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Rank-Normalization, Folding, and Localization:

An Improved R for Assessing Convergence of
MCMC*

Aki Vehtarif, Andrew Gelman*, Daniel Simpson?,
Bob Carpenter¥, and Paul-Christian Biirkner|l

Abstract. Markov chain Monte Carlo is a key computational tool in Bayesian
statistics, but it can be challenging to monitor the convergence of an iterative
stochastic algorithm. In this paper we show that the convergence diagnostic R of
Gelman and Rubin (1992) has serious flaws. Traditional R will fail to correctly
diagnose convergence failures when the chain has a heavy tail or when the variance
varies across the chains. In this paper we propose an alternative rank-based diag-
nostic that fixes these problems. We also introduce a collection of quantile-based
local efficiency measures, along with a practical approach for computing Monte
Carlo error estimates for quantiles. We suggest that common trace plots should be
replaced with rank plots from multiple chains. Finally, we give recommendations
for how these methods should be used in practice.

1 Introduction

Markov chain Monte Carlo (MCMC) methods are important in computational statistics,
especially in Bayesian applications where the goal is to represent posterior inference
using a sample of posterior draws. While MCMC, as well as more general iterative
simulation algorithms, can usually be proven to converge to the target distribution as
the number of draws approaches infinity, there are rarely strong guarantees about their
behavior after finite time. Indeed, decades of experience tell us that the finite sample
behavior of these algorithms can be almost arbitrarily bad.

1.1 Monitoring convergence using multiple chains

In an attempt to assuage concerns of poor convergence, we typically run multiple inde-
pendent chains to see if the obtained distribution is similar across chains. We can also
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Figure 1: Examples of two challenges in assessing convergence of iterative simulations.
(a) In the left plot, either sequence alone looks stable, but the juxtaposition makes it
clear that they have not converged to a common distribution. (b) In the right plot,
the two sequences happen to cover a common distribution but neither sequence appears
stationary. These graphs demonstrate the need to use between-sequence and also within-
sequence information when assessing convergence. Adapted from Gelman et al. (2013).

visually inspect the sample paths of the chains via trace plots as well as study summary
statistics such as the empirical autocorrelation function.

Running multiple chains is critical to any MCMC convergence diagnostic. Figure 1
illustrates two ways in which sequences of iterative simulations can fail to converge.
In the first example, two chains are in different parts of the target distribution; in the
second example, the chains move but have not attained stationarity. Slow mixing can
arise with multimodal target distributions or when a chain is stuck in a region of high
curvature with a step size too large to make an acceptable proposal for the next step.
The two examples in Figure 1 make it clear that any method for assessing mixing and
effective sample size should use information between and within chains.

As we are often fitting models with large numbers of parameters, it is not realistic
to expect to make and interpret trace plots such as in Figure 1 for all quantities of
interest. Hence we need numerical summaries that can flag potential problems.

Of the various convergence diagnostics (see reviews by Cowles and Carlin, 1996;
Mengersen et al., 1999; Robert and Casella, 2004), probably the most widely used is the
potential scale reduction factor R (Gelman and Rubin, 1992; Brooks and Gelman, 1998).
It is recommended as the primary convergence diagnostic in widely applied software
packages for MCMC sampling such as Stan (Carpenter et al., 2017), JAGS (Plummer,
2003), WinBUGS (Lunn et al., 2000), OpenBUGS (Lunn et al., 2009), PyMC3 (Salvatier
et al., 2016), and NIMBLE (de Valpine et al., 2017), which together are estimated to
have hundreds of thousands of users. R is computed for each scalar quantity of interest,
as the standard deviation of that quantity from all the chains included together, divided
by the root mean square of the separate within-chain standard deviations. The idea is
that if a set of simulations have not mixed well, the variance of all the chains mixed
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together should be higher than the variance of individual chains. More recently, Gelman
et al. (2013) introduced split- R which also compares the first half of each chain to the
second half, to try to detect lack of convergence within each chain. In this paper when
we refer to R we are always speaking of the split- R variant.

Convergence diagnostics are most effective when computed using multiple chains
initialized at a diverse set of starting points. This reduces the chance that we falsely di-
agnose mixing when beginning at a different point would lead to a qualitatively different
posterior.

In the context of Markov chain Monte Carlo, one can interpret R with diverse seeding
as an operationalization of the qualitative statement that, after warmup, convergence of
the Markov chain should be relatively insensitive to the starting point, at least within
a reasonable part of the parameter space. This is the closest we can come to verifying
empirically that the Markov chain is geometrically ergodic, which is a critical property
if we want a central limit theorem to hold for approximate posterior expectations.
Without this, we have no control over the large deviation behavior of the estimates and
the constructed Markov chains may be useless for practical purposes.

1.2 Example where traditional R fails

Unfortunately, R can fail to diagnose poor mixing, which can be a problem when it is
used as a default rule. The following example shows how failure can occur.

The red histograms in Figure 2 show the distribution of R (that is, split—ﬁ from
Gelman et al. (2013)) in four different scenarios. (Ignore the light blue histograms for
now; they show the results using an improved diagnostic that we shall discuss later in
this paper.) In all four scenarios, traditional R is well under 1.1 under all simulations,
thus not detecting any convergence problems—but in fact the two scenarios on the left
have been constructed so that they are far from mixed. These are problems that are
not detected by traditional R.

In each of the four scenarios in Figure 2, we run four chains for 1000 iterations each
and then replicate the entire simulation 1000 times. The top row of the figure shows
results for independent AR(1) processes with autoregressive parameter p = 0.3. The
top left graph shows the distribution of R when one of the four chains is manually
transformed to only have 1/3 of the variance compared to the other three chains (see
Vehtari et al. (2020), Appendix A for more details). This corresponds to a scenario where
one chain fails to correctly explore the tails of the target distribution and one would
hope could be identified as non-convergent. The split- R statistic defined in Gelman et al.
(2013) does not detect the poor mixing, while the new variant of split-R defined later
in this paper does. The top-right figure shows the same scenario but with all the chains
having the same variance, and now both R values correctly identify that mixing occurs.

The second row of Figure 2 shows the behavior of R when the target distribution has
infinite variance. In this case the chains were constructed as a ratio of stationary AR(1)
processes with p = 0.3, and the distribution of the ratio is Cauchy. All of the simulated
chains have unit scale, but in the lower-left figure, we have manually shifted one of
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Figure 2: An example showing problems undetected by traditional R. Each plot shows
histograms of R values over 1000 replications of four chains, each with a thousand draws.
In the left column, one of these four chains was incorrect. In the top left plot, we set
one of the four chains to have a variance lower than the others. In the bottom left plot,
we took one of the four chains and shifted it. In both cases, the traditional R estimate
does not detect the poor behavior, while the new value does. In the right column, all
the chains are simulated with the same distribution. The chains used for the top row
plots target a normal distribution, while the chains used for the bottom row plots target
a Cauchy distribution.

the four chains two units to the right. This corresponds to a scenario where one chain
provides a biased estimate of the target distribution. The Gelman et al. (2013) version
of R would catch this behavior if the chain had finite_variance, but in this case the
infinite variance destroys its effectiveness—traditional R and split-R are defined based
on second-moment statistics—and it inappropriately returns a value very close to 1.

This example identified two problems with traditional R:

1. If the chains have different variances but the same mean parameters, traditional
R=~1.

2. If the chains have infinite variance, traditional R ~ 1 even if one of the chains
has a different location parameter to the others. This can also lead to numerical
instability for thick-tailed distributions even when the variance is technically finite.
It’s typically hard to assess empirically if a chain has large but finite variance or
infinite variance.
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A related problem is that Ris typically computed only for the posterior mean. While
this provides an estimate for the convergence in the bulk of the distribution, it says little
about the convergence in the tails, which is a concern for posterior interval estimates
as well as for inferences about rare events.

2 Recommendations for practice

The traditional R statistic is general, easy to compute, and can catch many problems
of poor convergence, but the discussion above reveals some scenarios where it fails. The
present paper proposes improvements that overcome these problems. In addition, as
the convergence of the Markov chain needs not be uniform across the parameter space,
we propose a localized version of effective sample size that allows us to assess better
the behavior of localized functionals and quantiles of the chain. Finally, we propose
three new methods to visualize the convergence of an iterative algorithm that are more
informative than standard trace plots.

In this section we lay out practical recommendations for using the tools developed
in this paper. In the interest of specificity, we have provided numerical targets for both
R and effective sample size (ESS), which are useful as first level checks when analyzing
reliability of inference for many quantities. However, these values should be adapted as
necessary for the given application, and ultimately domain expertise should be used to
check that Monte Carlo standard errors (MCSE) for all quantities of interest are small
enough.

In Section 4, we propose modifications to J/i based on rank-normalizing and folding
the posterior draws, only using the sample if R < 1.01. This threshold is much tighter
than the one recommended by Gelman and Rubin (1992), reflecting lessons learnt over
more than 25 years of use, as well as the simulation results in Appendix A. Gelman
and Rubin (1992) derived R under the assumption that, as simulations went forward,
the within-chain variance would gradually increase while the between-chain variance
decreased, stabilizing when their ratio was 1. The potential scale reduction factor rep-
resented the factor by which the between-chain variation might decline under future
simulations, and a potential scale reduction factor of 1.1 implied that there was little to
be gained in inferential precision by running the chains longer. However, as discussed by
Brooks and Gelman (1998), the dynamics of MCMC are such that the between-chain
variance can decrease before it increases, if the initial part of the simulation pulls all
the chains to the center of the distribution, only for them to be redispersed with further
simulation. As a result, R cannot in general be interpreted as a potential scale reduction
factor, and in practice and in simulations we have found that R can dip below 1.1 well
before convergence in some examples (a point also raised by Vats and Knudson (2018)),
and we have found this to be much more rare when using the 1.01 threshold.

In addition, we recommend running at least four chains by default. Multiple chains
are more likely to reveal multimodality and poor adaptation or mixing: we see examples
for complex, misspecified or non-identifiable models in the Stan discussion forum all the
time. Furthermore, most computers are able to run chains in parallel, giving multiple
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chains with no increase in computation time. Here we do not consider massive paral-
lelization such as running 1000 chains or more; further research is needed in considering
how to use such simulations most efficiently in such computational environments (see,
for instance, the method discussed in Jacob et al. (2017)).

Roughly speaking, the effective sample size of a quantity of interest captures how
many independent draws contain the same amount of information as the dependent sam-
ple obtained by the MCMC algorithm. The higher the ESS the better. When there might
be difficulties with mixing, it is important to use between-chain as well as within-chain
information in computing the ESS. A common example arises in hierarchical models
with funnel-shaped posteriors, where MCMC algorithms can struggle to simultaneously
adapt to a “narrow” region of high density and low volume, and a “wide” region of low
density and high volume. In such a case, differences in step-size adaptation can lead to
chains that have different behavior in the neighborhood of the narrow part of the fun-
nel (Betancourt and Girolami, 2019). For multimodal distributions with well-separated
modes, the split—ﬁ adjustment leads to an ESS estimate that is close to the number of
distinct modes that are found. In this situation, ESS can be drastically overestimated
if computed from a single chain.

A small value of R is not enough to ensure that an MCMC sample is useful in prac-
tice (Vats and Knudson, 2018). The effective sample size must also be large enough to
get stable inferences for quantities of interest. Gelman et al. (2013) proposed an ESS es-
timate which combines autocovariance-based single-chain variance estimates (Hastings,
1970; Geyer, 1992) from multiple chains using between- and within-chain information as
in R. In Section 3.2 we propose an improved algorithm, and as with R we recommend
computing the ESS on the rank-normalized sample. This does not directly compute the
ESS relevant for computing the mean of the parameter, but instead computes a quantity
that is well defined even if the chains do not have finite mean or variance. Specifically,
it computes the ESS of a sample from a rank-normalized version of the quantity of
interest, using the rank transformation followed by the inverse normal transformation.
This is still indicative of the effective sample size for computing an average, and if it
is low the computed expectations are unlikely to be good approximations to the actual
target expectations.

To ensure reliable estimates of variances and autocorrelations needed for R and ESS,
we recommend requiring that the rank-normalized ESS is greater than 400, a number
we chose based on practical experience and simulations (see Appendix A) as typically
sufficient to get a stable estimate of the Monte Carlo standard error.

Finally, when reporting quantile estimates or posterior intervals, we strongly sug-
gest assessing the convergence of the chains for these quantiles. In Section 4.3, we show
that convergence of Markov chains is not uniform across the parameter space, that
is, convergence might be different in the bulk of the distribution (e.g., for the mean
or median) than in the tails (e.g., for extreme quantiles). We propose diagnostics and
effective sample sizes specifically for extreme quantiles. This is different from the stan-
dard ESS estimate (which we refer to as bulk-ESS), which mainly assesses how well the
centre of the distribution is resolved. Instead, these “tail-ESS” measures allow the user
to estimate the MCSE for interval estimates.
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3 R and the effective sample size

When coupled with an ESS estimate, R is the most common way to assess the con-
vergence of a set of simulated chains. There is a link between these two measures for
a single chain (see, e.g. Vats and Knudson, 2018), but we prefer to treat these as two
separate questions: “Did the chains mix well?” (split—ﬁ) and “Is the effective sample
size large enough to get a stable estimate of uncertainty?” In this section we define the
R and ESS statistics that we propose to modify.

3.1 Split-R

Here we present split—]fl7 following Gelman et al. (2013) but using the notation of Stan
Development Team (2018b). This formulation represents the current standard in con-
vergence diagnostics for iterative simulations. In the equations below, IV is the number
of draws per chain, M is the number of chains, S = M N is the total number of draws
from all chains, #("™) is nth draw of mth chain, (™ is the average of draws from
mth chain, and () is average of all draws. For each scalar summary of interest 6, we
compute B and W, the between- and within-chain variances:

N < (m)  =(.) m 1 )1 &K )
_ —(.m _7.. 2 —(.m _ - (nm) —(.. _ - —(.m
B_M_lmz::l(e 0°)2, where 0 _Nngle , 0 _Mmz::le :
(3.1)
1 M 1 N (.m)
_ - 2 2 (nm) _ M)\ 2
W= Mmz_:lsm, where sm——N_lz(H 0 . (3.2)

n=1
The between-chain variance, B, also contains the factor N because it is based on the

variance of the within-chain means, 9(.m)7 each of which is an average of N values ("),
We can estimate var(6|y), the marginal posterior variance of the estimand, by a weighted
average of W and B, namely,

N -1
N
This quantity overestimates the marginal posterior variance assuming the starting dis-
tribution of the simulations is appropriately overdispersed compared to the target dis-
tribution, but is unbiased under stationarity (that is, if the starting distribution equals
the target distribution), or in the limit N — co. To have an overdispersed starting dis-
tribution, independent Markov chains should be initialized with diffuse starting values

for the parameters.

e 1
vart(0ly) = W+ NB. (3.3)

Meanwhile, for any finite N, the within-chain variance W should wunderestimate
var(6|y) because the individual chains haven’t had the time to explore all of the target
distribution and, as a result, will have less variability. In the limit as N — oo, the
expectation of W also approaches var(f]y).

We monitor convergence of the iterative simulations to the target distribution by
estimating the factor by which the scale of the current distribution for € might be
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reduced if the simulations were continued in the limit N — oo. This leads to the
estimator

—~ +
~ var” (0|y)
R =1\ ——, 3.4
- (3.9
which for an ergodic process declines to 1 as N — co. We call this split—fi because we
are applying it to chains that have been split in half so that M is twice the number of
simulated chains. Without splitting, R would get fooled by non-stationary chains as in

Figure 1b.

In cases, where we can be absolutely certain that a single chain is sufficient, R could
be computed using only single chain marginal variance and autocorrelations (see, e.g.
Vats and Knudson, 2018). However we are willing to trade off a slightly higher vari-
ance for increased diagnostic sensitivity (as described in the introduction) that running
multiple chains brings.

3.2 The effective sample size

We estimate effective sample size by combining information from R and the autocorre-
lation estimates within the chains.

The effective sample size and Monte Carlo standard error

Given S independent simulation draws, the accuracy of average of the simulations  as
an estimate of the posterior mean E(f|y) can be estimated as

~ Var(6
Var(§) = Yarly). (3.5)
S
This generalizes to posterior expectations of functionals of parameters E (g(0)|y). The
square root of (3.5) is called the Monte Carlo standard error (MCSE).

In general, the simulations of # within each chain tend to be autocorrelated, and
Var(f) can be larger or smaller in expectation. In the early days of using MCMC for
Bayesian inference, the focus was in estimating the single chain estimate variance di-
rectly, for example, based on autocorrelations or batch means (Hastings, 1970; Geyer,
1992). See more different variance estimation algorithms in reviews by Cowles and Car-
lin (1996), Mengersen et al. (1999), and Robert and Casella (2004). Interpreting whether
Monte Carlo standard error for a quantity of interest is small enough requires domain
expertise.

Effective sample size (ESS) can be computed by dividing any variance estimate for an
MCMC estimate by the variance estimate assuming independent draws. As convergence
diagnostics in general started to be more popular (Gelman and Rubin, 1992; Cowles
and Carlin, 1996; Mengersen et al., 1999; Robert and Casella, 2004), eventually ESS
also became popular as description of the efficiency of the simulation (an early example
of reporting ESS for Gibbs sampler is Sorensen et al., 1995). The term effective sample
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size had already been used before, for example, to describe amount of information in
climatological time series (Laurmann and Gates, 1977) and the efficiency of importance
sampling in Bayesian inference (Kong et al., 1994).

Although ESS is not a replacement for MCSE, it can provide a scale-free measure
of information, which can be especially useful when diagnosing the sampling efficiency
for a large number of variables. The downside of the term effective sample size is that it
may give a false impression that the dependent simulation sample would be equivalent
to an independent simulation sample with size ESS, while the equivalence is only for the
estimation efficiency of the posterior mean, and the efficiency of the same dependent
simulation sample for estimating another posterior functional E (¢(6)|y) or quantiles can
be very different. To simplify notation, in this section we consider the effective sample
size for the posterior mean E (f]y). This can be generalized in a straightforward manner
to ESS estimates for E (g(0)|y). Section 4.3 deals with estimating the effective sample
size of quantiles, which cannot be presented as expectations.

Estimating the effective sample size

The first proposals of ESS estimates used information only from a single chain (see,
e.g. Sorensen et al., 1995). The convergence diagnostic package coda (Plummer et al.,
2006) combines (since version 0.5.7 in 2001) single chain spectral variance based ESS
estimates simply by summing them, but this approach gives over-optimistic estimates if
spectral variances in different chains are not equal (e.g. when different step size is used
in different chains) or if chains are not mixing well. Gelman et al. (2003) proposed an
ESS estimate,

@Jr
B Y
where var' is a marginal posterior variance estimate and B is between-chain variance
estimate as given in Section 3.1. This corresponds to a batch means approach with each
chain being one batch. As there are usually only a small number of batches (chains),
and information from autocorrelations is not used, this ESS estimate has high variance.
Gelman et al. (2013) proposed an ESS estimate which appropriately combines auto-
correlation information from multiple chains. Stan Development Team (2018b) made
some computational improvements, and the present article provides a further improved
version.

See,BDA2 = M N

(3.6)

For a single chain of length N, the effective sample size of a chain can defined in
terms of the autocorrelations within the chain at different lags,
N N
Neg = = , (3.7)
’ Yot 12307 py
where p; is autocorrelation at lag ¢ > 0. An equivalent approach was used by Hastings
(1970) for estimating the variance of the mean estimate from a single chain. For a chain
with joint probability function p(6) with mean p and standard deviation o, p; is defined
to be

po=— [ (6% = )OO — 1) p(6) db. (3.8)
€]

o2
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This is just the correlation between the two chains offset by t positions. Because we
know 6™ and #("*?) have the same marginal distribution at convergence, multiplying
the two difference terms and reducing yields,

1
pr=— / 0 9+ p(0) d. (3.9)
g% Je

In practice, the probability function in question cannot be tractably integrated and
thus neither autocorrelation nor the effective sample size can be directly calculated.
Instead, these quantities must be estimated from the sample itself. Computations of
autocorrelations for all lags simultaneously can be done efficiently via the fast Fourier
transform algorithm (FFT; see Geyer, 2011). In our experiments, FFT-based autocor-
relation estimates have also been computationally more accurate than naive autocovari-
ance computation. As recommended by Geyer (1992) we use the biased estimate with
divisor IV, instead of unbiased estimate with divisor IV —t. Also in our experiments, the
biased estimate provided smaller variance in the final ESS estimate.

The autocorrelation estimates py ,, at lag ¢ from multiple chains m € (1,..., M) are
combined with the within-chain variance estimate W = ﬁ 2%21 52, and the multi-
chain variance estimate var' = W(N — 1)/N + B/N to compute the combined auto-

correlation at lag t as,

1 M 2 A
W - M Zm:l Smpt,m,

op =1 — 3.10
Pt @+ ( )
If iy, = 0 for all m, p, = 1 — R~2. If in addition chains are mixing well so that

R ~ 1, then p; ~ 0. If jym # 0 and R ~ 1, then p; ~ &4 XM prn. If R > 1,
then p, =~ 1 — R=2. If chains are mixing well, this expression is equivalent to averaging
autocorrelations, and if chains are not mixing well, simulations in each chain are implic-
itly assumed to be more correlated with each other. In our experiments, multi-chain p;
given by (3.10) and FFT-based p; , had smaller variance than the related multi-chain
pt proposed by Gelman et al. (2013).

As noise in the correlation estimates p; increases as t increases, the large-lag terms
need to be down weighted (lag window approach, see, e.g. Geyer, 1992; Flegal and Jones,
2010) or the sum of p; can be truncated with some truncation lag T to get

NM
Seft = ————m——. (3.11)
T
L4230 pr

We use a truncation rule proposed by Geyer (1992), which takes into account certain
properties of the autocorrelations for Markov chains. Even when the simulations are
constructed using an MCMC algorithm, the time series of simulations for a scalar pa-
rameter or summary will not in general have the Markov property; nonetheless we have
found these Markov-derived heuristics to work well in practice. In our experiments,
Geyer’s truncation had superior stability compared to flat-top (e.g. Doss et al., 2014)
and slug-sail (Vats and Knudson, 2018) lag window approaches.
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For Markov chains typically used in MCMC, negative autocorrelations can happen
only on odd lags and by summing over pairs starting from lag ¢t = 0, the paired auto-
correlation is guaranteed to be positive, monotone and convex modulo estimator noise
(Geyer, 1992, 2011). The effective sample size of combined chains is then defined as

NM

Setf = ——\ (3.12)
where
2k+1 k
F=142) p=-14+2) Py, (3.13)
t=1 t'=0

and Pt/ = poy + P2y +1- The initial positive sequence estimator is obtained by choosing
the largest k such that Py > 0 for all ¢/ = 1,...,k. The initial monotone sequence
estimator is obtained by further reducing Py to the minimum of the preceding values
so that the estimated sequence becomes monotone.

In case of antithetic Markov chains, which have negative autocorrelations on odd
lags, the effective sample size Seg can also be larger than S. For example, the dynamic
Hamiltonian Monte Carlo (HMC) algorithms used in Stan (Hoffman and Gelman, 2014;
Betancourt, 2017; Stan Development Team, 2018b) is likely to produce Seg > S for
parameters with a close to Gaussian posterior (in the unconstrained space) and low
dependence on the other parameters. The benefit of this kind of super-efficiency is often
limited as it is unlikely to simultaneously have super-efficiency for mean and variance
(or tail quantiles) as demonstrated in our experiments.

In extreme antithetic cases, magnitude of single lag autocorrelations can stay large
for a large lag ¢, even if the paired autocorrelations are close to zero. To improve the
stability and reduce the variance of the ESS estimate, we determine the truncation
lag as usual, but compute the average of truncated sum ending to usual odd lag and
truncated sum ending to the next even lag. Sometimes these estimates are used for
very short antithetic chains, and just by chance there can be strange estimates, and as
highly antithetic chains are unlikely, in our software implementation we have restricted
the ESS estimate to an upper bound of Slog;((S).

The effective sample size Seg described here is different from similar formulas in the
literature in that we use multiple chains and between-chain variance in the computation,
which typically gives us more conservative claims (lower values of Seg) compared to
single chain estimates, especially when mixing of the chains is poor. If the chains are
not mixing at all (e.g., if the posterior is multimodal and the chains are stuck in different
modes), then our Seg is close to the number of distinct modes that are found. Thus,
our ESS estimate can be also to diagnose multimodality.

The values of R and ESS require reliable estimates of variances and autocorrelations
(in addition to the existence of these quantities; see our Cauchy examples in Section 5.1),
which can only occur if the chains have enough independent replicates. In particular,
we only recommend relying on the R estimate to make decisions about the quality of
the chain if each of the split chains has an average ESS estimate of at least 50. In our
minimum recommended setup of four parallel chains, the total ESS should be at least
400 before we expect R to be useful.
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4 Improving convergence diagnostics

4.1 Rank normalization helps R when there are heavy tails

As split—ﬁ and Seg are well defined only if the marginal posteriors have finite mean
and variance, we propose to use rank normalized parameter values instead of the actual
parameter values for the purpose of diagnosing convergence.

The use of ranks to avoid the assumption of normality goes back to Friedman (1937).
Chernoff and Savage (1958) show rank based approaches have good asymptotic effi-
ciency. Instead of using rank values directly and modifying tests for them, Fisher and
Yates (1938) propose to use expected normal scores (ordered statistics) and use the nor-
mal models. Blom (1958) shows that accurate approximation of the expected normal
scores can be computed efficiently from ranks using an inverse normal transformation.

Rank normalized Split-}A% and Seg are computed using the equations in Section 3.1
and 3.2, but replacing the original parameter values (") with their corresponding rank
normalized values (normal scores) denoted as z(™™). Rank normalization proceeds as
follows. First, replace each value ("™ by its rank (™) within the pooled draws from
all chains. Average rank for ties are used to conserve the number of unique values of
discrete quantities. Second, transform ranks to normal scores using the inverse normal
transformation and a fractional offset (Blom, 1958):

(nm) _3/8
(nm) — 3! r
z o (—5_1/4 ) (4.1)

Using normalized ranks (normal scores) z("™) instead of ranks (") themselves has the
benefits that (1) for continuous variables the normality assumptions in computation of R
and Seq are fulfilled (via the transformation), (2) the values of R and Seg are practically
the same as before for nearly normally distributed variables (the interpretation doesn’t
change for the cases where the original R worked well), and (3) rank-normalized R and
Sef are invariant to monotone transformations (e.g. we get the same diagnostic values
when examining a variable or logarithm of a variable). The effects of rank normalization
are further explored in the online appendix.

We will use the term bulk effective sample size (bulk-ESS or bulk-Seg) to refer to
the effective sample size based on the rank normalized draws. Bulk-ESS is useful for
diagnosing problems due to trends or different locations of the chains (see Appendix A).
Further, it is well defined even for distributions with infinite mean or variance, a case
where previous ESS estimates fail. However, due to the rank normalization, bulk-ESS is
no longer directly applicable to estimate the Monte Carlo standard error of the posterior
mean. We will come back to the issue of computing Monte Carlo standard errors for
relevant quantities in Section 4.4.

4.2 Folding reveals problems with variance and tail exploration

Both original and rank normalized split—ﬁ can be fooled if the chains have the same
location but different scales. This can happen if one or more chains is stuck near the
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middle of the distribution. To alleviate this problem, we propose a rank normalized
split- R statistic not only for the original draws #(™™), but also for the corresponding
folded draws (™™ absolute deviations from the medlan7

¢lmn) — |gnm) _ median(6)| . (4.2)

We call the rank normalized split—ﬁ measure computed on the ¢™") values folded-split-
R. This measures convergence in the tails rather than in the bulk of the distribution.
To obtain a single conservative R estimate, we propose to report the maximum of rank
normalized split-R and rank normalized folded split- R for each parameter.

Figure 1 demonstrates how our new version of R catches some examples of lack of
convergence that were not detected by earlier versions of the potential scale reduction
factor. We do not intend with this example to claim that our new R is perfect—of course,
it can be defeated too. Rather, we use these simple scenarios to develop intuition about
problems with traditional split-R and possible directions for improvement.

4.3 Localizing convergence diagnostics: Assessing the quality of
quantiles, the median absolute deviation, and small-interval
probabilities

The new R and bulk-ESS introduced above are useful as overall efficiency measures.
Next we introduce convergence diagnostics for quantiles and related quantities, which
are more focused measures and help to diagnose reliability of reported posterior inter-
vals. Estimating the efficiency of quantile estimates has a high practical relevance in
particular as we observe the efficiency for tail quantiles to often be lower than for the
mean or median. This especially has implications if people are making decisions based
on whether or not a specific quantile is below or above a fixed value (for example, if a
posterior interval contains zero).

The a-quantile is defined as the parameter value 6, for which Pr(6 < 6,) = a. An

estimate 6, of 8, can be obtained by finding the a-quantile of the empirical cumulative
distribution function (ECDF) of the posterior draws 6(*).

The cumulative probabilities Pr(f < 6,) can be written as expectation which can
be estimated with sample mean

S
Pr(f < 6,) = E(I(0 < 6,)) ~ 1, Z 10 < 6,) (4.3)

where I(+) is the indicator function. The indicator function transforms simulation draws
to 0’s and 1’s, and thus the subsequent computations are bijectively invariant. Efficiency
estimates of the ECDF at any 6, can now be obtained by applying rank-normalizing
and subsequent computations directly on the indicator function’s results. More details
on the variance of the cumulative distribution function can be found in the online
appendix. Raftery and Lewis (1992) proposed to focus on accuracy of cumulative or
interval probabilities and also proposed a specific effective sample size estimate for
these probability estimates.
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Although the quantiles cannot be written directly as an expectation, the quantile
estimate is strongly consistent and Doss et al. (2014) provide conditions for a quantile
central limit theorem. Assuming that the CDF is a continuous function F which is
smooth near an a-quantile of interest, we could compute

Var(,) = Var(F~ (1)) = Var(Lo)/f(0a). (4.4)

Even if we do not usually know F', this shows that the variance of 6, is just the variance
of I, scaled by the unknown density f(6,), and thus the effective sample size for the
quantile estimate 6, is the same as for the corresponding cumulative probability.

To get a better sense of the sampling efficiency in the distributions’ tails, we propose
to compute the minimum of the effective sample sizes of the 5% and 95% quantiles, which
we will call tail effective sample size (tail-ESS or tail-Segt). Tail-ESS can help diagnosing
problems due to different scales of the chains (see Appendix A).

Since the marginal posterior distributions might not have finite mean and variance,
for example, the popular rstanarm package (Stan Development Team, 2018a) reports
median and median absolute deviation (MAD) instead of mean and standard error.
Median and MAD are well defined even when the marginal distribution does not have
finite mean and variance. Since the median is same as the 50% quantile, we can get an
efficiency estimate for it as for any other quantile.

Further, we can also compute an efficiency estimate for the median absolute devia-
tion by computing the efficiency estimate of an indicator function based on the folded
parameter values ¢ (see (4.2)):

s
Pr(¢ < Cos) ~ Tcos = < > 1(CY < Gos), (4.5)
s=1

Nl

where (o 5 is the median of the folded values. The efficiency estimate for the MAD is
obtained by applying the same approach as for the median (and other quantiles) but
with the folded parameters values.

We can get more local efficiency estimates by considering small probability intervals.
We propose to compute the efficiency estimates for

Ls = Pr(Qu < 0 < Quss), (4.6)

where Qa is an empirical a-quantile, § = 1/k is the length of the interval for some
positive integer k, and « € (0,46,...,1 — §) changes in steps of §. Each interval has S/k
draws, and the efficiency measures the autocorrelation of an indicator function which
is 1 when the values are inside the specific interval and 0 otherwise. This gives us a
local efficiency measure which is more localized than efficiency measure for quantiles
and can be used to build intuition about what types of posterior functionals can be
computed as illustrated in the examples. While the expectation of a function that only
depends on intermediate values can be usually estimated with relative ease, expectations
of tail probabilities or other posterior functionals that depend critically on the tail of
the distribution will be usually more difficult to estimate. In addition, small probability
intervals can be used in practical equivalence testing (see, e.g., Wellek, 2010).
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A natural multivariate extension of small intervals would be to consider small prob-
ability volumes using a box or sphere with dimensions determined, for example, by
marginal quantiles. The visualization of the multivariate results would be easiest in 2
or 3 dimensions. In higher dimensions, for example, k-means clustering could be used
to determine hyper-spheres. Even if it gets more difficult to visualize where the prob-
lematic region in the high dimensional space is, the diagnosing that sampling efficiency
is low in some parts of the posterior can be useful.

4.4 Monte Carlo error estimates for quantiles

To obtain the MCSE for 6, Doss et al. (2014) use a Gaussian kernel density estimate of
f(6,) and batch means and subsampling bootstrap method for estimating Var(I,), and
Liu et al. (2016) use a flat top kernel density estimate for f(6,) and a spectral variance
approach for Var(I,).

We propose an alternative approach which avoids the need to estimate f(6,). Here
is how we estimate, for example, a central 90% Monte Carlo error interval for 6, (any
quantiles or intervals can be computed using the same algorithm):

1. Compute the effective sample size Seg for estimating the expectation E(I(6 < éa))

2. Compute a and b as 5% and 95% quantiles (for other than 90% interval use
corresponding quantiles) of

Beta (Segar + 1, Seg(1 — ) +1). (4.7

Using Seg here takes into account the efficiency of the posterior draws. The vari-
ance of this beta distribution matches the variance of normal approximation, but
using quantiles guarantees that 0 < a < 1 and 0 < b < 1. Asymptotically as
Seff — 00, this beta distribution converges towards a normal distribution. Instead
of drawing random sample from the beta distribution, we get sufficient accuracy
for MCSE using just two deterministically chosen quantiles.

3. Propagate a and b through the nonlinear inverse transforms A = (F~1(a)) and
B = (F71(b)). Then A and B are corresponding quantiles in the transformed
scale. As we don’t know F' for the quantity of interest, we use a simple numerical
approximation:

~

A= 9(8/) where s’ < Sa < s’ +1,
B =00") where s” —1 < Sb < s,
where 0(*) have been sorted in ascending order. A and B are then estimated 5%

and 95% quantiles (or other quantiles corresponding to which quantiles a and b
were chosen to be) of the Monte Carlo error interval for 6.

The Monte Carlo standard error for 6, can be approximated, for example, by com-
puting (B A) /2, where A and B are estimated 16% and 84% Monte Carlo error
quantiles computed with the above algorithm. Use of deterministically chosen 16% and
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84% quantiles a and b, propagating them through the nonlinear transformation and
estimating the standard error from the transformed quantiles, corresponds to unscented
transformation which is known to estimate the variance of the transformed quantity
correct to the second order (Julier and Uhlmann, 1997).

The above algorithm is useful as a default, as it is more robust than density esti-
mation based approaches for non-smooth densmes which is common case, for example,
when variables are constrained in a (semi-open) range. A and B are hkely to have high
variance in case of extreme tail quantiles and thick-tailed distributions, as there are
not many () in extreme tails. The approaches using a density estimate for f(f,) can
provide better accuracy when the assumptions of the density estimate are fulfilled, but
they can have a high bias if the density is not smooth or the shape of the kernel doesn’t
match well the tail properties of the distribution. To improve accuracy of extreme tail
quantile estimates, common extreme value models could be used to model the tail of
the distribution.

4.5 Diagnostic visualizations

In order to develop intuitions around the convergence of iterative algorithms, we pro-
pose several new diagnostic visualizations in addition to the numerical convergence
diagnostics discussed above. We illustrate with several examples in Section 5

Rank plots Extending the idea of using ranks instead of the original parameter values,
we propose using rank plots for each chain instead of trace plots. Rank plots, such as
Figure 6, are histograms of the ranked posterior draws (ranked over all chains) plotted
separately for each chain. If all of the chains are targeting the same posterior, we expect
the ranks in each chain to be uniform, whereas if one chain has a different location or
scale parameter, this will be reflected in the deviation from uniformity. If rank plots of
all chains look similar, this indicates good mixing of the chains. As compared to trace
plots, rank plots don’t tend to squeeze to a fuzzy mess when used with long chains.

Quantile and small-interval plots The efficiency of quantiles or small-interval prob-
abilities may vary drastically across different quantiles and small-interval positions,
respectively. We thus propose to use diagnostic plots that display efficiency of quantiles
or small-interval probabilities across their whole range to better diagnose areas of the
distributions that the iterative algorithm fails to explore efficiently.

Efficiency per iteration plots For a well-explored distribution, we expect the ESS
measures to grow linearly with the total number of draws S, or, equivalently, that the
relative efficiency (ESS divided S) is approximately constant for different values of S. For
small number of draws, both bulk and tail-ESS may be unreliable and cannot necessarily
reveal convergence problems. As a result, some issues may only be detectable as S
increases, if ESS grows sublinearly or even decreases with increasing S. Equivalently,
in such a case, we would expect to see a relatively sharp drop in the relative efficiency
measures. We therefore propose to plot the change of both bulk and tail ESS with
increasing S. This can be done based on a single model without a need to refit, as we can
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just extract initial sequences of certain length from the original chains. However, some
convergence problems only occur at relatively high S and may thus not be detectable
if the total number of draws is too small.

5 Examples

We now demonstrate our approach and recommended workflow on several small exam-
ples. Unless mentioned otherwise, we use dynamic Hamiltonian Monte Carlo (HMC)
with multinomial sampling (Betancourt, 2017) as implemented in Stan (Stan Develop-
ment Team, 2018b). We run 4 chains, each with 1000 warmup iterations, which do not
form a Markov chain and are discarded, and 1000 post-warmup iterations, which are
saved and used for inference.

5.1 Cauchy: A distribution with infinite mean and variance

Traditional R is based on calculating within and between chain variances. If the marginal
distribution of a quantity of interest is such that the variance is infinite, this approach
is not well justified, as we demonstrate here with a Cauchy-distributed example.

Nominal parameterization of the Cauchy distribution

We start by simulating from independent standard Cauchy distributions for each ele-
ment of a 50-dimensional vector z:

xj ~ Cauchy(0,1) for j=1,...,50. (5.1)

We monitor the convergence for each of the z; separately. As the distribution of x
has thick tails, we may expect any generic MCMC algorithm to have mixing problems.
Several values of R greater than 1.01 and some effective sample sizes less than 400
also indicate convergence problems (in addition a HMC-specific diagnostic, “iterations
exceed maximum tree depth” (Stan Development Team, 2018b) also indicated slow
mixing of the chains). The online appendix contains more results with longer chains and
other R diagnostics. We can further analyze potential problems using local efficiency and
rank plots. We specifically investigate x3g, which, in this specific run, had the smallest
tail-ESS of 34. Figure 3 shows the local efficiency of small interval probability estimates
(see Section 4.3). The efficiency of sampling is low in the tails, which is clearly caused
by slow mixing in long tails of the Cauchy distribution. Figure 4 shows the efficiency of
quantile estimates (see Section 4.3), which also is low in the tails.

We may also investigate how the estimated effective sample sizes change when we use
more and more draws; Brooks and Gelman (1998) proposed to use similar graph for R. If
the effective sample size is highly unstable, does not increase proportionally with more
draws, or even decreases, this indicates that simply running longer chains will likely
not solve the convergence issues. In Figure 5, we see how unstable both bulk-ESS and
tail-ESS are for this example. Rank plots in Figure 6 clearly show the mixing problem
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Figure 3: Local efficiency of small-interval probability estimates for the Cauchy model
with nominal parameterization. Results are displayed for the element of z with the
smallest tail-ESS. The dashed line shows the recommended threshold of 400. Orange

ticks show the position of iterations that exceeded the maximum tree depth in the
dynamic HMC algorithm.
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Figure 4: Efficiency of quantile estimates for the Cauchy model with nominal param-
eterization. Results are displayed for the element of & with the smallest tail-ESS. The
dashed line shows the recommended threshold of 400. Orange ticks show the position
of iterations that exceeded the maximum tree depth in the dynamic HMC algorithm.

between chains. In case of good mixing all rank plots should be close to uniform. More
experiments can be found in Appendix B and in the online appendix.

Alternative parameterization of the Cauchy distribution

Next, we examine an alternative parameterization of the Cauchy as a scale mixture of
Gaussians:

a; ~ Normal(0, 1), b; ~ Gamma(0.5,0.5), zj = a;/\/bj. (5.2)

The model has two parameters which have thin-tailed distributions so that we may
assume good mixing of Markov chains. Cauchy-distributed x can be computed deter-
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Figure 5: Estimated effective sample sizes with increasing number of iterations for the
Cauchy model with nominal parameterization. Results are displayed for the element of
x with the smallest tail-ESS. The dashed line shows the recommended threshold of 400.
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Figure 6: Rank plots of posterior draws from four chains for the Cauchy model with

nominal parameterization. Results are displayed for the element of x with the smallest
tail-ESS.

ministically from a and b. In addition to improved sampling performance, the example
illustrates that focusing on diagnostics matters. We define two 50-dimensional parame-
ter vectors @ and b from which the 50-dimensional quantity x is computed.

For all parameters, R is less than 1.01 and ESS exceeds 400, indicating that sampling
worked much better with this alternative parameterization. The online appendix con-
tains more results using other parameterizations of the Cauchy distribution. The vectors
a and b used to form the Cauchy-distributed x have stable quantile, mean and variance
values. The quantiles of each x; are stable too, but the mean and variance estimates
are widely varying. We can further analyze potential problems using local efficiency es-
timates and rank plots. For this example, we take a detailed look at x40, which had the
smallest bulk-ESS of 2848. Figures 7 and 8 show good sampling efficiency for the small-
interval probability and quantile estimates. The rank plots in Figure 9 also look close
to uniform across chains, which is consistent with good mixing. The appearances of the
plots in Figures 7, 8, and 9 are what we would expect for well mixing chains in general.
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Figure 7: Local efficiency of small-interval probability estimates for the Cauchy model
with alternative parameterization. Results are displayed for the element of x with the
smallest tail-ESS. The dashed line shows the recommended threshold of 400.
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Figure 8: Efficiency of quantile estimates for the Cauchy model with alternative param-
eterization. Results are displayed for the element of & with the smallest tail-ESS. The
dashed line shows the recommended threshold of 400.
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Figure 9: Rank plots of posterior draws from four chains for the Cauchy model with
alternative parameterization. Results are displayed for the element of z with the smallest

tail-ESS.
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Figure 10: Trace plots of posterior draws from four chains for the Cauchy model with
nominal and alternative parameterization. We do not tell which plot belongs to which
model and let the reader decide themselves how easy it is to see differences in conver-
gence from those trace plots. Results are displayed for the element of x with the smallest
tail-ESS in the respective model.

In contrast, trace plots may be much less clear in certain situations. To illustrate
this point, we show trace plots of the Cauchy model in the nominal and alternative
parameterizations side by side in Figure 10. Recall that the computation converged well
in the alternative parameterization but not in the nominal parameterization.

Half-Cauchy distribution with nominal parameterization

Half-Cauchy priors for non-negative parameters are common and often specified via
the nominal parameterization. In this example, we set independent half-Cauchy dis-
tributions on each element of the 50-dimensional vector x constrained to be positive.
Probabilistic programming frameworks usually implement positivity constraint by sam-
pling in the unconstrained log(z) space, which changes the geometry crucially. With this
transformation, all values of R are less than 1.01 and ESS exceeds 400 for all parameters,
indicating good performance of the sampler despite using the nominal parameterization
of the Cauchy distribution. More experiments for the half-Cauchy distribution can be
found in the online appendix.

5.2 Hierarchical model: Eight schools

The eight schools problem is a classic example (see Section 5.5 in Gelman et al., 2013),
which even in its simplicity illustrates typical problems in inference for hierarchical
models. We can parameterize this simple model in at least two ways. The centered
parameterization (6, u, 7, 0) is,

6; ~ Normal(u, 7),

y; ~ Normal(§;, o).
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In contrast, the non-centered parameterization (9~, i, T,0) can be written as,
6; ~ Normal(0,1),
Gj = U+ Téj,
y; ~ Normal(§;, o).

In both cases, §; are the treatment effects in the eight schools, and p, 7 represent the pop-
ulation mean and standard deviation of the distribution of these effects. In the centered
parameterization, the 6 are parameters, whereas in the non-centered parameterization,
the 0 are parameters and 6 is a derived quantity.

Geometrically, the centered parameterization exhibits a funnel shape that contracts
into a region of strong curvature around the population mean when faced with small val-
ues of the population standard deviation 7, making it difficult for many simple Markov
chain methods to adequately explore the full distribution of this parameter. In the fol-
lowing, we will focus on analyzing convergence of 7. The online appendix contains more
detailed analysis of different algorithm variants and results of longer chains.

A centered eight schools model

Instead of the default options, we run the centered parameterization model with more
conservative settings of the HMC sample to reduce the probability of getting diver-
gent transitions, which bias the obtained estimates if they occur; for details see Stan
Development Team (2018b). Still, we observe a lot of divergent transitions, which in
itself is already a sufficient indicator of convergence problems. We can also use R and
ESS diagnostics to recognize problematic parts of the posterior. The latter two have
the advantage over the divergent transitions diagnostic that they can be used with all
MCMC algorithms not only with HMC.

Bulk-ESS and tail-ESS for the between-school standard deviation 7 are 67 and 82,
respectively. Both are much less than 400, indicating we should investigate that param-
eter more carefully. Figures 11 and 12 show the sampling efficiency for the small-interval
probability and quantile estimates. The sampler has difficulties in exploring small 7 val-
ues. As the sampling efficiency for small 7 values is practically zero, we may assume that
we miss substantial amount of posterior mass and get biased estimates. In this case, the
severe sampling problems for small 7 values is reflected in the sampling efficiency for all
quantiles. Red ticks, which show the position of iterations with divergences, have con-
centrated to small 7 values, which gives us another indication of problems in exploring
small values.

Figure 13 shows how the estimated effective sample sizes change when we use more
and more draws. Here we do not see sudden changes, but both bulk-ESS and tail-ESS
are consistently low. In line with the other findings, rank plots of 7 displayed in Figure 14
clearly show problems in the mixing of the chains. In particular, the rank plot for the
first chain indicates that it was unable to explore the lower-end of the posterior range,
while the spike in the rank plot for chain 2 indicates that it spent too much time stuck
in these values. More experiments can be found in Appendices C and D as well as in
the online appendix.
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Figure 11: Local efficiency of small-interval probability estimates of 7 for the eight
schools model with centered parameterization. The dashed line shows the recommended
threshold of 400. Red ticks show the position of divergent transitions.
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Figure 12: Efficiency of quantile estimates of 7 for the eight schools model with centered
parameterization. The dashed line shows the recommended threshold of 400. Red ticks
show the position of divergent transitions.
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Figure 13: Estimated effective sample sizes of 7 with increasing number of iterations
for the eight schools model with centered parameterization. The dashed line shows the
recommended threshold of 400.
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Figure 14: Rank plots of posterior draws of 7 from four chains for the eight schools
model with centered parameterization.
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Figure 15: Local efficiency of small-interval probability estimates of 7 for the eight
schools model with the non-centered parameterization. The dashed line shows the rec-
ommended threshold of 400.

Non-centered eight schools model

For hierarchical models, the corresponding non-centered parameterization often works
better (Betancourt and Girolami, 2019). For reasons of comparability, we use the same
conservative sampler settings as for the centered parameterization model. For the non-
centered parameterization, we do not observe divergences or other warnings. All values
of R are less than 1.01 and ESS exceeds 400, indicating a much better efficiency of the
non-centered parameterization. Figures 15 and 16 show the efficiency of small-interval
probability estimates and the efficiency of quantile estimates for 7. Small 7 values are
still more difficult to explore, but the relative efficiency is good. The rank plots of 7
Figure 17 show no substantial differences between chains.

Supplementary Material

Rank-Normalization, Folding, and Localization: An Improved R for Assessing Conver-
gence of MCMC. Supplementary Material. (DOI: 10.1214/20-BA1221SUPP; .pdf).
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Figure 16: Efficiency of quantile estimates of 7 for the eight schools model with the
non-centered parameterization. The dashed line shows the recommended threshold of

400.
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Figure 17: Rank plots of posterior draws of 7 from four chains for the eight schools
model with non-centered parameterization.
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