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Abstract. Entropy and information are common measures of proba-
bilistic models of data, frequently used for discrete and discretized but
more rarely for continuous data. We employ finite mixture models, which
handle continuous and discrete data simultaneously, to construct a prob-
abilistic model whose entropy can be estimated. Analytic estimates of
entropy are intractable for some models, so an approximate sample es-
timate of entropy is used. A simplified formulation of bootstrap is em-
ployed to assess the distribution of entropy, which can then be repre-
sented with confidence intervals. We show how entropy can be used as
a unified approach to quantifying three fundamental qualitative aspects
of probabilistic models: the correlation aspect that corresponds to the
linearities in the model, the structure aspect that helps capture model’s
nonlinearities, and the interaction aspect underlying the entanglements
of attributes resulting from structure or correlation or both.

1 Introduction

A staggering number of modelling methods have been proposed in machine learn-
ing, data mining, statistics, pattern recognition and statistical physics over the
years. While the researchers keeps pushing forward, seeking new types of prob-
lems and their solutions, there is a need to organize and integrate the underlying
knowledge. This paper attempts to define a set of properties that practically all
models are subject to. Instead of comparing models indiscriminately through
predictive performance, it is more insightful to compare and study models with
respect to these aspects at a higher level.

The loss function measures how well a model matches the data. For that
purpose we employed the ubiquitous Shannon entropy [1]. For entropy to be ap-
plicable, the model should be uncertain, but handling uncertainty was found to
be the necessary element of any method that attempts to model real-life data,
so often noisy and incomplete. Entropy is closely related with the notion of in-
formation, which might be defined as a reduction in entropy achieved by the
addition of model adjustments, additional data or additional attributes. We do
not treat entropy as a constant measure of a model but maintain that entropy
itself should be seen as an uncertain quantity. We employ the widely used boot-
strap approach [2] to show how the uncertainty of entropy may be modelled



with confidence intervals. Bootstrapping information also facilitates uncertain
comparisons between uncertain models.

Given a probabilistic model we may evaluate the information it provides. The
sources of information are different qualitative aspects the model exploited to
reduce entropy. A frequently used aspect is correlation: allowing for a linear re-
lationship among attributes and transforming them helps provide information.
Another common aspect is structure: segmenting the data into several differ-
ent groups or regions. The third aspect is interaction: taking advantage of the
connections, the dependencies and the associations between attributes provides
insight. There are many other aspects used by models, such as symmetry, central
tendency, monotonicity, so our survey is by no means complete.

2 Probabilistic Modelling

This section will discuss the basic methodology for computing entropy from
even an intractable probabilistic model of the data, connecting entropy and
loss. We will interpret learning as an optimization problem with the objective of
minimizing entropy of a particular probability density function. We will describe
how probabilistic models for both continuous and discrete data can be learned
using the finite mixture modelling approach. Finally, we will briefly review how
the bootstrap procedure helps estimate the confidence intervals of uncertain
quantities, such as entropy.

The terminology used will be as follows. An instance i corresponds to an event
described with a number of attribute values. An attribute X is a unique property
of instances that has a finite or infinite range Rx of mutually exclusive values.
The value of attribute X for instance 4 is x; € Ry . If there are several attributes,
we may represent them together as an attribute vector X = [X1, Xo, ..., Xy,
and we refer to R x as the attribute space. The joint probability density function
(PDF) p is a model of co-appearance of individual attribute values in an instance,
and can be mathematically represented as a map p : Rx — R, with the positivity
YV : p(x) > 0 and the normalization condition fiﬁx p(x)dz = 1. From the joint
PDF we can always obtain a marginal PDF by removing or marginalizing one or
more attributes by integrating over all the combinations of values of the removed
attributes. For example, marginalizing p(a, b) over the attribute b would result
in p(a) = [, p(a,b)db. A conditional PDF results when some attributes are
being controlled for, and the distribution of a given b can be obtained from the
joint through marginalization: p(a|b) = p(a, b)/p(a).

2.1 Entropy of Continuous Attribute Models

The entropy of a discrete attribute is an elementary exercise. It is not as clear how
to compute the entropy of a continuous attribute or several of them. Although
most approaches today are based on discretizing the continuous attributes, e.g.
[3], Shannon [1] did not define entropy for a particular set of attributes, but for a
joint model of the attributes, a particular joint probability density or distribution



function (PDF) p. Entropy should be seen as a characteristic of a model and not
of an attribute or data. For a multivariate joint PDF p modelling an attribute
vector X, the differential entropy [4] can be defined as:

MXIP(X0) 2 - [ pl@)log; p(e)de 1)
Rx

Since an analytical derivation of differential entropy with this definition has been
made only for a few distributions, the sample entropy (also referred to as empiri-
cal entropy) will instead be employed [5]. To estimate it, we start with a training
multiset of instances 7 C Rx. We train a probabilistic model p(X|7) on this
data with an arbitrary probabilistic learning algorithm (we will discuss a particu-
lar approach in Sect. 2.2). If we consider 7 as a representative sample of Rx, the
sample entropy corresponds to the expected negative log-likelihood in predicting
a training instance with the model p: h(T|p(X)) 2 Eper{—log, p(x)}. This ex-
pectation is based on a uniform probability distribution over the instances, and
the resulting sample entropy is the average negative log-likelihood of the model
p for 7. This scheme can also be employed for computing the sample entropy of
conditional and marginal entropies, the only difference being that the logarithm
of a different kind of model is averaged over the training multiset. Marginalizing
over C, conditionalizing for B, the sample entropy of A on a multiset of |7| = N
instances is:

W(TIp(AIB)) =~ " log, plaslbs) = h(TIp(A, B)) ~ h(T|p(B)) (2
€T

The properties of differential entropy do not fully match those of discrete
entropy. For example, the differential and sample entropies may be negative, and
are sensitive to the choice of the coordinate system. Nonetheless, the magnitude
and the sign of changes in sample entropy remain meaningful. Entropy should
be understood generally as the loss or uncertainty of the model relative to some
standard, and Shannon entropy results from the choice of a logarithmic loss
function. Other loss functions may be employed and a corresponding notion of
entropy thus derived [6], but its properties might not match those of Shannon

entropy.

2.2 Learning Mixture Models

It has not yet been explained learn the joint PDF p from data. In machine learn-
ing, p is rarely given a priori (except perhaps as a Bayesian prior representing
background knowledge), and must be inferred from the data. Since entropy can
be viewed as loss, we can phrase learning p as an optimization task, trying to
minimize the entropy of p by assessing it on the training data. The objective of
unsupervised minimum entropy (for Shannon entropy this is clearly equivalent
to maximum likelihood) learning is to minimize the sample entropy of the model
argmin, h(7 |p(X,Y)) if X are the attributes and Y is the label. It is unsu-
pervised since the label Y is an ordinary attribute and plays no distinguished
role.



The optimization is intractable without specifying the structure of p. Re-
cently, mixture models have received much attention. They are very general, and
many machine learning models including classification and regression trees, the
naive Bayesian classifier, rules, linear discriminants, instance-based learning al-
gorithms, and others can be represented as mixture models. Mixture models are
based on a set of components, each component is a probability density function
in the attribute space. Each component has a corresponding probability of occur-
rence, and a point in the attribute space may have non-zero density for several
components. If the set of components is finite, the model is a finite mixture [7].

Assume an attribute X and a latent attribute Z having a range Ry =
{z1,...,2K}. Each latent attribute value identifies a specific component. Also
assume a probability density function p(X|¢$), where ¢ is its parameter. The
distribution of X can be described with the following finite mixture model:

p(X|Z) = Zmp X|ow) (3)

k=1

Since the value of Z is unknown, we infer X using a multinomial model for Z:
p(2k) = T,y 2o T = L.

But what if there are several attributes? The assumption of local indepen-
dence is that the latent attribute accounts for all the dependence between the
attributes X = [X1, Xo,..., Xy]:

K M
p(X|2) =" m, Hp m|Srm) (4)

k=1

The naive Bayesian classifier (NBC) of the label Y given the attributes X is
identical to the above formulation of (4), but with the non-hidden label Y playing
the role of the latent attribute. An added benefit of using local independence is
that for computing the marginalizations of X, all that needs to be done is to
compute the product for a subset of attributes.

The choice of the functions in the mixture depends on the type of the at-
tribute. Most implementations are based on normal or Gaussian mixtures, which
work for continuous attributes, e.g. [5]. Recently, multinomial mixtures for dis-
crete or count-based attributes have been successfully utilized in information
retrieval, e.g. [8]. The MULTIMIX program [9] handles both continuous and dis-
crete attributes simultaneously with the local independence assumption, adopt-
ing the multinomial distribution for any discrete attribute X4 (5) and the normal
distribution for any continuous attribute X, (6):

X4 ~ Multinomial(X, 1) p(Xa=2j|A) =X, D A =1 (5)
J

X, ~ Normal(u, o) (Xe=2z|p,0) = Le*%(u)Z (6)
c /u’7 p c /4L7 0_\/%

The model structure itself is only a part of the problem of modelling. We
employed the expectation-maximization algorithm to determine the parameters



7 and ¢ in (4). The EM algorithm is an iterative procedure for improving the fit
of the model by interleaving two separate optimization steps. In the expectation
step we compute the latent attribute value probabilities for each instance of the
training multiset, while keeping 7 and ¢ constant. In the maximization step, we
compute the maximum likelihood (and therefore also minimum sample entropy)
parameter values for each component, given the set of instances having the latent
attribute value which corresponds to the component: each instance is weighted
with the probability that it belongs to the component. Because the distributions
we use in the mixture are simple, the maximum likelihood equations can be
solved analytically [9].

Instead of the common practice of using random values as initial parameter
settings, each instance was assigned crisply to one of the clusters as found by
pam, a robust greedy medoid-based clustering algorithm [10], instead of the first
E step. To prevent correlated attributes from skewing the metric, the instances
were presented to pam projected to their eigenspace using principal component
analysis (PCA). Since PCA is sensitive to the scale of attributes, each attribute
was standardized to have the mean of 0 and the variance of 1 beforehand.

2.3 The Bootstrap and Confidence Intervals

In Sect. 2.1 we treated sample entropy h as a fixed scalar value. As such, it might
appear that a model achieving lower entropy is always better than a model that
does not. Since this is unrealistic a great number of methods have been developed
to detect sensitivity, complexity, instability, overfitting and other undesirable
properties of models. The fundamental idea is that the model’s performance on
the data varies because the data is just a random sample (a further source of
variation is that several models may have generated the same data, an epitome of
Bayesian analysis). We will employ a scheme based on nonparametric bootstrap
which may be distinguished from others by its simplicity.

Most learning algorithms make a few assumptions. One such assumption,
especially important for probabilistic modelling, is that the instances were sam-
pled independently one of another. This latter assumption is known as IID and
makes the foundation for the bootstrap procedure [2]. The nonparametric boot-
strap procedure is based on using sampling with replacement to construct a
number of bootstrap samples or resamples of the original training multiset. If a
particular parameter is computed on a set of resamples, this yields its bootstrap
distribution.

What is of interest here is the bootstrap distribution of the sample entropy
given p and the training multiset 7. If we train the PDF p on 7, we may
compute the sample entropy on a set of resamples from 7 but keeping p fixed.
Thereby we have a bootstrap distribution of bootstrap replications of entropy
given 7 and p: Pr{h(T*|p)}, where T* is a resample of 7. This formulation
differs from the usual practice where p* is relearned for each resample, but for
our purposes this would be too time-consuming. The two important parameters
to bootstrap are the size of each resample, which is usually kept to match the
training multiset cardinality, and the number of bootstrap resamples, where we



used 5000. The variance of sample entropy bootstrap distribution is connected
with the variance of instance losses. The more uniformly consistent the model,
the lower is the variance of the entropy distribution.

The bootstrap distribution can also be used to obtain confidence intervals of
sample entropy. The 95% confidence interval by the percentile method is between
the 2.5th and the 97.5th percentile of the bootstrap distribution. We may also
compute the bootstrap distribution of the difference between two models p and
¢: Pr{h(T*|p) — h(T*|q)}. If T was a representative sample from p, the result
would correspond to the distribution of Kullback-Leibler divergence D(p||q).

3 Qualitative Aspects

After we have prepared the statistical tools to perform probabilistic modelling,
we can address the needs of data mining procedures: the discovery of interesting
patterns in data. Human mind seems to prefer qualitative patterns more than
the quantitative ones. In this section we will show that the tools of Sect. 2 can be
employed to measure and test different hypotheses about the qualitative proper-
ties of a possibly black box predictive model. Although our analysis was based on
finite mixture models, any other probabilistic model would be applicable instead.

An aspect is a particular qualitative property of a model. For example, the
assumption of dependence between a group of attributes in a model can be under-
stood as the interaction aspect. The assumption of structure in data, the need to
distinguish groups, is another aspect. The assumption of correlation between two
attributes is yet another aspect. These aspects all increase the complexity of the
model. Other aspects have been studied, such as monotonic dependencies [11],
related to the nonparametric correlation coefficient. Monotonic dependencies in-
stead reduce the model complexity.

We quantify an aspect « in a unified way with the information gained from
the data 7 in an attribute space Rx facilitated by allowing the aspect. Assume a
probabilistic model p(x|7, o) which allows the aspect, and another similar model
without the aspect p(x|T, —«). The aspect’s information gain can be defined as
the reduction in entropy it facilitates I, £ H(p|—a) — H(p|a). I, should not be
understood as a number but as a variable which has its own probability distribu-
tion. Wielding the IID assumption we use the bootstrap procedure of Sect. 2.3
to estimate the probability distribution of both sample entropy and aspect sam-
ple information gain: i, (7 |p) 2 h(T|p, ~a) — h(T |p, @). Since the distribution is
usually unimodal, we describe it with its mean and its 95% confidence interval.

The sample entropy of the data given a model represents the model’s bias,
and by introducing an aspect into the model we normally reduce the entropy
and thus also the model’s bias. However, introducing an aspect may also in-
crease model’s wvariance, the dispersion of the new model’s entropy. We assess
the variance by looking at the confidence intervals of aspect information gain
and the new model’s entropy, thus determining the unpredictability of the model
performance, and the probability that the aspect-augmented model will perform
worse than the non-augmented one.



We will now examine these three aspects through a series of experiments. The
examples are vignettes describing the use of sample entropy in machine learning.
They are not, however, systematic experimental evaluations of different methods.
Our approach to analysis will be through local analysis, where we build a separate
model for each subset of attributes and investigate its aspects. This should be
distinguished from global analysis, where a model including all attributes is
built and then analyzed by marginalization. The resulting global aspects do
not provide similar quality of insight: by building a single global model, certain
attributes’ aspects may be neglected at the expense of properly representing
others’.

3.1 Structure

Mixture modelling can be seen as an approach to constructive induction if the la-
tent attribute Z of (3) and (4) is understood as a constructed nominal attribute,
which allows capturing the intricacies of the data in the probabilistic model. In
fact, it is only due to the latent attribute that any dependencies between differ-
ent attributes can be represented. By increasing the number of components, we
increase the complexity of the model, but decrease the sample entropy. Thereby
we can define the structure aspect:

Definition 1. The structure aspect is the reduction in entropy achieved by using
K instead of K' components in a finite mizture model, K > K'.

Each component can also be viewed as a separate rule, as a leaf in a clas-
sification tree, as a prototypical instance, or as a support vector. For example,
the component identifying living people can be described with temperature =
37°C' £ 10, while the component identifying healthy people is temperature =
37°C £ 2. By the principle of local analysis, we may investigate the structure as-
pect in small subsets of attributes, seeking useful patterns and trying to localize
the complexity. The results of such an analysis are illustrated in Fig. 1.

Supervised, unsupervised and informative learning. The primary target
in classification is predicting the label. Since the unsupervised learning approach
of maximizing the joint likelihood is not directly concerned with this aim, a
separate mixture model can be built for each label value. This is referred to as
informative learning [12], and the objective is to minimize the entropy of the
attributes given the label arg min, 2(7|p(X|Y)). Class-conditional modelling of
attributes is not, however, discriminative modelling of class boundaries, the true
goal of pure supervised learning. In our entropic context we can formalize the ob-
jective of non-Bayesian supervised learning as minimization of the entropy of the
predictive distribution of the label given the attributes argmin, T |p(Y]X)),
fulfilling the fundamental task of minimizing the loss in predicting the label from
the attributes. It is important to distinguish these three learning objectives, as
they all differ one from another, in spite of the apparent similarity between su-
pervised and informative learning. Fig. 2 illustrates that neither unsupervised
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Fig. 1. On the ‘housing’ dataset we compared two models for each pair of attributes,
one with the structure, based on five components, and an alternative with a single
component but allowing correlation. Based on the structure information gain, the pairs
of attributes were ranked. An axis-aligned ellipse depicts the circumference at one
standard deviation for each component in the locally independent mixture. The pair
with the highest structure information gain was the pair (crime rate, zoned for lots),
where only one of the two attributes may have a non-zero value for an instance (left).
It is easy to see that at least two components are needed to describe this mutually-
exclusive relationship, one vertical and one horizontal. On the other hand, allowing for
structure yielded little benefit for the pair (nitric oxides, rooms) (right).

nor informative learning match the supervised learning objectives, and that in-
formative learning is not necessarily better than unsupervised learning.

3.2 Correlation

Correlation is an indication of a linear dependence among attributes. If there
is a correlation, it is the linearly transformed attributes that are conditionally
independent given the cluster in a locally independent mixture model.

Definition 2. The correlation aspect is the reduction in entropy achievable by
allowing a linear transformation of the attribute space within each component in
the mixture model in the attribute space. The correlation aspect is defined for a
particular number of components K.

We now need a model that is able to allow for the correlation aspect. Instead
of using a separate univariate normal distribution for each attribute within each
component, we can use a single multivariate normal distribution, noting that
this is no longer consistent with the local independence model (4): the vector
of attributes X is now treated as a single multi-dimensional attribute. If a d-
dimensional attribute X ~ Normal(u, X):

1 1
PX = |y, B) = —————e 3@ W F @ (7)
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Fig. 2. This analysis on the ‘voting’ dataset demonstrates that increasing the number of
components does not always result in better classification performance on the training
set, regardless of whether an unsupervised or a class-conditional scheme is used. Fur-
thermore, an unsupervised scheme may well yield better results than a class-conditional
one, with smaller confidence intervals. The reason for this is that the maximum likeli-
hood EM algorithm is not seeking to maximize the conditional likelihood of the label
given the attributes, the goal of pure supervised learning.

The operational quantification of the correlation aspect is the information gained
by using a multivariate normal distribution of attributes X = [X7, Xo, ..., X ]
instead of a univariate normal distribution for each attribute X; in a mixture
model.

This scheme is not limited to two dimensions, and correlations between an
arbitrary number of attributes can be investigated. Furthermore, it is possible
to use the covariance matrix X to identify the either principal or independent
components. From the viewpoint of constructive induction, these principal or
independent components can be understood as the latent variables that model
the continuous relationship between the attributes within each component. From
Fig. 3 we can see that the correlation aspect information gain parallels the corre-
lation coefficient, and how it is possible to combine both correlation and structure
aspects. It must be noted that the more general structure aspect may capture
the information that would otherwise be captured by correlation; therefore, pref-
erence should be given to correlation.

3.3 Interactions

An interaction is an aspect that indicates that a certain amount of entropy
cannot be eliminated without seeing all the attributes at once. Although the
past work in this area, e.g. [13], has been general in the sense that it was based
on probability distributions, it has not been tested on continuous attributes
without discretization. The general definition of a k-way interaction aspect can
be phrased as:

Definition 3. The aspect of a k-way interaction among k groups of attributes
A ={A1, As,..., A} is the reduction in entropy achievable by using the joint
PDF of k attributes p(Ay, Aa, ..., Ay) rather than its an part-to-whole approxi-
mation reconstructed solely from the complete set of p’s marginals M = {p(A;);

A7 = A\ A, 1 <i <k}
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Fig. 3. Allowing for structure and correlation aspects at the same time by modelling
with a multivariate normal mixture may unravel nonlinearities in the data, with each
component (drawn as an ellipse) capturing localized linearity (left). Instead of using
the correlation coefficient, we may express the correlation with correlation aspect in-
formation gain (right). While retaining monotonicity, the scale of information gain is
more logical than that of the correlation coefficient, as correlation coefficients lower
than 0.3 are known to be uninteresting. The large confidence interval on the extreme
right should raise suspicion: that particular pair of attributes’ high correlation is merely
due to outliers.

To obtain an operational definition, without getting into the intricacies of part-
to-whole approximations, all we need to define is how to compute the sample
entropy for the reconstruction. The basic definition of interaction information
for a set of attributes A can be used to that aim [13]:

w(Tlp) & =Y ()M ¥A(TIp(x)) (8)
XCA

It is possible to obtain p(X) easily by marginalizing p(.A). Using this definition of
k-way interaction aspect sample information gain for k = 1,2, 3 it is possible to
create interaction graphs and other visualizations [14]. The interaction graph of
a regression dataset with a continuous label and a mix of nominal and continuous
attributes is illustrated in Fig. 4. Only the interactions involving the label were
investigated.

It is important to note the dependence of the interaction aspect on correlation
and structure aspects. It is easy to see that interaction aspects only appear
along with correlation and structure aspects, but not in their absence. Therefore,
the joint PDF p used for interaction analysis should always include correlation
and/or structure aspects.

4 Discussion

Most problems in estimating entropy of data are tied with finding a good proba-
bilistic model of the data. Apart from having appealing properties (some of which
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Fig. 4. This interaction graph identifies the strongest 2-way and 3-way interactions
in the ‘imports-85’ dataset with the price of a car as the continuous label. For each
potential interaction, a five-component joint mixture model was built, and the aspect
sample information gain estimated with a 95% confidence interval. The sample infor-
mation gain was expressed as a proportion of the label sample entropy. The numbers
below each attribute indicate the proportion of label entropy the attribute eliminates,
with a bottom bound. For example, highway mpg alone eliminates 6.7% of uncertainty
about the price on average, but in 97.5% of cases more than 5.5%. fuel type is ap-
parently a useless attribute on its own, eliminating only 0.2% of entropy, but there
is a positive interaction or a synergy between fuel type and the fuel consumption on
the highway, eliminating an additional 1.13% of label entropy. Dashed edges indicate
negative interactions or redundancies, where two attributes provide partly the same
information about the label. For example, should we consider the fuel consumption
both on highways and in the city, the total amount of label entropy eliminated would
be 6.7+ 5.9 — 5.1 percent, accounting for their overlap. Due to the imprecision of sam-
ple entropy and the unsupervised modelling criteria, apparent illogicalities may appear:
the length of the automobile is hurting the predictions of the car’s price in combination
the car’s weight.

are not retained by sample entropy), entropy can be seen as a prototypical loss
function which measures the quality of a particular model, and, as information,
the worth of changes to the model. For a practical prediction task, however, en-
tropy should be replaced with a more realistic cost function if a utility function
or a cost matrix are given.

Our bootstrap scheme is fast, simple, and largely corresponds to the confi-
dence intervals as used in statistics. In fact, because we do not retrain the model
for each resample and because sampling of per-instance loss is so simple, an
analytic procedure could easily replace random sampling. The disadvantage is
that it does not verify the models’ ability to generalize upon unseen instances.
For that purpose, other means of data perturbation, such as multiply replicated
cross-validation may instead be employed to construct the confidence intervals.
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Alternatively, either Bayesian modelling or the usual formulation of bootstrap
will match overfitting with high model variance.

There are other important issues we did not cover for the lack of space. We

have not systematically evaluated mixture models in comparison with other ma-
chine learning methods, but we refer an interested reader to [15, 16], where using
a a separate latent attribute Z, for each value y of the label, and therefore using
multiple components per each label value was shown to improve the classifica-
tion accuracy. We have not explained how to determine the optimal number of
components, but there is already a considerable bibliography on this problem.
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