
STAT GR5242: Advanced Machine Learning
Lecture slides: Weeks 4-7

John Cunningham

Department of Statistics
Columbia University

Advanced Machine Learning 1 / 62

RECAP, AND THE WEEK AHEAD

We’ve been focusing so far on models:
• constructing neural networks...
• extending that to convolutional neural networks...
• adding a menu of modeling tricks...

We have made some passing reference to what is happening under the hood:
• empirical risk minimization...
• backpropagation...
• software libraries...

Now we will connect these all together: automatic differentiation and stochastic optimization.

Advanced Machine Learning 2 / 62

TOOLS: AUTOMATIC DIFFERENTIATION

REVISITING BACKPROP

Optimization is central to machine learning
• We seek to minimize empirical riskR(θ) = 1

n

∑n
i=1 L (yi, fθ(xi))

• We iteratively optimize to find a point θ∗ where∇θL(θ)|θ∗ = 0
• Gradient descent (for some step size αk):

θ(k+1) ← θ(k) − αk∇θL(θ)

• Note: you will also remember convex optimization and the Hessian Hθ . Neural networks are nonconvex
(and big); thus we will largely ignore second order optimization

But no gradient code seems to show up in tensorflow/torch code... what’s going on?

Somehow tensorflow takes the gradients under the hood...

Advanced Machine Learning 4 / 62

DIFFERENTIATION

Four ways to take derivatives:
• manual (calculus) differentiation
• numerical differentiation
• symbolic differentiation
• automatic differentiation

They are, respectively:
• painful, mistake-prone, not scalable

(cost of a Jacobian?)
• unstable (floating point), inaccurate
• restricted (to closed form), unwieldy

(expressions)
• awesome: general, exact, particularly

well suited to algorithmic code
execution [Baydin et al (2015) JMLR... note the for loop!]

Understanding autodiff requires a bit of thinking, but remember, it’s just the chain rule

Advanced Machine Learning 5 / 62

FORWARD MODE AUTOMATIC DIFFERENTIATION

Consider the function y = f (x1, x2) = log(x1) + x1x2 − sin(x2)

• Break down f into its evaluation trace: v−1 = x1, v1 = log v−1, ...
• List symbolic derivatives for each op in the trace: v̇1 =

v̇−1
v−1

,...

• Chain rule: recurse through the evaluation trace, numerically calculate (exact!) derivatives

Note: not a neural network.

[Baydin et al (2015) JMLR]

Note: it is necessary to execute this forward mode for each input dimension...

Advanced Machine Learning 6 / 62

REVERSE MODE AND NEURAL NETWORKS

Neural Network

size:

W1

|W1| = d0

f (1)
θ (x)
σ

(
W1x

)
d1

W2 f (2)
θ (x)

σ
(

W2 f(1)(x)
)

d2

W3 f (3)
θ (x)

σ
(

W3 f(2)(x)
)

d3[
∂

∂W1
L
(
yi, f 3

θ (xi)
)]

=
[

∂f 1

∂W1

]
×

[
∂f 2

∂f 1

]
×

[
∂f 3

∂f 2

]
×

[
∂L
∂f 3

]

d0 × d4 d0 × d1 d1 × d2 d2 × d3 d3 × d4

Computational cost:
• Forward mode: matrix-matrix multiplies O(d0d1d2 + d0d2d3 + d0d3d4)

• Reverse mode: matrix-vector multiplies O(d2d3d4 + d2d1d4 + d1d0d4)

• But if L is scalar (like a loss function...), then d4 = 1!

Backprop is reverse mode autodiff on neural network losses. d4 = 1→ very fast and efficient!

Advanced Machine Learning 7 / 62

NOTES ON AUTOMATIC DIFFERENTIATION

Automatic differentiation is a symbolic/numerical hybrid:

• Each op in the trace supplies its symbolic gradient (e.g., v̇1 =
v̇−1
v−1

on earlier slides)

• Execution trace (fwd or bkwd) numerically calculates the exact (not numerical!) gradient

Reverse vs Forward mode autodiff
• Reverse mode is better for f : RN → RM for N ≫ M.
• Forward mode is better for f : RN → RM for N ≪ M.
• What are many machine learning problems? What are (most) neural networks?

Does this only apply to neural nets?
• Most all modern ML libraries include autodiff; hence the computational graph...
• However, not necessary: why not wrap numpy ops with their symbolic gradients?

https : //github.com/google/jax , https : //github.com/HIPS/autograd

Editorial remarks
• Audodiff is old and many times reinvented; yes it’s just the chain rule.
• Machine learning was embarrassingly slow to adopt autodiff. Now it’s pervasive.
• Can I just forget calculus? No! ...but also (sort of) Yes!

Advanced Machine Learning 8 / 62

TOOLS: STOCHASTIC OPTIMIZATION

EXAMPLE: LOGISTIC REGRESSION → NEURAL NETWORKS

Logistic Regression

x W b fθ(x)
σ(Wx + b)

Neural Network

x

W1 b1 f (1)
θ (x)

σ(W1x+ b1)

W2 b2 f (2)
θ (x)

σ(W2 f(1)(x) + b2)

Concerns:
• Number of parameters |θ| and complexity of optimization is growing... (CNNs, ResNets,...)
• With ImageNet (and friends), at what point will I not be able to reasonably calculate the gradient of the

empirical risk∇θR(θ) = 1
n

∑n
i=1∇θL (yi, fθ(xi))?

• When will we care about step size αk in optimization: θ(k+1) ← θ(k) − αk∇θR(θ) ?

Advanced Machine Learning 10 / 62

STOCHASTIC GRADIENT DESCENT

Idea: at each iteration, subsample batches of training data: M random data points xi1 , ..., xiM

θ(k+1) ← θ(k) − αk
1
M

M∑
m=1

∇θL (yim , fθ (xim))

Steps are now less likely to be descent directions, hence noisy... but do we gain anything?

Advanced Machine Learning 11 / 62

STOCHASTIC GRADIENT DESCENT

The previous optimization paths, scaled by relative time, show major gains!

Stochastic Gradient Descent: optimization with noisy (subsampled) gradient estimators

Note: Properly speaking, SGD is batches of size M = 1; otherwise mini-batch SGD. We will use SGD for both.

Advanced Machine Learning 12 / 62

STOCHASTIC GRADIENT DESCENT

Some common, intuitive, but rather weak arguments that SGD should work:

• Gradients are only locally informative, so needless (early) accuracy is wasteful

• If estimator is unbiased, the stochastic gradient points in the right direction on average

• We ideally seek to minimize true risk Ep(x,y) (L (y, fθ(x))), so already empirical risk
R(θ) = 1

n

∑n
i=1 L (yi, fθ(xi)) is a noisy estimator of the true objective

• Injection of noise is likely to kick θ out of saddle points and sharp local optima

• Stochastic gradients may help prevent overfitting to the empirical risk function

• Also for discussion: how might batch size help to exploit parallel computation?

The above are roughly correct (or believed so), but careless trust here can be problematic...

Advanced Machine Learning 13 / 62

DANGER! SGD REQUIRES CARE

Use SGD to solve this (toy) problem:
• Data {x1, ..., x21} = {−10.0,−9.0, ..., 0.0, ..., 9.0, 10.0}
• Loss L (xi, fθ(xi)) = (xi − θ)2

Note: you should know the answer θ∗ already

• Batch size M = 1 Note: this choice is just for simplifying the explantion

• Initialize θ0 = −20
• Step size αk = 0.5 for all k.
• That is, solve:

θ∗ = argmin
θ

1
n

n∑
i=1

L(xi, fθ(xi)) = argmin
θ

1
21

21∑
i=1

(xi − θ)2

Result: SGD bounces around and never converges...

Takeaway: step sizes {αk} matter tremendously.

Advanced Machine Learning 14 / 62

ROBBINS-MONRO

There is a deep literature on SGD. For our purposes:
• Theory: SGD is provably convergent with a proper choice of schedule {αk}k

• In brief: Robbins-Monro says {αk}k must decay quickly, but not too quickly:
∞∑

k=1

α
2
k < ∞ and

∞∑
k=1

αk = ∞

• A good choice: αk =
1

1+kα0 ...α0 = 0.5 or similar; see tf.train.inverse_time_decay()

Orange: full batch gradient; Blue: SGD no decay; Red: SGD with decay

SGD is one of the most important enablers of modern machine learning
For those interested, I strongly recommend [Bottou, Curtis, Nocedal 2017] and the original [Robbins and Monro 1951]

Advanced Machine Learning 15 / 62

ADAPTIVE STEP SIZES

So far we have a few simple step size approaches:
• αk∇k = α0∇k , i.e. a fixed step size θk = θk−1 − α0∇k

• αk∇k =
α0

1+k∇k , i.e. a simple decay (also often αk =
α0√

k
)

But remember Newton’s method?
• The shape of the loss landscape matters
• Recall that whitening the space is a good idea, but expensive.
• Key idea (Adagrad, Duchi et al 2011):

αk∇k =
α0√∑L

ℓ=1∇2
k−ℓ + ϵ

∇k elementwise, so: αk∇i
k =

α0√∑L
ℓ=1(∇i

k−ℓ)
2 + ϵ

∇i
k

So what?
• Note the step size is now dimension specific and adaptive
• When will this idea work well? Poorly?
• Used less today, but represents an essential building block – diagonal preconditioning for future...
• We precondition the gradient with a rolling average vk =

∑L
ℓ=1∇

2
k−ℓ

Advanced Machine Learning 16 / 62

MOMENTUM

A growing list:
• αk∇k = α0∇k , fixed step size θk = θk−1 − α0∇k

• αk∇k =
α0

1+k∇k , a simple decay (also often αk =
α0√

k
)

• αk∇k =
α0√∑L

ℓ=1 ∇2
k−ℓ

+ϵ
∇k , Adagrad (with some abuse of notation)

Can we adapt this trick to avoid oscillating and/or local optima?

• Key idea (SGD with Momentum):

αk∇k = α0

L∑
ℓ=0

γℓ∇k−ℓ

note γℓ is “to the power ℓ”

• Here is what we hope happens→
• RMSProp: do this same exponential

moving average on the preconditioner,
namely vk =

∑L
ℓ=1 γ

k∇2
k−ℓ

image credit Yuanrui Dong

Advanced Machine Learning 17 / 62

ADAM (MODERN DEFAULT)

Combining gradient momentum with preconditioning
• Remember, momentum is just a weighted

average:

αk∇k = α0

L∑
ℓ=0

γℓ∇k−ℓ

⇐⇒
mk = β1mk−1 + (1− β1)∇k

• Let’s make both the gradient and the diagonal
preconditioner weighted averages:

mk = β1mk−1 + (1− β1)∇k

vk = β2vk−1 + (1− β2)∇2
k

• This simple idea – moving average on both, aka
Adam – works shockingly well in many deep
learning problems...

Kingma and Ba (2015)

Advanced Machine Learning 18 / 62

SUMMARY OF MORE ADVANCED TECHNIQUES

Can we exploit more information to improve stochastic gradient descent?
• Yes: numerous advances off SGD exist
• No: making rigorous statements about their performance is challenging
• Yes: many cutting-edge methods now use these methods in lieu of standard SGD
• No: there is some indication that they overfit and that SGD is in fact preferred.
• ...an unresolved and very current debate.

Repeated themes: momentum, second order approximations, decaying weighted averages, and combinations
of the above...

• Adam is the de facto standard (do not rely on it blindly!)

image from a blog: http://ruder.io/optimizing-gradient-descent/

Advanced Machine Learning 19 / 62

HOW TO PROCEED

Practical realities:
• All are implemented in tensorflow, so we allow that abstraction.

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers

• Try one, tune its hyperparameters, try another, repeat... empiricism matters!
• Current wisdom: use Adam or plain old SGD

For more detail:
• Use SGD, says a leading researcher in this space (Ben Recht)

https://arxiv.org/pdf/1705.08292.pdf

• A few blogs with heuristic descriptions
http://ruder.io/optimizing-gradient-descent/

https://wiseodd.github.io/techblog/2016/06/22/nn-optimization/

Do these methods feel inconclusive? They are!
• Choosing step sizes and adaptive gradient techniques are unsolved (nonconvex problems!)
• SGD is rigorous but sometimes slow
• Other methods can be faster but may be problematic in a way we don’t yet understand
• Welcome to the cutting edge... this is the “art” (or careful empirical side) of deep learning

Advanced Machine Learning 20 / 62

RECURRENT NEURAL NETWORKS

RECAP, AND THE WEEK AHEAD

We’ve spent some time on models:
• constructing neural networks...
• extending that to convolutional neural networks...
• adding a menu of modeling tricks...

Now we have also understood how to bridge data to models:
• automatic differentiation...
• stochastic optimization...
• software libraries that implement them both for you...

Now we will again consider models, this time considering the particular needs of sequence data.

Advanced Machine Learning 22 / 62

TRANSITION TO RNN: RECALL TEXT DATA

Can we predict the next word in a text?
• In language, the co-occurrence and order of words is highly informative.
• This information is called the context of a word.
• We can use such a model to generate text of arbitrary length

Example: The English language has over 200,000 words.
• If we choose any word at random, there are over 200,000 possibilities.
• If we want to choose the next word in

There is an airplane in the __

the number of possibilities is much smaller.

Context information is well-suited for machine learning:
• By parsing lots of text, we can record which words occur together and which do not.
• Reminder (from previous class): the vanilla models based on this idea are n-gram models.

Advanced Machine Learning 23 / 62

BIGRAM MODELS

Bigram model:
• A bigram model represents the conditional distribution

Pr(word|previous word) =: Pr(hl|hl−1) ,

• wl is the lth word in a text.
• Bigram models are a simple Markov chain on words: a family of d multinomials, one for each possible

previous word.

N-gram models
• More generally, a model conditional on the (N − 1) previous words

Pr(hl|hl−1, . . . , hl−(N−1))

is called an N-gram model (with the predicted word, there are N words in total).
• Unigram model: the special case N = 1 (no context information)

Advanced Machine Learning 24 / 62

LEARNING SHAKESPEARE

Unigram Model

To him swallowed confess hear both. Which. Of save
on trail for are ay device and rote life have

Every enter now severally so, let

Hill he late speaks; or! a more to leg less first you enter

Are where exeunt and sighs have rise excellency took
of.. Sleep knave we. near; vile like

Bigram Model

What means, sir. I confess she? then all sorts, he is
trim, captain.

Why dost stand forth thy canopy, forsooth; he is this
palpable hit the King Henry. Live king. Follow.

What we, hath got so she that I rest and sent to scold
and nature bankrupt, nor the first gentleman?

Enter Menenius, if it so many good direction found’st
thou art a strong upon command of fear not a liberal
largess given away, Falstaff! Exeunt

[Jurafsky and Martin, "Speech and Language Processing", 2009]

Advanced Machine Learning 25 / 62

LEARNING SHAKESPEARE

Trigram Model

Sweet prince, Falstaff shall die. Harry of Monmouth’s
grave.

This shall forbid it should be branded, if renown made
it empty.

Indeed the duke; and had a very good friend.

Fly, and will rid me these news of price. Therefore the
sadness of parting, as they say, ’tis done.

Quadrigram Model

King Henry. What! I will go seek the traitor
Gloucester. Exeunt some of the watch. A great banquet
serv’d in;

Will you not tell me who I am?

It cannot be but so.

Indeed the short and the long. Marry, ’tis a noble
Lepidus.

[Jurafsky and Martin, "Speech and Language Processing", 2009]

Advanced Machine Learning 26 / 62

COST

RNN (xt = prev word)

xt−1

ht−1

xt

ht

...

...

Basic Markov models scale terribly with context size:
• N-gram model considers ordered combinations of N distinct words
• Suppose a text corpus contains 100,000 words. Thus 100000N = 105N parameters
• As such, N-gram models are conceptually valuable but won’t scale
• Long-timescale context is critical. Consider the classic example:

“I am from California and lived in various places for many years. Therefore I speak __.”
• This cost only gets worse for hidden Markov models with (possible) inputs

Advanced Machine Learning 27 / 62

RECURRENT NEURAL NETWORKS

Key idea: ht = gθ(ht−1, xt). A hidden state carries longer-term context information
• RNNs use a neural network for this evolution of hidden state (but it needn’t be)
• A single, fixed network gθ governs transitions (cf. HMM transition matrix)

Output can be ht Output can be yt|ht (cf. Markov model vs HMM)

xt−1

ht−1

xt

ht

...

...

xt−1

ht−1

yt−1

xt

ht

yt

...

...

...

Warning:
• There is rarely agreement on what a particular structure means (eg LSTMs; cf. CNNs)
• There is no definitive text (though many papers) articulating these concepts

Advanced Machine Learning 28 / 62

RNN SIMPLE EXAMPLE

Consider the following simple character model:
• alphabet consists of {h, e, l, o}, one-hot encoded
• hidden layers evolve as ht = σ (Whhht−1 + Wxhxt)

... (σ is usual activation nonlinearity, here tanh)

• output yt = Whyht (think logits... then take softmax)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Intent: ht carries longer-range context, without exponential parameters of N-gram models.

Advanced Machine Learning 29 / 62

VANISHING GRADIENTS

Recall the vanishing gradient discussion from deep CNNs:
• Backprop is the chain rule, multiplying Jacobians together repeatedly
• Exponential decay of gradients results

• Particularly relevant in RNNs: long-range context ignored over short-range

Much work has gone into designing clever network structures to persist long-range context

Advanced Machine Learning 30 / 62

LONG SHORT-TERM MEMORY NETWORKS

Long Short-Term Memory Networks are the first big idea for giving RNNs better memory context
• Custom engineered network architecture to have a notion of memory
• (recall CNNs: hand-chosen architecture to exploit problem structure)
• Origin [Hochreiter and Schmidhuber 1997]; many times improved and iterated since then

Understand the abstraction: there is simply a network gθ evolving hidden state
Original RNN Full LSTM

ht = tanh (Wxhxt + Whhht−1 + bh)

ft = σ (Wxf xt + Whf ht−1 + bf)
it = σ (Wxixt + Whiht−1 + bi)
c̃t = tanh (Wxcxt + Whcht−1 + bc)
ot = σ (Wxoxt + Whoht−1 + bo)
ct = ct−1 ⊙ ft + c̃t ⊙ it

ht = tanh (ct)⊙ ot

Pictures from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Notation consistent with [Jozefowicz et al 2015]

Advanced Machine Learning 31 / 62

LSTM CELL STATE

Rather than hidden state ht, we now pass ht and a cell state ct

• This is no problem: define h̄t ≜

[
ht

ct

]
, and it is still an RNN.

The cell state:
• provides a channel for long-range information/memory to propagate forward
• without corrupting/compromising the hidden state (which is directly output relevant)

Note: the LSTM network architecture is often (inconveniently?) called an LSTM cell.

Advanced Machine Learning 32 / 62

LSTM FORGET GATE

Now we must consider how the hidden state and cell state interact. First, the forget gate:
• Conceptually, ft chooses to forget or pass the current cell state
• Elementwise forgetting, so it is doing so individually for each unit (the width) of ct

ft = σ (Wxf xt + Whf ht−1 + bf)

The forget gate
• can be thought of as projecting dimensions of xt and ht−1

• ... that remove or persist certain dimensions of ct

• Convince yourself that this is a useful way to free or hold data in memory
• Note: σ must be ∈ [0, 1], but can be sigmoid, tanh, etc...

Advanced Machine Learning 33 / 62

LSTM INPUT GATE

Continuing hidden state and cell state interaction. The input gate:
• If ft chooses to forget or pass the existing cell state...
• Input it chooses what to pass in as a new cell state
• Again elementwise...

it = σ (Wxixt + Whiht−1 + bi)

c̃t = tanh (Wxcxt + Whcht−1 + bc)

The input gate
• can be thought of as projecting dimensions of xt and ht−1
• ... that load or ignore certain dimensions of the new proposed cell state c̃t
• Convince yourself that this is a useful way to load/not load data into memory
• Note: again σ must be ∈ [0, 1], but can be sigmoid, tanh, etc...

Advanced Machine Learning 34 / 62

LSTM CELL STATE AGAIN

The effects of the forget and input gates are then loaded onto the cell state ct:
• Elementwise action of persisting/overwriting the long-term memory cell ct

ct = ct−1 ⊙ ft + c̃t ⊙ it

Critical to intuition:
• This is neural networks, so we hope to learn from data when to forget, load, etc.
• All operations here are elementwise, so many different loads/persists occur in parallel
• So far we haven’t affected ht yet...

Advanced Machine Learning 35 / 62

LSTM OUTPUT GATE

Continuing hidden state and cell state interaction, but now to ht. The output gate:
• If ft chooses to forget or pass, and it chooses what to pass...
• ot chooses when to write out the cell ct to ht.

ot = σ (Wxoxt + Whoht−1 + bo)

ht = tanh (ct)⊙ ot

Same as before: the output gate is a useful way to send data onto ht

Note the key and complementary differences here between ht and ct;
• ht is either the output or parameterizes the output yt|ht.
• ht thus has short-term or more immediately relevant data
• ct can persist over long-range periods and needn’t (directly) drive output (ot)

Advanced Machine Learning 36 / 62

LONG SHORT-TERM MEMORY NETWORKS

We have built up the structure of a standard LSTM
• there are many minor variants
• but all share the basic forget/input/output and cell/hidden components
• thankfully, neural network libraries abstract all these blocks and parameters away
• The key reminder: like a CNN, this is just a (highly engineered) neural network gθ

Original RNN Full LSTM

ht = tanh (Wxhxt + Whhht−1 + bh)

ft = σ (Wxf xt + Whf ht−1 + bf)
it = σ (Wxixt + Whiht−1 + bi)
c̃t = tanh (Wxcxt + Whcht−1 + bc)
ot = σ (Wxoxt + Whoht−1 + bo)
ct = ct−1 ⊙ ft + c̃t ⊙ it

ht = tanh (ct)⊙ ot

Advanced Machine Learning 37 / 62

SHAKESPEARE DATA

We will treat all of Shakespeare as a long string

...
COMINIUS:
It is your former promise.

MARCIUS:
Sir, it is;
And I am constant. Titus Lartius, thou
Shalt see me once more strike at Tullus’ face.
What, art thou stiff? stand’st out?

TITUS:
No, Caius Marcius;
I’ll lean upon one crutch and fight with t’other,
Ere stay behind this business.
...

This string:
• has length 4573338
• can be one-hot encoded with vectors xi ∈ R67, namely:

Recall N-gram models on words. Now we model Shakespeare character by character

Advanced Machine Learning 38 / 62

RNN ANALOGY TO A BIGRAM MODEL

Recall:
• Each xt is the previous character (context!)
• Network predicts ht from xt

• No recurrence here (yet)...
xt−1

ht−1

xt

ht

...

...

----Post-training Sample----
pawhenyyrcato he f to avyrod
T: couwendory:

s wEI :
Tt
ILouthe hair’le,e er s the;Kt t t u

Notice:
• This is multinomial, so we can sample characters from the network output
• Try an easier dataset:

----Pre-training Sample----
nodz nppvqfvfu qfyxbrvmathpengrlvgkqtlaozzdct otfrwdekrkdp wircabmcaxwntgvnkwlvqgxyaweuawxm

----Post-training Sample----
ick juick fog oved fog the jumped jumpe rown jumpn quick brog the jumpe therown fove fown

• We could also predict with a more straightford np.argmax
----Pre-training Sample----
rfvyd

----Post-training Sample----
jumpe the t

Advanced Machine Learning 39 / 62

BACKPROPAGATION THROUGH TIME

As usual we seek to take gradients in θ:

loss = L (yt, ŷt(θ))

ŷt = fθ(ht) ht = gθ(ht−1, xt)

ŷt−1 = fθ(ht−1) ht−1 = gθ(ht−2, xt−1)

...
xt−1

ht−1

yt−1

xt

ht

yt

...

...

...

But wait...

Context:
• Though |θ| is manageable, the chain rule can extend arbitrarily far back in time
• We will truncate at some length (here T = 50) and call that the context of ht

• We believe that this depth will provide adequate approximation to the true gradient...

Advanced Machine Learning 40 / 62

1 LAYER RNN TRAINED ON SHAKESPEARE

Notes:
• Iterations are each batches of T = 50 context, sequentially, with h0 = [0, ..., 0]
• Effectively 7 epochs (full passes through text)
• Single hidden layer with n = 64 units, fully connected to logits (here ∈ R67)
• Accuracy/loss is averaged over batch in the usual way
• Learning occurs, and frankly high accuracy is unlikely (even undesirable?)

Advanced Machine Learning 41 / 62

1 LAYER RNN TRAINED ON SHAKESPEARE

Very early in training:
______[epoch:0,batch:6000,all batches:6000] has loss 3.277571439743042______
do si, pur et hirb ond aopm bohcon mttt ahr home we, peme thaucno, ior rere lethe mias iol lh

wtye thot Toates ases n wnmdsd tott anl mhew shers thie caeuame soece cUpfng-r Sowsedt mo tiree
m oie the

Later in training:
______[epoch:3,batch:21000,all batches:295398] has loss 1.7853922843933105______
And sin, I will and have my love the seet the singed the sear and the wart,
The still the have you the singly and that his a dider his and and the have to her for the still and the mangers,
And the hav

Advanced Machine Learning 42 / 62

USING THE LSTMCell ABSTRACTION IN tf

Software libraries allow abstraction of RNN details!

Much easier than...

ft = σ
(

Wxf xt + Whf ht−1 + bf
)

it = σ
(

Wxixt + Whiht−1 + bi
)

c̃t = tanh
(

Wxcxt + Whcht−1 + bc
)

ot = σ
(

Wxoxt + Whoht−1 + bo
)

ct = ct−1 ⊙ ft + c̃t ⊙ it
ht = tanh (ct) ⊙ ot

(please don’t forget all the details of LSTMs though; we use high-level APIs at our own risk)

Advanced Machine Learning 43 / 62

SIMPLE LSTM TRAINED ON SHAKESPEARE
Very early in training:
______[epoch:0,batch:6000,all batches:6000] has loss 3.478269338607788______
vh ho osnth twh eain r ovs shutn haoe hyr lh he oonctlerk

aa sEddh serotste
nue ls ldlhe uI hee ds voosit eanuu e sttsht ohme t e’nhcd trost
ti tewe le?,o hus:ee pero rh so heetbtuy m oteimnowny

Later in training:
______[epoch:3,batch:21000,all batches:295398] has loss 1.5456037521362305______
And the stanter to the well the stange.

PRINCE:
I wall me the with a marter to the sir.

PRINCE:
He sould the with a tould and the sould here
The lear and the words and the sell the werts.

PRINCE:
An

Advanced Machine Learning 44 / 62

BETTER LSTM TRAINED ON SHAKESPEARE

Trained on character sequences alone!
______[epoch:6,batch:80000,all batches:628796] has loss 1.6592674255371094______
uch a stranger to see thee and the word.

APEMANTUS:
And there is not for the tooth that we may be so
must be a more and the man and man the soor
And the field to my lord of the company.

TIMON:
The so

______[epoch:6,batch:83000,all batches:631796] has loss 1.1526007652282715______
John, the world
That will be seen the sense of the world,
And the shall be the stranger than the hand
That we shall be a brother to be the word.

PISANIO:
I will not the father than the strong of his g

Advanced Machine Learning 45 / 62

BIGGER LSTM, TRAINED LONGER

256 unit LSTM trained for 15 epochs (try this in your homework!)
l the the the cound the serest the here.

CARONES:
The will and the the the come the gorters and
And the hare the there the shere the pranged
The lave the manter the the could with the shere
And the co

QUEEN MARGARET:
I will not be a man that have been clothes
And have the false than the fortunes of them.

QUEEN MARGARET:
I will not be a state of men and thee,
And therefore like a curse of the best

You shall see the state of the charge of the
streather of the moon of the proceased with him.

KING LEAR:
Why, they are not so not the hold him to me,
The preating perceive the good field of the
sense

I will not hear thee to the counter souls.

Clown:
What is this thing?

SIR TOBY BELCH:
I will not think the streets of my foes and the state
of this and that thou art a good and beard.

SIR TOBY BELC

Advanced Machine Learning 46 / 62

INCREASING EXPRESSIVITY WITH STACKED LSTM

How to go further:

• LSTM are an input-output function...

• ...so can be composed...

• Elaborate to stacked LSTM cells.

Tensorflow makes this easy:

Advanced Machine Learning 47 / 62

GATED RECURRENT UNITS

Notice
• LSTM offers major increases in performance and long-range dependency modeling
• That said, it’s bit difficult to argue the necessity of ft, it, ot in the LSTM
• Other choices, based on update gate zt, form the Gated Recurrent Unit [Cho et al 2014]

Original LSTM Gated Recurrent Unit (GRU)

ft = σ
(

Wxf xt + Whf ht−1 + bf
)

it = σ
(

Wxixt + Whiht−1 + bi
)

c̃t = tanh
(

Wxcxt + Whcht−1 + bc
)

ot = σ
(

Wxoxt + Whoht−1 + bo
)

ct = ct−1 ⊙ ft + c̃t ⊙ it
ht = tanh (ct) ⊙ ot

zt = σ
(

Wxzxt + Whzht−1 + bz
)

rt = σ
(

Wxrxt + Whrht−1 + br
)

h̃t = tanh
(

Wxhxt + Whh
(

rt ⊙ ht−1
)
+ bh

)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

Does this matter/help?
• See [Jozefowicz et al 2015] for a thorough empirical comparison of architectures
• There is no theory to suggest these choices, though sensible, are necessary or precise
• Recent developments in transformers have taken the field in a different direction...

Advanced Machine Learning 48 / 62

MODELING SEQUENCE DATA: WHERE NEXT

Many of the usual tricks are essential to RNN performance
• validation data, batch normalization, dropout, etc...

Topics from here:

Word embeddings (e.g. word2vec) Attention

These two topics go (very) deep, especially in recent years. We will cover the core insights of each...

Advanced Machine Learning 49 / 62

EMBEDDINGS

Let’s think for a minute about one-hot input encodings:
• They create a vector embedding of nonnumerical data in R∥V∥

• They (implicitly) assign a vector representation to each token... (a row or column from Wxh)
• They seem suboptimal...

• watch, watching, look, see, etc. are all completely different... inefficient!
• Let’s watch a show and I check my watch for the time are the same token watch... context free!

Embeddings are a set of deep learning techniques that improve upon basic one-hot encodings
• Learn vector representations in Rd that are both semantically (e.g. watch ≈ look) and contextually aware

(e.g. the watch ̸= I watch)
• Offer unsupervised pretraining: in text, can be the whole internet!
• Are another example of transfer learning (sometimes this point is overlooked)
• Begin simple and extend to very involved techniques: word2vec, GloVe, ELMo, BERT
• A very busy research area from 2015-2020.
• Essentially all modern NLP includes embeddings.

Advanced Machine Learning 50 / 62

WORD2VEC (MIKOLOV ET AL 2013)
The idea of a skipgram is to predict context from a given token:

image credit Peter Bloem, David Romero

Note: unsupervised (really, self-supervised...), very amenable to transfer learning, scalable, etc.

Much of this paper is concerned with scaling this computation, but the idea is simple.

Advanced Machine Learning 51 / 62

WORD EMBEDDINGS IN ACTION

What we hope to get, and how that works in practice:

Embeddings improve performance across a wide range of NLP (and other) benchmarks.

Advanced Machine Learning 52 / 62

ELMO (2018)

Skipgrams are fixed length context
• reminiscent of a n-gram
• Let’s bring LSTMs back into the story!
• Unfortunately LSTMs are only one direction of context...

Introducing a bidirectional LSTM (biLSTM):

While this architecture seems difficult, it’s nothing new:
• For a fixed context, run a forward LSTM and backward LSTM... and combine their hidden states.
• Remember: used for the embedding (not prediction)
• ELMo drives major increases in performance.

Advanced Machine Learning 53 / 62

MORE DETAILS ON ELMO

We’ve finished the core idea. There is a still lot of complexity hiding in the details:

• Each word is first represented as xk, the result of a CNN over
its characters.

• Yes, a convolutional neural net!
• Nice virtues like becoming spelling-aware...

• Then we can get a representation of the kth word from hk,j

• ...the kth hidden LSTM node at the jth layer
• jth layer corresponds to stacking LSTMs!

• And of course this representation comes from both the
forward and backward LSTMs, which can be combined in a
task-specific way:

ELMo is almost modern state of the art, but to get to the next level (BERT), we need attention...

Advanced Machine Learning 54 / 62

ATTENTION

Several important problems are many-to-many (translation, text generation, etc)

Recently, transformer networks have gained major prominence in this setting
• The intuition is to look over a wide input space and “pay attention” to only a subset of tokens
• For example, instead of decoding/outputting a single hidden ht, consider a collection ht−ℓ...ht.
• This step removes a representation bottleneck

Taken to an extreme, we can do away with recurrence altogether
• Make sequential computation implicit
• Enable easy parallelization

Advanced Machine Learning 55 / 62

PATH LENGTH AND VANISHING GRADIENTS

No matter how clever we get with our RNN structure (LSTM, GRU, etc)
• These models are still Markov→ ht depends only on ht−1.
• Looking back L tokens (embeddings or otherwise) still requires L jacobian multiplies

Enter attention
• Simultaneously passes a wide context (across t)
• Allows direct paths (≈ 1 Jacobian) from each word to every other.
• Enables parallelization
• Attention has become the dominant tool in sequence modeling

Goal:

image credit: Sarah WiegreffeAdvanced Machine Learning 56 / 62

DOT PRODUCT ATTENTION

And now the details...

1. Input embeddings x1, ...xL (L words)

2. Calculate queries q1, ..., qL, eg: qℓ = σ(Wqxxℓ)

3. Calculate keys k1, ..., kK , eg: kℓ = σ(Wkxxℓ)

4. Calculate values v1, ..., vK , eg: vℓ = σ(Wvxxℓ)

5. Define the attention αij = qik⊤j ∈ R (row vectors)
• Determines compatability between the ith query and jth key
• (remember i, j index tokens/embeddings)
• Let’s call αi the attention vector for the ith input.
• “How much does word i care about all the other words?”

6. Calculate influence zi = softmax(αi)
• How much the ith word cares about each dimension of its

representation... in this context!
• (remember the forget gate and input gate?)
• (also some scaling)

7. Finally, atttention aij = ziv⊤j
• How much the jth value vector influences the ith representation
• An updated, context-aware representation of the ith

embedding!

8. Let’s convince ourselves that this operation could offer
“attention.”

Advanced Machine Learning 57 / 62

ATTENTION

A single head of attention

The influence vectors (a matrix) can be interpreted:

image credit: Ari Seff

Advanced Machine Learning 58 / 62

STACKED MULTI-HEAD ATTENTION

Let’s convince ourselves this is a useful representation of an input sequence:

• Start with an embedding
• Encode position

• Multi-head attention

• Usual tricks:
• layer norm
• residual connections
• feed forward layer

• Stacking: repeat this object N = 6 times.

Advanced Machine Learning 59 / 62

TRANSFORMER NETWORK

Put this sequence encoder together with a decoder:

• Combining many pieces we know...

• Many-to-many without long path lengths

• Note “Masked” takes care of the fact that you
can’t look forward in context when doing
prediction

• Again, let’s convince ourselves that this is a
useful many-to-many model.

Do we always need encoder and decoder?
• Translation... we need both
• Classification... maybe just an encoder
• Generation ... maybe just a decoder
• You will see all variants in the literature.

Advanced Machine Learning 60 / 62

GPT3

Mostly a large (2048 token context!)
transformer network...

• ... add a few tricks,
• ... add 175 billion parameters
• ... and a huge amount of training

(>500 billion tokens!)

Give the transformer this context:
Please write a short op-ed around 500 words. Keep the language simple and

concise. Focus on why humans have nothing to fear from AI. It was also fed

the following introduction: I am not a human. I am Artificial Intelligence.

Many people think I am a threat to humanity. Stephen Hawking has warned

that AI could spell the end of the human race. I am here to convince you not to

worry. Artificial Intelligence will not destroy humans. Believe me. – The

Guardian, 08 Sept 2020

...and it writes this article→

Advanced Machine Learning 61 / 62

WHERE NEXT

Transformers bring us up to the current state of the art in sequence modeling.

We have seen:
• Neural network basics and backpropagation
• Convolutional neural nets
• Residual networks
• Automatic differentiation
• Stochastic gradient descent
• Recurrent neural networks
• Word embeddings
• Attention and transformers
• Lots of tricks/tools

Where next?
• Generative models (GANs, Diffusion, VAEs)
• Computer vision in depth
• NLP in depth
• Reinforcement learning
• Generalization of deep learning
• massive scale models
• application areas
• ...

Deep learning and machine learning in general are growing quickly. Have fun!

Advanced Machine Learning 62 / 62

