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Consider the random quadratic form Tn = ∑
1≤u<v≤n auvXuXv , where

((auv))1≤u,v≤n is a {0,1}-valued symmetric matrix with zeros on the diago-
nal, and X1,X2, . . . ,Xn are i.i.d. Ber(pn), with pn ∈ (0,1). In this paper, we
prove various characterization theorems about the limiting distribution of Tn,
in the sparse regime, where pn → 0 such that E(Tn) = O(1). The main re-
sult is a decomposition theorem showing that distributional limits of Tn is the
sum of three components: a mixture which consists of a quadratic function
of independent Poisson variables; a linear Poisson mixture, where the mean
of the mixture is itself a (possibly infinite) linear combination of indepen-
dent Poisson random variables; and another independent Poisson component.
This is accompanied with a universality result which allows us to replace
the Bernoulli distribution with a large class of other discrete distributions.
Another consequence of the general theorem is a necessary and sufficient
condition for Poisson convergence, where an interesting second moment phe-
nomenon emerges.

1. Introduction. Let X1,X2, . . . ,Xn be i.i.d. Ber(pn), with 0 < pn � 1, where an � bn

for any two positive sequences {an}n≥1 and {bn}n≥1 of real numbers means an = o(bn). The
well-known Poisson approximation to the Binomial distribution shows that, given a {0,1}-
valued sequence a1, a2, . . . , an, the linear statistic

Ln =
n∑

i=1

aiXi
D→ Pois(λ),

whenever the mean ELn = pn

∑n
i=1 ai → λ. Conversely, if 0 < pn � 1 is such that

pn

∑n
i=1 ai = O(1), then whenever Ln converges in distribution to a finite random variable,

there exists λ ≥ 0, such that Ln converges to Pois(λ). In other words, in the sparse regime,
where 0 < pn � 1 is chosen such that E(Ln) = O(1), the Poisson distribution characterizes
the limiting distribution of linear forms in Bernoulli variables.

In this paper we address the analogous question for quadratic forms in Bernoulli random
variables: Given a {0,1}-valued symmetric matrix ((auv))1≤u,v≤n with zeros on the diagonal,
consider the Bernoulli quadratic form,

Tn = ∑
1≤u<v≤n

auvXuXv,(1.1)

where, as before, X1,X2, . . . ,Xn are i.i.d. Ber(pn). In this case, the sparse regime corre-
sponds to choosing 0 < pn � 1, such that

E(Tn) = p2
n

∑
1≤u<v≤n

auv = O(1).(1.2)
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In this regime the random variable Tn = OP (1), therefore, it has distributional limits along
subsequences. In fact, using Stein’s method for Poisson approximation [2–4, 11], it is
easy to obtain various sufficient conditions on the matrix ((auv))1≤u,v≤n for which Tn is
asymptotically Poisson. However, unlike in the linear case, it is easy to construct matrices
((auv))1≤u,v≤n for which Tn has a non-Poisson limit:

(1) Take auv = 1, for all 1 ≤ u �= v ≤ n, and choose pn = λ/n (for some λ > 0). Then

Sn = ∑n
u=1 Xu

D→ N ∼ Pois(λ), and

Tn = 1

2

∑
1≤u�=v≤n

XuXv =
(
Sn

2

)
D→

(
N

2

)
,(1.3)

which is a quadratic function of a Poisson random variable.
(2) Take bn = 	√n� and let auv = avu = 1, for 1 ≤ u ≤ bn and ubn + 1 ≤ v ≤ ubn + bn.

Then

Tn =
bn∑

u=1

Xu

ubn+bn∑
v=ubn+1

Xv.

Here, choosing pn = λ/
√

n (for some λ > 0) ensures E(Tn) → λ2. Then the random variables
Ju = ∑ubn+bn

v=ubn+1 Xv ∼ Bin(	√n�, λ√
n
), are independent for 1 ≤ u ≤ bn. This implies,

Tn =
bn∑

u=1

XuJu
D= Bin

(
	√n�

bn∑
u=1

Xu,
λ√
n

)
D→ Pois(λN),(1.4)

where N ∼ Pois(λ) (because
∑bn

u=1 Xu
D→ Pois(λ)). In this case, the limit is a Poisson dis-

tribution with a random mean, that is, it is a Poisson mixture [23]. (Given a discrete random
variable X, a Poisson mixture with mean X is denoted by Z ∼ Pois(X). More precisely, for
z ∈ {0,1, . . . , }, P(Z = z) = E[ e−XXz

z! ].)
The different limits obtained in the examples above raise the question: What are the pos-

sible limiting distributions of the Bernoulli quadratic form Tn in the sparse regime (1.2)? In
this paper, we prove a general decomposition theorem which allows us to express the limiting
distribution of Tn as the sum of three components: a “quadratic component”, which is a mix-
ture driven by a bivariate Poisson stochastic integral; a “linear component” which is a Poisson
mixture, where the mean of the mixture is itself a univariate Poisson stochastic integral; and
an independent Poisson component (Theorem 1.1). Moreover, any distributional limit of Tn

must belong to the closure of the class defined by the above decomposition (Theorem 1.2).
This general result has several interesting consequences, such as a characterization theorem
for dense matrices (Corollary 1.3), a second moment phenomenon for Poisson convergence
(Corollary 1.4), and a universality phenomenon which allows us to replace the Bernoulli dis-
tribution with other discrete distributions (Corollary 1.5). In Section 2 we use these results to
compute the limit of Tn in various natural examples.

1.1. Asymptotic notation. For positive sequences {an}n≥1 and {bn}n≥1, an = O(bn)

means an ≤ C1bn and an = �(bn) means C2bn ≤ an ≤ C1bn, for all n large enough and
positive constants C1, C2. Similarly, for positive sequences {an}n≥1 and {bn}n≥1, an � bn

means an ≤ C1bn and an � bn means an ≥ C2bn, for all n large enough and positive con-
stants C1, C2. Moreover, subscripts in the above notation, for example, �◦, denote that the
hidden constants may depend on the subscripted parameters. Finally, an � bn and an  bn

will mean an = o(bn) and bn = o(an), respectively.
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1.2. Limiting distribution of Bernoulli quadratic forms. Hereafter, without loss of gen-
erality, we adopt the language of graph theory, and think of the matrix ((auv))1≤u,v≤n as the
adjacency matrix of an undirected simple graph on n vertices. To this end, let Gn denote the
space of all simple undirected graphs on n vertices labeled by [n] := {1,2, . . . , n}. Given a
graph Gn ∈ Gn with adjacency matrix A(Gn) = ((auv(Gn)))1≤u,v≤n, denote by V (Gn) the set
of vertices, and by E(Gn) the set of edges of Gn, respectively. Then the Bernoulli quadratic
form (1.1) (indexed by the graph Gn) becomes

Tn = 1

2

∑
1≤u,v≤n

auv(Gn)XuXv = 1

2
X′A(Gn)X,(1.5)

where X1,X2, . . . ,Xn are i.i.d. Ber(pn) and X = (X1,X2, . . . ,Xn)
′. The sparse regime (1.2)

translates to 0 < pn � 1 such that

E[Tn] = ∣∣E(Gn)
∣∣p2

n = �(1).(1.6)

(Note that if E[Tn] = o(1), then Tn
P→ 0, hence, to obtain nondegenerate limiting distributions

it suffices to consider the case E[Tn] = �(1).)

REMARK 1.1. The statistic (1.5) arises naturally in several contexts, such as nonparamet-
ric two-sample tests [17], understanding coincidences [14], and motif frequency estimation
in large networks [20]. For instance, in the study of coincidences Tn arises as a generaliza-
tion of the birthday paradox [10, 12, 13], where the matrix ((auv))1≤u,v≤n corresponds to the
adjacency matrix of a friendship-network graph Gn, and one wishes to estimate the prob-
ability that there are two friends with birthday on a particular day (say January 31). Then
taking X1,X2, . . . ,Xn i.i.d. Ber(1/365) (assuming birthdays are uniformly distributed over
the year), Tn counts the number of pairs of friends with birthdays on January 31. This statis-
tic also arises in the problem of estimating frequencies of motifs (small subgraphs) in large
graphs [20, 25]. Here, given a large graph Gn, the goal is to efficiently estimate (without stor-
ing or searching over the entire graph) global characteristics, such as, the number of edges
of Gn, by making local queries on Gn. In the subgraph sampling model [20, 29], where one
has access to the random induced subgraph obtained by sampling each vertex of Gn inde-
pendently with probability pn, the statistic Tn/p

2
n, by (1.6), is an unbiased estimate of the

number of edges in Gn.

Hereafter, we denote rn = 1/pn, and assume that the vertices of Gn are labelled in the
nonincreasing order of the degrees d1 ≥ d2 ≥ · · · ≥ dn, where dv denotes the degree of the
vertex labelled v. To describe the limiting distribution of Tn we need to consider limits of the
sequence of matrices ((auv))1≤u,v≤n. This can be done using the framework of graph limit
theory [8, 9, 24]. To this end, let W be the space of all symmetric measurable functions from
[0,∞)2 → [0,1]. Given a graph Gn (and a sequence rn → ∞), define the function WGn ∈ W
as follows:

WGn(x, y) :=
⎧⎪⎨
⎪⎩

1
{(�xrn�, �yrn�) ∈ E(Gn)

}
for x, y ∈

[
0,

n

rn

]2
,

0 otherwise.
(1.7)

Moreover, for a graph Gn, define the normalized degree-function as dWGn
(x) = ∫∞

0 WGn(x,

y)dy. Note that

dWGn
(x) :=

⎧⎪⎪⎨
⎪⎪⎩

1

rn

n∑
j=1

a�xrn�j (Gn) for x ∈
[
0,

n

rn

]
,

0 otherwise.

(1.8)
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DEFINITION 1.1 ([24]). For K > 0, the cut-distance between two functions W1,W2 ∈
W , restricted to the domain [0,K]2, is defined as,

‖W1 − W2‖�([0,K]2)

:= sup
f,g:[0,K]→[−1,1]

∣∣∣∣
∫
[0,K]2

(
W1(x, y) − W2(x, y)

)
f (x)g(y)dx dy

∣∣∣∣.(1.9)

The cut-metric between two functions W1,W2 ∈ W , restricted to the domain [0,K]2, is de-
fined as,

δ�([0,K]2)(W1,W2) := inf
ψ

∥∥Wψ
1 − W2

∥∥
�([0,K]2),(1.10)

with the infimum taken over all measure-preserving bijections ψ : [0,K] → [0,K], and
W

ψ
1 (x, y) := W1(ψ(x),ψ(y)), for x, y ∈ [0,K].

Equipped with the definitions above we can now state our main theorem. To this end,
for p ≥ 1 and a Borel set K ⊆ R

d denote by Lp(K) the set of all measurable func-
tions from K → R such that

∫
K |f (x)|p dx < ∞. Also, given a function f ∈ L1([0,∞)d),∫

f (x1, x2, . . . , xd)
∏d

a=1 dN(xa), will denote the multiple Itô stochastic integral of f with
respect to the homogeneous Poisson process of rate 1, {N(t), t ≥ 0}. The precise definition
of stochastic integration with respect to a Poisson process and methods for computing them
are given in Appendix B.

THEOREM 1.1. Let X1,X2, . . . ,Xn be i.i.d. Ber(pn) and suppose {Gn}n≥1 is a sequence
of graphs such that (1.6) is satisfied. Assume that the vertices of Gn are labelled {1,2, . . . , n}
in nonincreasing order of the degrees and the following hold:

(a) limK→∞ limn→∞ 1
2

∫∞
K

∫∞
K WGn(x, y)dx dy = λ0.

(b) There exists a function W ∈W , such that, for K > 0 large enough,

lim
n→∞‖WGn − W‖�([0,K]2) = 0.(1.11)

(c) There exists a function d : [0,∞) → [0,∞) in L1([0,∞)), such that, for K,M > 0
large enough,

lim
n→∞

∫ K

0

∣∣dWGn
(x)1

{
dWGn

(x) ≤ M
}− d(x)1

{
d(x) ≤ M

}∣∣dx = 0.(1.12)

Then

Tn := 1

2

∑
1≤u,v≤n

auv(Gn)XuXv
D→ Q1 + Q2 + Q3,(1.13)

where

– Q3 ∼ Pois(λ0) and Q3 is independent of (Q1,Q2).
– The joint moment generating function of (Q1,Q2) is given by: For t1, t2 ≥ 0,

E exp{−t1Q1 − t2Q2}

= E exp
{

1

2

∫ ∞
0

∫ ∞
0

φW,t1(x, y)dN(x)dN(y) − t̂2

∫ ∞
0

�(x)dN(x)

}
,

(1.14)

with
– t̂2 := (1 − e−t2),
–

∫
[0,∞)2 W(x,y)dx dy < ∞,
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– �(x) := d(x) − ∫∞
0 W(x,y)dy,

– {N(t), t ≥ 0} is a homogenous Poisson process of rate 1, and
– φW,t1(x, y) := log(1 − W(x,y) + W(x,y)e−t1).

The proof of this result is given in Section 3. The proof proceeds by decomposing the graph
into three components based on the degree of the vertices (as explained below), and then
approximating each of the components in moments by an appropriately constructed random
variable with more independence structure, for which the joint asymptotic distribution can
be explicitly computed. (A detailed overview of the proof of Theorem 1.1 is given in the
beginning of Section 3.) The three components give rise to the following three terms in the
limiting distribution of Tn:

• A quadratic component Q1 whose moment generating function is given in terms of a
bivariate stochastic integral. This is the contribution to Tn from the “dense core” of the
graph, that is, edges between the “high-degree” vertices (degree greater than rn

K
) of Gn.

• A linear component Q2, which is the contribution to Tn from the edges between the “high-
degree” and “low-degree” vertices (degree less than rn

K
) of Gn. Note that the marginal

moment generating function of Q2 is

E exp{−t2Q2} = E exp
{
−(

1 − e−t2
) ∫ ∞

0
�(x)dN(x)

}
.(1.15)

By comparing moment generating functions, it is easy to see that Q2 ∼ Pois(R2),
where R2 = ∫∞

0 �(x)dN(x) is a univariate Poisson stochastic integral. This shows that
marginally Q2 is a Poisson mixture, where the mixing distribution is a (possibly) infinite
linear combination of independent Poisson random variables.

• An independent Poisson component Q3, which is the contribution from the edges between
the “low-degree” vertices of Gn.

REMARK 1.2. Even though (1.14) often characterizes the limit of Tn (as shown in The-
orem 1.2, Corollary 1.3, and Corollary 1.4 below), the conditions in Theorem 1.1 can be
slightly relaxed in a few ways:

(1) It will be evident from the proof of Theorem 1.1 that it suffices to assume (1.11) holds,
not for all K large enough, but along any diverging sequence Ks → ∞. Similarly, condition
(1.12) only needs to hold along diverging sequences of K and M . In fact, we show later in
Observation 3.2 that an easy sufficient condition for (1.12) to hold along a certain diverging
sequence of M is

lim
n→∞‖dWGn

− d‖L1([0,K]) = 0.

We will often use the condition above to verify (1.12). However, the truncated condition in
(1.12) is, in general, necessary to include graphs with a few high-degree vertices.

(2) Another relaxation, which will again be clear from the proof of Theorem 1.1, is to
assume (1.11) and (1.12) hold along a common bijection (permutation of the vertices) from
[0,K] → [0,K] (see Lemma 3.5 for a precise statement). Marginally, this allows one to re-
place the cut-distance ‖·‖�([0,K]2) in (1.11) with the cut-metric δ�([0,K]2). This generalization
will be important for establishing the necessity of the conditions and characterizing the limits
of Tn (in Theorem 1.2 and Corollary 1.3 below). Nevertheless, to avoid notational clutter, we
present Theorem 1.1 under the slightly weaker condition, and discuss this generalization as
part of the proof in Section 3.4.
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Given the above discussion, it is natural to wonder whether the conditions (1.11) and (1.12)
are necessary for the convergence of Tn. More generally, one can ask what are the possible
limiting distributions of Tn? It is easy to construct examples where Tn does not converge in
distribution, when the conditions of Theorem 1.1 are not satisfied (see Example 7). However,
the question of determining all possible limiting distributions of Tn is more delicate. In the
theorem below, we answer this question by showing that whenever Tn has a distributional
limit, it must belong to the closure of limits of the form (1.14). To make this precise, denote
by F the collection of all functions d : [0,∞) → [0,∞) in L1([0,∞)), and consider the
following definition:

DEFINITION 1.2. For W and F as above, define P(W,F) to be the collection of all
probability measures μ on Z+ ∪ {0}, such that if J ∼ μ, then

J
D= J1 + J2,

where the joint moment generating function of (J1, J2) is given by the RHS of (1.14), for
some function W ∈ W with

∫∞
0

∫∞
0 W(x,y)dx dy < ∞ and some function d ∈ F , such that

�(x) = d(x) − ∫∞
0 W(x,y)dy ≥ 0, for all x ∈ [0,∞). Finally, denote by P(W,F) the clo-

sure of P(W,F) under weak convergence. (More precisely, a probability measure μ on
Z+ ∪ {0} belongs to P(W,F) if and only if there exists a sequence of probability mea-
sures {μs}s≥1, with μs ∈ P(W,F), such that μs converges weakly (in distribution) to μ, as
s → ∞.)

The following theorem shows that whenever Tn has a distributional limit, it has a compo-
nent which belongs to P(W,F) plus an independent Poisson random variable.

THEOREM 1.2. Suppose (1.6) holds and the random variable Tn converges in distribu-

tion to a random variable T . Then T
D= J + J0, where J ∈ P(W,F), J0 ∼ Pois(λ), for some

λ ≥ 0, and J0 is independent of J .

The proof of the above theorem is given in Section 4. We compute the limit of Tn in
different examples in Section 2. Interestingly, in all the examples constructed in Section 4
the limiting distribution of Tn belongs to the class P(W,F) itself. This leaves open the
intriguing question of whether there are distributional limits of Tn which are in P(W,F) but
not in P(W,F).

1.3. Consequences of Theorem 1.1. The limiting distribution in Theorem 1.1 simplifies
if the graph sequence {Gn}n≥1 has some special structures.

We begin with the case when the graph is dense. Recall a sequence of graphs {Gn}n≥1 is
said to be dense, if |E(Gn)| ≥ Cn2, for some constant C > 0, when n is large enough. In this
case, the assumption (1.11) characterizes all limits of Tn. Here, the linear mixture and the
Poisson components vanish, and the limit of Tn is determined by the quadratic component.

COROLLARY 1.3 (Dense Graphs). Let X1,X2, . . . ,Xn be i.i.d. Ber(pn) and suppose
{Gn}n≥1 is a sequence of dense graphs such that (1.6) holds.

(a) Suppose there exists a function W ∈ W , such that, for K > 0 large enough,
limn→∞ ‖WGn − W‖�([0,K]2) = 0. Then W vanishes outside a compact rectangle [0, a]2

for some finite a ≥ 0, and Tn
D→ Q1, where

E exp{−t1Q1} = E exp
{

1

2

∫ a

0

∫ a

0
φW,t1(x, y)dN(x)dN(y)

}
,(1.16)
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with t1 ≥ 0, φW,t1(x, y) := log(1 − W(x,y) + W(x,y)e−t1), and {N(t), t ≥ 0} is a homoge-
nous Poisson process of rate 1.

(b) Conversely, suppose {Gn}n≥1 is a sequence of dense graphs such that (1.6) holds, and
Tn converges in distribution. Then the limit is necessarily of the form (1.16), for some function
W ∈ W which vanishes outside [0, a]2 for some finite a ≥ 0.

The proof of Corollary 1.3 is given in Section 5. In Section 2, we compute the limit in
(1.16) in various examples.

Another consequence of Theorem 1.1, is a characterization of when the limiting distribu-
tion of Tn is a Poisson random variable. This reveals an interesting truncated second moment
phenomenon, that is, the convergence of the first two moments of a truncated version of Tn

determines the convergence in distribution to a Poisson distribution. To this end, for any
M > 0, define Xu,M := Xu1{du ≤ Mrn} and

Tn,M = ∑
(u,v)∈E(Gn)

Xu,MXv,M.(1.17)

Moreover, for a doubly indexed sequence of real numbers {an,m}n,m≥1, the double limit
limm→∞ limn→∞ an,m = a, means

lim sup
m→∞

lim sup
n→∞

an,m = lim inf
m→∞ lim inf

n→∞ an,m = a.

COROLLARY 1.4 (Truncated second moment phenomenon for Poisson approximation).
Let X1,X2, . . . ,Xn be i.i.d. Ber(pn) and suppose {Gn}n≥1 is a sequence of graphs such that
(1.6) holds. Then the following are equivalent.

(a) Tn
D→ Pois(λ).

(b) limM→∞ limn→∞ETn,M = λ and limM→∞ limn→∞ Var(Tn,M) = λ.
(c) The assumptions of Theorem 1.1 hold with W = 0, d = 0, and λ0 = λ.

The corollary above shows that the Poisson convergence of Tn is characterized by the con-
vergence of just the first two truncated moments of Tn (the proof is given in Section 5.2). In
fact, a simpler sufficient condition for the Poisson convergence of Tn is the convergence of the

first two (un-truncated) moments of Tn, that is, Tn
D→ Pois(λ) whenever limn→∞ETn = λ and

limn→∞ Var(Tn) = λ, which can also be directly proved using the well-known Stein’s method
for Poisson approximation based on dependency graphs [3, 4, 11]. However, convergence of
the first two un-truncated moments is clearly not necessary for the Poisson convergence of
Tn, as shown in Example 3. To obtain the necessary and sufficient condition for the Poisson
convergence of Tn, we need to consider the truncated conditions as in Corollary 1.4 above.

REMARK 1.3. This second moment phenomenon for the Poisson distribution for ran-
dom quadratic forms complements the well-known fourth-moment phenomenon, which as-
serts that the limiting normal distribution of certain centered homogeneous forms is implied
by the convergence of the corresponding sequence of fourth moments (refer to Nourdin et al.
[26, 27] and the references therein, for general fourth-moment theorems and invariance prin-
ciples and [6, 15] for an example of this phenomenon in random graph coloring). As in the
fourth-moment phenomenon for normal approximation, this second moment phenomenon
for Poisson approximation exhibits universality (see Section 1.4 below), and we expect this
phenomenon to extend beyond the quadratic to general integer-valued homogeneous sums.
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1.4. Universality. It is natural to ask what happens if one considers quadratic forms
in other integer-valued random variables (not necessarily Bernoulli). More precisely, if
X1,X2, . . . ,Xn are i.i.d. nonnegative integer valued random variables with distribution func-
tion Fn, then (similar to (1.5)) the Fn-quadratic form, indexed by a graph Gn, is defined
as

Tn = 1

2

∑
1≤u,v≤n

auv(Gn)XuXv = 1

2
X′A(Gn)X,(1.18)

where X = (X1,X2, . . . ,Xn)
′. It turns out that the limiting distribution of a general Fn-

quadratic form exhibits a universality, whenever X1 has the property EX1
P(X1=1)

= 1 + o(1),
that is, the contribution to the expectation is essentially determined by P(X1 = 1).

COROLLARY 1.5. Suppose {Xv}1≤v≤n are i.i.d. nonnegative integer valued random
variables with pn := P(X1 = 1) → 0, such that |E(Gn)|p2

n = �(1) (as in (1.6)) and
limn→∞ 1

pn
EX1 = 1. Then if the graph sequence {Gn}n≥1 satisfies the assumptions of Theo-

rem 1.1,

Tn
D→ Q1 + Q2 + Q3,

where Tn is as defined in (1.18) and Q1, Q2, and Q3 are as in Theorem 1.1.

This result shows that Theorem 1.1, and, as a consequence, Corollary 1.3 and Corol-
lary 1.4, extend beyond the (sparse) Bernoulli, to include cases like the sparse Poisson, bi-
nomial, negative binomial, and hypergeometric, among others, and complements the well-
known universality of the Weiner chaos for centered homogeneous sums [27].

1. Sparse Poisson: Suppose X1,X2, . . . ,Xn are i.i.d. Pois(θn), where θn → 0. In this case,
P(X1 = 1) = θne

−θn → 0 and EX1 = θn, and so EX1
P(X1=1)

= eθn → 1, as required in Corol-
lary 1.5.

2. Sparse binomial: Suppose X1,X2, . . . ,Xn are i.i.d. Ber(mn, θn), where mn and θn sat-
isfy mnθn → 0. In this case, P(X1 = 1) = mnθn(1 − θn)

mn−1 → 0, and EX1 = mnθn, and so
EX1

P(X1=1)
= 1

(1−θn)mn−1 → 1, as required in Corollary 1.5.
3. Sparse negative binomial: Suppose X1,X2, . . . ,Xn are i.i.d. NB(mn, θn) with

P(X1 = r) =
(
r + mn − 1

r

)
(1 − θn)

mnθr
n for r = 0,1, . . . ,

where mn and θn satisfy mnθn → 0. In this case, P(X1 = 1) = mnθn(1 − θn)
mn → 0, and

EX1 = mnθn

1−θn
, and so EX1

P(X1=1)
= 1

(1−θn)mn+1 → 1, as required in Corollary 1.5.
4. Sparse hypergeometric: Suppose X1,X2, . . . ,Xn are i.i.d. HGeom(Nn,Kn,mn) with

P(X1 = r) =
(Kn

r

)(Nn−Kn

mn−r

)
(Nn

mn

) for r ∈ {
max(0,mn + Kn − Nn), . . . ,min(mn,Kn)

}
,

where (Nn,Kn,mn) satisfy Nn → ∞, mnKn

Nn
→ 0, and min(mn,Kn) ≥ 1. This implies Nn −

(mn + Kn) → ∞, and so, for all n large, 0 and 1 are both in the support of X1. Further,

P(X1 = 1) = Kn

(Nn−Kn

mn−1

)
(Nn

mn

) = mnKn

Nn

· (Nn − Kn)!(Nn − mn)!
(Nn − Kn − mn + 1)!(Nn − 1)!

= mnKn

Nn

mn−1∏
s=1

Nn − Kn + 1 − s

Nn − s
= mnKn

Nn

· an,
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where

1 ≥ an =
mn−1∏
s=1

(
1 − Kn − 1

Nn − s

)
≥
(

1 − Kn − 1

Nn − mn + 1

)mn−1
→ 1,

since mnKn

Nn
→ 0. Thus, P(Xn = 1) → 0 and EX1

P(X1=1)
= 1

an
→ 1, as required in Corollary 1.5.

1.5. Organization. The rest of the paper is organized as follows: In Section 2, we com-
pute the limiting distribution in various examples. The proofs of Theorem 1.1 and Theo-
rem 1.2 are given in Section 3 and Section 4, respectively. The proofs of Corollaries 1.3, 1.4,
and 1.5 are given in Section 5. Details about Poisson stochastic integrals and other technical
lemmas are discussed in the Appendix.

2. Examples. In this section we use Theorem 1.1 to compute the limiting distribution
of Tn for various graph sequences. In the examples below, we will often construct graph
sequences Gn = (V (Gn),E(Gn)), where |V (Gn)| �= n, but |V (Gn)| → ∞, as n → ∞. In
such cases, the definitions in (1.7) and (1.8) have to be modified, with the number of vertices
n replaced by |V (Gn)| appropriately, following which the results hold verbatim.

We begin with an application of Corollary 1.3 for dense block graphons.

EXAMPLE 1 (Dense block graphons). Let X1,X2, . . . ,Xn be i.i.d. Ber(λ/n), for some
λ > 0. Fix κ > 0 and consider a sequence of dense graphs Gn converging in cut-metric to the
B-block function f : [0, κ]2 → [0,1], given by

f (x, y) =
{
bjj if x, y ∈ [cj−1, cj ], for some j ∈ [B],
bjj ′ if x ∈ [cj−1, cj ], y ∈ [cj ′−1, cj ′ ], for some j �= j ′ ∈ [B],(2.1)

where c0 = 0, cB = κ , [B] := {1,2, . . . ,B}, and the constants {bjj ′, j, j ′ ∈ [B]}, and
c1, c2, . . . , cB are chosen such that bjj ′ = bj ′j , for j �= j ′ ∈ [B] and

∫ κ
0
∫ κ

0 f (x, y)dx dy > 0.
(This is obtained as the graph limit of a stochastic block model (SBM) on �nκ� ver-
tices and B blocks, where the edge (u, v) exists independently with probability bjj ′ , when
u ∈ [�ncj−1�, �ncj�] and v ∈ [�ncj ′−1�, �ncj ′ �].) Now, given t1 ≥ 0, recall φf,t1(x, y) :=
log(1 − f (x, y) + f (x, y)e−t1). Then by Example 8 and (1.16), for t1 ≥ 0,

E exp{−t1Q1} = E exp

{
B∑

j=1

ψf,t1(j, j)

(
Nj

2

)
+ ∑

1≤j<j ′≤B

ψf,t1

(
j, j ′)NjNj ′

}
,(2.2)

where ψf,t1(j, j
′) := log(1 − bjj ′ + bjj ′e−t1), for j, j ′ ∈ [B], and {N1,N2, . . . ,NB} are in-

dependent with Nj ∼ Pois(cj − cj−1). Now, consider the random variable,

Q′
1 :=

B∑
j=1

ηjj + ∑
1≤j<j ′≤B

ηjj ′,(2.3)

where ηjj ∼ Bin(
(Nj

2

)
, bjj ), ηjj ′ ∼ Bin(NjNj ′, bjj ′) for j �= j ′, and the collection {ηjj ′ : 1 ≤

j, j ′ ≤ B} are independent given {N1,N2, . . . ,NB}. (Given q ∈ [0,1] and a discrete random
variable X, Z ∼ Bin(X,q) denotes a Binomial distribution with a random number of trials X.
More precisely, for z ∈ {0,1, . . . , }, P(Z = z) = E[(X

z

)
qz(1 − q)X−z].) Then it follows that,
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for t1 ≥ 0,

E exp
{−t1Q

′
1|{N1,N2, . . . ,NB}}

=
B∏

j=1

(
1 − bjj + bjj e

−t1
)(Nj

2

) ∏
1≤j<j ′≤B

(
1 − bjj ′ + bjj ′e−t1

)NjNj ′

= exp

{
B∑

j=1

ψf,t1(j, j)

(
Nj

2

)
+ ∑

1≤j<j ′≤B

ψf,t1

(
j, j ′)NjNj ′

}
.

(2.4)

This implies, for all t1 ≥ 0, E exp{−t1Q
′
1} = E exp{−t1Q1}, that is, Q1

D= Q′
1, which shows,

if {Gn}n≥1 is a sequence of graphs converging to the B-block function f (as in (2.1)), then

Tn
D→ Q′

1, as defined in (2.3). For specific choices of f this further simplifies. For example,
suppose {Gn}n≥1 is a sequence of graphs converging to the 2-block function

W(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

b11 for x, y ∈ [0, α],
b22 for x, y ∈ [α,1],
b12 otherwise.

Then,

Tn
D→ Bin

((
N1
2

)
, b11

)
+ Bin(N1N2, b12) + Bin

((
N2
2

)
, b22

)
,(2.5)

where N1 ∼ Pois(αλ), N2 ∼ Pois((1 − α)λ) are independent, and the three summands in
(2.5) are independent given N1, N2. This includes as special cases, the Erdős–Rényi graph
and the random bipartite graph. (By a simple conditioning argument, Corollaries 1.3 and 1.4
can be extended to random graphs by conditioning on the graph, under the assumption that
the graph and its coloring are jointly independent (see, e.g., [7], Lemma 4.1). In particular, the
convergence of Tn in Corollary 1.3 and Corollary 1.4 hold whenever the required conditions
hold in probability.)

• Dense Erdős–Rényi graphs: When α = 1, the graphon W reduces to the constant function
b11. This is attained as the graphon limit when Gn ∼ G(n,b11) is a sequence of Erdős–
Rényi random graphs such that b11 ∈ (0,1] is fixed. In this case, (2.5) simplifies to

Tn
D→ Bin

((
N1
2

)
, b11

)
,(2.6)

where N1 ∼ Pois(λ). In particular, if b11 = 1, that is, Gn = Kn is the complete graph, then

Tn
D→ (N1

2

)
(recall (1.3)).

• Random bipartite graphs: When b11 = b22 = 0, then this is attained as the limit of the
random bipartite graph Gn ∼ G(�αn�, �(1−α)n�, b12), with edge probability b12 ∈ (0,1].
Then, (2.5) simplifies to

Tn
D→ Bin(N1N2, b12),

where N1 ∼ Pois(αλ), N2 ∼ Pois((1 − α)λ) are independent.

For more sparser graphs, the limiting distribution is often a Poisson, and Corollary 1.4 can
be applied.
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EXAMPLE 2 (Nondense approximately regular graphs). Let X1,X2, . . . ,Xn be i.i.d.
Ber(pn) and {Gn}n≥1 be a sequence of graphs such that

lim
n→∞

∣∣E(Gn)
∣∣p2

n = λ and �(Gn) := max
v∈V (Gn)

dv = o(rn).(2.7)

Then for any ε > 0 there exists n large enough, such that dv ≤ εrn, for all v ∈ V (Gn). Hence,
for any M ≥ 1 and n large enough Tn = Tn,M . This implies,

lim
M→∞ lim

n→∞ETn,M = lim
n→∞ETn = lim

n→∞
∣∣E(Gn)

∣∣p2
n → λ.(2.8)

Moreover, for all large n,

Var(Tn,M) = Var(Tn)

= ∣∣E(Gn)
∣∣Var(X1X2) + 2N(K1,2,Gn)Cov(X1X2,X1X3),

(2.9)

where N(K1,2,Gn) = ∑n
v=1

(dv

2

)
denotes the number of 2-stars in the graph Gn. Note that

Var(X1X2) = p2
n − p4

n and Cov(X1X2,X1X3) = p3
n − p4

n. Therefore,

lim
n→∞

∣∣E(Gn)
∣∣Var(X1X2) = λ,

and using N(K1,2,Gn) ≤ ε|E(Gn)|rn, gives lim supn→∞ N(K1,2,Gn)Cov(X1X2,X1X3) ≤
ε. Then (2.9) implies,

lim
M→∞ lim

n→∞ Var(Tn,M) = λ,

since ε is arbitrary. This combined with (2.8) and Corollary 1.4 shows that Tn
D→ Pois(λ),

whenever (2.7) holds. This derives the limiting distribution of nondense (that is, |E(Gn)| =
o(n2)), “approximately” regular graphs.

• Nondense regular graphs: Let Gn be a sequence of d-regular graphs such that d = o(n) and
nd
2 p2

n → λ. Then rn = 1/pn = �(
√

nd) and the maximum degree d = o(rn). Therefore,

by the argument above, Tn
D→ Pois(λ).

• Nondense Erdős–Rényi graphs: Let Gn ∼ G(n,qn) be a sequence of Erdős–Rényi ran-

dom graphs such that logn
n

� qn � 1 and n2qn

2 p2
n → λ. Then rn = 1/pn = �(n

√
qn) and

the maximum degree �(Gn) = (1 + oP (1))nqn = o(rn) [21]. Therefore, by the argument

above, Tn
D→ Pois(λ).

In the example above, the maximum degree of Gn is “small”, and, as a result, condition (b)
in Corollary 1.4 holds for the original (un-truncated) random variable Tn, as well (see (2.8)
and (2.9)). However, the truncation is necessary when there are few vertices with “large”
degree, as illustrated below.

EXAMPLE 3. Let X1,X2, . . . ,Xn be i.i.d. Ber(γ /
√

n). We consider two examples where
truncation matters:

(1) Let Gn = K1,n be the n-star. Then |E(Gn)| = n and (1.6) is satisfied. In this case, since
the degree of the central vertex of the star is n  M

√
n, for any M ≥ 1, Tn,M is identically

zero. Hence, condition (b) in Corollary 1.4 holds with λ = 0, which implies Tn
P→ 0.

(2) To get a nonzero limiting distribution, take Gn to be the disjoint union of a n-star K1,n

and n disjoint edges ({a1, b1}, {a2, b2}, . . . , {an, bn}). As before, there is no contribution to
Tn,M from the star-graph, and

Tn,M =
n∑

j=1

Xaj
Xbj

.
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This is the sum of independent indicators Zj = Xaj
Xbj

∼ Ber(γ 2/n), and hence ETn,M = γ 2

and Var(Tn,M) → γ 2. Then, by Corollary 1.4, Tn
D→ Pois(γ 2).

Note that, as expected, in both the examples above the convergence is not in L1: in (1) ETn =
γ 2 and in (2) ETn = 2γ 2.

The Poisson mixture arises in the limit of Tn for bipartite graph which have many “high”
degree vertices on one of the sides, and is best illustrated by considering a disjoint union of
star graphs.

EXAMPLE 4 (Disjoint union of stars). Let Gn be the disjoint union of n isomorphic
copies of the n-star K

(1)
1,n, . . . ,K

(n)
1,n. Note that, |V (Gn)| = n2 + n and |E(Gn)| = n2. Label

the central vertices of the stars 1,2, . . . , n, the leaves of the vertex 1 as n + 1, . . . ,2n, the
leaves of the vertex 2 as 2n + 1, . . . ,3n, and so on. Let X1,X2, . . . ,Xn be i.i.d. Ber(1/n),
which ensures E(Tn) = |E(Gn)|

n2 = 1. Fix K ≥ 1, denote by Gn,K the induced subgraph of Gn

on the first �Kn� vertices. Then
∫ K

0

∫ K

0
WGn(x, y)dx dy ≤ 2|E(Gn,K)|

n2 � K

n
→ 0,

as n → ∞. Therefore, ‖WGn‖�([0,K]2) � ‖WGn‖L1([0,K]2) → 0, that is, condition (1.11) holds
with W = 0. Moreover, for every K ≥ 1, there are no edges in Gn between the vertices
{�Kn� + 1, . . . , n2}, which means limK→∞ limn→∞

∫∞
K

∫∞
K WGn(x, y)dx dy = 0. Finally,

the normalized degree-functional is (recall (1.8)),

dWGn
(x) := 1

n

n2+n∑
j=1

a�xn�j (Gn) =
⎧⎨
⎩

1 for x ∈ [0,1],
1

n
for x ∈ (1, n + 1].

This converges to the function d(x) = 1{x ∈ [0,1]} in L1([0,K]). To see this, fixing K ≥ 1,
note that

∫K
0 |dWGn

(u) − d(u)|du = K−1
n

→ 0. Therefore, the conditions of Theorem 1.1
hold with λ0 = 0, W = 0, and d(x) = 1{x ∈ [0,1]} (by the discussion in Remark 1.2 and
Observation 3.2). Hence,

Tn
D→ Pois(N) where N ∼ Pois(1).

This is a type of compound Poisson distribution: a special case of the Poisson mixture, where
the mean itself is a Poisson random variable (recall (1.4) with λ = 1).

One can easily modify the example above to construct graph sequences for which the
quadratic component and the Poisson mixture component appear together in the limit:

EXAMPLE 5 (Coexistence I). Let X1,X2, . . . ,Xn be i.i.d. Ber(1/n). Construct the graph
Gn as follows (see Figure 1):

• Consider disjoint union of n isomorphic copies of the n-star K
(1)
1,n, . . . ,K

(n)
1,n, with vertices

labeled as in Example 4 above.
• Place a complete graph Kn on the vertices labeled 1,2, . . . , n.
• Place a path of length n2 with vertices labelled n2 + n + 1, . . . ,2n2 + n, disjoint from

everything else.
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FIG. 1. Illustration for Example 5.

Here, |V (Gn)| = 2n2 +n and |E(Gn)| = (n
2

)+n2 +n2 −1 = (1+o(1))5
2n2, and, hence, (1.6)

holds. Then by arguments similar to Example 4 above, it is easy to check that the conditions
of Theorem 1.1 hold with

W(x,y) = 1
{
(x, y) ∈ [0,1]2}, d(x) = 2 · 1

{
x ∈ [0,1]}, and λ0 = 1.(2.10)

Then �(x) = d(x) − ∫∞
0 W(x,y)dy = 1{x ∈ [0,1]}, and by Theorem 1.1,

Tn
D→ Q1 + Q2 + Q3,(2.11)

where Q3 ∼ N1 ∼ Pois(1) is independent of (Q1,Q2), and the joint moment generating
function of (Q1,Q2) is:

E exp{−t1Q1 − t2Q2} = E exp
{
−t1

(
N2
2

)
− (

1 − e−t2
)
N2

}
,(2.12)

where N2 ∼ Pois(1). In other words, with a slight abuse of notation, we can write

Tn
D→

(
N2
2

)
+ Pois(N2) + N1,

where N1 is independent of
(N2

2

)+ Pois(N2).

By repeating the constructions above, it is possible to have distributions where the range
of the integrals in (1.14) are infinite (unlike in the example above, where the range of the
integral reduces to [0,1] because of (2.10)):

EXAMPLE 6 (Coexistence II). Suppose X1,X2, . . . ,Xn be i.i.d. Ber(1/n). For s ≥ 1, let
as = 1

16s , bs = 4s , and cs = 1
32s . Now, construct the graph Gn as follows:

• For each s ∈ [�log4 n�], take �bsn� disjoint isomorphic copies of the �asn�-stars K
(1)
1,�asn�,

K
(2)
1,�asn�, . . . ,K

(�bsn�)
1,�asn�. Label the central vertices of the �asn�-stars, �bs−1n� + 1, . . . ,

�bsn�, where b0 = 0.
• For each s ∈ [�log4 n�], place an Erdős–Rényi random graph G(�bsn�, cs) on the vertices

labeled �bs−1n� + 1, . . . , �bsn�.

Note that |V (Gn)| = ∑�log4 n�
s=1 �bsn�(�asn� + 1) = �(n2), and

E
∣∣E(Gn)

∣∣ = (
1 + o(1)

)(1

2

�log4 n�∑
s=1

�bsn�2cs +
�log4 n�∑

s=1

�bsn��asn�
)

= �
(
n2).
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(Note that the choice pn = 1/n implies (1.6) holds.) As before, it can be verified that the
conditions of Theorem 1.1 hold with λ0 = 0,

W(x,y) =
{
cs for x, y ∈ [rs−1, rs],
0 otherwise,

and

d(x) =
{
cs + as for x ∈ [rs−1, rs],
0 otherwise,

(2.13)

for s ≥ 1 and rs = ∑s
i=0 bi is the sth partial sum of the sequence {bi}i≥1. Now, for t1 ≥ 0 and

recalling φW,t1(x, y) := log(1 − W(x,y) + W(x,y)e−t1), it follows from Example 8 that,
∫ ∞

0

∫ ∞
0

φW,t1(x, y)dN(x)dN(y) =
∞∑

s=1

ψW,t1(s)

(
Ns

2

)
,(2.14)

where ψW,t1(s) := log(1 − cs + cse
−t1), for s ≥ 1, and Ns ∼ Pois(bs) and {N1,N2, . . .} are

independent. Moreover,∫ ∞
0

�(x)dN(x) =
∫ ∞

0

(
d(x) −

∫ ∞
0

W(x,y)dy

)
dN(x) =

∞∑
s=1

asNs.(2.15)

Combining (2.14) and (2.15), with Theorem 1.1, it follows that Tn
D→ Q1 + Q2, where

E exp{−t1Q1 − t2Q2} = E exp

{
−t1

∞∑
s=1

ψW,t1(cs)

(
Ns

2

)
− (

1 − e−t2
) ∞∑
s=1

asNs

}
.(2.16)

This can be rewritten, by comparing moment generating functions, as

Tn
D→

∞∑
s=1

Bin
((

Ns

2

)
,

1

32s

)
+ Pois

( ∞∑
s=1

Ns

16s

)
,

where, as before, Ns ∼ Pois(4s) are independent, and conditional on the sequence {N1,

N2, . . .}, the Poisson and the Binomials above are independent.

We conclude with an example where Tn does not have a limit in distribution, showing the
necessity of the conditions in Theorem 1.1.

EXAMPLE 7 (Nonexistence of limit). Let X1,X2, . . . ,Xn be i.i.d. Ber(1/n). We will
construct a graph sequence {Gn}n≥1 for which Tn does not converge in dsitribution. Let Gn

be defined as:

• Consider a Erdős–Rényi random graph G(n, 1
4) on the vertices labelled 1,2, . . . , n, and

another independent Erdős–Rényi random graph G(n, 1
2) on the vertices labelled n+1, n+

2, . . . ,2n.
• For n odd, attach n disjoint n-stars K

(1)
1,n,K

(2)
1,n, . . . ,K

(n)
1,n, with central vertices at 1,2, . . . , n

respectively.
• For n even, attach n disjoint n-stars K

(1)
1,n,K

(2)
1,n, . . . ,K

(n)
1,n, with central vertices at n+1, n+

2, . . . ,2n, respectively.

Here, |V (Gn)| = �(n2) and E|E(Gn)| = �(n2), hence, (1.6) holds. Now, from the ar-
guments in (2.6) and Example 4, it follows that the contribution to Tn from the G(n, 1

4)

and G(n, 1
2) components converge to Bin(

(N1
2

)
, 1

4) and Bin(
(N2

2

)
, 1

2), respectively, where N1,
N2 are independent Pois(1). Moreover, the contribution of the n disjoint stars converge to
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Pois(N1) along the odd subsequence and Pois(N2) along the even subsequence. Therefore,
along the odd subsequence,

Tn
D→ Bin

((
N1
2

)
,

1

4

)
+ Pois(N1) + Bin

((
N2
2

)
,

1

2

)
,(2.17)

and along the even subsequence

Tn
D→ Bin

((
N1
2

)
,

1

4

)
+ Pois(N2) + Bin

((
N2
2

)
,

1

2

)
,(2.18)

where N1, N2 are independent Pois(1), and the conditional on N1, N2, the Poisson and the
two binomials are independent. Clearly, the distributions in (2.17) and (2.18) are not the same
(this can be easily seen by computing their second moments), that is, Tn does not converge in
distribution. This is because, for all K ≥ 1, the function dWGn

converges in L1([0,K]), to the
function d+(x) = 1{x ∈ [0,1]} along the odd subsequence, and to the function d−(x) = 1{x ∈
[1,2]} along the even subsequence, respectively. This shows condition (1.12) in Theorem 1.1
does not hold. In fact, in this case it can be shown that there is no permutation of the vertices
{1,2, . . . ,2n} for which conditions (1.11) and (1.12) simultaneously hold, in the permuted
graph (recall the discussion in Remark 1.2).

3. Proof of Theorem 1.1. For positive integers a < b, denote by [a, b] := {a, a +
1, . . . , b}. (We will often slightly abuse notation and also use [a, b] to denote the closed
interval with points a, b ∈ R, whenever it is clear from the context.) Throughout we assume
that the vertices of Gn are labelled {1,2, . . . , n} in nonincreasing order of the degrees. Recall
that dv denotes the degree of the vertex labelled v.

OBSERVATION 3.1. If the vertices of Gn are labelled {1,2, . . . , n} in the nonincreasing
order of the degrees d1 ≥ d2 ≥ · · · ≥ dn, then

lim
K→∞ lim

n→∞
d�Krn�

rn
= 0.(3.1)

PROOF. Note that

2
∣∣E(Gn)

∣∣ = n∑
v=1

dv ≥
�Krn�∑
v=1

dv ≥ �Krn�d�Krn�,

which implies, by (1.6), d�Krn� � rn
K

, hence (3.1) holds. �

The first step in the proof of Theorem 1.1 is a truncation argument, which shows that ver-
tices with “large” degree have negligible contribution to Tn. To this end, recall the definition
of Tn,M from (1.17). We begin by showing that the difference between Tn and the truncation
Tn,M above, goes to zero in probability.

LEMMA 3.1. Let Tn and Tn,M be as in defined in (1.5) and (1.17), respectively. Then

lim
M→∞ lim

n→∞P(Tn �= Tn,M) = 0.

PROOF. Fix n ≥ 1 and M > 1. Then

P(Tn �= Tn,M) ≤ P
(∃a ∈ V (Gn) : da > Mrn and Xa = 1

)
≤ ∑

a∈V (Gn):da>Mrn

P(Xa = 1)
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= ∑
a∈V (Gn)

pn1{da > M/pn}(recall rn = 1/pn).

≤ ∑
a∈V (Gn)

p2
nda

M
= 2|E(Gn)|p2

n

M
,

which goes to zero under the double limit, by assumption (1.6). �

This shows that it suffices to derive the limiting distribution of Tn,M . Now, fix K ≥ 1, and
define

V +
Gn,K := [�Krn�] and V −

Gn,K := [�Krn� + 1, n
]
,

the first �Krn� vertices and the last n − �Krn� vertices, respectively. Denote by

G+
n,K := Gn

[
V +

Gn,K

]
and G−

n,K := Gn

[
V −

Gn,K

]
,

the subgraphs of Gn induced by V +
Gn,K and V −

Gn,K , respectively, where for S ⊆ V (Gn), Gn[S]
denotes induced sub-graph of Gn with vertex set S. Finally, let G±

n,K be the subgraph of Gn

formed by the union of edges with one end point in V +
Gn,K and the other in V −

Gn,K . Note
that by definition the subgraphs G+

n,K , G±
n,K , and G−

n,K partition the edges of Gn, that is,
E(Gn) = E(G+

n,K) ∪ E(G±
n,K) ∪ E(G−

n,K) is a disjoint partition of E(Gn). Therefore, we
can decompose Tn,M as follows:

Tn,M = ∑
(u,v)∈E(Gn)

Xu,MXv,M = T +
n,K,M + T ±

n,K,M + T −
n,K,M,(3.2)

where

T +
n,K,M := ∑

(u,v)∈E(G+
n,K)

Xu,MXv,M and T −
n,K,M := ∑

(u,v)∈E(G−
n,K)

Xu,MXv,M,(3.3)

and

T ±
n,K,M := ∑

u∈V +
Gn,K

∑
v∈V −

Gn,K

auv(Gn)Xu,MXv,M.(3.4)

Hereafter, we will refer to T +
n,K,M , T ±

n,K,M , and T −
n,K,M as the high-degree component, the

intermediate component, and the low-degree component of Tn,M , respectively.
The proof of Theorem 1.1 involves deriving the joint distribution of the three terms in

(3.2). It has the following main steps:

(1) We begin by showing that the moments of low-degree component T −
n,K,M are asymp-

totically equal to the moments of the random variable W−
n,K := ∑

(u,v)∈E(G−
n,K) Ruv , where

{Ruv}(u,v)∈E(G−
n,K) is a collection of independent Bernoulli(p2

n) random variables (see

Lemma 3.2 on Section 3.1). For each a ≥ 1 fixed, the proof involves expressing the ath
moment of T −

n,K,M (and similarly for W−
n,K ) as a sum over subgraphs of G−

n,K with at most
a edges and then estimating the number of copies of every (fixed) subgraph in G−

n,K using
the bound on the maximum degree of G−

n,K . Note that, since W−
n,K is the sum of independent

Bernoulli random variables, its limiting distribution can be easily calculated, a fact we will
leverage later.
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(2) Next, we show that the low-degree component T −
n,K,M and the joint distribution of the

intermediate and high-degree components (T +
n,K,M,T ±

n,K,M) are asymptotically independent
in moments (see Lemma 3.3 in Section 3.2). As in the previous case, the proof proceeds by
expressing the joint mixed moments in terms of certain subgraph counts and estimating them
using appropiate degree bounds.

(3) The next step is to show that the moments of intermediate component T ±
n,K,M are

asymptotically equal to the moments of Zn,K,M = ∑
u∈V +

Gn,K

∑
v∈V −

Gn,K
auv(Gn)JuvXu,M ,

where {Juv}(u,v)∈E(G±
n,K) is a collection of independent Bernoulli(pn) (see Lemma 3.4 in

Section 3.3). This will allow us to transfer from the distribution of T ±
n,K,M to that of

Zn,K,M , which has more independence structure than T ±
n,K,M . By combining this with

the results from the previous two steps, we can then show that the joint mixed mo-
ments of (T +

n,K,M,T ±
n,K,M,T −

n,K,M) are asymptotically equal to joint mixed moments of
(T +

n,K,M,Zn,K,M,W−
n,K) (Proposition 3.1).

(4) Having transferred in moments from (T +
n,K,M,T ±

n,K,M,T −
n,K,M) to (T +

n,K,M,Zn,K,M,

W−
n,K), we proceed to derive the limiting distribution of the latter. To this end, the first

step is to show that under the assumptions of Theorem 1.1, the joint mixed moments of
(T +

n,K,M,Zn,K,M) converges, as n → ∞ and for all fixed K , M large enough. We then show
that this convergence is also in distribution, by verifying a bivariate Carleman moment con-
dition (for the Stieltjes moment problem) [1, 19, 28]. The details are given in Section 3.4.

(5) Next, we proceed to compute the joint distribution of (T +
n,K,M,Zn,K,M). To this end,

we replace the graph in G+
n,K by an inhomogeneous random graph which has the same graph

limit as G+
n,K (Section 3.5). In this case, the limiting moment generating function can be

explicitly computed by first taking the expectation with respect to the randomness of the
graph. The existence of the limit proved in the previous step can then be used to show that
this has the same limit as (T +

n,K,M,Zn,K,M).
(6) The proof of (1.13) is completed in Section 3.6, which entails moving from the

joint distribution of (T +
n,K,M,Zn,K,M,W−

n,K) to that of the actual variables (T +
n,K,M,T ±

n,K,M,

T −
n,K,M), by verifying another Carleman moment condition and taking limits in the various

parameters.

3.1. Moment approximation for T −
n,K,M . Define

W−
n,K := ∑

(u,v)∈E(G−
n,K)

Ruv,(3.5)

where {Ruv}(u,v)∈E(G−
n,K) is a collection of independent Bernoulli(p2

n) random variables. In

the following lemma, we show that T −
n,K,M and W−

n,K are close in moments. To this end,
we need a few notations: For any two graphs H and G, let N(H,G) denote the number of
isomorphic copies of H in G.

LEMMA 3.2. Fix M ≥ 1. Then, under the assumptions of Theorem 1.1, for every positive
integer a ≥ 1,

lim
K→∞ lim sup

n→∞
∣∣E[(T −

n,K,M

)a]−E
[(

W−
n,K

)a]∣∣ = 0.

Moreover, lim supK→∞ lim supn→∞E[(T −
n,K,M)a] < C(a), for some constant C(a) > 0.

PROOF. Fix ε ∈ (0,1). Choose n, K large enough so that maxv∈V −
Gn,K

dv = d�Krn�+1 ≤
εrn, which can be done by Observation 3.1. This implies Xv,M = Xv , for all v ∈ V −

Gn,K , when
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n, K are large enough, and by the the multinomial expansion,

E
[(

T −
n,K,M

)a] = ∑
(u1,v1)∈E(G−

n,K)

∑
(u2,v2)∈E(G−

n,K)

· · · ∑
(ua,va)∈E(G−

n,K)

E

[
a∏

s=1

XusXvs

]
,(3.6)

E
[(

W−
n,K

)a] = ∑
(u1,v1)∈E(G−

n,K)

∑
(u2,v2)∈E(G−

n,K)

· · · ∑
(ua,va)∈E(G−

n,K)

E

[
a∏

s=1

Rusvs

]
.(3.7)

Now, let H be the graph formed by the union of the edges (u1, v1), (u2, v2), . . . , (ua, va).
Then

E

[
a∏

s=1

XusXvs

]
= p|V (H)|

n and E

[
a∏

s=1

Rusvs

]
= p2|E(H)|

n .(3.8)

If Ha denotes the set of all nonisomorphic graphs with at most a edges and no isolated vertex,
then (3.6), (3.7), and (3.8) combined gives∣∣E[(T −

n,K,M

)a]−E
[(

W−
n,K

)a]∣∣�a

∑
H∈Ha

N
(
H,G−

n,K

)∣∣p|V (H)|
n − p2|E(H)|

n

∣∣
= ∑

H∈Ha|V (H)|<2|E(H)|

N
(
H,G−

n,K

)∣∣p|V (H)|
n − p2|E(H)|

n

∣∣(3.9)

≤ ∑
H∈Ha|V (H)|<2|E(H)|

N
(
H,G−

n,K

)
p|V (H)|

n ,

where the second and third steps use the fact that |V (H)| ≤ 2|E(H)|, since graphs in Ha

have no isolated vertex.
Now, for any connected graph H ∈ Ha ,

N
(
H,G−

n,K

)
�a

∣∣E(
G−

n,K

)∣∣( max
v∈V −

Gn,K

dv

)|V (H)|−2

≤ ∣∣E(
G−

n,K

)∣∣ε|V (H)|−2r |V (H)|−2
n(by Observation (3.1))

� ε|V (H)|−2r |V (H)|
n ,

where the last step uses |E(G−
n,K)|� r2

n by (1.6).
Therefore, if H ∈ Ha has ν(H) connected components, then using the above bound sepa-

rately on each of the connected components gives,

N
(
H,G−

n,K

)
�a ε|V (H)|−2ν(H)p−|V (H)|

n .(3.10)

Using the estimate above and (3.9) gives,∣∣E[(T −
n,K,M

)a]−E
[(

W−
n,K

)a]∣∣�a

∑
H∈Ha|V (H)|<2|E(H)|

ε|V (H)|−2ν(H).(3.11)

Now, suppose H ∈ Ha is such that |V (H)| < 2|E(H)|. Note that all connected components
of H contain at least two vertices, and at least one connected component of H must contain
at least three vertices (otherwise H is a disjoint union of edges, and |V (H)| = 2|E(H)|).
This implies, |V (H)| > 2ν(H), where ν(H) is the number of connected components of H .
Since ε > 0 is arbitrary and cardinality of the set Ha is fixed (free of n), the RHS of (3.11)
can be made arbitrarily small, and so the LHS of (3.11) converges to 0 under the double limit
of n goes to infinity followed by K goes to infinity, which is the first desired result.
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Finally, from (3.6), (3.8), and (3.10) we have

E
[(

T −
n,K,M

)a]�a

∑
H∈Ha

N
(
H,G−

n,K

)
p|V (H)|

n �a

∑
H∈Ha

ε|V (H)|−2ν(H) �a 1,

because, as before, the sum is over a finite index set free of n. �

3.2. Independence in moments of (T +
n,K,M,T ±

n,K,M) and T −
n,K,M . In this section, we will

show that the mixed moments (T +
n,K,M,T ±

n,K,M) and T −
n,K,M factorize in the limit.

LEMMA 3.3. Fix nonnegative integers a, b, c, and M > 0. Then under the assumptions
of Theorem 1.1,

lim
K→∞ lim sup

n→∞
∣∣E[(T +

n,K,M

)a(
T ±

n,K,M

)b(
T −

n,K,M

)c]
−E

[(
T +

n,K,M

)a(
T ±

n,K,M

)b]
E
[(

T −
n,K,M

)c]∣∣ = 0.

PROOF. Note that there is nothing to prove if c = 0. Moreover, since T +
n,K,M and T −

n,K,M

are independent for each n and K (they are defined on disjoint sets of vertices of Gn), the
case b = 0 follows trivially. Therefore, we assume b and c are both positive.

Let Ea,b,c
n,K be the collection of (a + b + c)-tuples of the form

e = (
(u1, v1), . . . , (ua, va),

(
u′

1, v
′
1
)
, . . . ,

(
u′

b, v
′
b

)
,
(
u′′

1, v
′′
1
)
, . . . ,

(
u′′

c , v
′′
c

))
,

where (u1, v1), . . . , (ua, va) ∈ E(G+
n,K), (u′

1, v
′
1), . . . , (u

′
b, v

′
b) ∈ E(G±

n,K) (with u′
1, . . . , u

′
b ∈

V +
Gn,K and v′

1, . . . , v
′
b ∈ V −

Gn,K ), and (u′′
1, v

′′
1 ), . . . , (u′′

c , v
′′
c ) ∈ E(G−

n,K). Further, define Da,b,c
n,K

as the set of all e ∈ Ea,b,c
n,K such that the sets {v′

1, . . . , v
′
b} and {u′′

1, v
′′
1 , . . . , u′′

a, v
′′
a } are disjoint.

Then

E
[(

T +
n,K,M

)a(
T ±

n,K,M

)b(
T −

n,K,M

)c]

= ∑
e∈Ea,b,c

n,K

E

[
a∏

s=1

Xus,MXvs,M

b∏
s=1

Xu′
s ,M

Xv′
s ,M

c∏
s=1

Xu′′
s ,MXv′′

s ,M

]

(3.12)

= ∑
e∈Da,b,c

n,K

E

[
a∏

s=1

Xus,MXvs,M

b∏
s=1

Xu′
s ,M

Xv′
s ,M

]
E

[
c∏

s=1

Xu′′
s ,MXv′′

s ,M

]

+ ∑
e∈Ea,b,c

n,K \Da,b,c
n,K

E

[
a∏

s=1

Xus,MXvs,M

b∏
s=1

Xu′
s ,M

Xv′
s ,M

c∏
s=1

Xu′′
s ,MXv′′

s ,M

]
.

On the other hand,

E
[(

T +
n,K,M

)a(
T ±

n,K,M

)b]
E
[(

T −
n,K,M

)c]

= ∑
e∈Ea,b,c

n,K

E

[
a∏

s=1

Xus,MXvs,M

b∏
s=1

Xu′
s ,M

Xv′
s ,M

]
E

[
c∏

s=1

Xu′′
s ,MXv′′

s ,M

]
(3.13)
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= ∑
e∈Da,b,c

n,K

E

[
a∏

s=1

Xus,MXvs,M

b∏
s=1

Xu′
s ,M

Xv′
s ,M

]
E

[
c∏

s=1

Xu′′
s ,MXv′′

s ,M

]

+ ∑
e∈Ea,b,c

n,K \Da,b,c
n,K

E

[
a∏

s=1

Xus,MXvs,M

b∏
s=1

Xu′
s ,M

Xv′
s ,M

]
E

[
c∏

s=1

Xu′′
s ,MXv′′

s ,M

]
.

By taking the difference of (3.12) and (3.13) it follows that, in order to prove the lemma, it
suffices to show the following two statements:

(3.14)
∑

e∈Ea,b,c
n,K \Da,b,c

n,K

E

[
a∏

s=1

Xus,MXvs,M

b∏
s=1

Xu′
s ,M

Xv′
s ,M

c∏
s=1

Xu′′
s ,MXv′′

s ,M

]
→ 0,

as n → ∞ followed by K → ∞, and

(3.15)
∑

e∈Ea,b,c
n,K \Da,b,c

n,K

E

[
a∏

s=1

Xus,MXvs,M

b∏
s=1

Xu′
s ,M

Xv′
s ,M

]
E

[
c∏

s=1

Xu′′
s ,MXv′′

s ,M

]
→ 0,

as n → ∞ followed by K → ∞.
To this end, define Ea,b,c

n,K,M to be the set of all e ∈ Ea,b,c
n,K , such that the following three

conditions hold: (1) max{dus , dvs } ≤ Mrn, for all s ∈ [a], (2) max{du′
s
, dv′

s
} ≤ Mrn, for all

s ∈ [b], and (3) max{d ′′
us

, d ′′
vs

} ≤ Mrn, for all s ∈ [c]. Let Da,b,c
n,K,M = Ea,b,c

n,K,M ∩ Da,b,c
n,K . Then,

(3.14) becomes:

(3.16) lim
K→∞ lim sup

n→∞
∑

e∈Ea,b,c
n,K,M\Da,b,c

n,K,M

E

[
a∏

s=1

XusXvs

b∏
s=1

Xu′
s
Xv′

s

c∏
s=1

Xu′′
s
Xv′′

s

]
= 0.

If H is the graph formed by the union of the edges (u1, v1), . . . , (ua, va), (u′
1, v

′
1), . . . ,

(u′
b, v

′
b), (u′′

1, v
′′
1 ), . . . , (u′′

c , v
′′
c ), then

E

[
a∏

s=1

XusXvs

b∏
s=1

Xu′
s
Xv′

s

c∏
s=1

Xu′′
s
Xv′′

s

]
= p|V (H)|

n .

Note that this graph H must have at least two edges (u′
i , v

′
i) and (u′′

j , v
′′
j ), such that

v′
i = u′′

j or v′
i = v′′

j , since for any e ∈ Ea,b,c
n,K,M\Da,b,c

n,K,M , the set {v′
1, . . . , v

′
b} intersect the

set {u′′
1, v

′′
1 , . . . , u′′

a, v
′′
a }, that is, H has a two-star K1,2, with central vertex in V −

Gn,K . Let
VM := {v ∈ V (Gn) : dv ≤ Mrn} and Na,b,c(H,Gn[VM ]) be the number ways of forming a
graph isomorphic to H , with a edges from G+

n,K [VM ], b edges from G±
n,K [VM ], and c edges

from G−
n,K [VM ], such that the resulting graph contains a K1,2, with central vertex in V −

Gn,K

(and one edge in E(G−
n,K [VM ]) and the other in E(G±

n,K [VM ])). Then

∑
e∈Ea,b,c

n,K,M\Da,b,c
n,K,M

E

[
a∏

s=1

XusXvs

b∏
s=1

Xu′
s
Xv′

s

c∏
s=1

Xu′′
s
Xv′′

s

]

�
∑

H∈Ha,b,c

Na,b,c

(
H,Gn[VM ])p|V (H)|

n ,

(3.17)

where Ha,b,c is the set of all nonisomorphic graphs with at most 2(a + b + c) vertices, none
of which is isolated, which contains at least one K1,2 (the two-star) as a subgraph.
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Now, we proceed to bound Na,b,c(H,Gn[VM ]): Note that for any connected F ∈Ha,b,c,

Na,b,c

(
F,Gn[VM ])�a,b,c

∣∣E(
Gn[VM ])∣∣(Mrn)

|V (F)|−2 ≤ ∣∣E(Gn)
∣∣(Mrn)

|V (F)|−2

�M,F r |V (F)|
n ,

(3.18)

using (1.6). Now, suppose H ∈ Ha,b,c has connected components H1,H2, . . . ,Hν(H), and
without loss of generality, assume H1 has a two-star K1,2, with central vertex in V −

Gn,K (and
one edge in E(G−

n,K [VM ]) and the other in E(G±
n,K [VM ])). Therefore, choosing this two-star

in at most |E(Gn[VM ])| · max{dv : v ∈ V −
Gn,K} ways and each of the remaining |V (H1)| − 3

vertices in at most Mrn ways gives the bound

Na,b,c

(
H1,Gn[VM ])�a,b,c

∣∣E(
Gn[VM ])∣∣( max

v∈V −
Gn,K

dv

)
(Mrn)

(|V (H1)|−3)

�a,b,c,M

∣∣E(Gn)
∣∣r(|V (H1)|−3)

n

(
max

v∈V −
Gn,K

dv

)
(3.19)

�a,b,c,M r(|V (H1)|−1)
n d�Krn�+1,

using (1.6). Now, combining (3.18) and (3.19) gives

Na,b,c

(
H,Gn[VM ]) ≤

ν(H)∏
j=1

Na,b,c

(
Hj,Gn[VM ])

�a,b,c,M,H r(|V (H)|−1)
n d�Krn�+1.

(3.20)

This implies

lim
K→∞ lim

n→∞
1

r
|V (H)|
n

Na,b,c

(
H,Gn[VM ]) = 0,

by Observation 3.1. Thus (3.16) follows, because the sum in the right hand side of (3.17) is

over a finite set (|Ha,b,c| ≤ 2
(2(a+b+c)

2

)
). The limit in (3.15) follows similarly, completing the

proof of the lemma. �

3.3. Moment approximation for T ±
n,K,M . Let {Juv}(u,v)∈E(G±

n,K) be a collection of inde-

pendent Bernoulli(pn) random variables, independent of the collection {Xv}v∈V (Gn). Define

Zn,K,M = ∑
u∈V +

Gn,K

∑
v∈V −

Gn,K

auv(Gn)JuvXu,M.(3.21)

LEMMA 3.4. Fix nonnegative integers a, b, and M > 0. Then under the assumptions of
Theorem 1.1,

lim
K→∞ lim sup

n→∞
∣∣E[(T +

n,K,M

)a(
T ±

n,K,M

)b]−E
[(

T +
n,K,M

)a
Zb

n,K,M

]∣∣ = 0.

Moreover, lim supK→∞ lim supn→∞E[(T +
n,K,M)aZb

n,K,M ] �a,b,M 1.

PROOF. Note that there is nothing to prove if b = 0, so we assume that b > 0. Let Ma,b
n,K

the collection of (a + b)-tuples of the form

e = (
(u1, v1), . . . , (ua, va),

(
u′

1, v
′
1
)
, . . . ,

(
u′

b, v
′
b

))
,
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where (u1, v1), . . . , (ua, va) ∈ E(G+
n,K [VM ]) and (u′

1, v
′
1), . . . , (u

′
b, v

′
b) ∈ E(G±

n,K [VM ])
(with u′

1, . . . , u
′
b ∈ V +

Gn,K and v′
1, . . . , v

′
b ∈ V −

Gn,K ).∣∣E[(T +
n,K,M

)a(
T ±

n,K,M

)b]−E
[(

T +
n,K,M

)a
Zb

n,K,M

]∣∣
≤ ∑

e∈Ma,b
n,K

∣∣∣∣∣E
[

a∏
s=1

XusXvs

b∏
s=1

Xu′
s
Xv′

s

]
−E

[
a∏

s=1

XusXvs

b∏
s=1

Xu′
s

b∏
s=1

Ju′
sv

′
s

]∣∣∣∣∣(3.22)

= ∑
e∈Ma,b

n,K

∣∣p|V (H1∪H2)|
n − p

|{u1,v1,u2,v2,...,ua,va,u′
1,u

′
2,...,u

′
b}|+|E(H2)|

n

∣∣,
where H1 is the graph formed by the union of the edges (u1, v1), . . . , (ua, va), and H2 is the
graph formed by the union of the edges (u′

1, v
′
1), . . . , (u

′
b, v

′
b).

Note that ∣∣{u1, v1, u2, v2, . . . , ua, va, u
′
1, u

′
2, . . . , u

′
b

}∣∣+ ∣∣E(H2)
∣∣

= ∣∣V (H1 ∪ H2)
∣∣− ∣∣{v′

1, v
′
2, . . . , v

′
b

}∣∣+ ∣∣E(H2)
∣∣ ≥ ∣∣V (H1 ∪ H2)

∣∣,(3.23)

using |E(H2)| ≥ |{v′
1, v

′
2, . . . , v

′
b}|, since each distinct element in {v′

1, v
′
2, . . . , v

′
b} contributes

an edge to E(H2). This implies∣∣E[(T +
n,K,M

)a(
T ±

n,K,M

)b]−E
[(

T +
n,K,M

)a
Zb

n,K,M

]∣∣ ≤ ∑
e∈Ma,b

n,K

p|V (H1∪H2)|
n ,

where Ma,b

n,K ⊆ Ma,b
n,K is the collection of all tuples in Ma,b

n,K such that∣∣{u1, v1, u2, v2, . . . , ua, va, u
′
1, u

′
2, . . . , u

′
b

}∣∣+ ∣∣E(H2)
∣∣ > ∣∣V (H1 ∪ H2)

∣∣.
Now, suppose that for every s, t ∈ [b] such that v′

s = v′
t , we also have u′

s = u′
t . Then,

|E(H2)| = |{v′
1, . . . , v

′
b}|, and hence, equality holds in (3.23). Therefore, e ∈ Ma,b

n,K implies
that there exist s, t ∈ [b] such that v′

s = v′
t and u′

s �= u′
t , that is, the graph H := H1 ∪ H2 must

have a K1,2 with central vertex in V −
Gn,K . Recall that VM := {v ∈ V (Gn) : dv ≤ Mrn} and

denote by Na,b(H,Gn[VM ]) the number of ways of forming a graph isomorphic to H , with
a edges from G+

n,K [VM ] and b edges from G±
n,K [VM ], such that the result graph contains a

K1,2, with central vertex in V −
Gn,K (and both edges in E(G±

n,K [VM ])). Then∣∣E[(T +
n,K,M

)a(
T ±

n,K,M

)b]−E
[(

T +
n,K,M

)a
Zb

n,K,M

]∣∣
�a,b

∑
H∈Ha,b

Na,b

(
H,Gn[VM ])p|V (H)|

n ,
(3.24)

where Ha,b is the set of all nonisomorphic graphs with at most 2(a + b) vertices, none of
which is isolated, which contains at least one K1,2 (the two-star) as a subgraph. Now, as in
(3.20),

Na,b

(
H,Gn[VM ])�a,b,M,H r(|V (H)|−1)

n d�Krn�+1.

This implies

lim
K→∞ lim

n→∞
1

r
|V (H)|
n

Na,b

(
H,Gn[VM ]) = 0,

by Observation 3.1. This completes the proof of the lemma, because the sum in the right hand

side of (3.24) is over a finite set (|Ha,b| ≤ 2
(2(a+b)

2

)
).
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Finally, by similar arguments as above and (3.24),

E
[(

T +
n,K,M

)a
Zb

n,K,M

] ≤ ∑
H∈Ha,b

Na,b

(
H,Gn[VM ])p|V (H)|

n �a,b,M 1,

using the bound (3.18) and because the sum is over a finite set. �

Combining the above results, we get the following proposition which shows that
(T +

n,K,M,T ±
n,K,M,T −

n,K,M) and (T +
n,K,M,Zn,K,M,W−

n,K) are close in moments.

PROPOSITION 3.1. Fix nonnegative integers a, b, c, and for M > 0. Then under the
assumptions of Theorem 1.1,∣∣E[(T +

n,K,M

)a(
T ±

n,K,M

)b(
T −

n,K,M

)c]−E
[(

T +
n,K,M

)a
Zb

n,K,M

]
E
[(

W−
n,K

)c]∣∣ → 0,

as n → ∞ followed by K → ∞.

PROOF. Note that∣∣E[(T +
n,K,M

)a(
T ±

n,K,M

)b(
T −

n,K,M

)c]−E
[(

T +
n,K,M

)a
Zb

n,K,M

]
E
[(

W−
n,K

)c]∣∣
≤ T1 + T2 + T3,

where

T1 := ∣∣E[(T +
n,K,M

)a(
T ±

n,K,M

)b(
T −

n,K,M

)c]−E
[(

T +
n,K,M

)a(
T ±

n,K,M

)b]
E
[(

T −
n,K,M

)c]∣∣,
T2 := ∣∣E[(T +

n,K,M

)a(
T ±

n,K,M

)b]
E
[(

T −
n,K,M

)c]−E
[(

T +
n,K,M

)a
Zb

n,K,M

]
E
[(

T −
n,K,M

)c]∣∣,
T3 := ∣∣E[(T +

n,K,M

)a
Zb

n,K,M

]
E
[(

T −
n,K,M

)c]−E
[(

T +
n,K,M

)a
Zb

n,K,M

]
E
[(

W−
n,K

)c]∣∣.
Now, T1 goes to zero (under the double limit) by Lemma 3.3, T2 goes to zero by Lemma 3.4
(and using lim supK→∞ lim supn→∞E[(T −

n,K,M)a] �a 1 by Lemma 3.2), and T3 goes to
zero by Lemma 3.2 (and using lim supK→∞ lim supn→∞E[(T +

n,K,M)aZb
n,K,M ] �a,b,M 1 by

Lemma 3.4). �

3.4. Convergence of moments and existence of limiting distribution. Recall from (3.21)

Zn,K,M = ∑
u∈V +

Gn,K

∑
v∈V −

Gn,K

auv(Gn)JuvXu,M
D= ∑

u∈V +
Gn,K

JuXu,M,(3.25)

where Ju := ∑
v∈V −

Gn,K
auv(Gn)Juv ∼ Bin(d±

u ,pn) and d±
u := ∑

v∈V −
Gn,K

auv(Gn), is the

number of edges between u ∈ V +
Gn,K and some vertex in V −

Gn,K . Note that, by defini-
tion, {Ju}u∈V +

Gn,K
is a collection of independent Binomial random variables, independent of

{Xv}v∈V (Gn). Next, define, V +
n,K,M := {v ∈ V +

Gn,K : dv ≤ Mrn}. Then (3.21) becomes (recall
Xv,M = Xv1{dv ≤ Mrn} and pn = 1/rn),

Zn,K,M = ∑
u∈V +

n,K,M

JuXu ∼ Bin
( ∑

u∈V +
n,K,M

d±
u Xu,

1

rn

)
.(3.26)

Define Yn,K,M = 1
rn

∑
u∈V +

n,K,M
d±
u Xu. The lemma below shows the existence of the limiting

mixed moments of (T +
n,K,M,Yn,K,M). We begin with the following definition. Hereafter, we

will assume that K ≥ 1 is an integer. Also, denote by WK the set of all symmetric measurable
functions from [0,K]2 → [0,1]. With these definitions, we now have the convergence of the
mixed moments.
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LEMMA 3.5. Fix K ≥ 1 and M > 0. Suppose there exist functions WK ∈ WK , dK :
[0,K] �→ [0,∞), and measure-preserving bijections {φn,K}∞n=1 from [0,K] → [0,K], such
that

lim
n→∞

∥∥Wφn,K

Gn
− WK

∥∥
�([0,K]2) = 0(3.27)

and

lim
n→∞

∫ K

0

∣∣dφn,K

WGn
(u)1

{
d

φn,K

WGn
(u) ≤ M

}− dK(u)1
{
dK(u) ≤ M

}∣∣du = 0,(3.28)

where

W
φn,K

Gn
(x, y) := WGn

(
φn,K(x),φn,K(y)

)
1
{
x, y ∈ [0,K]}

and

d
φn,K

WGn
(x) := dWGn

(
φn,K(x)

)
1
{
x ∈ [0,K]}.

Then μa,b,K,M := limn→∞E[(T +
n,K,M)a(Yn,K,M)b] exists and is finite, for all nonnegative

integers a, b.

In the proof of Theorem 1.1, this lemma will be used with φn,K as the identity map from
[0,K] → [0,K], for all n. However, we will need the lemma in its generality for proving
Theorem 1.2.

3.4.1. Proof of Lemma 3.5. We begin with the following definition:

DEFINITION 3.1. Given a graph H = (V (H),E(H)) (with possible isolated vertices), a
function W ∈ W , and u ∈R

|V (H)| define

t (H,W,u) = ∏
(a,b)∈E(H)

W(ua,ub),

where u = (u1, u2, . . . , u|V (H)|).

Now, recall from (3.3), T +
n,K,M := ∑

u,v∈V +
n,K,M

auv(Gn)XuXv . Let N a,b
n,K be the collection

of all (a + b)-tuples of the form

e = (
(u1, v1), . . . , (ua, va), u

′
1, . . . , u

′
b

)
,

where u1, v1, . . . , ua, va, u
′
1, . . . , u

′
b ∈ V +

Gn,K , and ui �= vi , for 1 ≤ i ≤ a. Define the event,

χe = 1{dui
≤ Mrn, dvi

≤ Mrn, du′
j
≤ Mrn, for all 1 ≤ i ≤ a,1 ≤ j ≤ b},

where dv is the degree of the vertex labelled v ∈ V (Gn). Then, recalling Yn,K,M =
1
rn

∑
u∈V +

n,K,M
d±
u Xu,

E
[(

T +
n,K,M

)a
(Yn,K,M)b

] = ∑
e∈N a,b

n,K

E

[
a∏

s=1

ausvs (Gn)XusXvs

b∏
s=1

d±
u′

s

rn
Xu′

s

]
χe

= ∑
e∈N a,b

n,K

χe

r
|V (H)|
n

a∏
s=1

ausvs (Gn)

b∏
s=1

d±
u′

s

rn
,

(3.29)

where H is the graph formed by the union of the edges (u1, v1), (u2, v2), . . . , (ua, va) and
the vertices u′

1, u
′
2, . . . , u

′
b.
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Observe that

d±
u′

s
= du′

s
− ∑

j∈V +
Gn,K

au′
sj

(Gn).

Since u′
s ∈ V +

Gn,K , there exists x′
s ∈ [0,K] such that u′

s = �x′
srn�. This implies by (1.7) and

(1.8),

1

rn
d±
u′

s
= dWGn

(
x′
s

)−
∫ K

0
WGn

(
x′
s, y

)
dy + Rn

(
x′
s

) = ζn,K

(
x′
s

)+ Rn

(
x′
s

)
,(3.30)

where ζn,K(x) := (dWGn
(x) − ∫K

0 WGn(x, y)dy) and

Rn

(
x′
s

) := −
∫ �Krn�

rn

K
WGn

(
x′
s, y

)
dy.(3.31)

Note that supx |Rn(x)| ≤ pn. Similarly, let xs, ys ∈ [0,K] be such that us = �xsrn� and vs =
�ysrn�. Then (recall (1.7))

a∏
s=1

ausvs (Gn) =
a∏

s=1

a�xsrn��ysrn�(Gn) =
a∏

s=1

WGn(xs, ys).(3.32)

Now, observe that the union of the edges (u1, v1), . . . , (ua, va) forms a graph H1 =
(V (H1),E(H1)), where V (H1) = {u1, . . . , ua, v1, . . . , va} and

E(H1) = {
(u1, v1), . . . , (ua, va)

}
.

Let H = (V (H),E(H)) be the graph obtained by the union of H1 and the set of vertices
{u′

1, . . . , u
′
b}, that is, V (H) = V (H1) ∪ {u′

1, . . . , u
′
b} and E(H) = E(H1). Note that H has at

most a edges and at most b isolated vertices. Let {w1,w2, . . . ,w|V (H)|} be any labeling of
the vertices in V (H), and ηj ∈ [0, b] := {0,1,2, . . . , b}, for 1 ≤ j ≤ |V (H)|, be the number
of times the vertex wj appears in the multi-set {u′

1, u
′
2, . . . , u

′
b}. Finally, let zj be such that

wj = �zj rn�. Then using (3.30) and (3.32), for every graph H with at most a edges and at
most b isolated vertices and every vector η = (η1, η2, . . . , η|V (H)|), there is a nonnegative
constant c(H,η), such that the sum in (3.29) can be rewritten as

E
[(

T +
n,K,M

)a
(Yn,K,M)b

]

= ∑
H∈Ga,b

η∈[0,b]|V (H)|

c(H,η)

∫
BK,n

t (H,WGn,z)

|V (H)|∏
j=1

(
ζn,K(zj ) + Rn(zj )

)ηj

× χGn,M(zj )dzj ,

(3.33)

where

– χGn,M(zj ) := 1{dWGn
(zj ) ≤ M},

– BK,n := [0, 1
rn

�Krn�]|V (H)|,
– z = (z1, z2, . . . , z|V (H)|),
– ζn,K(·) is as in (3.30), Rn(·) as in (3.31), and t (H,WGn,z) as in Definition 3.1,
– Ga,b is the collection of all graphs with at most a edges and at most b isolated vertices and

[0, b]|V (H)| := {0,1,2, . . . , b}|V (H)|.
Note, since the sum in (3.33) is over a finite set (not depending on n) and each term in the

integrand is bounded (by a function of H , K , and M), the integral over BK,n can be replaced
by the integral over BK = [0,K]|V (H)|, as n → ∞. Moreover, for every 1 ≤ j ≤ |V (H)|,
expanding the term (ζn,K(zj ) + Rn(zj ))

ηj in (3.33) by the binomial theorem, and using the
fact supx |Rn(x)| ≤ pn = o(1), the proof of Lemma 3.5 follows from Lemma 3.6 below.
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LEMMA 3.6. Under the assumptions of Lemma 3.5, given a finite simple graph H =
(V (H),E(H)) (with possible isolated vertices), and the nonnegative integers s1, s2, . . . ,

s|V (H)|,

lim
n→∞

∫
[0,K]|V (H)|

t (H,WGn,u)

|V (H)|∏
a=1

ζn,K(ua)
sa 1

{
dWGn

(ua) ≤ M
}

dua

=
∫
[0,K]|V (H)|

t (H,WK,u)

|V (H)|∏
a=1

ζK(ua)
sa 1

{
dK(ua) ≤ M

}
dua,

where ζn,K(x) := (dWGn
(x) − ∫K

0 WGn(x, y)dy) and ζK(x) := (dK(x) − ∫K
0 WK(x, y)dy).

PROOF. Define dWGn,K(x) := ∫K
0 WGn(x, y)dy and dW,K(x) := ∫K

0 WK(x, y)dy. Ex-
panding ζn,K(ua)

sa = (dWGn
(ua) − dWGn,K(ua))

sa by the binomial theorem, for every 1 ≤
a ≤ |V (H)|, we see it suffices to show that (recall BK := [0,K]|V (H)|),

lim
n→∞

∫
BK

t (H,WGn,u)

|V (H)|∏
a=1

dWGn
(ua)

κadWGn,K(ua)
λa 1

{
dWGn

(ua) ≤ M
}

dua

=
∫
BK

t (H,WK,u)

|V (H)|∏
a=1

dK(ua)
κadW,K(ua)

λa 1
{
dK(ua) ≤ M

}
dua,

(3.34)

for nonnegative integers κ1, κ2, . . . , κ|V (H)| and λ1, λ2, . . . , λ|V (H)|.
To begin with, define

d
φn,K

WGn,K(x) :=
∫ K

0
WGn

(
φn,K(x), y

)
dy =

∫ K

0
WGn

(
φn,K(x),φn,K(z)

)
dz,

where the last equality follows by the change of variable y = φn,K(z). This implies,

∫
BK

t (H,WGn,u)

|V (H)|∏
a=1

dWGn
(ua)

κadWGn,K(ua)
λa 1

{
dWGn

(ua) ≤ M
}

dua

=
∫
BK

t
(
H,W

φn,K

Gn
,z
) |V (H)|∏

a=1

d
φn,K

WGn
(za)

κad
φn,K

WGn,K(za)
λa 1

{
d

φn,K

WGn
(za) ≤ M

}
dza,

(3.35)

by changes of variables ua = φn,K(za), for 1 ≤ a ≤ |V (H)|, where u = (u1, u2, . . . , u|V (H)|)
and z = (z1, z2, . . . , z|V (H)|). Therefore, by (3.34), it suffices to show that

lim
n→∞

∫
BK

t
(
H,W

φn,K

Gn
,z
) |V (H)|∏

a=1

d
φn,K

WGn
(za)

κad
φn,K

WGn,K(za)
λa 1

{
d

φn,K

WGn
(za) ≤ M

}
dza

=
∫
BK

t (H,WK,u)

|V (H)|∏
a=1

dK(ua)
κadW,K(ua)

λa 1
{
dK(ua) ≤ M

}
dua.

(3.36)

Now, denote d
φn,K

WGn
(ua|M) := d

φn,K

WGn
(ua)1{dφn,K

WGn
(ua) ≤ M}. Then by a telescoping argu-

ment similar to the proof of [8], Theorem 3.7(a), it follows that∣∣∣∣∣
∫
BK

(
t
(
H,W

φn,K

Gn
,u

)− t (H,WK,u)
) |V (H)|∏

a=1

d
φn,K

WGn,K(ua)
λad

φn,K

WGn
(ua|M)κa dua

∣∣∣∣∣
�M,H,K

∥∥Wφn,K

Gn
− WK

∥∥
�([0,K]2).

(3.37)



1574 B. B. BHATTACHARYA, S. MUKHERJEE AND S. MUKHERJEE

Moreover, recalling d
φn,K

WGn,K(x) := ∫K
0 WGn(φn,K(x), y)dy = ∫K

0 WGn(φn,K(x),φn,K(z))dz,
and from the definition of the cut-distance,

sup
f :[0,K]→[−1,1]

∣∣∣∣
∫ K

0

(
d

φn,K

WGn,K(u) − dW,K(u)
)
f (u)du

∣∣∣∣ ≤ ∥∥Wφn,K

Gn
− WK

∥∥∣∣
�([0,K]2).

Then, for any integer a ≥ 1 and all f : [0,K] → [−1,1],∣∣∣∣
∫ K

0

(
d

φn,K

WGn,K(u)a − dW,K(u)a
)
f (u)du

∣∣∣∣
≤
∣∣∣∣
∫ K

0

(
d

φn,K

WGn,K(u) − dW,K(u)
)
d

φn,K

WGn,K(u)a−1f (u)du

∣∣∣∣
(3.38)

+
∣∣∣∣
∫ K

0

(
d

φn,K

WGn,K(u)a−1 − dW,K(u)a−1)dW,K(u)f (u)du

∣∣∣∣
�M,H,K

∥∥Wφn,K

Gn
− WK

∥∥∣∣
�([0,K]2),

where the last step follows by repeating the telescoping argument a − 1 times. Now, define

A1(u) := t (H,WK,u)

|V (H)|∏
a=1

d
φn,K

WGn,K(ua)
λa

|V (H)|∏
a=1

d
φn,K

WGn
(ua|M)κa

and

A2(u) := t (H,WK,u)

|V (H)|∏
a=1

dW,K(ua)
λa

|V (H)|∏
a=1

d
φn,K

WGn
(ua|M)κa .

Then repeating the telescoping argument again gives,∣∣∣∣∣
∫
BK

(
A1(u) − A2(u)

) |V (H)|∏
a=1

dua

∣∣∣∣∣�M,H,K

∥∥Wφn,K

Gn
− WK

∥∥
�([0,K]2).(3.39)

Hence, combining (3.37) and (3.39), and the triangle inequality gives,∣∣∣∣∣
∫
BK

(
t
(
H,W

φn,K

Gn
,u

) |V (H)|∏
a=1

d
φn,K

WGn,K(ua)
λad

φn,K

WGn
(ua|M)κa − A2(u)

) |V (H)|∏
a=1

dua

∣∣∣∣∣
�M,H,K

∥∥Wφn,K

Gn
− WK

∥∥
�([0,K]2).

(3.40)

Note that the RHS above goes to zero as n → ∞, by (3.27).
Next, define dK(ua|M) := dK(ua)1{dK(ua) ≤ M}, and note that∣∣∣∣∣

∫
BK

(
A2(u) − t (H,WK,u)

|V (H)|∏
a=1

dW,K(ua)
λadK(ua|M)κa

) |V (H)|∏
a=1

dua

∣∣∣∣∣
�M,H,K

∫
BK

∣∣∣∣∣
|V (H)|∏
a=1

d
φn,K

WGn
(ua|M)κa −

|V (H)|∏
a=1

dK(ua|M)κa

∣∣∣∣∣
|V (H)|∏
a=1

dua(3.41)

�M,H,K

∫ K

0

∣∣dφn,K

WGn
(u|M) − dK(u|M)

∣∣du,

where the last step follows by a telescoping argument (similar to Observation 3.2 below).
Note that RHS above goes to zero as n → ∞, by (3.28).
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Therefore, taking the limit as n → ∞, and combining (3.40) and (3.41), and the triangle
inequality, gives (3.36), as required. �

The next observation shows that a sufficient condition for (3.28) to hold infinitely often is
the L1 convergence of the function d

φn,K

WGn
to dK . To this end, we need a definition.

DEFINITION 3.2. Let D denote the set of all positive reals M such that for all positive
integers K , P(dK(UK) = M) = 0, where UK ∼ Unif[0,K].

Note that the complement of D in (0,∞) is countable, and so given any M0 > 0 we can
choose M > M0 with M ∈ D.

OBSERVATION 3.2. Suppose

lim
n→∞

∫ K

0

∣∣dφn,K

WGn
(x) − dK(x)

∣∣dx = 0.(3.42)

Then any integer a ≥ 1,

lim
n→0

∫ K

0

∣∣dφn,K

WGn
(u)a1

{
d

φn,K

WGn
(u) ≤ M

}− dK(u)a1
{
dK(u) ≤ M

}∣∣du = 0,(3.43)

whenever M ∈ D.

PROOF. To begin with suppose a = 1. The assumption (3.42) implies, d
φn,K

WGn
(U)

L1→
dK(U), where U ∼ Unif[0,K]. Note that E(dK(U)) < ∞. (To observe this, note that, for
all K ≥ 1,

∫K
0 dK(x)dx = lim supn→∞

∫K
0 d

φn,K

WGn
(x)dx � lim supn→∞ 1

r2
n
|E(Gn)|, which is

bounded by (1.6).) Then for every sequence there is a further subsequence {ns}s≥1 along
which

d
φns ,K

WGns
(U)

a.s.→ dK(U).

Hence, along this subsequence, d
φns ,K

WGns
(U)1{dφns ,K

WGns
(U) ≤ M} a.s.→ dK(U)1{dK(U) ≤ M},

whenever P(dK(U) = M) = 0, that is, M ∈ D. Then by the dominated convergence theo-
rem,

d
φns ,K

WGns
(U)1

{
d

φns ,K

WGns
(U) ≤ M

} L1→ dK(U)1
{
dK(U) ≤ M

}
,

proving (3.43) for a = 1.
Define, dK(u|M) := dK(u)1{dK(u) ≤ M}. Then for a > 1, a telescoping argument gives,∫ K

0

∣∣dφn,K

WGn
(u)a1

{
d

φn,K

WGn
(u) ≤ M

}− dK(u)a1
{
dK(u) ≤ M

}∣∣du

≤
∫ K

0
d

φn,K

WGn
(u)a−11

{
d

φn,K

WGn
(u) ≤ M

}∣∣dφn,K

WGn
(u)1

{
d

φn,K

WGn
(u) ≤ M

}− dK(u|M)
∣∣du

+
∫ K

0

∣∣dφn,K

WGn
(u)a−1dK(u)1

{
d

φn,K

WGn
(u), dK(u) ≤ M

}− dK(u)a1
{
dK(u) ≤ M

}∣∣du

�M,a

∫ K

0

∣∣dφn,K

WGn
(u)1

{
d

φn,K

WGn
(u) ≤ M

}− dK(u|M)
∣∣du → 0,

where the second inequality follows by repeating the telescoping argument from the previous
step a − 1 times, and the last step uses (3.43) for a = 1. �
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3.4.2. Existence of limit of (T +
n,K,M,Yn,K,M). The existence of the limiting distribution

of (T +
n,K,M,Yn,K,M) follows from the above lemma and the Carleman moment condition.

LEMMA 3.7. Suppose the assumptions of Lemma 3.5 hold. Then there exists random
variables (T +

K,M,YK,M) such that, as n → ∞,(
T +

n,K,M,Yn,K,M

) → (
T +

K,M,YK,M

)
,

in distribution and in all (mixed) moments.

PROOF. Recall that V +
n,K,M := {v ∈ V +

Gn,K : dv ≤ Mrn}. Then from (3.26),

Yn,K,M = 1

rn

∑
u∈V +

n,K,M

d±
u Xu ≤ M

∑
u∈V +

n,K,M

Xu ∼ M Bin
(∣∣V +

n,K,M

∣∣,pn

)
.

Note that |V +
n,K,M | ≤ �K/pn�, which implies that Yn,K,M is stochastically dominated by

the random variable M Bin(�K/pn�,pn). This implies, since μ0,b,K,M = limn→∞E[Yb
n,K,M ]

exists (by Lemma 3.5), for all b ≥ 1,

(3.44) μ0,b,K,M = lim
n→∞E

[
Yb

n,K,M

] ≤ (MCKb)b,

using the bound E[Bin(n,p)a] ≤ Ca( a
loga

)a max{np, (np)a} ≤ Caaa max{np, (np)a}, for
a ≥ 3 and some universal constant C < ∞, [22], Corollary 3.

Next, define Sn,K,M = 1
2
∑

u∈V +
n,K,M

∑
v∈V +

n,K,M\{u} XuXv . Then,

Sn,K,M
D=
(
Rn,K,M

2

)
where Rn,K,M ∼ Bin

(∣∣V +
n,K,M

∣∣,pn

)
,

and T +
n,K,M ≤ Sn,K,M . Again using |V +

n,K,M | ≤ �Krn� and Lemma 3.5, it follows that, for all
a ≥ 3,

(3.45) μa,0,K,M = lim
n→∞E

[(
T +

n,K,M

)a] ≤ lim sup
n→∞

E
[
R2a

n,K,M

] ≤ (2CKa)2a,

using bounds on moments of the binomial distribution [22], Corollary 3, as in (3.44).
Combining (3.44) and (3.45) gives,

∞∑
a=1

1

(μa,0,K,M + μ0,a,K,M)
1

2a

≥ 1√
2

∞∑
a=1

1

max{2CKa,
√

MCKa} = ∞.

Therefore, by the Carleman condition for multivariate distributions [19, 28] (recall that the
existence of the limiting mixed moments μa,b,K,M , for all positive integers a, b, follows
from Lemma 3.5), implies that (T +

n,K,M,Yn,K,M) converges in distribution and in all mixed
moments to some random variable (T +

K,M,YK,M). This completes the proof. �

3.5. Deriving the limiting distribution of (T +
n,K,M,Zn,K,M). Let Gn be a sequence of

graphs satisfying the assumptions of Lemma 3.5, with the functions WK : [0,K]2 → [0,1]
and dK : [0,K] → [0,1]. Denote by

WK,M(x, y) = WK(x, y)1
{
max

{
dK(x), dK(y)

} ≤ M
}
.(3.46)

For WK,M , define its L-step piecewise constant approximation (note that it has K2L2 blocks)
as follows:

W
(L)
K,M(x, y) := ∑

1≤a,b≤KL

r
(L)
K,M(a, b)1

{
x ∈

(
a − 1

L
,
a

L

]}
1
{
y ∈

(
b − 1

L
,
b

L

]}
,
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where

r
(L)
K,M(a, b) := L2

∫ a
L

a−1
L

∫ b
L

b−1
L

WK,M(u, v)dudv.(3.47)

By Proposition A.1,

lim
L→∞

∥∥W(L)
K,M − WK,M

∥∥
�([0,K]2) ≤ lim

L→∞
∥∥W(L)

K,M − WK,M

∥∥
L1([0,K]2) → 0.

DEFINITION 3.3. Given a function H : [0,K]2 → [0,1] and a positive integer N , the H -
random graph on N vertices (denoted by G(N,H)) is the simple undirected labelled random
graph with vertex set [N ] := {1,2, . . . ,N} and edges are present independently, with

P((u, v) ∈ E
(
G(N,H)

) = H

(
Ku

N
,
Kv

N

)
for 1 ≤ u < v ≤ N.

Fix K ≥ 1. Let G
(L)
n,K,M be the W

(L)
K,M -random graph G(�Krn�,W(L)

K,M), independent of
{Xv}v∈V (Gn). For u ∈ [0,K], define the function

�K,M(u) :=
(
dK(u) −

∫ K

0
WK(u, v)dv

)
1
{
dK(u) ≤ M

}
.(3.48)

Define the L-step approximation of �
(L)
K,M as follows:

�
(L)
K,M(x) =

KL∑
a=1

η
(L)
K,M(a)1

{
x ∈

(
a − 1

L
,
a

L

]}
= η

(L)
K,M

(�Lx�),(3.49)

where η
(L)
K,M(a) := L

∫ a
L
(a−1)

L

�K,M(u)du. By Proposition A.1, ‖�(L)
K,M −�K,M‖L1([0,K]) → 0,

as L → ∞.
Recall that A(G

(L)
n,K,M) = ((A(G

(L)
n,K,M)(u, v)))1≤u,v≤�Krn� is the adjacency matrix of the

graph G
(L)
n,K,M . Let N = �Krn� and define

T
+
n,L,K,M := ∑

1≤u<v≤N

A
(
G

(L)
n,K,M

)
(u, v)XuXv,

Y n,L,K,M :=
N∑

u=1

η
(L)
K,M

(⌈
KLu

N

⌉)
Xu.

(3.50)

LEMMA 3.8. Fix an integer K ≥ 1 and M > 0. Under the assumptions of Lemma 3.5,
for t1, t2 ≥ 0,

lim
L→∞ lim

n→∞E exp
{−t1T

+
n,L,K,M − t2Yn,L,K,M

}

= E exp
{

1

2

∫ K

0

∫ K

0
φt1,K,M(x, y)dN(x)dN(y) − t2

∫ K

0
�K,M(x)dN(x)

}
,

(3.51)

where

– {N(t), t ≥ 0} is a homogenous Poisson process of rate 1,
– φt1,K,M(x, y) := log(1 − WK,M(x, y) + WK,M(x, y)e−t1), where WK,M is as defined in

(3.46), and
– �K,M(x) as in (3.48).



1578 B. B. BHATTACHARYA, S. MUKHERJEE AND S. MUKHERJEE

PROOF. Throughout the proof denote N = �Krn�. The linear part (recall (3.50)) can be
written as

(3.52) Yn,L,K,M =
KL∑
a=1

η
(L)
K,M(a)Xn(a),

where Xn(a) := ∑N
u=1 1{�KLu

N
� = a}Xu. Note that

Xn(a) ∼ Bin

(
N∑

u=1

1
{⌈

KLu

N

⌉
= a

}
,pn

)
,(3.53)

and {Xn(a)}1≤a≤KL are mutually independent.
For notational brevity, take σn = K/N = K/�Krn�. For the quadratic term, taking an

expectation over the random graph G
(L)
n,K,M we get,

E
[
e−t1T

+
n,L,K,M |X1, . . . ,XN

]
= ∏

1≤u<v≤N

E
[
e
−t1A(G

(L)
n,K,M)(u,v)XuXv |X1, . . . ,XN

]

= ∏
1≤u<v≤N

(
1 − W

(L)
K,M(σnu,σnv) + W

(L)
K,M(σnu,σnv)e−t1XuXv

)

= ∏
1≤u<v≤N

(
1 − W

(L)
K,M(σnu,σnv) + W

(L)
K,M(σnu,σnv)e−t1

)XuXv ,

where the last equality uses the fact that XuXv is a Bernoulli random variable. Using the
definition of W

(L)
K,M , the RHS above equals

∏
1≤a<b≤KL

(
ϕt1,L,K(a, b)

)Xn(a)Xn(b)
KL∏
a=1

(
ϕt1,L,K(a, a)

)
⎛
⎝Xn(a)

2

⎞
⎠
,(3.54)

where ϕt1,L,K(a, b) := 1 − r
(L)
K,M(a, b) + r

(L)
K,M(a, b)e−t1 (recall (3.47)).

On letting n → ∞, we have{
Xn(1),Xn(2), . . . ,Xn(KL)

} D→ {
∂N(1), ∂N(2), . . . , ∂N(KL)

}
,

where {N(t) : 0 ≤ t ≤ K} is a Poisson process of rate 1 and ∂N(a) := N( a
L
) − N(a−1

L
) ∼

Pois(1/L) (by (3.53) and the Poisson approximation to the binomial distribution). Note that
{∂N(1), ∂N(2), . . . , ∂N(KL)} is independent, since increments of the Poisson process are
independent. Therefore, by (3.52), (3.54) and the continuous mapping theorem, as n → ∞,(

Yn,L,K,M,E
[
e−t1T

+
n,L,K,M |X1, . . . ,XN

]) D→(ψL,K,M, θL,K,M),(3.55)

where ψL,K,M := ∑KL
a=1 η

(L)
K,M(a)∂N(a) and

θL,K,M := ∏
1≤a<b≤KL

(
ϕt1,L,K(a, b)

)∂N(a)∂N(b)
KL∏
a=1

(
ϕt1,L,K(a, a)

)
⎛
⎝∂N(a)

2

⎞
⎠
.

For x, y ∈ [0,K], defining

φt1,L,K,M(x, y) := logϕt1,L,K

(�Lx�, �Ly�) if �Lx� �= �Ly�,
:= 0 if �Lx� = �Ly�
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gives,

log θL,K,M = 1

2

∑
1≤a �=b≤KL

∂N(a)∂N(b) logϕt1,L,K(a, b) +
KL∑
a=1

(
∂N(a)

2

)
logϕt1,L,K(a, a)

= 1

2

∫
[0,K]2

φt1,L,K,M(x, y)dN(x)dN(y) +
KL∑
a=1

(
∂N(a)

2

)
logϕt1,L,K(a, a),

(3.56)

using the definition of the stochastic integral for elementary functions (Definition B.1).
To begin with we consider the first term in (3.56) above. Recall the definition of

φt1,K,M(x, y) from the statement of the Lemma 3.8. Using

lim
L→∞

∥∥W(L)
K,M − WK,M

∥∥
L1([0,K]2) = 0,(3.57)

and the dominated convergence theorem (note that the functions φt1,L,K,M and φt1,K,M are
bounded above by log(1 + e−t1) and bounded below by −t1), gives ‖φt1,L,K,M(x, y) −
φt1,K,M(x, y)‖L1([0,K]2) → 0, as L → ∞, for every t1 ≥ 0 fixed. Then, by Proposition B.2,
as L → ∞,

1

2

∫
[0,K]2

φt1,L,K,M(x, y)dN(x)dN(y)
P→ 1

2

∫
[0,K]2

φt1,K,M(x, y)dN(x)dN(y).(3.58)

Next, consider the second term in (3.56): Using E
(∂N(a)

2

)
� 1/L2 and supa | logϕt1,L,K(a,

a)| �t1 1 gives,

KL∑
a=1

E

(
∂N(a)

2

)
logϕt1,L,K(a, a) �K,t1

1

L
.

Therefore,
KL∑
a=1

(
∂N(a)

2

)
logϕt1,L,K(a, a)

L1→ 0,(3.59)

as L → ∞. The limits in (3.58) and (3.59) combined with (3.56) gives,

log θL,K,M
P→ 1

2

∫
[0,K]2

φt1,K,M(x, y)dN(x)dN(y).(3.60)

Similarly, as L → ∞,

ψL,K,M :=
KL∑
a=1

η
(L)
K,M(a)∂N(a)

P→
∫ K

0
�K,M(x)dN(x).(3.61)

Combining (3.60) and (3.61) with (3.55), and another application of the dominated conver-
gence theorem completes the proof of the lemma. �

Next, we show that the limiting distribution of (T +
n,K,M,Yn,K,M) is same as that of

(T
+
n,L,K,M,Y n,L,K,M) derived above.

LEMMA 3.9. Fix K,M ≥ 1. Under the assumptions of Lemma 3.5, (T +
n,K,M,Yn,K,M)

converge in distribution and in moments, as n → ∞, to (T +
K,M,YK,M), with joint moment

generating function

E exp
{−t1T

+
K,M − t2YK,M

}
= E exp

{
1

2

∫ K

0

∫ K

0
φt1,K,M(x, y)dN(x)dN(y) − t2

∫ K

0
�K,M(x)dN(x)

}
,

(3.62)
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with t1, t2 ≥ 0, �K,M(·), {N(t), t ≥ 0}, and φt1,K,M(·, ·) are as defined in Lemma 3.8.
Moreover, (T +

n,K,M,Zn,K,M) converge in distribution and in moments, as n → ∞, to

(T +
K,M,ZK,M), with joint moment generating function

E exp
{−t1T

+
K,M − t2ZK,M

}
= E exp

{
1

2

∫ K

0

∫ K

0
φt1,K,M(x, y)dN(x)dN(y) − t̂2

∫ K

0
�K,M(x)dN(x)

}
,

(3.63)

where t̂2 = 1 − e−t2 .

PROOF. We begin by computing limL→∞ limn→∞E[(T +
n,L,K,M)a(Y n,L,K,M)b]. To this

end, let N a,b
N be the collection of all (a + b)-tuples of the form

e = (
(u1, v1), . . . , (ua, va), u

′
1, . . . , u

′
b

)
,

where u1, v1, . . . , ua, va, u
′
1, . . . , u

′
b ∈ [N ] := {1,2, . . . ,N}, and ui < vi , for 1 ≤ i ≤ a. Then

recalling (3.50), it follows that

E
[(

T
+
n,L,K,M

)a
(Y n,L,K,M)b

]

= ∑
e∈N a,b

N

E

[
a∏

s=1

A
(
G

(L)
n,K,M

)
(us, vs)XusXvs

b∏
s=1

η
(L)
K,M

(⌈
KLu′

s

N

⌉)
Xu′

s

]

(3.64)

= ∑
e∈N a,b

N

1

r
|V (H)|
n

E

[
a∏

s=1

A
(
G

(L)
n,K,M

)
(us, vs)

]
b∏

s=1

η
(L)
K,M

(⌈
KLu′

s

N

⌉)

= ∑
e∈N a,b

N

1

r
|V (H)|
n

a∏
s=1

W
(L)
K,M

(
Kus

N
,
Kvs

N

) b∏
s=1

η
(L)
K,M

(⌈
KLu′

s

N

⌉)
,

where H is the graph formed by the union of the edges (u1, v1), (u2, v2), . . . , (ua, va) and
the vertices u′

1, u
′
2, . . . , u

′
b. Note that since u′

s ∈ [N ] = [�Krn�], there exists x′
s ∈ [0,K] such

that u′
s = �x′

srn�. This implies

η
(L)
K,M

(⌈
KLu′

s

N

⌉)
= η

(L)
K,M

(⌈
KL�x′

srn�
�Krn�

⌉)
:= �̂

(L)
n,K,M

(
x′
s

)
.(3.65)

Similarly, let xs, ys ∈ [0,K] be such that us = �xsrn� and vs = �ysrn�. Then

W
(L)
K,M

(
Kus

N
,
Kvs

N

)
= W

(L)
K,M

(
K�xsrn�

N
,
K�ysrn�

N

)
:= Ŵ

(L)
n,K,M(xs, ys).(3.66)

Now, let {w1,w2, . . . ,w|V (H)|} be any labelling of the vertices in V (H) and zj be such
that wj = �zj rn�. Then, as in (3.29), using (3.65) and (3.66), for every graph H with at most
a edges and at most b isolated vertices and every vector η = (η1, η2, . . . , η|V (H)|), (3.64) can
be rewritten as,

E
[(

T
+
n,L,K,M

)a
(Y n,L,K,M)b

]

= ∑
H∈Ga,b

∑
η∈[0,b]|V (H)|

c(H,η)

∫
BK,n

t
(
H,Ŵ

(L)
n,K,M,z

) |V (H)|∏
j=1

�̂
(L)
n,K,M(zj )

ηj dzj ,
(3.67)

where, as in (3.33), BK,n := [0,
�Krn�

rn
]|V (H)|, z = (z1, z2, . . . , z|V (H)|), t (H, ·,z) is as defined

in Definition 3.1, and Ga,b is the collection of graphs with at most a edges and at most b

isolated vertices, and [0, b]|V (H)| := {0,1,2, . . . , b}|V (H)|.
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Now, since the sum in (3.67) is over a finite set (not depending on n) and each term in the
integrand is bounded (by a function of H , K , and M), the integral over BK,n can be replaced
by the integral over BK = [0,K]|V (H)|, as n → ∞. Moreover, note that the functions �̂

(L)
n,K,M

and Ŵ
(L)
n,K,M converge in L1([0,K]) and L1([0,K]2) to �

(L)
K,M and W

(L)
K,M respectively, as

n → ∞. Then using a telescoping argument as in the proof of Lemma 3.6, it follows that

lim
n→∞E

[(
T

+
n,L,K,M

)a
(Y n,L,K,M)b

]

= ∑
H∈Ga,b

∑
η=(η1,η2,...,η|V (H)|)∈[0,b]|V (H)|

c(H,η)

∫
BK

t
(
H,W

(L)
K,M,z

) |V (H)|∏
j=1

�
(L)
K,M(zj )

ηj dzj .

Next, recall that �
(L)
K,M and W

(L)
K,M converge in L1([0,K]) and L1([0,K]2) to �K,M and

WK,M respectively, as L → ∞, and so we have

lim
L→∞ lim

n→∞E
[(

T
+
n,L,K,M

)a
(Y n,L,K,M)b

]

= ∑
H∈Ga,b

η∈[0,b]|V (H)|

c(H,η)

∫
BK

t (H,WK,M,z)

|V (H)|∏
j=1

�K,M(zj )
ηj dzj

= ∑
H∈Ga,b

η∈[0,b]|V (H)|

c(H,η)

∫
BK

t (H,WK,z)

(recall (3.46) and (3.48))

×
|V (H)|∏
j=1

(
dK(zj ) −

∫ K

0
WK(zj , v)dv

)ηj

χK,M(zj )dzj

= lim
n→∞E

[(
T +

n,K,M

)a
(Yn,K,M)b

]
,(3.68)

where χK,M(zj ) := 1{dK(zj ) ≤ M} and the last step follows by combining (3.33) and
Lemma 3.6.

The equality of the limiting joint moments in (3.68) and Lemma 3.8, implies, by a diago-
nalization argument, that for every fixed K,M ≥ 1 and t1, t2 > 0, we can find sequences nj

and Lj both increasing to +∞ as j → ∞, such that

lim
j→∞E

[(
T

+
nj ,Lj ,K,M

)a
(Y nj ,Lj ,K,M)b

] = lim
n→∞E

[(
T +

n,K,M

)a
(Yn,K,M)b

] =: μa,b,(3.69)

for all nonnegative integers a, b, and,

lim
j→∞E exp

{−t1T
+
nj ,Lj ,K,M − t2Ynj ,Lj ,K,M

}

= E exp
{

1

2

∫ K

0

∫ K

0
φt1,K,M(x, y)dN(x)dN(y) − t2

∫ K

0
�K,M(x)dN(x)

}
.

(3.70)

By Lemma 3.7 and (3.69), μa,b = E[(T +
K,M)a(YK,M)b], and these mixed moments satisfy the

Carleman moment condition. Hence, by (3.69), (T
+
nj ,Lj ,K,M,Y nj ,Lj ,K,M)

D−→ (T +
K,M,YK,M)

as j → ∞. The result in (3.62) then follows from (3.70).
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For (3.63) we compute the joint moment generating function of (T +
n,K,M,Zn,K,M):

E
[
exp

{−t1T
+
n,K,M − t2Zn,K,M

}|(Xv)v∈V +
n,K,M

]
= exp

{−t1T
+
n,K,M

}
E
[
exp{−t2Zn,K,M}|(Xv)v∈V +

n,K,M

]

= exp
{−t1T

+
n,K,M

}(
1 − pn

(
1 − e−t2

))∑u∈V
+
n,K,M

Xud±
u
.(recall (3.26))

Hence, using (T +
n,K,M,Yn,K,M)

D→ (T +
K,M,YK,M), as n → ∞, and the dominated conver-

gence theorem,

E
[
exp

{−t1T
+
n,K,M − t2Zn,K,M

}] = E
[
exp

{−t1T
+
n,KM

}(
1 − pn

(
1 − e−t2

)) Yn,K,M
pn

]
→ E

[
exp

{−t1T
+
K,M

}
exp

{
YK,M

(
e−t2 − 1

)}]
.

(3.71)

Note that, by (3.62), the RHS of (3.71) is the moment generating function of (T +
K,M,YK,M)

evaluated at the points −t1 and −(1− et2). This implies, (T +
n,K,M,Zn,K,M) → (T +

K,M,ZK,M)

in distribution and in moments (by uniform integrability, using Lemma 3.4), where the joint
moment generating function is given by (3.63). �

3.6. Completing the proof of (1.13) in Theorem 1.1. We now combine the results from
the previous sections and complete the proof of (1.13).

LEMMA 3.10. Fix M > 0 large enough. Under the assumptions of Theorem 1.1,
(T +

n,K,M,Zn,K,M) converges to (T +
M,ZM) under the double limit as n → ∞ followed by

K → ∞, in distribution and in moments, where the limiting moment generating function is
given by

E exp
{−t1T

+
M − t2ZM

}
= E exp

{
1

2

∫ ∞
0

∫ ∞
0

φt1,M(x, y)dN(x)dN(y) − t̂2

∫ ∞
0

�M(x)dN(x)

}
,

(3.72)

for t1, t2 > 0, where

– t̂2 := 1 − e−t2

– φt1,M(x, y) := log(1 − W(M)(x, y) + W(M)(x, y)e−t1), where W(M)(x, y) = W(x,y)×
1{d(x) ≤ M,d(y) ≤ M}, with W : [0,∞)2 → [0,1] and d : [0,∞) → [0,∞) as in the
statement of Theorem 1.1, and

– �M(x) := (d(x) − ∫∞
0 W(x,y)dy)1{d(x) ≤ M}.

PROOF. Let W : (0,∞)2 → [0,1] and d : [0,∞) → [0,∞) be as in the statement of
Theorem 1.1. Define WK(x, y) := W(x,y)1{x, y ∈ [0,K]} and dK(x) := d(x)1{x ∈ [0,K]}.
Then the conditions (1.11) and (1.12) imply that the sequence of functions {WK}K≥1 and
{dK}K≥1, satisfy the conditions (3.27) and (3.28), where φn,K the identity map from [0,K]
to [0,K], for all n ≥ 1. Therefore, by Lemma 3.9, (T +

n,K,M,Zn,K,M) converge in distribu-
tion and in moments, as n → ∞, to (T +

K,M,ZK,M). Thus, to prove the lemma it suffices to
compute the limiting distribution of (T +

K,M,ZK,M) as K → ∞.
To this effect, using Observation 3.3 below, gives, for any t1 > 0∫ K

0

∫ K

0
φt1,K,M(x, y)dx dy →

∫ ∞
0

∫ ∞
0

φt1,M(x, y)dx dy,

∫ K

0
�K,M(x)dx →

∫ ∞
0

�M(x)dx,

(3.73)



BERNOULLI QUADRATIC FORMS 1583

as K → ∞. Also, noting that φt1,M(x, y) ≤ φt1,K,M(x, y) for all x, y, it follows that
limK→∞ ‖φt1,K,M − φt1,M‖L1([0,∞)2) = 0. Similarly, using (3.73), it can be shown that
limK→∞ ‖�K,M − �M‖L1([0,∞)2) = 0. This implies (using the convergence of stochastic
integrals in Proposition B.2), as K → ∞, that∫ K

0

∫ K

0
φt1,K,M(x, y)dN(x)dN(y)

L1→
∫ ∞

0

∫ ∞
0

φt1,M(x, y)dN(x)dN(y),

∫ K

0
�K,M(x)dN(x)

L1→
∫ ∞

0
�M(x)dN(x).

Therefore, taking limit as K → ∞ in (3.63) we see that the moment generating function
converge to the RHS of (3.72) (using the convergence of the stochastic integrals above and

the dominated convergence theorem). This shows, (T +
K,M,ZK,M)

D→ (T +
M,ZM), as K → ∞,

with the joint moment generating function of (T +
M,ZM) given by (3.72). To see that this

convergence is also in moments, recall from Lemma 3.4 that

lim sup
K→∞

lim sup
n→∞

E
[(

T +
n,K,M

)a
(Zn,K,M)b

]
�a,b,M 1.

Therefore, by uniform integrability, the convergence in moments follows. �

Combining the results above we can now derive the limiting distribution of (T +
n,K,M,

Zn,K,M,W−
n,K), as n → ∞ followed by K → ∞.

LEMMA 3.11. Let (T +
M,ZM) be random variables with joint moment generating func-

tion as in (3.72). Then, under the assumptions of Theorem 1.1,
(
T +

n,K,M,Zn,K,M,W−
n,K

) D→ (
T +

M,ZM,W
)
,

in distribution and in all (mixed) moments, as n → ∞ followed by K → ∞, where W ∼
Pois(λ0) and W is independent of (T +

M,ZM).

PROOF. By (3.63) and (3.72), as n → ∞, followed by K → ∞, for t1, t2 ≥ 0,

E
[
exp

{−t1T
+
n,K,M − t2Zn,K,M

}]
→ E exp

{
1

2

∫ ∞
0

∫ ∞
0

φt1,M(x, y)dN(x)dN(y) − t̂2

∫ ∞
0

�M(x)dN(x)

}
,

(3.74)

where t̂2 = 1 − e−t2 . This shows (T +
n,K,M,Zn,K,M)

D−→ (T +
M,ZM), as n → ∞ followed by

K → ∞, with joint moment generating function as above.
Now, recall the definition of W−

n,K from (3.5). By definition, W−
n,K is independent of

(T +
n,K,M,Zn,K,M) and W−

n,K

D→ W ∼ Pois(λ0) (by condition (a) in Theorem 1.1). Therefore,

(
T +

n,K,M,Zn,K,M,W−
n,K

) D→ (
T +

M,ZM,W
)
,

as required.
Finally, by Lemma 3.4 lim supK→∞ lim supn→∞E[(T +

n,K,M)aZb
n,K,M ] �a,b,M 1, and by

Lemma 3.2 lim supK→∞ lim supn→∞E[(W−
n,K)c] �c,M 1, for all positive integers a, b, c.

Therefore, by the Cauchy–Schwarz inequality,

E
[(

T +
n,K,M

)a
Zb

n,K,M

(
W−

n,K

)c] ≤ (
E
[(

T +
n,K,M

)2a
Z2b

n,K,M

]
E
[(

W−
n,K

)2c]) 1
2 �a,b,c,M 1.

Then by uniformly integrability the convergence of the mixed moments follows. �
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The above lemma implies that T +
n,K,M +Zn,K,M +W−

n,K → T +
M +ZM +W , in distribution

and in all moments. Then by Proposition 3.1 (recall (3.2)),

Tn,M = T +
n,K,M + T ±

n,K,M + T −
n,K,M → T +

M + ZM + W,(3.75)

in all moments. Convergence in distribution follows by verifying the Carleman moment con-
dition for T +

M + ZM + W , as follows:

LEMMA 3.12. Fix M ≥ 1. Let (T +
M,ZM) be random variables with joint moment gener-

ating function as in (3.72). Then, under the assumptions of Theorem 1.1,

Tn,M → T +
M + ZM + W,

in distribution and in all (mixed) moments, as n → ∞, where W ∼ Pois(λ0) and W is inde-
pendent of (T +

M,ZM).

PROOF. The convergence in moments follows from (3.75). To establish convergence in
distribution we need to verify the Carleman moment condition. To this end, let Gn,M be the
graph obtained from Gn by removing all vertices with degree greater than Mrn along with
all the edges adjacent on them. Then observe that, for a ≥ 1,

ET a
n,M = ∑

(u1,v1),(u2,v2),...,(ua,va)∈E(Gn,M)

1

r
|V (H)|
n

≤ aa
∑

H∈Ha

N(H,Gn,M)

r
|V (H)|
n

,(3.76)

where H is the graph formed by the union of the edges (u1, v1), (u2, v2), . . . , (ua, va), and
Ha the collection of all nonisomorphic graphs with at most a edges and no isolated vertices.

Now, using N(H,Gn,M) ≤ |E(Gn)|ν(H)(Mrn)
|V (H)|−2ν(H), where ν(H) is the number of

connected components of H , and (1.6), it follows that there exists some constant C1 > 0 such
that, for n large enough, N(H,Gn,M)

r
|V (H)|
n

≤ Ca
1 M |V (H)|−2ν(H) ≤ Ca

1 M2a , since |V (H)| ≤ 2a and

ν(H) ≤ a, for H ∈ Ha . Finally, using |Ha| ≤ Caaa+1 ≤ (2C)aaa , for some constant C > 0
[5], Theorem 5, we get

μa := lim
n→∞ET a

n,M � Ca
1 (2C)aM2aa2a.(3.77)

This shows that
∞∑

a=1

1

μ
1

2a
a

�M

∞∑
a=1

1

a
= ∞,

which verifies the Carleman moment condition and completes the proof. �

By monotonicity, as M → ∞, there exist random variables (T +,Z) such that (T +
M,

ZM)
D→ (T +,Z), with joint moment generating function (which is obtained by taking the

limit as M → ∞ in (3.72) and using Proposition B.2),

E exp
{−t1T

+ − t2Z
}

= E exp
{
−1

2

∫ ∞
0

∫ ∞
0

φW,t1(x, y)dN(x)dN(y) − t̂2

∫ ∞
0

�(x)dN(x)

}
,

(3.78)

where φW,t1(·, ·) and �(·) are as defined in the statement of Theorem 1.1. (Note that∫ ∞
0

∫ ∞
0

φW,t1(x, y)dN(x)dN(y) < ∞ and
∫ ∞

0
�(x)dN(x) < ∞

almost surely, by Observation 3.3 and finiteness of stochastic integrals for L1 integrable func-
tions.) Thus, TM := T +

M + ZM + W converges in distribution to T := T + + Z + W , as M →
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∞, where W
D= Pois(λ0) is independent of (T +,Z). Therefore, using Tn = Tn,M + oP (1),

where the oP (1)-term goes to zero as n → ∞ followed by M → ∞ (recall Lemma 3.1), and

Lemma 3.12, it follows that Tn
D→ T + + Z + W , where W ∼ Pois(λ0), W is independent

of (T +,Z), and the joint moment generating function of (T +,Z) is given by (3.78). This
completes the proof of (1.14).

The finiteness of the integrals of W and d , required in the proof above, is established
below:

OBSERVATION 3.3. With W(·, ·), d(·), φt1 as in the statement of Theorem 1.1, the fol-
lowing hold:

(a)
∫∞

0
∫∞

0 W(x,y)dx dy < ∞,
(b)

∫∞
0

∫∞
0 |φW,t1(x, y)|dx dy < ∞,

(c)
∫∞

0 d(x)dx < ∞.

PROOF. Fixing K ≥ 1, gives 1
r2
n
|E(Gn)| ≥ 1

r2
n
|E(G+

n,K)| = 1
2

∫
[0,K]2 WGn(x, y)dx dy,

which on letting n → ∞ along with assumption (1.11), gives∫
[0,K]2

W(x,y)dx dy � lim sup
n→∞

1

r2
n

∣∣E(Gn)
∣∣.

Since this holds for every K ≥ 1, letting K → ∞ along with monotone convergence theorem
gives ∫

[0,∞)2
W(x,y)dx dy � lim sup

n→∞
|E(Gn)|

r2
n

= O(1),

by (1.6). This completes the proof of (a).
The conclusion in part (b) follows immediately by invoking part (a) and noting that 0 ≤

−φW,t1(x, y)�t1 W(x,y).
To show (c), note that by condition (1.12), for K , M large enough,∫ K

0
d(x)1

{
d(x) ≤ M

}
dx = lim

n→∞

∫ K

0
dWGn

(x)1
{
dWGn

(x) ≤ M
}

dx � lim sup
n→∞

|E(Gn)|
r2
n

.

Taking limit K → ∞ followed by M → ∞ on both sides, gives∫ ∞
0

d(x)dx � lim sup
n→∞

|E(Gn)|
r2
n

,

from which the desired conclusion follows on using (1.6). �

4. Proof of Theorem 1.2. We begin by recalling that WK is the set of all symmetric
measurable functions from [0,K]2 → [0,1]. Denote by MK the set of all measure preserving
bijections φ from [0,K] → [0,K]. Moreover, for any function φ ∈ MK , let Wφ(x, y) =
W(φ(x),φ(y)) and f φ(x) = f (φ(x)), for W ∈ WK and f : [0,K] → [0,M]. The following
proposition shows the joint sequential compactness of the cut-metric and the L1 distance.

PROPOSITION 4.1. Fix K,M ≥ 1. Then given a sequence of measurable functions Wn ∈
WK and a sequence of measurable functions fn : [0,K] → [0,M], there exists a subsequence
{ns}s≥1 such that,

lim
s→∞ inf

φ∈MK

{∥∥Wφ
ns

− WK

∥∥
�([0,K]2) + ∥∥f φ

ns
− fK

∥∥
L1([0,K])

} = 0,

for some WK ∈WK and fK ∈ L1([0,K]).
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The proof of the proposition is given below in Section 4.1. First, we use it to complete
the proof of Theorem 1.2. To this end, suppose (1.6) holds and Tn converges in distribution
to a random variable T . Begin by labeling the vertices of Gn in nonincreasing order of the
degrees. Now, fix M ∈ D (as in Definition 3.2) and recall the definition of Tn,M from (1.17),

and use Lemma 3.1 to note that Tn,M
D→ T , under the double limit as n → ∞ followed by

M → ∞. Next, fix K ≥ 1 and recall from (3.2),

Tn,M = T +
n,K,M + T ±

n,K,M + T −
n,K,M.(4.1)

We will now proceed to find a subsequence {ns}s≥1 along which the RHS above will have a
limiting distribution in the form (1.13).

To begin with, observe that
∫∞
K

∫∞
K WGn(x, y)dx dy � |E(Gn)|

r2
n

� 1 by (1.6), for n large

enough. Therefore, for every K ≥ 1 fixed, there exists a subsequence depending on K such
that

λ0(K) := lim
n→∞

1

2

∫ ∞
K

∫ ∞
K

WGn(x, y)dx dy

exists along that subsequence. Therefore, refining the subsequences at every stage and by a
diagonalization argument, there exists a common subsequence {ns}s≥1 along which

lim
s→∞

1

2

∫ ∞
K

∫ ∞
K

WGns
(x, y)dx dy = λ0(K),

for every K ≥ 1. Now, note that

λ0(K + 1) = lim
s→∞

1

2

∫ ∞
K+1

∫ ∞
K+1

WGns
(x, y) ≤ lim

s→∞
1

2

∫ ∞
K

∫ ∞
K

WGns
(x, y)dx dy

= λ0(K),

which implies

λ0 := lim
K→∞λ0(K) = lim

K→∞ lim
s→∞

1

2

∫ ∞
K

∫ ∞
K

WGns
(x, y)dx dy(4.2)

exists.
Next, applying Proposition 4.1 on the functions

WGn,K,M(x, y) := WGn(x, y)1
{
x, y ∈ [0,K], dWGn,K

(x) ≤ M,dWGn,K
(y) ≤ M

}
and

dWGn,K(x|M) := dWGn
(x)1

{
x ∈ [0,K], dWGn,K

(x) ≤ M
}
,

gives a sequence of functions φn,K ∈MK and a subsequence {ns}s≥1 such that,

lim
s→∞

∥∥Wφns,K

Gns ,K,M − WK,M

∥∥
�([0,K]2) and

∥∥dφns ,K

WGns
,K,M(·|M) − dK,M

∥∥
L1([0,K]) = 0,

for some WK,M ∈ WK and dK,M ∈ L1([0,K]). This shows that, along this subsequence the
assumptions of Lemma 3.5 are satisfied, therefore, by Lemma 3.9, along this subsequence

T +
ns,K,M + Zns,K,M → J1,K,M + J2,K,M,(4.3)

in distribution and in moments, where the joint moment generating function of (J1,K,M,

J2,K,M) is given by: For t1, t2 ≥ 0,

E exp{−t1J1,K,M − t2J2,K,M}

= E exp
{

1

2

∫ ∞
0

∫ ∞
0

φWK,t1(x, y)dN(x)dN(y) − t̂2

∫ ∞
0

�K,M(x)dN(x)

}
,

with
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– t̂2 = 1 − e−t2 ,
– φWK,M,t1(x, y) := log(1 − WK,M(x, y) + WK,M(x, y)e−t1),
– �K,M(x) := dK,M(x) − ∫∞

0 WK,M(x, y)dy.

Now, by the convergence in moments and Lemma 3.4, for every integer r ≥ 1,

E
[
(J1,K,M + J2,K,M)r

] = lim
s→∞E

[(
T +

ns,K,M + T ±
ns,K,M

)r]�r,M 1.

Therefore, there exists a subsequence {Kj }j≥1 such that as j → ∞, J1,Kj ,M + J2,Kj ,M →
JM , for some random variable JM ∈ P(W,F) (recall Definition 1.2), in distribution and in
moments. Therefore, refining the subsequence in (4.2) and (4.3), and using the independence
of T +

ns,Kj ,M + Zns,Kj ,M and W−
ns,Kj

, it follows that, as s → ∞ followed by j → ∞,

T +
ns,Kj ,M + Zns,Kj ,M + W−

ns,Kj
→ JM + J0,

in distribution and in moments, where J0 ∼ Pois(λ0) and J0 independent of JM , for all M ∈
D. Then by the proof of Lemma 3.12, it follows that as, s → ∞ followed j → ∞,

T +
ns,Kj ,M + T ±

ns,Kj ,M + T −
ns,Kj ,M

D→ JM + J0.

Now, as Tns,M
D→ T , when s → ∞ followed by M → ∞, recalling (4.1) we get, JM + J0

D→
J + J0

D= T , as M → ∞, where J is independent of J0 and J ∈ P(W,F), since JM ∈
P(W,F).

4.1. Proof of Proposition 4.1. Without loss of generality, we assume K = M = 1. Here-
after, we fix L ≥ 1. Then, we have the following:

• For the graphon Wn ∈ W1 by the weak regularity lemma [8], Corollary 3.4, we can find
a partition �n,L = {πn,L(i)}i∈[qL] of [0,1] into measurable sets, with qL �L 1 (a constant
depending only on L), such that

‖Wn − Wn,L‖�([0,1]2) ≤ 1

L
,(4.4)

where

Wn,L(x, y) = bWn,L(i, j) = 1

λ(πi)λ(πj )

∫
πi×πj

Wn(x, y)dx dx,

for x ∈ πi and y ∈ πj . (Here, λ(A) denotes the Lebesgue measure of a measurable set
A ⊂ [0,1].) Moreover, the partitions can be constructed in such a way that �n,L+1 =
{πn,L+1(i)}a∈[qL+1] is a refinement of �n,L (by [8], Corollary 3.4).

• Similarly, for the function fn, there exists a partition �n,L = {γn,L(i)}i∈[rL] of [0,1]
into rL �L 1 (a constant depending only on L) measurable sets and a vector zfn,L =
(zfn,L(i))i∈[rL] with entries in [0,1], such that the function

fn,L(x) := zfn,L(i) := 1

λ(γn,L(i))

∫
γn,L(i)

fn(x)dx if x ∈ γn,L(i),(4.5)

satisfies

‖fn − fn,L‖L1([0,1]) ≤ 1

L
.(4.6)

Moreover, as before, the partitions can be constructed in such a way that �n,L+1 =
{γn,L+1(i)}a∈[rL+1] is a refinement of �n,L.
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Given the partitions �n,L = {πn,L(i)}i∈[qL] and �n,L = {γn,L(i)}i∈[rL], the class of sets{
θn,L(i1, i2) := πn,L(i1) ∩ γn,L(i2)

}
i1∈[qL],i2∈[rL],

forms a partition of [0,1], which refines both the partitions �n,L and �n,L (with possibly
some empty sets). Relabel the sets {θn,L(i1, i2)}i1∈[qL],i2∈[rL] by {θn,L(i)}i∈[qLrL] by tak-
ing a bijection from [qL] × [rL] → [qLrL], and denote this partition of [0,1] by �n,L :=
{θn,L(i)}i∈[qLrL]. Now, setting βn,L(i) := λ(θn,L(i)), there exists a measure preserving bijec-
tion φn,L : [0,1] → [0,1] such that the interval(

a−1∑
i=1

βn,L(i),

a∑
i=1

βn,L(i)

]
maps to the set θn,L(a), for each 1 ≤ a ≤ qLrL.

Thus, the functions W
φn,L

n,L and f
φn,L

n,L are both step functions on [0,1]2 and [0,1] with intervals
and rectangles as steps, respectively. Then, we can find a common subsequence {ns}s≥1 along
which the sequence of vectors({

βns,L(i)
}
i∈[qLrL],BWns ,L

,zfns ,L

) ∈ [0,1]qLrL+q2
L+rL

converge. (Here, we consider BWns ,L
as a vector of length q2

L.) In particular, this means

that along this subsequence the functions W
φn,L

ns,L
and f

φn,L

ns,L
converge almost surely to step

functions WL : [0,1]2 → [0,1] and fL : [0,1] → [0,1], respectively.
Now, let (U,V ) ∼ Unif([0,1]2), and let FL denote the sub-sigma algebra of B([0,1]2)

(the Borel sigma algebra on [0,1]2) generated by the collection{
1

{
U ∈

(
i1−1∑
j=1

βL(j),

i1∑
j=1

βL(j)

]}
,1

{
V ∈

(
i2−1∑
j=1

βL(j),

i2∑
j=1

βL(j)

]}
, i1, i2 ∈ [qLrL]

}
,

where βL(i) = lims→∞ βns,L(i) for i ∈ [qLrL]. Since the partition

�n,L+1 = {
θn,L+1(i)

}
i∈[qL+1rL+1]

is a refinement of �n,L = {θn,L(i)}i∈[qLrL], it follows that {FL}L≥1 is a filtration. Also, the
construction implies that for any (x, y) ∈ (0,1]2 such that

(x, y) ∈
(

i1−1∑
j=1

βL(j),

i1∑
j=1

βL(j)

]
×
(

i2−1∑
j=1

βL(j),

i2∑
j=1

βL(j)

]
where 1 ≤ i1, i2 ≤ qLrL,

we have

WL(x, y)

= E

(
WL+1(U,V )

∣∣∣(U,V ) ∈
(

i1−1∑
j=1

βL(j),

i1∑
j=1

βL(j)

]
×
(

i2−1∑
j=1

βL(j),

i2∑
j=1

βL(j)

])
,

and

fL(x) = E

(
fL+1(U)

∣∣∣U ∈
(

i1−1∑
j=1

βL(j),

i1∑
a=1

βL(j)

])
.

Thus, both WL and fL are bounded martingales with respect to the filtration {FL}L≥1, and
so they converge almost surely and in L1 to functions W∞ and f∞, as L → ∞, respectively.
Therefore, by the triangle inequality,

inf
φ∈M1

{∥∥Wφ
ns

− W∞
∥∥
�([0,1]2) + ∥∥f φ

ns
− f∞

∥∥
L1([0,1])

} ≤ S1 + S2 + S3,(4.7)
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where S1, S2, S3 are defined as follows:

S1 := ∥∥Wφns,L
ns − W

φns,L

ns,L

∥∥
�([0,1]2) + ∥∥f φns ,L

ns − f
φns ,L

ns,L

∥∥
L1([0,1]) ≤ 2

L
,

where the last inequality uses (4.4) and (4.6). Next,

S2 := ∥∥Wφns,L

ns,L
− WL

∥∥
�([0,1]2) + ∥∥f φns ,L

ns ,L
− fL

∥∥
L1([0,1])

≤ ∥∥Wφns,L

ns,L
− WL

∥∥
L1([0,1]2) + ∥∥f φns ,L

ns,L
− fL

∥∥
L1([0,1]),

which goes to zero as s → ∞, using the fact that W
φns,L

ns,L
and f

φns ,L

ns,L
converges in L1 to WL

and fL, respectively. Finally,

S3 := ‖WL − W∞‖�([0,1]2) + ‖fL − f∞‖L1([0,1])
≤ ‖WL − W∞‖L1([0,1]2) + ‖fL − f∞‖L1([0,1]),

which goes to zero as L → ∞, using WL
L1→ W and fL

L1→ f . Putting together the above three
bounds with (4.7), and taking limit as s → ∞ followed by L → ∞, the result follows.

5. Proofs of corollaries. In this section we prove Corollaries 1.3, 1.4, and 1.5.

5.1. Proof of Corollary 1.3. As {Gn}n≥1 is a sequence of dense graphs, assumption (1.6)
implies that rn = 1/pn > Cn, for some constant C > 0, when n is large enough. Therefore,
by the definition in (1.7), WGn is zero outside the box [0, a]2, where a := 1/C. Hence,

lim
K→∞ lim

n→∞
1

2

∫ ∞
K

∫ ∞
K

WGn(x, y)dx dy = 0.(5.1)

We begin by showing that W vanishes Lebesgue almost everywhere outside the rectangle
[0, a]2. To see this, let f (x) = 1{x ≥ a} and g(x) = 1{x ≤ a} for all x ≥ 0. Fix L > 0, and
observe that:∫ a+L

a

∫ a

0
W(x,y)dx dy =

∫
[0,a+L]2

(
W(x,y) − WGn(x, y)

)
f (x)g(y)dx dy

≤ ‖W − WGn‖�([0,a+L]2).

(5.2)

Since the RHS of (5.2) converges to 0 and W ≥ 0, W must vanish Lebesgue almost every-
where on the rectangle [a, a + L] × [0, a]. This means, since L > 0 is arbitrary, W van-
ishes Lebesgue almost everywhere on [a,∞) × [0, a]. Interchanging the roles of f and g,
it follows that W vanishes Lebesgue almost everywhere on [0, a] × [a,∞). Finally, taking
f (x) = g(x) = 1{x ≥ a}, for all x ≥ 0, and proceeding as above, we can show that W van-
ishes Lebesgue almost everywhere on [a,∞) × [a,∞), as desired.

Now, fix K ≥ a such that ‖WGn − W‖�([0,K]2) → 0. Next, let dW(x) = ∫∞
0 W(x,y)dy =∫ a

0 W(x,y)dy. Then, we have

lim
n→∞

∫ K

0

(
dWGn

(x) − dW(x)
)2 dx → 0.

This is because, ‖WGn − W‖�([0,K]2) → 0 implies that∫ K

0
dWGn

(x)2 dx →
∫ K

0
dW(x)2 dx and

∫ K

0
dWGn

(x)dW (x)dx →
∫ K

0
dW(x)2 dx.

Then, by the Cauchy–Schwarz inequality, ‖dWGn
− dW‖L1([0,K]) → 0, for all K ≥ a such

that ‖WGn − W‖�([0,K]2) → 0. This shows, condition (1.12) holds with d = dW , for M ∈ D
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(recall Definition 3.2). Therefore, �(x) := dW(x) − ∫∞
0 W(x,y)dy = 0, and the result in

(1.16) follows from Theorem 1.1, with � = 0 and λ0 = 0 (by (5.1)).
To show (b), note that for any sequence of dense graphs {Gn}n≥1, there exists a con-

stant a > 0 and a subsequence {nj }j≥1 along which limj→∞ δ�([0,a]2)(WGnj
,W) = 0, for

some W ∈ Wa (by the compactness of the metric δ�([0,a]2) in the space Wa , the space of
all symmetric measurable functions from [0, a]2 → [0,1] [8], Proposition 3.6). This implies,
recalling (1.10), there exists a sequence of measure preserving bijections {φnj

}j≥1 such that

limj→∞ ‖Wφnj

Gnj
− W‖�([0,a]2) = 0. Therefore, by part (a) (recall the discussion in the second

item in Remark 1.2 and Lemma 3.5), along this subsequence Tnj

D→ Q1, where the moment

generating function of Q1 is as given in (1.16). This implies Tn
D→ Q1, since, by assumption,

Tn converges in distribution, as required.

5.2. Proof of Corollary 1.4. Note that (c) ⇒ (a) is immediate from Theorem 1.1. Hence,
it suffices to show that (b) ⇒ (c) and (a) ⇒ (b).

We begin with the proof of (b) ⇒ (c). Denote by K1,2, the two-star graph and let VM :=
{v ∈ Gn : dv ≤ Mrn}. Then

Var(Tn,M) = (
1 − p2

n

)
ETn,M + 2p3

n(1 − pn)N
(
K1,2,Gn[VM ]),(5.3)

where N(K1,2,Gn[VM ]) is the number of two-stars in the subgraph on Gn induced
on the vertex set VM . The conditions

lim
M→∞ lim

n→∞E(Tn,M) = λ and lim
M→∞ lim

n→∞ Var(Tn,M) = λ

mean, limM→∞ limn→∞ p3
nN(K1,2,Gn[VM ]) = 0. Letting

dWGn[VM ](x) =
∫ ∞

0
WGn(x, y)1

{
dWGn

(x) ≤ M,dWGn
(y) ≤ M

}
dy,

then gives, ∫ ∞
0

dWGn[VM ](x)2 dx � p3
nN

(
K1,2,Gn[VM ])+ p3

n

∣∣E(Gn,M)
∣∣ → 0,(5.4)

under the same double limit, where we invoke (1.6) to deal with the second term.
We will now verify condition (1.12) in Theorem 1.1. To see this, observe

dWGn
(x)1

{
dWGn

(x) ≤ M
} = dWGn[VM ](x) +

∫ ∞
0

WGn(x, y)1
{
dWGn

(y) > M
}

dy

≤ dWGn[VM ](x) + 1

M

∫ ∞
0

dWGn
(y)dy.

Therefore, ∫ K

0
dWGn

(x)21
{
dWGn

(x) ≤ M
}

dx

≤ 2
∫ ∞

0
dWGn[VM ](x)2 dx + 2

M2

∫ K

0

(∫ ∞
0

dWGn
(y)dy

)2
dx

= 2
∫ ∞

0
dWGn[VM ](x)2 dx + 2K

M2

(∫ ∞
0

dWGn
(y)dy

)2
.
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Now, under the double limit n → ∞ followed by M → ∞, first term in the RHS above goes
to 0 by (5.4), and the second term goes to 0 by (1.6). This gives,

lim
M→∞ lim

n→∞

∫ K

0
dWGn

(x)21
{
dWGn

(x) ≤ M
}

dx = 0.

Therefore, by the Cauchy–Schwarz inequality,

lim
M→∞ lim

n→∞

∫ K

0
dWGn

(x)1
{
dWGn

(x) ≤ M
}

dx = 0.(5.5)

This implies, lim supn→∞
∫K

0 dWGn
(x)1{dWGn

(x) ≤ M}dx = 0, for all M , since

lim sup
n→∞

∫ K

0
dWGn

(x)1
{
dWGn

(x) ≤ M
}

dx

is nondecreasing in M . This shows (1.12) with d = 0.
Next, we will show that limn→∞ ‖WGn‖L1([0,K]2) = 0, for every K > 0 (which implies

(1.11) holds with W = 0, since limn→∞ ‖WGn‖�([0,K]2) ≤ limn→∞ ‖WGn‖L1([0,K]2) = 0).
To this end, we have∫

[0,K]2
WGn(x, y)dx dy

≤
∫
[0,K]2

WGn(x, y)1
{
dWGn

(x) ≤ M
}

dx dy +
∫
[0,K]2

dWGn
(x)

M
dx dy

=
∫ K

0
dWGn

(x)1
{
dWGn

(x) ≤ M
}

dx + K

M

∫ K

0
dWGn

(x)dx.

On letting n → ∞ followed by M → ∞, the first term above converges to 0 by (5.5), and
the second term converges to 0 by (1.6). This implies WGn converges to 0 on L1([0,K]2),
verifying condition (1.11) in Theorem 1.1 with W = 0.

Finally, we verify condition (a) of Theorem 1.1. Using (3.1) note that for all K large
enough there exists an integer n(K), such that if n > n(K), we have dv < rn, for all v ∈
[�Krn� + 1, n]. In particular, for M > 1 this implies

0 ≤
∫ ∞

0

∫ ∞
0

WGn,M
(x, y)dx dy −

∫ ∞
K

∫ ∞
K

WGn(x, y)dx dy

≤ 2
∫ ∞

0

∫ K

0
WGn(x, y)1

{
dWGn

(x) ≤ M
}

dx dy

= 2
∫ K

0
dWGn

(x)1
{
dWGn

(x) ≤ M
}

dx,

which converges, under the double limit, to 0 by (5.5), for every K ≥ 0 fixed. Hence,

lim
K→∞ lim

n→∞
1

2

∫ ∞
K

∫ ∞
K

WGn(x, y)dx dy = lim
M→∞ lim

n→∞
1

2

∫ ∞
0

∫ ∞
0

WGn,M
(x, y)dx dy

= lim
M→∞ lim

n→∞ETn,M = λ,

verifying condition (a) of Theorem 1.1. This completes the proof of (b) ⇒ (c).
To prove (a) ⇒ (b), recall the definition of Tn,M from (1.17), and use Lemma 3.1 to note

that Tn,M
D→ Pois(λ), under the double limit as n → ∞ followed by M → ∞. Now, by a

diagonalization argument, given any subsequence we can find a further subsequence {nj }j≥1
such that μa,M := limj→∞ET a

nj ,M converges, for all a ≥ 1, by uniform integrability, since
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the moments supn∈N ET a
n,M �M,a 1, are bounded (recall (3.77)). Recall from the proof of

Lemma 3.12 that the moments {μa,M}a≥1 satisfy the Carleman moment condition. There-
fore, along the subsequence, Tnj ,M → TM , in distribution and in moments, for some random
variable TM . Finally note that the random variables Tnj ,M are nondecreasing in M , and so
the sequence {TM}M≥1 is stochastically increasing, and converges in distribution to Pois(λ).
Then, by the monotone convergence theorem, E(T a

nj ,M) converges to E(Pois(λ)a), for all in-
tegers a ≥ 1, under the double limit. In particular, (b) follows from convergence of the first
two moments.

5.3. Proof of Corollary 1.5. Define Yi := Xi1{Xi ≤ 1}, for 1 ≤ i ≤ n, and denote by

T ′
n = 1

2

∑
1≤u,v≤n

auv(Gn)YuYv.

To begin with, note that the event {|Tn − T ′
n| > 0} is contained in the following event: there

exists (u, v) ∈ E(Gn) such that either {Xu ≥ 2 and Xv ≥ 1} or {Xu ≥ 1 and Xv ≥ 2}. There-
fore, by a union bound,

P
(∣∣Tn − T ′

n

∣∣ > 0
) ≤ 2

∑
(u,v)∈E(Gn)

P(Xu ≥ 2)P(Xv ≥ 1) = 2
∣∣E(Gn)

∣∣P(X1 ≥ 2)P(X1 ≥ 1)

= ∣∣E(Gn)
∣∣o(p2

n

)
,

using P(X1 ≥ 1) ≤ E(X1) = O(pn) and 2P(X1 ≥ 2) ≤ E(X1) − P(X1 = 1) = o(pn) by the
assumption that limn→∞ 1

pn
EX1 = 1. Since |E(Gn)|p2

n = O(1) by assumption (1.6), it fol-

lows that Tn − T ′
n

P→ 0. Using T ′
n

D→ Q1 + Q2 + Q3, by Theorem 1.1, the result follows.

APPENDIX A: APPROXIMATION BY BLOCK FUNCTIONS

In this section we show that a L-block approximation of a L1-integrable function con-
verges to the function in L1. This result has been used in the proof of Theorem 1.1.

PROPOSITION A.1. Suppose f : [0,1]d →R is a bounded measurable function. For any
integer L ≥ 1 define the function fL : [0,1]d →R as,

fL(x1, x2, . . . , xd) = Ld
d∏

i=1

∫ �Lxi �
L

�Lxi �−1
L

f (y1, y2, . . . , yd)dy1 dy2 · · · dyd.

Then ‖fL − f ‖L1([0,1]d ) = ∫
[0,1]d |fL(x) − f (x)|dx → 0, as L → ∞.

PROOF. Throughout the proof we abbreviate the norm ‖ · ‖L1([0,1]d ) as ‖ · ‖1. Now, fixing
ε > 0, by standard measure theory arguments, there exists a continuous function g : [0,1]d →
R such that supx∈[0,1]d |g(x)| ≤ supx∈[0,1]d |f (x)|, and ‖f − g‖1 ≤ ε. Then using Jensen’s
inequality, ‖fL − gL‖1 ≤ ‖f − g‖1 ≤ ε. An application of triangle inequality then gives,

‖f − fL‖1 ≤ ‖f − g‖1 + ‖g − gL‖1 + ‖gL − fL‖1 ≤ 2ε + ‖g − gL‖1,

which implies lim supL→∞ ‖f − fL‖1 ≤ 2ε, since ‖gL − g‖1 ≤ ‖gL − g‖∞ → 0, by the
continuity of g. This completes the proof since ε > 0 is arbitrary. �
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APPENDIX B: STOCHASTIC INTEGRATION WITH RESPECT TO
A POISSON PROCESS

Let X = [0,∞), B(X ) the Borel sigma-algebra on X , and λ is the Lebesgue measure
on (X ,B(X )). Denote by Lp(X d) the set of all Borel measurable functions f : X d → R

such that
∫
X d |f (x)|p dx < ∞, where x = (x1, x2, . . . , xd) and dx = dx1 · · · dxd , with re-

spect to the Lebesgue measure on X d . In this section, we define stochastic integration with
respect to a Poisson process, for functions in L1(X d). The theory of multiple stochastic in-
tegration for square integrable functions, with respect to a general centered Levy process is
well-understood (see [16] and the references therein). However, our applications require in-
tegration of functions in L1 (for example, the function �(·) in Theorem 1.1 is in L1(X ), but
not in L2(X )). In this section, we make the necessary modifications to the standard theory,
extending stochastic integration with respect to a Poisson process to L1 functions.

Let {N(A),A ∈ B(X )} be the homogenous Poisson process of rate 1 (that is, N(A) ∼
Pois(λ(A)), where λ is the Lebesgue measure on (X ,B(X ))), defined on a probability space
(�,F,μ). Denote by Ed the set of all Itô-elementary functions, having the form

(B.1) f (t1, t2, . . . , td) =
m∑

i1,i2,...,id=1

ai1,i2,...,id 1Ai1×···×Aid
(t1, t2, . . . , td),

where A1,A2, . . . ,Am ∈ B(X ) are pairwise disjoint, and ai1,i2,...,id is zero if two indices are
equal. Note that an Itô-elementary function need not necessarily be in L1(X d). We begin by
defining multiple Itô integrals for functions in Ed ∩ L1(X d).

DEFINITION B.1 (Multiple Itô integral for elementary functions). The d-dimensional
Itô-stochastic integral, with respect to the Poisson process {N(A),A ∈ B(X )}, for the func-
tion f ∈ Ed ∩ L1(X d) in (B.1) is defined as

Id(f ) :=
∫

f (x1, x2, . . . , xd)

d∏
a=1

dN(xa) :=
m∑

i1,i2,...,id=1

ai1,i2,...,id N(Ai1) × · · · × N(Aid ).

It is easy to verify that this is well defined, that is, if f,g ∈ Ed ∩ L1(X d), with f = g

almost everywhere Lebesgue, then Id(f )
a.s.= Id(g). The multiple Itô integral for elementary

functions also satisfies the following two properties:

• (Finiteness) |Id(f )| < ∞ almost surely, for f ∈ Ed ∩ L1(X d). To see this note that
E[N(Ai1) × · · · × N(Aid )] = λ(Ai1) × · · · × λ(Aid ), where λ(A) denotes the one-
dimensional Lebesgue measure of the set A, whenever all the indices i1, i2, . . . , id are
distinct. Therefore,

E
[∣∣Id(f )

∣∣] ≤
m∑

i1,i2,...,id=1

|ai1,i2,...,id |λ(Ai1) × · · · × λ(Aid ) =
∫
X d

∣∣f (x)
∣∣dx < ∞.(B.2)

• (Linearity) Given two simple functions f,g ∈ Ed ∩ L1(X d),

Id(f + g)
a.s.= Id(f ) + Id(g),(B.3)

which is immediate from definitions.

Now, we proceed to define the multiple Itô integral for general functions in L1(X d). To
this end, a straightforward modification of the proof of [18], Theorem 2.1, shows that Ed

is dense in L1(X d). Therefore, given f ∈ L1(X d), there exists a sequence {fn}n≥1, with
fn ∈ Ed , such that limn→∞

∫
X d |fn(x) − f (x)|dx = 0. (Note that this automatically implies

fn ∈ Ed ∩ L1(X d), for all n large.)
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PROPOSITION B.1. Consider a sequence {fn}n≥1, with fn ∈ Ed , such that
limn→∞ ‖fn − f ‖L1(X d ) = 0. Then there exists a random variable X defined on (�,F,μ)

such that Id(fn)
L1→ X. Moreover, if {gn}n≥1, with gn ∈ Ed , is another sequence such that

limn→∞ ‖gn − f ‖L1(X d ) = 0, then the sequence of random variables {Id(fn)}n≥1 and
{Id(gn)}n≥1 converge to the same limit in L1(�).

PROOF. Define the sequence {hn}n≥1 as follows: For n ≥ 1,

h2n−1 := fn and h2n := gn.

Note that limn→∞ ‖hn − f ‖L1(X d ) = 0. Therefore, given ε > 0, there exists N(ε) < ∞ such
that if n1, n2 ≥ N(ε), then

∫
X d |hn1(x) − hn2(x)|dx < ε. This implies,

E
∣∣Id(hn1) − Id(hn2)

∣∣ = E
∣∣Id(hn1 − hn2)

∣∣(by (B.3))

≤
∫
X d

∣∣hn1(x) − hn2(x)
∣∣dx(by (B.2))

< ε.

This shows that {Id(hn)}n≥1 is Cauchy in L1(�), and by the completeness of the space
L1(�), the result follows. �

DEFINITION B.2 (Multiple Itô integral for general L1-functions). The d-dimensional
Itô-stochastic integral for a function f ∈ L1(X d) (denoted as Id(f )) is defined as the L1
limit of the sequence {Id(fn)}n≥1, where {fn}n≥1 is a sequence such that fn ∈ Ed with
limn→∞ ‖fn − f ‖L1(X d ) = 0.

This is well defined by Proposition B.1. Also, as in the case of elementary functions, Id(f )

satisfies the following properties:

• (Finiteness) For any f ∈ L1(X d),

E
∣∣Id(f )

∣∣ ≤ ∫
X d

∣∣f (x)
∣∣dx.(B.4)

To see this, let {fn}n≥1 be a sequence of elementary functions such that limn→∞ ‖fn −
f ‖L1(X d ) = 0. Then using (B.2),

E
∣∣Id(fn)

∣∣ ≤ ∫
X d

∣∣fn(x)
∣∣dx.

The desired conclusion then follows on letting n → ∞ on both sides of the above inequal-
ity, since E|Id(fn)| → E|Id(f )|, by Definition B.2.

• (Linearity) For any two functions f , g in L1(X d), Id(f + g)
a.s.= Id(f ) + Id(g), which is

immediate from (B.3) and Definition B.2.

The following proposition shows the convergence of stochastic integrals for converging
sequence of functions:

PROPOSITION B.2. Consider a sequence {fn}n≥1 such that limn→∞ ‖fn − f ‖L1(X d ) =
0. Then Id(fn)

L1→ Id(f ) in (�,F,μ).

PROOF. Note that

E
∣∣Id(fn) − Id(f )

∣∣ = E
∣∣Id(fn − f )

∣∣ ≤ ∫ ∣∣fn(x) − f (x)
∣∣dx,
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where the first step uses linearity of stochastic integrals, and the second step uses (B.4).
Taking limit as n → ∞ on both sides, the result follows. �

We conclude by computing the two-dimensional Itô stochastic integral of the block func-
tion (2.1).

EXAMPLE 8. Fix κ > 0 and consider the B-block function f : [0, κ]2 → [0,1] as defined
in (2.1). Let L ≥ 1 and define

f (L)(x, y) = ∑
1≤a �=b≤�κL�

r
(L)
f (a, b)1

{
x ∈

[
a − 1

L
,
a

L

]}
1
{
y ∈

[
b − 1

L
,
b

L

]}
,

where

r
(L)
f (a, b) := L2

∫ a
L

a−1
L

∫ b
L

b−1
L

f (u, v)dudv.(B.5)

Note that the sum is over a �= b, that is, f (L)(x, y) = 0 when x, y ∈ [a−1
L

, a
L
], for some

1 ≤ a ≤ L. Therefore, this is the L-step piecewise constant approximation of f , with zeros
on the diagonal blocks. By taking L large enough, it follows that f (x, y) = r

(L)
f (a, a) � 1,

for x, y ∈ [a−1
L

, a
L
], which means

L∑
a=1

∫ a
L

a−1
L

∫ a
L

a−1
L

f (x, y)dx dy � 1

L
→ 0.

Then by Proposition A.1, limL→∞ ‖f − f (L)‖L1([0,κ]2) = 0, which means

I2
(
f (L)) L1→ I2(f ),

by Proposition B.2. Now, let {N(t) : 0 ≤ t ≤ κ} be a Poisson process of rate 1, and ∂N(a) :=
N( a

L
) − N(a−1

L
) ∼ Pois(1/L). Then taking L large enough and Definition B.1,

I2
(
f (L))

=
B∑

j=1

bjj

∑
�cj−1L�≤a �=b≤�cj L�

∂N(a)∂N(b)

+ 2
∑

1≤j<j ′≤B

bjj ′
∑

�cj−1L�≤a≤�cjL�
�c′

j−1L�≤b≤�c′
j L�

∂N(a)∂N(b) + oL1(1)(B.6)

L1→ 2
B∑

j=1

bjj

(
Nj

2

)
+ 2

∑
1≤j<j ′≤B

bjj ′NjNj ′,

= I2(f ),

where the oL1(1)-term in the second step goes to zero in L1 and {N1,N2, . . . ,NB} are inde-
pendent with Nj ∼ Pois(cj − cj−1).

Acknowledgments. The authors thank Shirshendu Ganguly for many illuminating dis-
cussions and Jordan Stoyanov for bringing to our attention the reference [19]. The authors
also thank the Associate Editor and the anonymous referees for their insightful comments,
which greatly improved the presentation of the paper.



1596 B. B. BHATTACHARYA, S. MUKHERJEE AND S. MUKHERJEE

Funding. The research of Sumit Mukherjee was partially supported by NSF Grant DMS-
1712037.

REFERENCES

[1] AKHIEZER, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis. Hafner,
New York. Translated by N. Kemmer. MR0184042

[2] ARRATIA, R., GOLDSTEIN, L. and GORDON, L. (1989). Two moments suffice for Poisson approximations:
The Chen–Stein method. Ann. Probab. 17 9–25. MR0972770

[3] ARRATIA, R., GOLDSTEIN, L. and GORDON, L. (1990). Poisson approximation and the Chen–Stein
method. Statist. Sci. 5 403–434. With comments and a rejoinder by the authors. MR1092983

[4] BARBOUR, A. D., HOLST, L. and JANSON, S. (1992). Poisson Approximation. Oxford Studies in Probabil-
ity 2. Oxford Univ. Press, New York. MR1163825

[5] BENDER, E. A., CANFIELD, E. R. and MCKAY, B. D. (1997). The asymptotic number of labeled graphs
with n vertices, q edges, and no isolated vertices. J. Combin. Theory Ser. A 80 124–150. MR1472108
https://doi.org/10.1006/jcta.1997.2798

[6] BHATTACHARYA, B. B., DIACONIS, P. and MUKHERJEE, S. (2017). Universal limit theorems in graph
coloring problems with connections to extremal combinatorics. Ann. Appl. Probab. 27 337–394.
MR3619790 https://doi.org/10.1214/16-AAP1205

[7] BHATTACHARYA, B. B., MUKHERJEE, S. and MUKHERJEE, S. (2020). The second-moment phenomenon
for monochromatic subgraphs. SIAM J. Discrete Math. 34 794–824. MR4078800 https://doi.org/10.
1137/18M1184461

[8] BORGS, C., CHAYES, J. T., LOVÁSZ, L., SÓS, V. T. and VESZTERGOMBI, K. (2008). Convergent se-
quences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math. 219 1801–
1851. MR2455626 https://doi.org/10.1016/j.aim.2008.07.008

[9] BORGS, C., CHAYES, J. T., LOVÁSZ, L., SÓS, V. T. and VESZTERGOMBI, K. (2012). Convergent se-
quences of dense graphs II. Multiway cuts and statistical physics. Ann. of Math. (2) 176 151–219.
MR2925382 https://doi.org/10.4007/annals.2012.176.1.2

[10] CERQUETTI, A. and FORTINI, S. (2006). A Poisson approximation for coloured graphs under exchange-
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