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1. OBJECTIVES

• Quantifying interactions among k attributes?

• Using information-theoretic measures to

quantify relationships and relations between

attributes?

• Is an attribute significantly associated with the

label? Do attributes interact significantly?

• Comparison between the χ2 distribution,

bootstrap and the cross-validation.



2. Quantifying Interaction

Attributes V = {X1, . . . , Xk} interact if the whole probabil-
ity mass function P (V) cannot be reconstructed from parts:
{P (X2, X3, . . . , Xk), P (X1, X3, . . . , Xk), . . . , P (X1, X2, . . . , Xk−1)}

Heuristic: A heuristic estimate shown to be useful for quantifying

interaction in practice is McGill’s interaction information:

I(X1;X2; . . . ;Xk) = I(V) = −
∑

T ⊆V

(−1)|V|−|T |H(T ).

Meaning: Interaction information is the loss (relative entropy)

caused by approximating the whole from the parts using the

generalized Kirkwood superposition approximation.



k = 2: Mutual Information

Whole: P (A, B) Parts: {P (A), P (B)}

The approximation from parts is P̂ (A, B) = P (A)P (B). To compute

the approximation error, use the Kullback-Leibler divergence or

relative entropy:

D(P ||P̂ ) =
∑

a,b

P (a, b) log
P (a, b)

P̂ (a, b)
= I(A;B) = H(A)+H(B)−H(A, B)

This corresponds to mutual information (information gain). Also, this

corresponds to the loss made in conditional prediction, making mutual

information relevant also for supervised learning :

I(A;B) = D(P (A|B)||P (A)) = D(P (B|A)||P (B)).

If the loss is high the attribute is relevant for predicting the label.



k = 3: Interaction Information

Whole: P (A, B, C) Parts: {P (A, B), P (A, C), P (B, C)}

The chain rule does not help, because the dependencies are cyclic.

The closed-form solution is the Kirkwood superposition approximation:

P̂ (A, B, C) =
P (A, B)P (B, C)P (A, C)

P (A)P (B)P (C)
= P (A|B)P (B|C)P (C|A)

It is a special case of Kikuchi and for k = 3 of mean-field

approximations. It is also relevant as an approximation of the loss

made by the näıve Bayes in supervised prediction:

D(P ||P̂ ) = I(A;B;C) = D

(

P (C|A, B)

∥

∥

∥

∥

P (C)P (A|C)P (B|C)

P (A)P (B)

)

=

= H(A, B)+H(A, C)+H(B, C)−H(A)−H(B)−H(C)−H(A, B, C)



Interaction information:

• is symmetric: I(A;B;C) = I(B;A;C) = I(C;B;A) = . . . .

• corresponds to the influence of one attribute on the mutual

information between the other two: I(A;B|C) − I(A;B).

• corresponds to the difference between the mutual information

between the label and both attributes together versus apart :

I(AB;C) − (I(A;C) + I(B;C)).

Interaction information can be:

• POSITIVE: There is a pattern among the k attributes unlocked

only in the presence of them all simultaneously

I(AB;C) > I(A;C) + I(B;C) synergy.

• ZERO: There is no pattern of order k: I(A;B|C) = I(A;B).

• NEGATIVE: There is duplication among the parts

I(AB;C) < I(A;C) + I(B;C) redundancy.



3. Applications of Interactions

The relationship between a set of attributes is worth con-

sidering if and only if the attributes interact.

(Otherwise, the relationship is deducible from simpler relationships in the parts.)

Examples of relationships:

• Similarity between attributes I(A;B) and the relevance for

classification/regression I(A;Y ).

• Deciding which attributes should be combined when predicting

the label I(A;B;Y ).

• Examining a scatter plot, rule induction, constructive induction.



Methodological Notes
• Relative frequencies are used to estimate the joint probability

mass function P (A, B, C). Bayesian priors only add bias, but no

benefit for this purpose.

• We use color to convey the type of the interaction: POSITIVE -

synergy, ZERO - no interaction, NEGATIVE - redundancy.

• In supervised learning tasks, we can express interaction

information as a percentage of the label entropy H(Y ). In

unsupervised learning tasks, the interaction information can be

expressed as the percentage of the joint entropy H(A, B, C). We

refer to these as normed interaction information.

• The corresponding proximity measure is the absolute value of the

normed interaction information, and ranges from 0 to 1. The

similarity measure derived from this (1 − d) obeys the triangle

inequality.



Interaction Matrices (Mushroom Data)
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The darker the rectangle the higher

the mutual information I(A; B) be-

tween two attributes.

The bluer/redder the rectangle the

higher the I(A; B; Y ), where Y is

always the label, ‘edibility’.



Interaction Graph (Mushroom Data)

The most distinct 3-way interactions can be shown as a graph, which

can be seen as a summary representation of the interaction matrix:
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The percentages are expressed as a percentage of the label entropy H(Y ).

Conditional mutual information can be obtained from this graph easily:

given ‘odor’ the ‘gill color’ attribute only provides 41.7 − 37.9 = 3.8% of

information about the label; this attribute is conditionally irrelevant.



Interaction Dendrograms (Mushroom)
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Another summarized form of the matrix is the dendrogram. Asterisks ‘*’

indicate the mutual information between the attribute and the label.



Learning Algorithm Taxonomies
Majority 

Naive Bayes *

C4_5 ***

C4_5−boost ***

Tree ***

Logistic ********
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SVM−RBF ********

C4_5−bagged *****

kNN−5 **
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C4_5 ******
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SVM−RBF ******

Tree ****

kNN−5 ***

Tic-Tac-Toe Pima-Diabetes

Taking a classifier as an attribute, we can use interaction dendrograms

for creating a taxonomy of classifiers based on comparing the

classifiers through their interactions. We can see which classifiers are

best (asterisks), which of them are correlated and which are

complementary.



Orange - Interactive Interaction Analysis

Download from http://www.ailab.si/orange (GPL, Python).



4. Part-to-Whole Models

Interaction information is based on Kirkwood superposi-

tion approximation that does not always yield a proper

probabilistic model when k > 2: it may not not sum to 1.

The resulting negative losses are meaningless, but can be

remedied by normalization.

Alternatively, a different part-to-whole approximation may be used. A

good choice are maximum entropy models constrained by the parts.

This formulation is not in closed form (except in certain cases) and

requires an iterative optimization procedure, such as generalized

iterative scaling. This underlies the definition of interaction as given

by I. J. Good in 1963.



Two Kinds of Normalization

• Joint normalization:

P̂ ′(a, b, c) =
P̂ (a, b, c)

∑

a′,b′,c′ P̂ (a′, b′, c′)

• Conditional normalization:

P̂ ′(a|b, c) =
P̂ (a, b, c)

∑

a′ P̂ (a′, b, c)

These two methods are generally different. In the remainder of the

experiments, we will be performing unsupervised normalization. The

loss will be always computed as Kullback-Leibler divergence D(P ||P̂ ′).

Before computing the KL-divergence, P̂ must be normalized!



Can Adding Parts Increase the Loss?

It may seem that the more

parts there are, the lower the

loss. Unfortunately, Kirk-

wood superposition approxi-

mation (KSA) does not have

this property. We see this by

comparing KSA with models

that assume conditional inde-

pendence.  1e-06
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Predicting the Loss of Näıve Bayes

Conditional mutual information I(A;B|C) is often used as the

predictor of the loss caused by the conditional independence

assumption in the näıve Bayesian approximation P̂ ′(C|A, B).

Interaction information I(A;B;C) works better (Mushroom data):

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

D
(P

(C
|A

,
B

)
‖

P̂
′
(C

|A
,
B

))

I(A; B|C)

+
+

+

+

+
+

+++++++ + +
+++

+

++ ++

+

+

++

+
++

+
+

++

+++
+

+

+ ++ +

+ +

+
+

+
+

+
+

+
+ +

+

++
++

++

+

+

+

+

+

++
++

++

+

+

+

+

+

++
++

+

++
+

+
+

+

+

++
+
+
+

+

++

+

+

+

+

+
+++

+++ + +++ + ++ + +++++++ +
++ + + ++

+
+++++

+
++

+
+++ + ++

+
++

++++
+

+

+

+
++

+

+

+

+

+

++++

++
+ ++

+

+ +
+

+

+

+
+

+
++

++

++

+
+

++

+

+

+++
+

+
+

+
++

++

+++

+

+

++
+

+

+
+

++ +

+

+

+
++
+

+
++

+

++

0

0.1

0.2

0.3

0.4

0.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D
(P

(C
|A

,
B

)
‖

P̂
′
(C

|A
,
B

))

I(A; B; C)

+
+

+

+

+
+

++++ +++++
+++

+

++++

+

+

+ +

+
++

+
+

+ +

++ +
+

+

++++

++

+
+

+
+

+
+

+
++

+

++
++

+ +

+

+

+

+

+

++
++

+ +

+

+

+

+

+

+ +
++

+

+ +
+

+
+

+

+

++
+
+
+

+

+ +

+

+

+

+

+
+++

++++++++++++++++++
+
++++++
+
+++++
+
++
+

++++++

+
++

++++
+

+

+

+
+ +

+

+

+

+

+

++++

++
+++

+

++
+

+

+

+
+

+
++

++

++

+
+

++

+

+

+ ++
+
+

+

+
++

++

+++

+

+

++
+

+

+
+
+++

+

+

+
++
+

+
++

+

++



Iterative Scaling vs. KSA

Iterative scaling always

achieves better results than

the Kirkwood superposition

approximation. As such,

it is a better part-to-whole

approximation (but it is not

in closed form).
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Normalization is Imperfect!

We can predict the loss

caused by the Kirkwood su-

perposition approximation in

comparison to iterative scal-

ing. When the normalization

factor is very different from 1,

the iterative scaling is practi-

cally guaranteed to be much

better.
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5. Significance Testing

The essential element of significance testing is the realiza-

tion that even the correct model usually incurs loss on a

finite sample from the model itself.

The probability distribution of this self-loss provides a realistic scale

in which the approximation loss can be described as a probability that

the self-loss is greater or equal to the approximation loss. This

probability is the P -value.

Important: P -values depend on the part-to-whole approximation

used. We employ Kirkwood superposition approximation, but all the

testing methods are independent of the approximation method.



Test-Bootstrap Protocol

We obtain the self-loss distribution by perturbing the test data. We are

not interested in the generalization power (to unseen data), and we

are not interested in the distribution of the approximate model.

1. Using all the data D, compute the approximate model P̂ (X|D).

2. Using D, compute the max. likelihood reference model P (X|D).

3. Create a bootstrap resample D′ of the same size from D.

4. Compute the max. likelihood reference resample model P ′(X|D′).

5. The P -value equals Pr{D(P ′(X)||P (X)) ≥ D(P (X)||P̂ (X))}.

Beware: The procedure differs from the ‘usual’ bootstrap procedure which

perturbs the training set.



Self-Loss

The distribution of self-loss (D(P ′||P )) over 10000 bootstrap

resamples in ‘voting’ data for the immigration attribute:
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Mutual information (D(P ||P̂ ) = 0.002467 bits) indicates that the

P -value is 0.6986. In 70% of the experiments, the self-loss was larger

than the approximation loss. This interaction is insignificant, meaning

that the variation in the performance exceeds the approximation error.



χ2, Goodness-of-Fit, and KL-Divergence

If the underlying reference model P (V) is based on relative frequencies

estimated from n instances, the KL-divergence between P and an

independent joint PDF P̂ multiplied by 2n/ log
2
e is equal to the

Wilks’ likelihood ratio statistic G2. In the context of a goodness-of-fit

test for large n, G2 has a χ2

df distribution with df degrees of freedom:

2n

log
2
e
D(P‖P̂ ) ∼

n→∞
χ2

|ℜV |−1
(1)

Here, df = |ℜV | − 1 is based on the cardinality of the set of possible

combinations of attribute values |ℜV |. (Certain value combinations

may not appear in the data, and the df must be correspondingly

lower. Zero counts don’t count as degrees of freedom.)



χ2 vs. Test-Bootstrap

Self-loss as assessed by test-

bootstrap protocol and mul-

tiplied by 2n/ log
2
e has a

χ2 distribution asymptoti-

cally as n → ∞. But how

about small data sets with n

in the range 30-1000? YES,

almost identical!  0

 0.009

 0.099

 1

 0  0.009  0.099  1

ch
i-s

qu
ar

ed
 P

-v
al

ue

bootstrap P-value

soy-small
lung

horse
postop
breast

german
lymph



The Principle of Occam’s P -Razor

Pick the simplest model among those that are not signifi-

cantly worse than the best one.

P -values Questions & Answers:

• In larger data sets, the variation in self-loss becomes very small:

everything is significant. Solution: use smaller resamples, as the

improvement should be significant even there.

• Multiple-testing problem. Solution: study the correlation

between P -values, don’t assume it.

• I care about expected performance, not about simplicity!

Solution: These two criteria are different, but risk does matter.

• I care about truth, not about loss. Solution: Your utility

function is the model’s a posteriori likelihood, given the data.



6. Cross Validation

P -values ignore both the variation in approximation loss

and the generalization performance of a model. CV -values

are a solution.

CV -values evaluate the probability that one model is better than

another on separate test data. We are not interested in the expected

performance difference, but in the distribution of performance

difference. Namely, P -values may underestimate the quality of

approximate models, which often have lower performance variation

(model variance) than more complex models.



Cross-Validation Protocol
Since probability does not exist without a model, the same trusted

reference model is trained both on training and the test data. The

most meaningful number of folds is therefore ∼ 2. The reference

model should make a honest effort of modelling the data well.

1. Split the data D into the training data T and test data E .

2. Compute the reference trained model P (X|T ).

3. Compute the approximate model P̂ (X|T ).

4. Compute the reference maximum likelihood test model Ṗ (X|E).

5. The CV -value equals Pr{D(Ṗ (X)||P (X)) ≥ D(Ṗ (X)||P̂ (X))}.

In generalization tasks, maximum-likelihood models are dangerous, as an

outcome may have a zero occurrence count in the training data, but not in

the test data. Bayesian priors can be used to remedy this problem of

infinite divergences.



Good and Bad Attributes
A weak interaction (CV -value = 0.491, P -value = 0.690):

interaction−loss − nointeraction−loss (bits)
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A strong interaction (CV -value = 0.001, P -value = 0.000):

interaction−loss − nointeraction−loss (bits)
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The histograms illustrate the distribution of D(Ṗ (X)||P̂ (X)) − D(Ṗ (X)||P (X))



Expected Loss is Misleading!

If we only consider the expected

change in loss computed on indi-

vidual instances, it may happen

that highly insignificant inter-

actions may reduce the expected

cross-validated loss! There is

no justification for including an

insignificant attribute into the

model, except for its involve-

ment in a significant higher-

order interaction.
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7. Summary

• Interactions are irreducible dependencies.

• Interaction information generalizes upon

mutual information, and evaluates the

irreducibility through Kirkwood superposition

approximation (KSA) and the Kullback-Leibler

divergence as the loss function.

• Negative interaction information is a

consequence of KSA being non-normalized.



• Iterative scaling yields better models than

KSA, but it is not in closed form.

• The test-bootstrap protocol explains how

goodness-of-fit tests work.

• Kullback-Leibler divergence is both a loss

function and a statistic, distributed with χ2.

• P -values and CV -values evaluate the

probability that using the interaction will

result in an increase of loss.


