sum test of Theorem 1.1 is asymptotically

powerful.
(c) If b < 1

2 and t + 1
2 ≤ 0 then all tests are asymptotically not powerful.

(d) If b < 1
2 and t + 1

2 > 0 then the conditionally centered max test of Theorem 1.2 is asymptotically
powerful.

Note that at a qualitative level, the detection boundary in the regimes Θ1 and Θ2 are the same. The
only difference is that below the detection boundary, in domain Θ1 Theorem 1.3 shows that all tests are
powerless, and in domain Θ2 Theorem 1.4 shows that all tests are asymptotically not powerful. On the
other hand, something fundamentally different happens in the critical domain Θ3, which corresponds
to the choice (θ, β0) = (1/2,0). In this case the optimal testing threshold is significantly lower than
the other regimes, and does not depend on whether b < 1/2 or b > 1/2. Moreover, we note that this
improved performance does not follow from either Theorem 1.1 or 1.2. In this case a test based on the
unconditional sum of degrees attains the optimal detection boundary, for all values of (s,A). This is
explained in our final result below.

Theorem 1.5. Let Y be an observation from from (12), and assume (θ, β0) = ( 1
2 ,0) is known. Consider

the hypothesis testing problem described in (5), with s = nb and A= nt for some b ∈ (0,1) and t < 0.

(a) If b+ t + 1
2 < 0, then all tests are asymptotically powerless.

(b) If b+ t + 1
2 > 0, then the total degree test Tn(.) defined by

Tn(G) =
{

1 if
∑n

i=1 ki > Ln,
0 otherwise,

is asymptotically powerful for some sequence Ln satisfying Ln � n3/2.

This demonstrates that the much weaker criterion b+ t + 1
2 > 0 is enough for detection at criticality,

whereas away from criticality we need stronger conditions on b, t. Similar phenomenon of improved
detection at criticality have been observed for Ising models Deb et al. (to appear), Mukherjee, Mukher-
jee and Sen (2018), Mukherjee, Mukherjee and Yuan (2018). Given that the two star ERGM can be
viewed as an Ising model, it is thus not surprising that this continues to hold here. A summary of the
detection boundary for the degree corrected two star ERGM is given in Figure 1 below.

1.4. Main contributions and future scope

In this paper we introduce degree corrected ERGMs, which combine the above two concepts traditional
ERGMs with the β-model and thereby allowing for not only degree heterogeneity but also dependence
between the edges. We study the performance of two tests, which are based on conditionally centered
sum of degrees, and conditionally centered maximum degree. The detection rate of these two tests
match the performance of the corresponding tests based on unconditionally centered sum of degree and
unconditional maximum degree, respectively, in the independent case (θ = 0). To explore the sharpness
of these general tests, we subsequently study the degree corrected two star ERGM in detail. Here we
show that in all parameter configurations other than (θ, β0) = (1/2,0), the optimal detection boundary
is attained by one of the conditionally centered tests. At the critical configuration (θ, β0) = (1/2,0), we
show that the optimal detection rate is significantly improved, and this optimal rate is attained by a test
based on the unconditionally centered sum of degrees.
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Figure 1. In this figure, we plot (b, t) along X and Y axis respectively, where s = nb is the size of the signal set, and A= nt is
the magnitude of the signal. The range of b is (0, 1), and the range of t is (−∞, 0). The deep blue portion of the plot represents
the pairs (b, t) where detection is possible in all regimes Θ1 ∪Θ2 ∪Θ3. The light blue portion of the plot represents the pairs
(b, t) where detection is possible Θ3, but not for Θ1 ∪Θ2. Finally, the grey portion of the plot represents the pairs (b, t) where
detection is impossible in all regimes Θ1 ∪Θ2 ∪Θ3. Also note that in Θ1 ∪Θ2 the optimal test depends on whether b < 1/2 or
b > 1/2, whereas in Θ3 the optimal test does not depend on b.

Throughout this paper we assume that the parameters (θ, β0) are known. If (θ, β0) is unknown, it
may be possible to estimate (θ, β0) if the signal (s,A) is small, by ignoring the signals altogether and
estimating the parameters via the null model MLE/pseudo-likelihood. However such a strategy is hope-
less for all values of (s,A), without the knowledge of (θ, β0). Indeed, consider the following extreme
configuration when s = n,A=∞, in which case the graph G equals Kn with probability 1 for any value
of β0. On the other hand, if s = A = 0, but θ =∞, the observed graph is again Kn with probability 1 for
any value of β0. Thus having observed G, it is impossible to decide whether signal is present or absent,
if we are not told the value of θ. It remains to be seen to what extent a partial knowledge of (θ, β0) can
help in our testing problem. Throughout, we also assume that the parameters (s,A) of the alternative
hypothesis are also known. In fact, it follows from our proofs that the full knowledge of (s,A) are not
required to derive the cut-off for our test statistic. The knowledge of lower bounds on (s,A) suffice for
this purpose. Thus, as long as we know that s ≥ s0,A ≥ A0, and the parameters (s0,A0) fall in the regime
where asymptotically powerful testing is possible, our proposed tests will be asymptotically powerful.

The analysis of the conditionally centered sum and maximum of degrees for general degree corrected
ERGMs is achieved using concentration results based on the method of exchangeable pairs (Chatterjee
(2007)). Focusing on the degree corrected two star ERGM, to verify the improved detection rate at
criticality, we introduce a continuous auxiliary variable φ ∈ Rn (similar to Mukherjee, Mukherjee and
Yuan (2018)), and show that a suitable function of φ is stochastically much larger under the alternative
than under the null hypothesis. Using this, we show that the unconditional sum of degrees is (stochas-
tically much larger under the alternative, which gives the improved detection at criticality. The lower
bound argument uses the second moment method, which reduces to bounding the correlation between
the degrees under the alternative. In the regimes Θ1 and Θ3, using GHS inequality (Lebowitz (1974))
we can bound the correlations between the edges under the alternative by the correlation under the
null, for which bounds are available from Mukherjee and Xu (2023), using exchangeability of the null
model. In the regime Θ2 we need to do a conditional second moment argument restricted to the set
where the degrees are large. In the absence of a conditional GHS inequality, we have to directly bound
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the conditional correlations between the edges under the alternative. To do this, we make crucial use
of the auxiliary variable φ and set up a recursive equation involving the correlations between degrees
of the graph. This recursion leads to a uniform bound on the correlations which is also a tight upper
bound (in terms of rate), and suffices for the second moment argument. It is of interest to see if one
can set up similar recursive equations to bound correlation between edges in general (degree corrected)
ERGMs, in presence/absence of auxiliary variables. In general, analysis of cubic and higher order
ERGMs is a challenging problem. Preliminary calculations suggest that concentration results based on
exchangeable pairs may be used to derive lower bounds for very high temperature (θ sufficiently small).
However, it is unclear whether a general lower bound which applies to all θ > 0 can be obtained, more
so because even the phase transition boundaries are not entirely characterized for such ERGMs (up to
the best of our knowledge).

In this paper we focus on the optimal detection rates while studying the detection boundary. A
natural follow up question is to study existence of sharp constants (depending on θ, β0) which controls
the detection boundary for the degree corrected two star ERGM. Similar to Mukherjee, Mukherjee
and Sen (2018), we expect a sharp phase transition (i.e. existence of a constant which determines the
optimal detection boundary) in the regime b < 1/2, when (θ, β0) � (1/2,0). We believe that to attain
optimal detection constants, one needs to study a conditionally centered version of the Higher Criticism
Test in the regime 1/4 < b < 1/2, wheres the maximum test should suffice in the regime b < 1/2.
Going beyond the two star case, it is of interest to find optimal detection rates, both away from, and at,
“criticality”, for general degree corrected ERGMs. A major challenge in carrying out the lower bound
argument beyond the two star case is the absence of tight correlation bounds for general ERGMs, both
under the null and alternative hypotheses.

1.5. Outline

The outline of the paper is as follows. In section 2 we verify all the upper bound results of this paper,
namely Theorem 1.1, Theorem 1.2, parts (b) and (d) of Theorem 1.3 and Theorem 1.4, and part (b) of
Theorem 1.5. In section 3 we prove all the lower bound results, namely parts (a) and (c) of Theorem
1.3 and Theorem 1.4, and part (a) of Theorem 1.5. The proofs of the main results use some supporting
lemmas, the proofs of which are deferred to the supplementary file (Xu and Mukherjee (2024)).

2. Proof of Theorems 1.1 and 1.2

We will need the following concentration bound for conditionally centered linear statistics for proving
the results of this section. The proof of this lemma is similar to (Deb and Mukherjee, 2023, Lemma
2.1) and (Mukherjee, Mukherjee and Yuan, 2018, Lemma 1).

Lemma 2.1. Let G be a random graph from the model (4). Then for any arbitrary collection of positive
numbers {ce}e∈E and any x > 0 we have

Pn,θ,β

(��� ∑
e∈E

ce
(
Ge − En,θ,β

(
Ge

��G f : f � e
) ) ��� > x

)
≤ 2 exp

{
− x2

λ
∑

e∈E c2
e

}
, (13)

where λ = λ(θ,H) is a constant depending only on θ > 0 and the subgraph H.
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Proof. Produce an exchangeable pair (G,G′) in the following way:

Pick a random vertex pair I uniformly from the set E with cardinality N =
(
n
2

)
. If I = e, replace the

random variable Ge by G′
e, which is a pick from the conditional distribution given {G f , f � e}. Let

this new graph be denoted by G′. It is easy to verify that (G,G′) is indeed an exchangeable pair. Setting
J(G) :=

∑
e∈E ceGe, note that

h(G) := En,θ,β
(
J(G) − J(G′)

��G)
=

1
N

∑
e∈E

ce
(
Ge − En,θ,β

(
Ge

��G f : f � e
) )

=
1
N

J(G) − 1
N

∑
e∈E

ce
exp

{
θ

nζ−2 Ne(H,G) + βe}

1 + exp
{

θ
nζ−2 Ne(H,G) + βe

} ,
where Ne(H,G) is the number of copies of H in the graph G, which contains the edge e. Using the fact
that the derivative of the function ψ(x) = ex

1+ex is bounded by 1
4 , this gives

|h(G) − h(G′)| ≤ |cI |
N
+

|θ |
4Nnζ−2

∑
e∈E

|ce | |Ne(H,G) − Ne(H,G′)|

≤ |cI |
N
+

|θ |
4Nnζ−2

∑
e∈E

|ce |Ne,I (H,Kn),

where Ne, f (H,Kn) is the number of copies of H in the complete graph Kn passing through both the
edges e and f . Consequently, we have���En,θ,β (

(h(G) − h(G′))(J(G) − J(G′))
���G) ���

≤ 1
N

∑
f ∈E

|cf |
[
|cf |
N
+

|θ |
4Nnζ−2

∑
e∈E

|ce |Ne, f (H,Kn)
]

=
1

N2

∑
f ∈E

c2
f +

|θ |
4N2nζ−2

∑
e, f ∈E

Ne, f (H,Kn)|ce | |cf |

=
1

N2

∑
e, f ∈E

BN (e, f )|ce | |cf |,

where BN is a N × N symmetric matrix defined by:

BN (e, f ) :=

{
1 if e = f ,

|θ |
4nζ−2 Ne, f (H,Kn) if e � f .

Now for any e � f we have

Ne, f (H,Kn)�
{

nζ−4 if e and f have no vertex in common,
nζ−3 if e and f have one vertex in common.
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This gives

max
e∈E

∑
f ∈E

BN (e, f )� 1 + n2 1
nζ−2 nζ−4 + n

1
nζ−2 nζ−3 � 1,

which in turn implies that the operator norm of the matrix BN is O(1), and consequently,���En,θ,β (
(h(G) − h(G′))(J(G) − J(G′))

���G) ��� � 1
N2

∑
e∈E

c2
e � 1

n4

∑
e∈E

c2
e .

Then by Stein’s Method for concentration inequalities as in (Chatterjee, 2007, Theorem 1.5 (ii)), the
conclusion of the lemma follows.

2.1. Proof of Theorem 1.1

To begin, using Lemma 2.1 with ce = 1 for all e ∈ E gives the existence of a constant λ (depending only
on θ,H) such that

Pn,θ,β0

(��� ∑
e∈E

(
Ge − En,θ,β0

(
Ge

��G f : f � e
) ) ��� > Ln

)
≤ 2 exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−
L2
n

λ

(
n
2

) ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ −→ 0, (14)

where the last limit uses Ln � n. This shows that type I error converges to 0.
It thus remains to show that type II error converges to 0. To this effect, note that te(H,G) ≤ te(H,Kn)

which is bounded, and so therefore there exist a constant δ > 0 such that

En,θ,β
(
Ge

��G f : f � e
)
− En,θ,β0

(
Ge

��G f : f � e
)

= ψ(θte(H,G) + βi + βj ) − ψ(θte(H,G) + 2β0)

≥ δmin{βi + βj − 2β0,1}. (15)

Adding this gives ∑
e∈E

(
En,θ,β

(
Ge

��G f : f � e
)
− En,θ,β0

(
Ge

��G f : f � e
) )

≥ δnsA.

Since Ln 	 nsA, for all n large we have

Pn,θ,β

( ∑
e∈E

(
Ge − En,θ,β0(Ge |G f : f � e)

)
≤ Ln

)

≤Pn,θ,β
(��� ∑

e∈E

(
Ge − En,θ,β(Ge |G f : f � e)

) ��� ≥ Ln

)
≤ 2 exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−
L2
n

λ

(
n
2

) ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,
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where we again invoke Lemma 2.1 in the last line above. This gives

sup
β∈Ξ(s,A)

Pn,θ,β

(��� ∑
e∈E

(
Ge − En,θ,β0

(
Ge

��G f : f � e
) ) ��� ≤ Ln

)
≤ 2 exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−
L2
n

λ

(
n
2

) ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,
which converges to 0 as Ln � n. This completes the proof of the theorem.

2.2. Proof of Theorem 1.2

As in the previous theorem, it suffices to show that both type I and type II errors converge to 0. For
estimating the type I error, using a union bound gives

Pn,θ,β0

(
max

1≤i≤n

���∑
e
i

(Ge − En,θ,β0

(
Ge

��G f : f � e
) ��� > C

√
n log n

)
≤

n∑
i=1

Pn,θ,β0

(���∑
e
i

(Ge − En,θ,β0

(
Ge

��G f : f � e
) ��� > C

√
n log n

)
≤ 2n exp

{
−C2n log n
λ(n − 1)

}
,

(16)

where the last inequality uses Lemma 2.1 with ce = 1 if e 
 i, and 0 otherwise. For the choice C >
√
λ

the RHS above converges to 0, and so Type I error converges to 0.
For estimating the Type II error, fix vertex i such that βi ≥ A. Then using (15) gives∑

e
i

(
En,θ,β

(
Ge

��G f : f � e
)
− En,θ,β0

(
Ge

��G f : f � e
) )

≥ δn min{A,1}.

Since A ≥ κ

√
logn
n , for all n large we have

δn min{A,1} ≥ δκ
√

n log n ≥ 2C
√

log n

for the choice κ = 2C
δ . This gives

Pn,θ,β

(∑
e
i

(Ge − En,θ,β01
(
Ge

��G f : f � e
)
≤ C

√
n log n

)
≤Pn,θ,β

(���∑
e
i

(Ge − En,θ,β
(
Ge

��G f : f � e
) ��� ≥ C

√
n log n

)
≤ 2 exp

{
−C2n log n
λ(n − 1)

}
,

where the last inequality again uses Lemma 2.1. Consequently,

sup
β∈Ξ(s,A)

Pn,θ,β

(
max

1≤i≤n

���∑
e
i

(
Ge − En,θ,β0

(
Ge

��G f : f � e
) ) ��� ≤ C

√
n log n

)
≤ 2n exp

{
−C2n log n
λ(n − 1)

}
,

which converges to 0 as before for the choice C >
√
λ.



Signal detection in degree corrected ERGMs 1759

2.3. Proof of parts (b) and (d) of Theorem 1.3 and Theorem 1.4

Part (b) follows by a direct application of Theorem 1.1, on noting that sA = nb+t → ∞ if b + t > 0.

Similarly, part (d) follows by a direct application of Theorem 1.2, on noting that A = nt �
√

logn
n

if t > − 1
2 . Both Theorem 1.1 and Theorem 1.2 were proved for {0,1} valued random variables, but

essentially the same proof goes through for {−1,1} valued random variables.

2.4. Proof of Theorem 1.5 part (b)

To prove Theorem 1.5 part (b) (as well as parts (a) and (c) of Theorem 1.4 later), we express the two
star model as a mixture of β models by introducing auxiliary variables, as done in Mukherjee and Xu
(2023), Park and Newman (2004). Suppose Y be a random graph from the degree corrected two star
model (12). Conditional on Y , let (φ1, · · · , φn) be mutually independent components, with

φi ∼ N
( ki

n − 1
,

1
θ(n − 1)

)
. (17)

The joint distribution of (φ,Y ) is computed in the following Proposition. The proof of this is deferred
to the supplementary file.

Proposition 2.1.

(a) Given φ, the random variables (Y )1≤i< j≤n are mutually independent, with

Pn,θ,β(Yi j = 1|φ) = eθ(φi+φ j )+ 1
2 (βi+β j )

eθ(φi+φ j )+ 1
2 (βi+β j ) + e−θ(φi+φ j )− 1

2 (βi+β j )
.

(b) The marginal density of φ (w.r.t. Lebesgue measure) is proportional to

fn,θ,β(φ) := exp
⎧⎪⎨⎪⎩−

∑
i< j

pi j(φi, φ j )
⎫⎪⎬⎪⎭ , (18)

where pi j(x, y) equals

θ

2
(x2 + y2) − log cosh [θ(x + y) + 1

2
(βi + βj )]

=
θ

4
(x − y)2 + q

( x + y

2

)
+ log cosh

(
θ(x + y)

)
− log cosh

(
θ(x + y) + 1

2
(βi + βj )

)
,

(19)

with

q(x) := θx2 − log cosh(2θx). (20)

We first state the following lemma about the function q(.) introduced in (20) above, the proof of
which follows from straightforward calculus (see for e.g. Dembo and Montanari (2010)).

Lemma 2.2. If θ > 1/2, the equation q′(x) = 2θ[x − θ tanh(2θx)] has a unique positive root t (which
depends on θ)) on (0,∞). Further, t is the unique global minimizer of q(.) on [0,∞).
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We will use the notation t introduced in the above lemma throughout the rest of the paper. We
now state the following lemma, which contains the analogues of (Mukherjee and Xu, 2023, Lemma
4.1(a)), and (Mukherjee and Xu, 2023, Lemma 3.3(c)). The proof of this lemma is deferred to the
supplementary file.

Lemma 2.3. Suppose β ∈ [0,2n−1/2]n, and � is a positive integer. Then there exists a positive finite
constant C depending only on �,θ such that the following happens:

(a) If θ = 1/2, we have

max
1≤i≤n

En,θ,β |φi − φ̄|	 ≤ Cn−	/2.

(b) If θ > 1
2 , setting

U := ∩n
i=1Vi, Vi := {Y : ki ≥ (n − 1)t/2},

we have

max
1≤i≤n

En,θ,β

(
|φi − t |	

���U)
≤ Cn−	/2.

Proof of Theorem 1.5 part (b). We begin by claiming the existence of a sequence of positive reals
Kn →∞ such that

lim
n→∞

sup
β∈Ξ(s,A)

Pn,θ,β(tanh(φ̄) ≤ n−1/4Kn) = 0. (21)

Given (21), we first finish the proof of the theorem. Using part (a) of Proposition 2.1 we get∑
i< j

[
Yi j − tanh(φ̄)

]
=

∑
i< j

[
tanh

( φi + φ j
2

+
βi + βj

2

)
− tanh(φ̄)

]
+OP(n)

≥
∑
i< j

[
tanh

( φi + φ j
2

)
− tanh(φ̄)

]
+OP(n)

� −
∑
i< j

( φi + φ j
2

− φ̄
) 2

� −n
n∑
i=1

(φi − φ̄)2 +OP(n) =OP(n),

where the last equality uses Lemma 2.3 part (a). Using (21) along with the above display gives

lim
n→∞

sup
β∈Ξ(s,A)

Pn,θ,β

(∑
i< j

Yi j ≤ n3/2Kn

)
= 0,

and so Type II error converges to 0. Since

Pn,θ,β0

$%&
∑
i< j

Yi j > n
3
2 K

1
2
n
'()→ 0,

using (Mukherjee and Xu, 2023, Theorem 1.1), Type I error converges to 0 as well. This shows that the
test which rejects for large values of

∑
i< j Yi j is asymptotically powerful.
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It thus remains to verify (21). To this end, assume without loss of generality that

βi =

{
A if 1 ≤ i ≤ s,
0 if s + 1 ≤ i ≤ n, (22)

where A = nt . Also if b+ t + 1/2 > 0, replacing t by t ′ :=min(t,−1/2) we have

b+ t ′ + 1/2 =min
(
b+ t + 1/2,b− 1

2
+

1
2

)
=min(b+ t + 1/2,b) > 0.

Since the distribution of φ̄ is stochastically increasing in A, without loss of generality by replacing t by
t ′ if necessary we can assume t ≤ − 1

2 , which gives A ≤ n−1/2. Using Taylor’s series expansion twice,
we have

log cosh
( φi + φ j

2
+
βi + βj

2

)
− log cosh

( φi + φ j
2

)
=
βi + βj

2
tanh

( φi + φ j
2

)
+O(βi + βj )2

=
βi + βj

2
tanh(φ̄) +O

(
(βi + βj )|φi + φ j − 2φ̄|

)
+O(βi + βj )2.

Summing over i < j and using (18) and (19) we get

− log fn,θ,β(φ) = − log fn,θ,0(φ) −
(n − 1)sA

2
tanh(φ̄)

+O

(
nA

s∑
i=1

|φi − φ̄| + sA
n∑
i=1

|φi − φ̄| + nsA2

)
,

(23)

where

− log fn,θ,0(φ) :=
∑
i< j

[ 1
8
(φi − φ j )2 + q

( φi + φ j
2

) ]
=

n
8

n∑
i=1

(φi − φ̄)2 +
∑
i< j

q
( φi + φ j

2

)
, (24)

with q(.) as in (20). As the notation above suggests, fn,θ,0 defined above is the (unnormalized) density
of φ under H0. Using (23), along with Lemma 2.3 part (a) we have

− log fn,θ,β(φ) = − log fn,θ,0(φ) −
nsA

2
tanh(φ̄) − Rn,

where

En,θ,β |Rn | �
√

nsA+ nsA2 �
√

nsA

using A ≤ n−1/2. Thus, for any K > 2 fixed and K ′
n := n3/4sA we have

Pn,θ,β(tanh(φ̄) < Kn−1/4)

≤Pn,θ,β(|Rn | > K ′
n) + Pn,θ,β(tanh(φ̄) < Kn−1/4, |Rn | ≤ K ′

n)
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≤Pn,θ,β(|Rn | > K ′
n) + eK

′
n

En,θ,β0 exp
[
nsA

2 tanh(φ̄)
]

1
{

tanh(φ̄) < Kn−1/4
}

En,θ,β0 exp
[
nsA

2 tanh(φ̄)
]

1
{
|Rn | ≤ K ′

n

}
≤Pn,θ,β(|Rn | > K ′

n) +
eK

′
n+

Kn3/4sA
2 − nsA tanh(2Kn−1/4)

2

Pn,θ,β0

(
φ̄ > 2Kn−1/4, |Rn | ≤ K ′

n

) .
On letting n →∞ and noting that K ′

n = n3/4sA �
√

nsA we have

lim
n→∞

sup
β∈Ξ(s,A)

Pn,θ,β(|Rn | > K ′
n) = 0, and lim

n→∞
Pn,θ,β0

(
φ̄ > 2Kn−1/4, |Rn | ≤ K ′

n

)
= P(ζ > 2K) > 0,

where ζ has density proportional to e−ζ
4/12−ζ2/24 (c.f. (Mukherjee and Xu, 2023, Lemma 4.2)), and

the convergence of the second term uses K > 2. Combining the last two displays we have

lim
n→∞

sup
β∈Ξ(s,A)

Pn,θ,β(tanh(φ̄) < Kn−1/4) = 0.

Since this holds for every fixed K > 2, there exists Kn →∞ such that

lim sup
n→∞

sup
β∈Ξ(s,A)

Pn,θ,β(tanh(φ̄) < Knn−1/4) = 0.

This verifies (21), and hence completes the proof of the theorem.

3. Proof of parts (a) and (c) Theorems 1.3 and 1.4

With Ξ(s,A) as defined in (6), consider the following subset of Ξ(s,A).

Ξ̃(s,A) :=
{
β = β01 + μ : |supp(μ)| = s,and μi = A,i ∈ supp(μ)

}
. (25)

Let π(dβ) be a prior on Ξ(s,A), which put probability mass 1/
(n
s

)
on each of configurations in Ξ̃(s,A).

And let Qπ(.) :=
∫
Pn,θ,β(.)π(dβ) denote the marginal distribution of Y under this prior. To show that

all tests for the problem (5) are asymptotically powerless, using the second moment method it suffices
to show that

lim
n→∞

En,θ,β0 Lπ(Y )2 = 1, where Lπ(Y ) :=
Qπ(Y )
Pn,θ,β0(Y )

(26)

is the likelihood ratio. The following lemma gives an upper bound to the second moment of Lπ(.).

Lemma 3.1. For any (θ, β0), with Lπ(.) as defined in (26) we have

EH0 L2
π(Y ) ≤ exp

{
A2s2Covβ=(β0/2)1(k1, k2) +

2s2

n
(eA

2Varβ=(β0/2)1(k1) − 1)
}
, (27)

whenever n > 2s.
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Proof. Define Λs := {S
��S ⊂ {1,2, ...,n}, |S | = s}. For any S ∈ Λs , define a vector βS by setting

βS,i =

{
β0 + A if i ∈ S,

β0 if i � S. (28)

By symmetry, the normalizing constant Zn(βS, θ) is the same for all S ∈ Λs , which we denote by
Zn(β[s], θ) for the rest of this proof. Then, a direct calculation gives

EH0 L2
π(Y ) =

Z2
n(β0, θ)

Z2
n(β[s], θ)

1(
n
s

) 2EH0

∑
S1 ,S2∈Λs

e

∑
j∈S1

A
2 k j+

∑
j∈S2

A
2 k j

=
Zn(β0, θ)

Z2
n(β[s], θ)

1(
n
s

) 2

∑
S1 ,S2∈Λ

Zn(βS1
+ βS2

, θ)
Zn(βS1

+ βS2
, θ)

∑
Y

e
θ

2n

n∑
i=1

k2
i +

n∑
j=1

βS1 , j
+βS2 , j
2 k j

=
1(
n
s

) 2

∑
S1 ,S2∈Λ

Zn(β0, θ)Zn(βS1
+ βS2

, θ)
Zn(βS1

, θ)Zn(βS2
, θ) =

1(
n
s

) 2

∑
S1 ,S2∈Λ

eRS1 ,S2 , (29)

where

RS1 ,S2 := log
( Zn(β0, θ)Zn(βS1

+ βS2
, θ)

Zn(βS1
, θ)Zn(βS2

, θ)

)
= log Zn(βS1

+ βS2
, θ) − log Zn(βS2

, θ) − log Zn(βS1
, θ) + log Zn(β0, θ).

Setting W = S1
⋂

S2, note that RS1 ,S2 only depends on |W | by symmetry. Thus, without loss of gener-
ality we assume that S1 = {1,2,3, ..., s} and S2 = {1,2, ...,w, s + 1, s + 2, ...,2s − w}. Consequently,

RS1 ,S2 =
∑
j∈S1

[
log Zn(β[j] + βS2

, θ) − log Zn(β[j−1] + βS2
, θ) − log Zn(β[j], θ) + log Zn(β[j−1], θ)

]
,

where β[j] denotes the vector β which equals A on first j entries, and β0 for rest of its entries, The
summand in the RHS above equals

log Zn(β[j] + βS2
, θ) − log Zn(β[j−1] + βS2

, θ) − log Zn(β[j], θ) + log Zn(β[j−1], θ)

=

∫ A

0

∂ log Zn(β[j−1] + βS2
+ γej, θ)

∂βj
dγ −

∫ A

0

∂ log Zn(β[j−1] + γej, θ)
∂βj

dγ

=

∫ A

0
A

∑
r ∈S2

∂ log Zn(β[j−1] + ξ + γej)
∂βj∂βr

|ξ�βS2
dγ

=

∫ A

0
A

∑
r ∈S2

Covβ=β[ j−1]+ξ+γej(k j, kr )dγ.

If A → 0, then β ≥ 0 if β0 ≥ 0, and β ≤ 0 for all n large if β0 < 0. Since GHS inequality (Lebowitz,
1974) holds if either β ≥ 0 or β ≤ 0 (the second conclusion follows on noting that Covβ(kr , ks) is same
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as = Covβ(−kr ,−ks), thereby giving

Covβ=β[ j−1]+ξ+γej (k j, kr ) ≤ Covβ=(β0/2)1(k j, kr ).

Combining the above two displays, this gives

RS1 ,S2 ≤
∑
j∈S1

∫ A

0
A

∑
r ∈S2

Covβ=(β0/2)1(k j, kr )dγ

= A2wVarβ=(β0/2)1(k1) + A2(s2 − w)Covβ=(β0/2)1(k1, k2).

Along with (29), this further gives

EH0 L2
π(Y ) ≤ exp {A2s2Covβ=(β0/2)1(k1, k2)}EW exp{A2Varβ=(β0/2)1(k1)W},

where W follows Hypergeometric distribution with parameters (n, s, s). Since 2s < n, we have that W is
stochastically dominated by a binomial distribution with parameters

(
s, s

n−s

)
((Mukherjee, Mukherjee

and Sen, 2018, Lemma 6.1)), which gives

EW exp{A2Varβ=(β0/2)1(k1)W} ≤ exp
{

2s2

n
(eA

2Varβ=(β0/2)1(k1) − 1)
}
.

Combining the last two displays, we have verified (27).

3.1. Proof of parts (a) and (c) of Theorem 1.3

With Lπ as in defined in (26), it suffices to show that

lim
n→∞

EH0 L2
π(Y ) = 1.

By (Mukherjee and Xu, 2023, Lemma 3.3(d)) along with (17) we have

Varβ=(β0/2)1(
∑
e∈E

Ye) � n2,

which gives the existence of a constant c depending on θ such that

Varβ=(β0/2)1(k1) ≤ cn, Covβ=(β0/2)1(k1, k2) ≤ c.

Using this along with Lemma 3.1 gives

EH0 L2
π(Y ) ≤ exp

{
cA2s2 +

2s2

n
(ecA2n − 1)

}
. (30)

3.1.1. Proof of part (a)

In this regime we have s = nb and A= nt with b ≥ 1
2 and b+ t < 0. This gives

max(A2n,A2s2) =max(n2t+1,n2t+2b) = n2t+2b → 0,

using which the exponent in the RHS of (30) converges to 0. This completes the proof of part (a).
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3.1.2. Proof of part (c)

In this regime we have s = nb and A= nt with b < 1
2 and t ≤ − 1

2 . This gives A2s2 = n2b+2t → 0. Also

s2

n
ecA

2n−1 ≤ ec−1 s2

n
= ec−1n2b−1 → 0.

Consequently, the RHS of (30) again converges to 0. This completes the proof of part (c).

3.2. Proof of Theorem 1.5 part (a)

As before, with Lπ defined in (26), it is sufficient to show that

lim
n→∞

EH0 L2
π(Y ) = 1.

To this effect, using (Mukherjee and Xu, 2023, Lemma 4.1(b)) along with (17) we get

VarH0(
∑
e∈E

Ye) � n3.

Along with the non-negativity of covariance, this gives

CovH0 (k1, k2)� n.

For getting the optimal bound on VarH0(k1), use (17) to get

VarH0(k1) � n2VarH0(φ1) + n �n2
[
VarH0(φ̄) +VarH0(φ1 − φ̄)

]
+ n � n,

where the last inequality uses (Mukherjee and Xu, 2023, Lemma 4.1). Combining the two displays
above along with Lemma 3.1 gives the existence of a constant c free of n, such that

EH0 L2
π(Y ) ≤ exp

{
cA2s2n +

2s2

n
(ecA2n − 1)

}
. (31)

Now, recall that in this regime we have s = nb and A = nt with b + t + 1
2 < 0. This allows us to

conclude that A2s2n = n2b+2t+1 → 0. Also, noting that 2t + 1 < 0 we have

s2

n
(ecA2n − 1) ≤ n2b−1(ecn2t+1 − 1)� n2b+2t+1 → 0.

Along with (31), this gives limn→∞ EH0 L2
π(Y ) = 1. This completes the proof of part (a).

3.3. Proof of Theorem 1.4 parts (a) and (c)

Restricting the probability measure (12) to the set U (as defined in Lemma 2.3 part (b)), define the
probability measure Pn,β,U (·) by setting

Pn,β,U (Y ) = 1
Z+n (β, θ)

exp

{
θ

2n

n∑
i=1

k2
i +

1
2

n∑
i=1

βiki

}
1{Y ∈ U}, (32)
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where

Z+n (β, θ) =
∑
Y ∈U

exp

{
θ

2n

n∑
i=1

k2
i +

1
2

n∑
i=1

βiki

}
is the restricted normalizing constant. As before, consider the sub parameter space Ξ̃(s,A) defined in
(25), and let π(dβ) be a prior on Ξ̃(s,A), which puts probability 1/

(n
s

)
on each element in Ξ̃(s,A).

And let Qπ,U (.) :=
∫
Pn,β,U (.)π(dβ) denote the mixed alternative distribution of Y . Since (Mukherjee

and Xu, 2023, Proposition 3.2) gives Pn,θ,β0 (U) → 1/2, for verifying the absence of asymptotically
powerful tests setting

Lπ,U (Y ) :=
Qπ,U (Y )
PH0 ,U (Y ) , (33)

it suffices to show:

EH0 ,UL2
π,U (Y ) → 1. (34)

Proceeding similar to Lemma 3.1, we get

EH0 ,UL2
π,U (Y ) = 1(

n
s

) 2

∑
S1 ,S2∈Λ

Z+n (0, θ)Z+n (βS1
+ βS2

, θ)
Z+n (βS1

, θ)Z+n (βS2
, θ) .

(35)

Setting R+
S1 ,S2

as

R+S1 ,S2
:=

(
log Z+n (βS1

+ βS2
, θ log Z+n (βS2

, θ)) − (log Z+n (βS1
, θ) − log Z+n (0, θ)

)
,

a Taylor’s series expansion gives

RS1 ,S2 = A2
∑
i∈S1

∑
j∈S2

Covδ=α1S1+γ1S2
(ki, k j |U), (36)

where α,γ ∈ (0,A) and 1S denote vector having unit signals at S, and δ := α1S1 + γ1S2 ∈ [0,2n−1/2]n.
We now claim that

Lemma 3.2.

max
1≤i< j≤n

sup
β∈[0,2n−1/2]n

Covβ(ki, k j |U) � 1.

We defer the proof of Lemma 3.2 to the end of the section. Finally, use Lemma 2.3 part (b) to
conclude that

max
1≤i≤n

Varδ(ki |U)� n. (37)

Given Lemma 3.2 along with (37) and (36), we have the existence of a constant C free of n such that

RS1 ,S2 ≤ CW A2n +Cs2 A2,
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which along with (35) gives

EH0 ,UL2
π,U (Y ) ≤ exp{CA2s2}EW exp {CA2nW}, (38)

where W follows Hypergeometric distribution with parameters (n, s, s). As before, using the fact that
n > 2s, W is stochastically dominated by a binomial distribution with parameters (s, s

n−s ). This gives

EH0 ,UL2
π,U (Y ) ≤ exp {CA2s2 +

2s2

n
(eCA2n − 1)}. (39)

3.3.1. Proof of Theorem 1.4 part (a)

In this regime we have s = nb and A= nt with b ≥ 1
2 and b+ t < 0. This gives A2s2 = n2t+2b → 0. Also

we have A2n = n2t+1 → 0, and so

s2

n
(eCA2n − 1)� s2 A2 = n2b+2t → 0.

Combining the above two displays with (39), we have EH0 ,UL2
π,U (Y ) → 1, as desired. The proof of

part (a) is complete.

3.3.2. Proof of Theorem 1.4 part (c)

In this regime we have s = nb and A= nt with b < 1
2 and t + 1

2 < 0. This gives

A2s2 = n2t+2b ≤ n2t+1 → 0.

Also we have A2n = n2t+1 → 0, and so

s2

n
(eCA2n − 1)� s2 A2 = n2b+2t → 0.

Combining the above two displays with (39), we have EH0 ,UL2
π,U (Y ) → 1, as desired. The proof of

part (c) is complete.

3.4. Proof of Lemma 3.2

Analogous to the definition of U in Lemma 2.3 part (b), define

Ũ := ∩n
i=1Ṽi Ṽi :=

{
φi ∈

[
0,2

] }
.

The following lemma, to be used in the proof of Lemma 3.2, shows that with high probability the
sets U and Ũ occur simultaneously, and so expectations involving U can be transferred to expectations
involving Ũ at a very low cost. This lemma will be used frequently in the rest of this section, sometimes
without an explicit mention.

Lemma 3.3. Suppose θ > 1/2, and β ∈ [0,2n−1/2]. Then we have the following conclusions:

(a) logPn,θ,β(UΔŨ) � −n.
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(b) For any random variable W such that EW2 ≤ 1, we have���EW1{U} − EW1{Ũ}
��� ≤ √

Pn,θ,β(UΔŨ).

The proof of Lemma 3.3 is deferred to the supplementary file. We now prove a correlation bound for
higher order terms, which will be used for proving Lemma 3.2.

Lemma 3.4. Suppose θ > 1/2, and β ∈ [0,2n−1/2]. Then for any pair of indices {i1,i2,i3}, which are
not necessarily distinct, we have

Covn,θ,β
(
(φi1 − t)(φi2 − t), φi3 − t |Ũ

)
� n−2.

Proof. Setting M(i1,i2,i3) :=Covn,θ,β
(
(φi1 − t)(φi2 − t), φi3 − t |Ũ

)
, we claim that

max
1≤i1,i2≤n

���M(i1,i2,i3) −
θ3sech6(2θt)
(n − 1)3

∑
j1�i1 , j2�i2 , j3�i3

∑
	a ∈(ia , ja ),1≤a≤3

M(�1,�2,�3)
��� =O(n−2). (40)

We first complete the proof of the lemma, deferring the proof of (40). The above display implies the
existence of a constant C free of n, such that

max
1≤i1,i2,i3≤n

���M(i1,i2,i3) −
∑

1≤ j1 , j2, j3≤n
Bn

(
(i1,i2,i3),( j1, j2, j3)

) ��� ≤ C
n2 , (41)

where Bn is a symmetric n3 × n3 matrix with non-negative entries, satisfying∑
1≤ j1 , j2, j3≤n

Bn

(
(i1,i2,i3),( j1, j2, j3)

)
= 8θ3sech6(2θt) = [2θsech2(2θt)]3 < 1.

where the last inequality uses (Mukherjee and Xu, 2023, Lemma 1.2). Thus the matrix (I − Bn)−1 has
�∞ operator norm equal to (1 − 8θ3sech6(2θt))−1 <∞, and so (41) gives

max
1≤i1,i2,i3≤n

|M(i1,i2,i3)| ≤ C(1 − 8θ3sech6(2θt))−1n−2,

from which the desired conclusion follows.
It thus remains to verify (40). There are various possibilities depending on which of the indices

{i, j,�} are distinct. Below we argue the case i1 = i2 = i and i3 = j, with {i, j} distinct, noting that the
bound follows by similar calculations for other choices. To this end, setting ki,t := ki − (n − 1)t note

that (φi − t |Y ) ∼ N
(
ki ,t
n−1 ,

1
(n−1)θ

)
. Consequently, we have

Pn,θ,β(Ũ)Covn,θ,β
(
(φi − t)2, φ j − t |Ũ

)
=En,θ,β

[
(φi − t)2(φ j − t)1{Ũ}

]
− En,θ,β

[
(φi − t)21{Ũ}

]
En,θ,β

[
(φ j − t)1{Ũ}

]
=En,θ,β

[
(φi − t)2(φ j − t)1{U}

]
− En,θ,β

[
(φi − t)21{U}

]
En,θ,β

[
(φ j − t)1{U}

]
+O(e−cn)
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=En,θ,β

[ ( k2
i,t

(n − 1)2
+

1
(n − 1)θ

) ki,t
n − 1

1{U}
]

−En,θ,β

[ ( k2
i,t

(n − 1)2
+

1
(n − 1)θ

)
1{U}

]
En,θ,β

[
ki,t

n − 1
1{U}

]
+O(e−cn)

=Pn,θ,β(U)Covn,θ,β
( k2

i,t

(n − 1)2
+

1
(n − 1)θ ,

k j ,t

n − 1
|U

)
+O(e−cn)

=
1

(n − 1)3
Pn,θ,β(U)Covn,θ,β

(
k2
i,t, k j ,t |U

)
+O(e−cn)

=
1

(n − 1)3
Pn,θ,β(U)

∑
a1 ,a2�i,b�j

Cov
(
Yia1,tYia2,t,Yjb,t |U

)
+O(e−cn), (42)

where Yi j ,t := Yi j − t, and the change from U to Ũ uses Lemma 3.3 and incurs the cost O(e−cn).
Proceeding to estimate the RHS of (42), set ri j ,t := E(Yi j |φ), and for a1 � a2 note that

Pn,θ,β(U)Covn,θ,β
(
Yia1,tYia2,t,Yjb,t |U

)
=En,θ,β(Yia1,tYia2,tYjb,t1{U}) − En,θ,β(Yia1,tYia2,t1{U})En,θ,β(Yjb1{U})

=En,θ,β

[
Yia1,tYia2,tYjb,t1{Ũ}

]
− En,θ,β

[
Yia1,tYia2,t1{Ũ}

]
En,θ,β

[
Yjb,t1{Ũ}

]
+O(e−cn)

=En,θ,β

[
ria1 ,tria2 ,trjb,t1{Ũ}

]
− En,θ,β

[
ria1 ,tria2,t1{Ũ}

]
En,θ,β

[
rjb1{Ũ}

]
+O(e−cn)

=Pn,θ,β(Ũ)Covn,θ,β(ria1 ,tria2 ,t,rjb,t |Ũ) +O(e−cn). (43)

In the above display, we have again moved from U to Ũ at a cost O(e−cn), using Lemma 3.3. A one
term Taylor’s series expansion gives

ri j ,t = tanh
[
θ(φi + φi) + (βi + βj )

]
− tanh(2θt)

=
[
θ(φi − t + φ j − t) + 1

2
(βi + βj )

]
sech2(2θt) + ξi j, (44)

where

|ξi j | � (φi − t)2 + (φ j − t)2 + β2
i + β

2
j � (φi − t)2 + (φ j − t)2 + n−1.

On taking expectations, Covn,θ,β
(
ria1 ,tria2 ,t,rjb,t |Ũ

)
equals

θ3sech6(2θt)
∑

u∈{i,a1 },v∈{i,a2 },w∈{ j ,b}
Covn,θ,β

(
(φu − t)(φv − t),(φw − t)|Ũ

)
+O(n−2), (45)

where we have used Lemma 2.3 part (b). On the other hand, if a1 = a2 = a, then using the fact that

Y2
ia,t = 1 + t2 − 2tYia = 1 − t2 − 2tYia,t,
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we have

− 1
2t
Pn,θ,β(U)Covn,θ,β

(
Y2
ia,t,Yjb,t |U

)
=Pn,θ,β(U)Covn,θ,β

(
Yia,t,Yjb,t |U

)
=En,θ,β(Yia,tYjb,t1{U}) − En,θ,β(Yia,t1{U})En,θ,β(Yjb1{U})

=En,θ,β

[
Yia,tYjb,t1{Ũ}

]
− En,θ,β

[
Yia,t1{Ũ}

]
En,θ,β

[
Yjb,t1{Ũ}

]
+O(e−cn)

=En,θ,β

[
riarjb1{Ũ}

]
− En,θ,β

[
ria1{Ũ}

]
En,θ,β

[
rjb1{Ũ}

]
+O(e−cn)

=Pn,θ,β(Ũ)Covn,θ,β(ria,rjb |Ũ) +O(e−cn) =O(n−1), (46)

where the last equality again uses Lemma 2.3 part (b), along with (44). Combining (42), (43), (45) and
(46) we have

Covn,θ,β
(
(φi − t)2, φ j − t |Ũ

)
=
θ3sech6(2θt)
(n − 1)3

∑
a1 ,a2�i,b�j

∑
u∈{i,a1 },v∈{i,a2 },w∈{ j ,b}

Covn,θ,β
(
(φu − t)(φv − t),(φw − t)|Ũ

)
+O(n−2),

which verifies (40) for the choice {i1 = i2 = i,i3 = j}. This completes the proof of the claim.

Proof of Lemma 3.2. We proceed via a similar argument as in the proof of Lemma 3.4. Setting
M(i1,i2) :=Covn,θ,β(ki1, ki2 |U) for 1 ≤ i1,i2 ≤ n, we begin by claiming

max
1≤i1,i2≤n

���M(i1,i2) −
1

(n − 1)2
∑

j1�i1 , j2�i2

∑
u∈{i1 , j1 },v∈{i2, j2 }

[C0 +C1(βu + βv)
]

M(u,v)
��� =O(1), (47)

where

C0 := θ2sech4(2θt), C1 :=
θ2

2
sech2(2θt). (48)

Given (47), and noting that Varn,θ,β(ki |U) =O(n) by Lemma 2.3 part (b), we conclude

max
i1�i2

���M(i1,i2) −
∑
j1�j2

Bn

(
(i1,i2),( j1, j2)

)
M( j1, j2)

��� =O(1), (49)

where Bn is a symmetric n(n − 1) matrix with non-negative entries, satisfying∑
j1�j2

Bn

(
(i1,i2),( j1, j2)

)
≤ 8(C0 + 2A) A→0→ 8C0 = 8θ3sech6(2θt) = [2θsech2(2θt)]3 < 1.

where the last inequality uses (Mukherjee and Xu, 2023, Lemma 1.2). Thus the �∞ operator norm of
(I − Bn)−1 converges to (1 − 8θ3sech6(2θt))−1 <∞, which along with (49) gives

max
i1�i2

M(i1,i2) =O(1),

as desired.
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It thus remains to verify (47). To this end, for any i � j, we have

Pn,θ,β(U)Covn,θ,β(ki, k j |U)

=Pn,θ,β(U)
∑

a�i,b�j

Covn,θ,β(Yia,Yjb |U)

=
∑

a�i,b�j

{
Eβ

[
YiaYjb1{U}

]
− Eβ

[
Yia1{U}

]
En,θ,β

[
Yjb1{U}

] }
=

∑
a�i,b�j

{
Eβ

[
YiaYjb1{Ũ}

]
− Eβ

[
Yia1{Ũ}

]
En,θ,β

[
Yjb1{Ũ}

] }
+O(e−cn)

=
∑

a�i,b�j

{
Eβ

[
riarjb1{Ũ}

]
− Eβ

[
ria1{Ũ}

]
− Eβ

[
rjb1{Ũ}

] }
+O(e−cn)

=Pn,θ,β(Ũ)Covn,θ,β(ria,rjb |Ũ) +O(e−cn). (50)

In the above display, ri j := tanh
[
θ(φi + φa) + 1

2 (βi + βa)
]

. A Taylor’s series expansion gives

ri j = tanh
[
θ(φi + φ j ) +

1
2
(βi + βj )

]
= tanh(2θt) +

[
θ(φi − t + φ j − t) + 1

2
(βi + βj )

]
sech2(2θt)

+
1
2

[
θ(φi − t + φ j − t) + 1

2
(βi + βj )

] 2
tanh′′(2θt) + ξi j,

where

|ξi j | � |φi − t |3 + |φ j − t |3 + |βi |3 + |βj |3 � |φi − t |3 + |φ j − t |3 + n−3/2.

Using the above display we have

Covn,θ,β(ria,rjb |Ũ) =
∑

u∈{i,a},v∈{ j ,b}

[
C0 +C1(βu + βv)

]
Covn,θ,β(φu, φv |Ũ) +O(n−2), (51)

where the bound on the error term uses Lemma 2.3 part (b) and Lemma 3.4. In the above display, the
constants C0,C1 are as in (48).

Finally, we have

Pn,θ,β(Ũ)Covn,θ,β(φu, φv |Ũ)

=En,θ,β

[
φuφv1{Ũ}

]
− En,θ,β

[
φu1{Ũ}

]
En,θ,β

[
φv1{Ũ}

]
=En,θ,β

[
φuφv1{U}

]
− En,θ,β

[
φu1{U}

]
En,θ,β

[
φv1{U}

]
+O(e−cn)

=
1

(n − 1)2
En,θ,β

[
kukv1{U}

]
− 1
(n − 1)2

En,θ,β

[
ku1{U}

]
En,θ,β

[
kv1{U}

]
+O(e−cn)

=
Pn,θ,β(U)
(n − 1)2

Covn,θ,β(ku, kv |U) +O(e−cn). (52)
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Combining (50), (51) and (52) we have

Covn,θ,β(ki, k j ) =
1

(n − 1)2
∑

a�i,b�j

∑
u∈{i,a},v∈{ j ,b}

[C0 +C1(βu + βv)]Covn,θ,β(ku, kv |U) +O(1),

from which (47) follows. This completes the proof of the lemma.
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