Advanced Machine L

earning

STAT GR5242: Advanced Machine Learning
Lecture slides: Weeks 1-3

John Cunningham

Department of Statistics
Columbia University

9

Welcome! Let’s discuss the syllabus...

Advanced Machine Learning 2/94

CONTEXT: WHAT YOU HAVE LEARNED

The machine learning canon

» Tools: linear algebra, optimization, sampling, model selection, ...
 Principles: loss, risk, regularization, probabilistic modeling,...

o Algorithms/Problems: classification, dimension reduction, regression,...

All supervised methods share a common recipe:
« Frame the problem as learning a function from a family 7 = {fy : 6 € 0}
fo iR = {0,1} (or [0,1]) fo:R! = Ax fp: R - R®

« Specify a loss function between model and data

fo:SXA—=S

K
L(fo(x),y) = —ylogfy(x) = (1 =) log (1 = fo(x)) L= =2 wlogfo()x L=lly —fo@I3 L=..

k=1

 Minimize the empirical risk on a dataset {(x1,y1), ..., (X, yu) }

* . 1 -
0* = argmin, . ZL (fo(xi), yi)
i=1

Key point: this is machine learning. It works.

Advanced Machine Learning

BUT WHAT ABOUT ALL THE Al HYPE?

Modern AI/ML is the same recipe

« Gather data, choose F = {fy : 6 € O}, specify loss, minimize empirical risk
« All the same potential issues exist (wrong J, under/overfitting, optimization issues,...)

» The same statistical and computational thinking is necessary

The four catalysts of the Al explosion

1. Large and readily available datasets
2. Massive and cheap computational power
3. Flexible and general function families

4. Open-source ML software libraries with powerful abstractions

We will study some neural network families /. While neural networks are powerful, there is nothing
magical or fundamentally different than what you already know.

Advanced Machine Learning

CATALYST 1: DATA

Computer Vision

Reinforcement Learning

Natural Language Processing

SVHN CIFAR10 ImageNet
- Ecoams | 4o el
OpenAl Breakout | OpenAl Cartpole UCB Pacman
I
Twitter Jeopardy

Wikipedia (English)

e ab
5 e
&89

And so much more...

e https://www.data.gov/

e https://opendata.cityofnewyork.us/

e https://github.com/caesar0301/awesome-public—-datasets

Advanced Machine Learning

CATALYST 2: COMPUTATIONAL POWER

Processing power has continued to grow... and become cheaper...

Py cru
MULTIPLE CORES THOUSANDS OF CORES

Cloud computing has made this even easier (abstracting away IT and system ops)

amazon)

webservices™ Google Cloud Platform

Advanced Machine Learning 6/94

CATALYST 3: NEURAL NETWORKS

;‘*'i .
T 0

Input layer

Neural unit
With enough layers and enough units per layer, the network is a universal function approximator: any function
can be fit (given enough data...).

« Inputs x) enter into unit j, weighted by edges wg, and are summed with bias b}

 o(-) provides elementwise nonlinearity

e The result x_} is transmitted to layer 2, the next layer

Learning/Training is then minimizing an empirical risk over the parameter set

o= [}, = e

Advanced Machine Learning

EXAMPLE: LOGISTIC REGRESSION — NEURAL NETWORKS

Logistic Regression

S |

S EEYH EEEEE
o IR .

X w So(x)
o (Wx + b)
Neural Network

| | H I |
i L}

i i |

Wi b 9(1) (x) W b2 0(2) (x)
o (Wyxtby) (WD () + by)

X

Advanced Machine Learning 8/94

EXAMPLE: LOGISTIC REGRESSION — NEURAL NETWORKS

Neural Network

| I 1
| | H ' g
Wi by (@) W) by 22 ()
o (Wyx+by) e (Waf (D (x) + by)

e

©><f><©

© © ©
Cascade layers for any amount of depth and complexity!

Naive conclusion: deep learning is easy...

Advanced Machine Learning

..DEEP LEARNING IS HARD

Advanced M

achine I

How do I choose

How do I choose L, the number of layers?

How do I choose the activation function o (-)?

M ‘, the number of units in the hidden layers?

sigmoid tanh relu softplus softmax
l-k% ;:z—; max(0,x) | log(1+e") Zi lgrk

Are there other choices to make?

What about overfitting?

Will my optimizer converge?

Is my problem solvable with a particular architecture F?

ey

Can my data be fit by a particular architecture F?

Deep learning requires engineering skill, statistical thinking, and thoughtful empiricism.

earning

MNIST

SVHN

N 2]

10/94

Machine Learning libraries have abstracted {math, stats, optimization, ...} — engineering

% TensorFlow “lioch Caffe

Under the hood are several essential elements to understand:

o Neural networks in detail

(sounds obvious, but we’ll spend some time here...)

o Automatic differentiation

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras. layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')

1)

model.compile(optimizer='adam',
oss='sparse_categorical_crossentropy',
metrics=['sparse_categorical accuracy']
)

» Stochastic optimization

(much more to come here also...)

To understand modern ML, we need to understand why these work... and when they don’t.

Advanced Machine Learning 11/94

NEURAL NETWORKS

ADMINISTRATIVE REMINDERS

Slides and syllabus on courseworks (and Assignment 1 soon)

o A few comments about textbooks:

» Ask questions in class. Don’t wait until after class and then divide the impact of that question by 100x.

There is no textbook for this course... for a good reason.

When there is a relevant background reading or survey/review, I will note it in class.
Mathematics for Machine Learning A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth
Probabilistic Machine Learning Kevin P. Murphy

Deep Learning Aaron Courville, Yoshua Bengio, Ian Goodfellow

Pattern Recognition and Machine Learning Christopher Bishop

» Also, so you don’t think I'm just making stuff up, a DALL-E sample:

Advanced Machine Learning

a clock in the shape of a turtle. a clock imitating a turtle.

3194

A neural network represents a function fp : R — R®.

Advanced Machine Learning 14/94

BUILDING BLOCKS

Advanced

Units

The basic building block is a node or unit:

e The unit has incoming and outgoing arrows. We think of each arrow as
“transmitting” a signal.

o The signal is always a scalar.

i} ¢ A unit represents a function ¢.
We read the diagram as: A scalar value (say x) is transmitted to the unit, the function ¢ is applied, and the
result ¢(x) is transmitted from the unit along the outgoing arrow.

Weights
@ « If we want to “input” a scalar x, we represent it as a unit, too.
Wl » We can think of this as the unit representing the constant function
glx) =x
« Additionally, each arrow is usually inscribed with a (scalar) weight w.
| « As the signal x passes along the edge, it is multiplied by the edge weight
f(x) w.

The diagram above represents the function f(x) := ¢(wx).

Machine Learning

Advanced Machine Learning

@ w13 w23 w3l

w33

f: R > R® with input x = (

o T

A =¢1wi,x) () =d2((wa,x) f3(x) =3((w3,x))

fi(x)
fx) = 1| £k with fi(x) = ¢ WiiXj
f(x) (Z)

(recall inner product (w;, x) = wiTx = Zj Wi)

16794

A feed-forward network is a neural network whose units can be arranged into groups L, . .., Lk so that
connections (arrows) only pass from units in group Ly to units in group Li1. The groups are called layers. In
a feed-forward network:

e There are no connections within a layer.
 There are no backwards connections.
» There are no connections that skip layers, e.g. from L to units in group L.

(but see Huang...Weinberger 2017 CVPR)
O O Q

4 G0 g O
VAR VAR
L | |

feed-forward not feed-forward not feed-forward (but still useful...)

Advanced Machine Learning 17/94

» This network computes the function

() $0o1,35) = 6 (W (whoms -+ whyr) + Wbl + wars))

v ez Clearly, writing out f gets complicated fairly quickly as the network
Srows.

First shorthand: Scalar products

o Collect all weights coming into a unit into a vector, e.g.

wi = (Wi, W)

« Same for inputs: x = (x1,x2)

o The function then becomes

4 o] ()
w=a (< " (¢;<<W;,x>>>>>

Advanced Machine Learning 18/94

Wi2ooo,0
i1 W . .
» Each layer represents a function, which takes the output
values of the previous layers as its arguments.

|‘ e « Suppose the output values of the two nodes at the top are
Y1, y2.

\ » Then the second layer defines the (two-dimensional) function

. ¢i(<wi,y>)>
=0 <¢;<<w;,y>>

Advanced Machine Learning 19794

Basic composition
Suppose f and g are two function R — R. Their composition g o f is the function

gof(x) :=g(f(x)) -

For example:
f@W=x+1 g0 =y gof®)=@x+1)

We could combine the same functions the other way around:
foglx)y=x*+1
In multiple dimensions
Suppose f : R — R% and g : R®2 — R%. Then
gof(x)=g(f(x) is a function R — R% .

For example:
f) =) —c gly) =sgn(y) gof(x) =sgn((x,v) —c¢)

Advanced Machine Learning 20/94

» As above, we write

@0y - ¢%(<Wi7'>))
o= (G)

L e
2 , » The function for the third layer is similarly
wa1
\\ FO() =i ({wh+)
L

3 o The entire network represents the function

F@) =P @) =2 0 fP(x)
fx)

A feed-forward network represents a function as a composition of several functions, each given by one
layer.

Advanced Machine Learning 21/94

T@M@M |

etesly

= f(K)O...

= SO0 200 W)

f)

General feed-forward networks
A feed-forward network with K layers represents a function

f) = o ofV)

Each layer represents a function f () These functions are of the form:

o(x) (sigmoid)
3 (W,) I{£x > 7} (threshold)
f (k)(o) = typically: »® x)=<c (constant)
¢((1k) (<W[(lk)’ . >) x (linear)
max {0,x} (rectified linear)
Dimensions

« Each function f ®) is of the form
f(k) CR% s R%+1

e dy is the number of nodes in the kth layer. It is also called the width of the layer.

« We mostly assume for simplicity: dy = ... = dx =: d.

Advanced Machine Learning 23/94

If you look up the term “neuron” online, you will find illustrations like this:

This one comes from a web site called easyscienceforkids.com, which means it is likely to be scientifically more accurate than typical references to “neuron” and
“neural” in machine learning.

Very roughly, a neuron is a cell that:
 Collects signals (often electrical, often from other neurons)
 Processes them
» Generates an output signal

‘What happens inside a neuron is an intensely studied problem in neuroscience and is far more complex than
this three-step concept, so only in the rarest settings is there any connection between deep learning and
“understanding the brain”.

Advanced Machine Learning Source: easyscienceforkids.com 24/94

A neuron is modeled as a “thresholding device” that combines input signals:

O OO

1{e >0} Q
y

McCulloch-Pitts neuron model (1943)

o Collect the input signals xi, x2, x3 into a vector x = (x1,x2,x3) € R3
« Choose fixed vector v € R? and constant ¢ € R.
» Compute:
y =I{{v,x) > 0} forsomec € R .

« In hindsight, this is a neural network with two layers, and function ¢(«) = I{(v,x) > 0} at the bottom
unit.

Advanced Machine Learning 25/94

F(x) = sen({v,x) —¢)

Advanced Machine Learning 26/94

LINEAR CLASSIFIER INE® AS TWO-LAYERNN
@ ©® O

2 v
2
—1

I{e > 0} O
’

1)
f&x) = Hvixi4+wo+(—1)c >0} = I{v,x)>c}
Equivalent to linear classifier

The linear classifier on the previous slide and f differ only in whether they encode the “blue” class as -1 or as 0:

sgn((v,x) —¢) = 2f(x) =1

Advanced Machine Learning 271794

OO O

V

y=1I{Vx > c}

« This neural network represents a linear two-class classifier (on R?).
« We can more generally define a classifier on RY by adding input units, one per dimension.
« It does not specify the training method.

« To train the classifier, we need a loss function (for ERM!) and an optimization method.

Advanced Machine Learning 28794

Linear units

o(x) = x s —

-5

-10

This function simply “passes on” its incoming signal. These are used for example to represent inputs (data
values).

Constant functions

Plx) =c

These can be used e.g. in combination with an indicator function to define a threshold, as in the linear classifier
above.

Advanced Machine Learning 29/94

Indicator function

¢(x) =T{x > 0}

Example: Final unit is indicator

O OO

Vi vy

1{e > 0} Q
'

fx)

Advanced Machine Learning 30/94

Sigmoids

. l 06!
T l4e ;

¢ (x)

Example: Final unit is sigmoid

OO O

vy v

T

f(x)

Advanced Machine Learning 31/94

Rectified linear units

¢(x) = max {0, x}

~10 -5 1 5 10

These are currently the most commonly used unit in the “inner” layers of a neural network (those layers that
are not the input or output layer).

Advanced Machine Learning 32/94

HIDDEN LAYERS AND NONLINEAR FUNCTIONS

Hidden units
» Any nodes (or “units”) in the network that are neither input nor output nodes are called hidden.
» Every network has an input layer and an output layer.
« If there any additional layers (which hence consist of hidden units), they are called hidden layers.

Linear and nonlinear networks
o If a network has no hidden units, then
fix) = ¢i((wi, x))
That means: f is a linear functions, except perhaps for the final application of ¢.

« For example: In a classification problem, a two layer network can only represent linear decision
boundaries.

» Networks with at least one hidden layer can represent nonlinear decision surfaces.

Advanced Machine Learning

Two-layer

oy T

Three-layer

a1 3

Advanced Machine Learning Illustration: R.O. Duda, PE. Hart, D.G. Stork, Pattern Classification, Wiley 2001 34794

Solution regions we would like to represent Neural network representation

» Two ridges at different locations are substracted from each other.
» That generates a region bounded on both sides.
« A linear classifier cannot represent this decision region.

» Note this requires at least one hidden layer.

Advanced Machine Learning lustration: R.O. Duda, PE. Hart, D.G. Stork, Pattern Classification, Wiley 2001 35/94

X2

Zy

LZ25
5%z

XL
K 27
RRLRLIZRLT
SRR
O RREILILT
2%
225
ZZ

Advanced Machine Learning Tllustration: R.O. Duda, PE. Hart, D.G. Stork, Pattern Classification, Wiley 2001 36/94

We have observed
« We have seen that two-layer classification networks always represent linear class boundaries.

« With three layers, the boundaries can be non-linear.

Obvious question

» What happens if we use more than three layers? Do four layers again increase expressive power?

Advanced Machine Learning 377194

WIDTH VS DEPTH

Advanced

A neural network represents a (typically) complicated function f by simple functions q&fk).

What functions can be represented?

A well-known result in approximation theory says: Every continuous function f : [0, 1]‘1 — R can be

represented in the form
2d+1 d

10 =3 6(3mtx)

i=1

where &; and 7;; are functions R — R. A similar result shows one can approximate f to arbitrary precision

using specifically sigmoids, as
M d
fx) =~ Z wj(z)a (Z w,:(,.l)x,- + c,-)
=1 i=1

for some finite M and constants c;.

Note the representations above can both be written as neural networks with three layers (i.e. with one hidden
layer).

Machine Learning 38/ 94

WIDTH VS DEPTH

Depth rather than width

The representations above can achieve arbitrary precision with a single hidden layer (roughly: a
three-layer neural network can represent any continuous function).

In the first representation, & and 7; are “simpler” than f because they map R — RR.

In the second representation, the functions are more specific (sigmoids), and we typically need more of
them (M is large).

That means: The price of precision is many hidden units, i.e. the network grows wide.

The last years have shown: We can obtain very good results by limiting layer width, and instead
increasing depth (= number of layers).

Theory is starting to emerge to properly explain this behavior.
(see e.g. Pleiss and Cunningham 2021 NeurIPS)

Limiting width

Limiting layer width means we limit the degrees of freedom of each function f<k>.

That is a notion of parsimony.

...hence “Deep Learning”

Advanced Machine L

earning

TRAINING NEURAL NETWORKS

Task

« We decide on a neural network “architecture”: We fix the network diagram, including all functions ¢ at
the units. Only the weights w on the edges can be changed during by training algorithm. Suppose the
architecture we choose has d; input units and ¢, output units.

« We collect all weights and biases into a vector 6. The entire network then represents a function fy (x) that
maps R — R%.

» To “train” the network now means that, given training data, we have to determine a suitable parameter
vector w, i.e. we fit the network to data by fitting the weights.

More specifically: Classification

Suppose the network is meant to represent a two-class classifier.
« That means the output dimension is d» = 1, so f,, is a function R — R.
* We are given data xi, x2, . .. with labels yi, ya,

« We split this data into training, validation and test data, according to the requirements of the problem we
are trying to solve.

» We then fit the network to the training data.

Advanced Machine Learning 40/94

« We run each training data point x; through the network fy and compare
fo(xi) to y; to measure the error.

o Recall how gradient descent works: We make “small” changes to 6, and
choose the one which decreases the error most. That is one step of the
gradient scheme.

« For each such changed value ¢’, we again run each training data point x;
through the network fp/, and measure the error by comparing fy/ (x;) to
: yi. This is our loss L(yi, x;).

S (x)

Advanced Machine Learning 41794

TRAINING NEURAL NETWORKS

Loss function
« We have to specify how we compare the network’s output fp (x) to the correct answer y.
« To do so, we specify a function L with two arguments that serves as an error measure.

e The choice of L depends on the problem.
Typical loss functions
« Classification problem:

K
L(3,y) :==— Y Ylogs* (with convention 0log0 = 0)
k=1

» Regression problem:
. o112
L(3,y) = [ly =3l

Training as an optimization problem

« Given: Training data (x1,y1),. .., (Xs, ya) With labels y;.

» We specify a loss L, and define the total error on the training set — the empirical risk — as
R(0) := > L(folx:),y)
i=1

Advanced Machine Learning

BACKPROPAGATION

Advanced

Training problem

In summary, neural network training attempts to solve the optimization problem
0" = arg mein R(0)

using gradient descent. For feed-forward networks, the gradient descent algorithm takes a specific form that is
called backpropagation.

Backpropagation is gradient descent applied to R(6) in a feed-forward network.

In practice (foreshadowing): Stochastic gradient descent

» The vector 6 can be very high-dimensional. In high dimensions, computing a gradient is computationally
expensive, because we have to make “small changes” to 6 in many different directions and compare them
to each other.

« Each time the gradient algorithm computes R (¢’) for a changed value ¢’, we have to apply the network
to every data point, since R(0") = >/, L(for (x:), yi)-
« To save computation, the gradient algorithm typically computes L(fy/ (x;), y;) only for some small subset

of a the training data. This subset is called a mini batch, and the resulting algorithm is called stochastic
gradient descent.

Machine Learning

Neural network training optimization problem

mgin R(9)

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to R(6) in a feed-forward network.

Deriving backpropagation
« We have to evaluate the derivative VR (6).
« Since R is additive over training points, R(6) = >, L(fo (x:), y), it suffices to derive VoL(fo(x:), yi).

Advanced Machine Learning 44794

Recall from calculus: Chain rule

Consider a composition of functions f o g(x) = f(g(x)).

d(fog) _ df dg
dx dg dx

If the derivatives of f and g are f’ and g’, that means: ‘% (x) =f(g(x)g' (x)

Application to feed-forward network

Let 0% denote the weights in layer k. The function represented by the network is
K 1 K 1
Jolx) = 5 000 (0) = £y 0oy (0)
To solve the optimization problem, we have to compute derivatives of the form

dL('ayi) %

d

Advanced Machine Learning 45794

» The chain rule means we compute the derivatives layer by layer.

» Suppose we are only interested in the weights of layer &, and keep all other weights fixed. The function f
represented by the network is then

Jow (x) = f(K) o--- of(k'H) ofe(](cz) of(k_l) o of(l)(x)
» The first k — 1 layers enter only as the function value of x, so we define
Z(k) ::f(k—l) 0. .- Of(l)(x)

and get
fot0 (x) = f(K) ... Of(k+1) Oféé% (Z(k))

« If we differentiate with respect to 0, the chain rule gives

d g® prCay df;fg)
Jomfew (¥) = &Y g ® T ge®

Advanced Machine Learning 46/94

« Each f® is a vector-valued function f ®) R% —y Rékt1,
« It is parametrized by the weights 6™ of the kth layer and takes an input vector z € R%.
o We write) (z, 0®)).

Layer-wise derivative
Since f) and f =1 are vector-valued, we get a Jacobian matrix

op+D) okt

AT
afth : : _. AW, gD
W = : : =: A (1,9)
if PR PR

g1 g1

afl(k) t 6f(k)

dy;
o AW is a matrix of size diy1 X di.

o The derivatives in the matrix quantify how f *+1) reacts to changes in the argument of f ®) if the weights
6%+ and §® of both functions are fixed.

Advanced Machine Learning 47194

BACKPROPAGATION ALGORITHM

Let 6 ..., 0% be the current settings of the layer weights. These have either been computed in the previous
iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass

‘We start with an input vector x and compute
= 0 oo D (g
for all layers k.

Step 2: Backward pass

« Start with the last layer. Update the weights 9" by performing a gradient step on
L(f(K)(Z(K), 9<K)),y)

regarded as a function of 6 (so z(X) and y are fixed). Denote the updated weights 0%,
» Move backwards one layer at a time. At layer k, we have already computed updates %) %D,
Update 6w by a gradient step, where the derivative is computed as

df(k)

(K=1) ((K=1) 7(K) (k) (k) plk+1) (k)
A (Z 5'9)A (Z 79)d9<k)(zve)

On reaching level 1, go back to step 1 and recompute the z*) using the updated weights.

Advanced Machine Learning

SUMMARY: BACKPROPAGATION

« Backpropagation is a gradient descent method for the optimization problem

minR(6) = ;L(fe (xi), i)

L must be chosen such that it is additive over data points.

« It alternates between forward passes that update the layer-wise function values P given the current
weights, and backward passes that update the weights using the current 7,

» The layered architecture means we can (1) compute each z® from z¢~" and (2) we can use the weight
updates computed in layers K, . . ., k 4 1 to update weights in layer k.

So that’s great, but implementing these steps seems hard and tedious...

Advanced Machine Learning

49/94

CONVOLUTIONAL NEURAL NETWORKS

INFORMATION BOTTLENECKS IN NEURAL NETWORKS

() Wi by

o(Wix+by)

Neural Network

Notice:

« The first layer bottlenecks the 28 x 28 space R’ — R%... loss of expressivity?
« Increasing 20 — 64 would drastically increase |6|... slow algorithm and overfitting!

« ..because every unit sees all input units... that is, W is a full matrix

Opportunity:
» What dependency does x; have on x784? x2? x29?
» Exploiting known (in)dependencies is a good thing
 Idea: make linear maps local... and rely on later layers to capture long-range features.

« Exploiting local statistics allows more outputs for the same net |6]!

Advanced Machine Learning

(2)
0 (x)
o (Wor M) +by)

A new view of the same fully connected layer that we have been using:

. . . Output Units (5x5)
« Blue: input units (eg 7 x 7 image) LpuEEE

« Green: output units (5 X 5 readout)
Input Units (7x7)

« Weight matrix (not shown): R***% — |9| = 1225

Local linear filter: consider only a 3 x 3 linear map, and sweep it locally
« New weight matrix: R*** — |9| =9
¢ > 100X savings in parameters!

« But we have lost expressivity...

Image credit for all of these and the following: https://github.com/vdumoulin/conv_arithmetic

Advanced Machine Learning 52/94

Call this 3 x 3 linear map a filter or convolution

ceese

Now use multiple filters (below K = 4), producing multiple activation maps (each 5 x 5)

Kactivation
maps

Convolutional layer: linear map applied as above; a3 x 3 X 1 X 4 parameter tensor.

Our/tf convention for 2D convolution: filter width X filter height X input depth X output depth.

Advanced Machine Learning 53/94

Convolutional Neural Network: a neural network with some number of
convolutional layers. The workhorse of modern computer vision.

You should now be able to interpret/implement published models such as:

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32 6@26x28

S2: f. maps C5: layer .
6@14x14 720 FE: layer QUTPUT

Cor i i Convoluti i Full connection
[LeCun ct al 1998]
o What is the filter size from input to C1? 5%5
» What is the size of the weight matrix from S4 to C5? 16 5 x 5 x 120 = 48, 000

« What is subsampling? It’s now called average pooling. What’s average pooling?

Advanced Machine Learning 54794

Note a few potential drawbacks:
« Filtering reduces spatial extent of activation map
« Edge pixels/activations are less frequently seen

« (Note these can also be benefits)

Zero Padding:
» Add rows/cols of zeros to the input map, solving both problems

» Output activation maps will preserve size when

1
Mpad = E(Mﬁlter - 1)

Note: one can zero-pad more/less/asymetrically/otherwise, with varied problem-specific effects

Advanced Machine Learning 55794

On the other hand:
« Filtering processes the same information repeatedly
» Possibly wasteful if images are quite smooth
« Could get more activation maps if each was smaller

Stride:
o Jump the filter by some Miqe pixels/activations
 Output activation map (assuming square) will be of height/width

Minput - Mﬁlter + 2Mpad

+1
M, stride

Moutput =

» Caution! Non-integer results in above will be problematic. Care is required.

- e

Note: striding and zero-padding give design flexibility and balance each other

Advanced Machine Learning 56/94

Notice:
» Smaller filters process finer features
» Larger filters process broader features
e Common choices: 3 x3, 5x5, 7x7, 1x1

» Empiricism dictates which to use (again: the art of deep learning)

2363

Wait! Whatisa 1 x 1 layer? Isn’t that meaningless?
« No! Remember, the conv layer is filter width x filter height X input depth X output depth

e Critical: filters always operate on the whole depth of the input activation stack

* 1 X 1 conv layers — dimension reduction: preserve map size, reduce output dimension K

Advanced Machine Learning 57194

Context
« Convolutional layers specify the linear map (and how to calculate it)
» An elementwise nonlinearity is still expected to follow
e tf.nn.relu(tf.nn.conv2d(x , W_cnn) + b)
e Compare to tf.nn.relu(tf.matmul(x , W) + b)

Specific example

-
o
-
0.
-a
01
2l
o
0,
-a
0
2

lolotlololo
[Sy R P
[Sy

lolololo

Questions
« What is the filter?
« What is the filter width?
« What is the zero padding?
» What is the stride?

Advanced Machine Learning 58794

Make cnn_cf: asingle convolutional layer network with 64 activation maps

In [15]: # elaborate the compute logits code to include a variety of models
def compute_logits(x, model_type, pkeep):

"""Compute the logits of the model"""

if model_type=='lr':
W = tf.get_variable('W', shape=[28%28, 10])
b = tf.get_variable('b', shape=[10])
logits = tf.add(tf.matmul(x, W), b, name='logits_1r')

elif model_type=='cnn_cf':
try a 1 layer cnn
nl = 64
x_image = tf.reshape(x, [-1,28,28,1]) # batch, then width, height, channels
cnn layer 1
W_convl = tf.get_variable('W _convl', shape=[5, 5, 1, nl])
b_convl = tf.get_variable('b_convl', shape=[nl])
h_convl = tf.nn.relu(tf.add(conv(x_image, W_convl), b_convl))
fc layer to logits
h_convl_flat = tf.reshape(h_convl, [-1, 28*28*nl])
W_fcl = tf.get_variable('W_fcl', shape=[28*28*nl, 10])
b_fcl = tf.get_variable('b_fcl', shape=[10])
logits = tf.add(tf.matmul(h_convl_flat, W_fcl), b_fcl, name='logits_cnnl')

Note:
* logits are the real-valued inputs to the final nonlinear (softmax) transformation.
» This network should be more expressive than logistic regression
« Compare |0| with logistic regression

« (this code is lower-level than we will need...)

Advanced Machine Learning 59794

Make cnn_cf: a single convolutional layer network with 64 activation maps

In [15]: # elaborate the compute logits code to include a variety of models
def compute_logits(x, model type, pkeep):

"""Compute the logits of the model"""

if model type=='lr's
W = tf.get_variable('W', shape=[28%28, 10])
b = tf.get_variable('b', shape=[10])
logits = tf.add(tf.matmul(x, W), b, name='logits lr')

elif model_type=='cnn_cf':
try a 1 layer can
nl = 64
x_image = tf.reshape(x, [-1,28,28,1]) # batch, then width, height, channels
cnn layer 1
W_convl = tf.get_variable('W_convl', shape=[5, 5, 1, nl])
b_convl = tf.get_variable('b_convl', shape=[nl])
h_convl = tf.nn.relu(tf.add(conv(x_image, W_convl), b_convl))
fc layer to logits
h_convl_flat = tf.reshape(h_convl, [-1, 28%28%nl])
W_fcl = tf.get_variable('W_fcl', shape=[28+28%nl, 10])
b_fcl = tf.get_variable('b_fcl', shape=[10])
logits = tf.add(tf.matmul(h_convl flat, W_fcl), b_fcl, name='logits_cnnl')

Compare to:

In [1]: model = tf.keras|Sequential()

1
2 model.add(tf.keras.layers.Conv2D(64, (5, 5), activation='relu', input_shape=(28,28), use_bias=True))
3 model.add(tf.keras.layers.Flatten())

4 model.add(tf.keras.layers.Dense(10),use_bias=True)

« ...is a high-level API that is now (almost) fully integrated into tensorflow.

« ...is what many of you will use in your projects.

« ...is quite a bit easier than direct tensorflow

« ...obscures some key didactic details, so we will go back and forth in presentation

Advanced Machine Learning 60/94

‘We need to map continuous outputs to a set of K probabilities (in fact, the K-simplex):

&
Ef:l e

softmax(x) =

Cross-entropy loss, with a one-hot encoded label y;:

L(ytvfg xt = Z)’; Ingg(xl

k=1
Warning
» The softmax operation should > 0, but numerically can sometimes be == 0
« log 0 will cause your training to crash with some NaN errors (possibly just in tb)
» Numerical stability is always a concern in practical machine learning
» Conveniently, t £ and keras obscure most of these details from you

« ...but you will still run into issues at some point

Advanced Machine Learning 61/94

CAUTION: CHOICE OF OPTIMIZER

Consider different SGD variants (much more on SGD in subsequent lectures)

summaries/accuracy

110
1,00 L o
0.900 V v
0800
0.700
0,600
0,500
0.400
0.300
0.200
0.100 \/\lr\ S Y
0.00
0,000 1000 2000 3000 4000 5000 6000 7000 800.0 900.0 1,000

Name Smoothed Value Step Time Relative
cnn_cf_adam/test 0.9512 0.9512 1.000k ThuNov2 14:00:29 2m12s

cnn_cf_adam/train 0.9600 0.9600 990.0 ThuNov2 14:00:25 2m11s
cnn_cf_sgd/test 0.09800 0.09800 1.000k Thu Nov2,13:57:47 2m13s
cnn_cf_sgd/train 0.1200 0.1200 970.0 ThuNov2, 13:57:41 2m10s

We will stick mostly with Adam for remainder, but again, empiricism...

Advanced Machine Learning 62/94

PROGRESS WITH cnn_cf

Training and Test

summaries/accuracy
1.02
0.980
0.940
0.900
0.860
0.820

0.000 2.000k 4.000k 6.000k 8.000k 10.00k

Name Smoothed Value Step Timg

o cnn_cf/train 0.9903 1.000 9.980k Thu
Ir/train 0.9251 0.9200 9.980k Thu

Questions

» Why is test/train nonsmooth/smooth?

summaries/accuracy
1.02
0.980
0.940
0.900
0.860
0.820

0.000 2.000k 4.000k 6.000k 8.000k 10.00k

Name Smoothed Value Step Time
cnn_cf/test 0.9862 0.9862 9.900k Thu
O Ir/test 0.9243 0.9245 9.900k Thu

» How do I set up tensorboard summaries for train and test?

« Will we do better if we make this network more complicated/deeper?

o Am I concerned by a = 0.4% difference between train and test?

Advanced Machine Learning

3194

TRICKS OF THE TRADE: POOLING

Idea
« Perhaps we care less about the precise location of activations in every layer
« And we know that parameters will be creeping upwards with padded layers
e Pooling adds a layer that averages or takes the max of a small window of activations
» Note: operates on each activation map individually

» Also called subsampling/downsampling (cf [Lecun et al 1998] figure earlier)

Max Pooling (most popular) Average Pooling

Now
e I can reduce the number of parameters without (hopefully) losing much expressivity...

« I can increase the expressivity (hopefully) without increasing the number of parameters

Advanced Machine Learning 64/94

ADDING COMPLEXITY

Make cnn_cpcpff: conv—pool—conv—pool—fc—fc

'summaries/accuracy

102

0.000 1.000k 2,000k

Smoothed Value

O cnn_cf/train 0.9907 1.000 Thu Nov 2,10:19:23
cnn_cpepff/train 0.9951 1.000 Thu Nov 2, 11:37:30
Ir/train 0.9286 0.9500 Thu Nov 2, 09:55:36

Worth it?
o Better, but not much better.
* More costly

This story will change with more complex datasets...

Advanced Machine Learning

4,000k

5,000k 6,000« 7.000k 8,000k 9,000k 10.00k

Relative
21m 53s
1h1m15s
17s

65794

IMAGENET

The textbook large-scale vision dataset

IMAGENET

Great white shark, white shark, man-eater, man-eating shark,

Carcharodon carcharias

Large aggressive shark widespread in warm seas; known to attack humans

© Numbers nbrckets: (therumbor of Treemap Visatzaton

imageNet 2011 Fal Rl (32326)
1" plant, flora, plant fe (4486)
geological formtion, formation (1
natural object (1112)
spor, athietics (176)
artifact, artefact (10504)

molter, moulter (0 Typical 0] Wrong (0]
|- varmint, varment (¢

young, offspring (45)
pokilotherm, ectotherm (0)
| herbivore (0)
peeper (0)

Advanced Machine Learning

SEARCH

66 /94

152 layers
A
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) ‘ I
» Annual computer vision challenge am ‘ Mm
i I~---I

e C.g. ILSVRC 2014 had > IMM training, 50K ILSVRC'1S ILSVRC'14 ||5vnr:u ISVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10

. . ResNet GoogleNet AlexNet
Vahdatlon’ 100K test ImageNet Classification top-5 error (%)

[Kaiming He]

Multinomial classification K = 1000

Inception-v4

. . . . 1 inception-va ’ ‘ ResNet-152
« Since 2012, dominated by CNNs of increasing o fremeeso @ vee-16
complexity @ et

3

, ResNet-18

007 ogLenet
ENet

&

» Human performance surpassed in 2015

© BN-NIN

BN-AlexNet
55 AlexNet
50

0 5 10 15 20 25 30 35 40
Operations [G-Ops]

Top-1 accuracy [%]

2
8

« Not without controversy...

Beyer et al (2020) “Are we done with ImageNet?”

[Canziani et al 2017]

Advanced Machine Learning 67/94

The first ILSVRC winner with deep learning

3

0ag \dense
o7 128

Qi
7 B

3 %
\ 07 192 128 Max

ing 2048
8 Max pooling 2048
pooling pooling

Max

[Krizhevsky et al 2012]

We can understand the entirety of this network

Advanced Machine Learning

68 /94

TRICKS OF THE TRADE: DROPOUT

With increasing complexity comes increasing overfitting. Let’s regularize!

w W
Present with Always
probability p present
(a) At training time (b) At test time

[Srivastava et al 2014]
This widely used strategy is dropout

Advanced Machine Learning 69/94

TRICKS OF THE TRADE: DROPOUT

Add a dropout layer: conv—pool—conv—pool—fc—drop—fc

summaries/accuracy

0.850
0.840
0.830
0.820

0.810

0.000 1.000k 2.000k 3.000k 4.000k 5.000k

Smoothed Value Step Time Relative

O cnn_cf/train 0.9908 1.000 9.990k ThuNov2,10:19:23 21m 53s
cnn_cpepfdf/train 0.9958 1.000 9.990k ThuNov2,13:29:07 1h6m 37s
cnn_cpepff/train 0.9947 1.000 9.990k ThuNov2,11:37:30 1h1m15s

Does not seem to affect training much...

Advanced Machine Learning

oS00 Cv AT A Y

6.000k 7.000k 8.000k 9.000k 10.00k

9

TRICKS OF THE TRADE: DROPOUT

But hopefully it mitigates overfitting

summaries/accuracy

0.990
0.980
0870
0.960
0.950
0.940
0.930

0.920

0.000 1,000k 2,000k 3.000k 4.000k 5.0004 6.000« 7.000k 8.000k 9.000k 10.00k

Name Smoothed Value Step Time Relative

O cnn_cf/test 0.9862 0.9862 9.900k ThuNov2,10:19:14 21m41s
cnn_cpcpfdf/test 0.9916 0.9916 10.00k ThuNov2,13:29:19 1h6m 39s
cnn_cpepff/test 0.9894 0.9894 10.00k ThuNov2,11:37:44 1h1m21s

Discuss... again, we expect this to matter more in more complex networks

Advanced Machine Learning 711794

Dropout has become standard practice in modern network design

Classification Error %

pou;t

H
0 200000 400000 600000 800000 1000000
Number of weight updates

[Srivastava et al 2014]

Advanced Machine Learning 7217194

Play with the architectures and choices we have made so far.
Experience is the only way to improve your deep learning skills.

Some ideas:
» Change the filters: sizes, striding, padding
» Change the pooling: average/max, different sizes, different positions
« Change the architecture
» Change the optimization method
« Change the batch size

» Change the summary/tensorboard content

Advanced Machine Learning 737194

2014 ILSVRC winner added yet more complexity... Idea (for conceptual purposes; don’t worry the details):
« Build a useful block or module of layers

» Layer those modules together

Inception module

Filter
Filter concatenation
concatenation

i

_—7
: ‘ ‘ ‘ ™ ‘
1x1 convolutions 1x1 convolutions ‘ 3x3 max pooling
o
(a) Inception module, naive version (b) Inception module with dimension reductions

[Szegedy et al 2014]

Reminder: 1 x 1 layers operate on the whole depth; act as dimension reduction

Advanced Machine Learning 74194

Full network
[Szegedy et al 2014]
Notice auxiliary classifiers

» Concern: gradient info does not propagate deep into the network
» Not overfitting!

« A nice trick, but there is another that we will soon see

Advanced Machine Learning 75194

INCEPTION

| type ‘ P "';:'Ei;':d | "';i'::' | depth ‘ #1x1 ii:c: ‘ #3%3 ‘ ii:cf | #5x5 | zzj‘ | params | ops ‘

convolution TXT/2 112Xx112x64 1 27K 34M
‘max pool 3x3/2 56X 56X 64 0
convolution 3x3/1 56X 56 X 192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0
inception (3a) 28X 28X 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28x28x480 2 128 128 192 32 96 64 380K 304M
‘max pool 3x3/2 14x14x480 0
inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14X 14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14x 528 2 112 144 288 32 64 64 580K 119M
inception (4¢) 14X 14X 832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 7TXTx832 0
inception (5a) 7XTX832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7X7x1024 2 384 192 384 48 128 128 1388K 7IM
avg pool TXT/1 1x1x1024 0
dropout (40%) 1x1x1024 0
linear 1x1x1000 1 1000K M

. softmax 1x1x1000 0

Another view
[Szegedy et al 2014]

More complex, but still components we understand.

Advanced Machine Learning

Networks are trained for a specific task, but we suspect they also learn some useful concepts

' soas \dense
128 Max

pooling 2078 2048

128

gl IS
: o .
S| N
Max \IT Max
pooling pooling

[Krizhevsky et al 2012]

[Szegedy et al 2014]]
Idea: exploit a large pre-trained network to solve your problem...

Advanced Machine Learning 77194

QUICK ASIDE: TRANSFER LEARNING

Consider a network as having two stages:
« a feature extractor: many layers that extract a useful representation
« aclassifier: a logistic regression to the output of interest
« (note the above is very hand wavy, but is useful intuition and fundamental to much of deep learning

thought)

Transfer learning: borrow the first stage (ex: A — ImageNET; B — your own small image dataset)

Generic dataset Generic network seneric task
Da |$ A |$ Ta
.
4/

{
Dp |:> A B |:> T

Specific dataset Pre-trained Trainable Specific task

Conceptually transfer learning is easy; the challenge is the code... (see HWO02!)
For more, see foundation models like CLIP: [Radford et al 2021]

Advanced Machine Learning

8

94

Two big (simple) ideas brought the next level of performance:
1. Batch Normalization

2. Residual connections (the 2015 ILSVRC winner)

¢ added (vastly) more depth to the network
 surpassed human level performance
¢ did so with reasonably fewer parameters

Inception-v4
80 8.2
Inception-v3 ° ResNet-152 Prrr— 258
55 resne-so (@) vaeie | vesis 152 layers
ResNet-101 A
. ResNet-34. \
- \
Eni o ‘\
7 | 09 0tene
S| Ene
Zes
2| @ _ -
F 60
3.57
N-Alexh . Blayers || 8layers shallow
{0 oo [| H---E--H O H
ILSVRC'1S ILSVRC'14 ILSVRC'I4 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
50 ResNet GoogleNet VGG AlexNet
o 5 10 15 20 25 30 35 40

Operations (G-0ps] ImageNet Classification top-5 error (%)

[Kaiming He], [Canziani et al 2017]
Both of these ideas have become fairly standard practice.

Advanced Machine Learning 7917194

TRICKS OF THE TRADE: BATCH NORM

Parameter initialization (and learning in general) is made complicated by nonlinearities

» What happens if all inputs are saturated (in say a relu or sigmoid)?

« Distribution of inputs matters (think gradients)!

o Normalization layers have been widely used to mitigate.

¢ Local response norm.: divide unit activation by sum of squares of local neighbors

« Batch normalization:

o standardize all units (individually, for compute
considerations) across the minibatch to a learned
mean and var.

e ~, 3 are learned parameters

o Test time: often an exponentially weighted
average of mini-batch batch params

[Krizhevsky et al 2012]
Input: Values of z over a mini-batch: B = {1, };
Parameters to be learned: v, 8
Output: {y; = BN, s(z;)}
o
pB — oy ; x; // mini-batch mean
o
2 2 .. .
— i — /I -batch
9B ;(x 1B) mini-batch variance
T; I s // normalize
V4 U‘BE +e
Yi = VZi + B = BN, 5(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation over a mini-batch.

[Ioffe and Szegedy 2015]

» Batch norm is an important trick of the trade (somewhat replacing dropout and pooling...)

Advanced Machine Learning

80

94

Exploding and vanishing gradients were a major historical problem for deep networks

« Chain rule has multiplicative terms, nonlinearities can saturate, etc.

Degradation has been another key roadblock to increasing depth

8

20

56-layer

20-layer

56-layer

training error (%)
test error (%)

20-layer

NOtiCCZ ' : iter?(1e4)A : iter?(le4)A
« Training error increasing with increasing depth... not overfitting! [Ho ot a1 2015]
« Not an issue with the function family, since F>9 C Fse

» Cause is optimization practicalities...

Advanced Machine Learning 81/94

Key idea: layers learn residuals x‘™' — x* rather than the signal x‘*! itself:

weight layer

X
identity

34-layer residual

34-layer plain

Resulting world leading performance, with many follow-on variations (layer dropout, e.g.)
[He et al 2015]

Advanced Machine Learning 82/94

RESNET

ResNets are still the dominant off-the-shelf architecture choice for computer vision (in 2022)

» Width helps: performance grows slowly in depth (loosely: the skip connections mean that blocks aren’t
forced to learn anything)

o For CIFAR 10/100: use a WideResNet 28-10 (28 blocks, 10x as wide)
» For ImageNet (or similar scale): use a WideResNet 50-3

« (also empiricism: conv-BN-relu — BN-relu-conv)

B P group name | output size | block type = B(3,3)
convl 32x32 [3%3, 16]
[Ceonvaa3 | - [convax3 | conv2 32x32 g X 3, 16xk «N
x3, 16 xk
& 3x3,32xk
& conv3 16x16 [3%3. 32xk j|><N
1 i+ 1
(a) basic (b) k (c) basic-wid (d) wide-dropout conv4 8x8 |: 3x 3’ 64xk i| xN
Figure 1: Various residual blocks used in the paper. Batch normalization and ReLU precede 3x3, 64xk
each convolution (omitted for clarity) avg-pool 1x1 [8x8]

[Zagoruyko and Komodakis 2016]
Bleeding edge performance is always changing, but the basic ideas and architectures appear to be in a local
optimum.

Advanced Machine Learning

3194

BACK TO PRACTICALITIES: MNIST — SVHN

Consider the same digit classification problem on (seemingly) similar data

MNIST SVHN

HEAND mrinm

o If 7 was well chosen on MNIST, will it work well on SVHN?

« If yes, what does that mean?

« If no, what do we have to change to make it work?

« Key takeaway today: answering these questions is critical, hard, and very empirical

» We will go through a number of steps/lessons

Advanced Machine Learning 84/94

1. LOGISTIC REGRESSION AND BASIC DEBUGGING

Start with logistic regression and SGD

summaries/accuracy summaries/loss
TL
100 AT
6.0000+6 O R o
0800 LI | U
0,600 4.000e+6
0400
0400 2.000e+6
0.200 | B S A AL IO
Ak oG ~
0.00 0.00 |
0.000 4.000k 8.000k 12,00k 18.00k 20.00k 0.000 6.000k 1200k 1800k

Name Smoothed Value Step Time Relative
@ Ir_sgd_ms0/train 0.1547 0.1500 19.90k Tue Nov 7,16:05:04 1m 38s
Ir_sgd_ms0/val 0.1069 0.1054 19.90k Tue Nov 7,16:05.05 1m 38s

correct predictions by class:
Step 200: val accuracy 0.1328
Step 300: training accuracy 0.0600
sample pred: [0 000000 0
sample true: (192325093
correct predictions by class:
Step 300: val accuracy 0.0652
Step 400: training accuracy 0.2060
sample pred: (11111111
sample true: (19232593
correct predictions by class:
Step 400: val accuracy 0.1876

Not learning...

Advanced Machine Learning

2. CHOOSING AN OPTIMIZER

Switching from SGD to Adam has helped before; we’ll also try RMSProp

summaries/accuracy

0.200

0.100

0.00

0.000 4.000k 8.000k 12.00k 16.00k

Name Smoothed Value

Ir_adam_ms0/train 0.1824
Ir_adam_ms0/val 0.1396
Ir_rms_ms0/train 0.1339
. Ir_rms_ms0/val 0.1479
@ 'rsgd_msO/train 0.1547
@ Ir_sgd_mso/val 0.1069

0.1900
0.1402
0.2200
0.1342
0.1500
0.1054

summaries/loss

1.000e+4

P s B

-10.0

-1.000e+4

0.000 6.000k 12.00k 18.00k

.,
a

Time
Tue Nov 7, 16:07:24
Tue Nov 7, 16:07:25

Tue Nov 7, 16:10:43
Tue Nov 7, 16:10:43
Tue Nov 7, 16:05:04
Tue Nov 7, 16:05:05

Relative
1m 39s
1m 39s
1m 33s
1m 33s
1m 38s
1m 38s

Performance is still terrible, but at least the loss function is not pathological. Progress...

Advanced Machine Learning

86/94

3. MEAN SUBTRACTION

Observation

» SVHN data has very different illumination/brightness

o Precondition via mean subtraction of each channel?

summaries/accuracy summaries/loss

0.400
400

0.300
300

0.200 200

0.100 100

0.00 0.00 —F
0.000 4,000k B.000k 12.00k 16.00k 20.00k 0.000 4000k 8000k 12.00k 16.00k 20.00k

Smoothed Value Time Relative
Ir_adam_ms0/train 0.1824 0.1900 Tue Nov 7,16:07:24 1m 39s

Ir_adam_ms0/val 0.1396 0.1402 TueNov 7, 1m 39s
Ir_adam_ms1/train 0.2566 0.2300 Tue Nov 7, 14:17: 4m 2s
Ir_adam_ms1/val 0.2733 0.2744 Tue Nov 7,14:17:56 4m 2s

Progress! Preprocessing data matters... do not rely on the neural net to do all the work

Advanced Machine Learning

94

Look at the histograms of logits over time to choose which one is learning.

summaries/logits Ir_adam_ms1/train summaries/logits Ir_sgd_ms0/train

5000 5000
—
AR
15000 = 15000
53 3 5 7 ~25,000,0005,000,0065,000,0006,000,00015,000,000
ra ra
HH HH
summaries/logits summaries/logits
5000 5000
15000 15000
—— ——
-400 0 400 800 1200 0 200,000 400,000 600,000 800,000
ra ra
i i

Advanced Machine Learning 88794

5. ADDING COMPLEXITY

Add cnn_cf: conv— fc and cnn_cnf: conv— norm — fc

summaries/accuracy summaries/loss
1.00
AR IR ARV b
AT AW W
0.800 o 200 \
0.600
0.400 | 1.00
ad.
0,200 bbb gtng Hehid
I 0.00
0.00 ‘
0.000 4.000k 8.000k 12.00k 16.00k 20.00k 0.000 4.000k 8000k 12.00k 16.00k 20.00k

ra
La

£

Name Smoothed Value Step Time Relative
cnn_cf_adam_ms1/train 0.9040 0.8900 19.90k Tue Nov7,15:52:07 1h31m1s

cnn_cnf_adam_ms1/train 0.9048 0.8700 19.90k Tue Nov7,10:28:58 3h 14m9s
Ir_adam_ms1/train 0.2566 0.2300 19.90k TueNov7,14:17:56 4m2s

Advanced Machine Learning 89/94

6. ADDING COMPLEXITY

Add cnn_cpnepnff: conv—pool—norm— conv—pool—norm—fc—fc

summaries/accuracy

0.850

0.800

0.850

wwv/‘wm/w"w
4

0.750

0.700

0.000 2.000k 4.000k 6.000k 8.000k 10.00k 12.00k 14.00k 16.00k 18.00k 20.00k

[

Name Smoothed Value Step Time Relative
cnn_cf_adam_ms1/train 0.9098 0.8900 19.90k TueNov7,15:52.07 1h31m1s

fin

cnn_cnf_adam_ms1/train 0.9065 0.8700 19.90k Tue Nov7,10:28:58 3h 14m9s
cnn_cpnepnff_adam_ms1/train 0.9958 0.9900 20.00k Tue Nov7,02:41:30 3h30m 23s

Training performance is very high. Overfitting?

Advanced Machine Learning

90

9

7. VALIDATION DATA

A separate validation set:
« helps monitor training
« avoids data snooping (overfitting to the test set)

« clarifies overfitting (is train/val gap the same as overfitting?)

[Bartlett et al (2019) Benign overfitting in linear regression)

summaries/accuracy summaries/loss
1.00 ‘ 1.00
0.900 ‘ 0:800
0.600
0.800 ‘ 0.400
0.200
0.700 0.00
0.000 4.000k 8.000k 12.00k 16.00k 20.00k 0.000 4.000k 8.000k 12.00k 16.00k 20.00k
DEE DEE

Name Smoothed Value Step Time Relative
cnn_cnf_adam_ms1/train 0.9065 0.8700 19.90k Tue Nov7,10:28:58 3h 14m9s
cnn_cnf_adam_ms1/val 0.8540 0.8528 19.90k Tue Nov7,10:29:11 3h14m12s

cnn_cpncpnff_adam_ms1/train 0.9958 0.9900 20.00k Tue Nov7,02:41:30 3h30m 23s
cnn_cpnepnff_adam_ms1/val 0.8990 0.9000 20.00k Tue Nov7,02:41:41 3h30m 23s

Advanced Machine Learning

91/94

8. DROPOUT

Add a dropout layer to regularize

summaries/accuracy summaries/loss
0.800
0.950 0.600
0.400
0.850
0.200
0.750 0.00

0.000 4.000k 8.000k 12.00k 16.00k 20.00k

£J

Name Smoothed Value
cnn_cpnecpnfdf_adam_ms1/train 0.9752 0.9700

ra
[
ra
[

cnn_cpncpnfdf_adam_ms1/val 0.9146 0.9148
cnn_cpnepnff_adam_ms1/train 0.9956 0.9900
O cnn_cpnepnff_adam_ms1/val 0.8989 0.9000

Advanced Machine Learning

0.000 4.000k 8.000k 12.00k 16.00k 20.00k

£J

Time

Tue Nov 7, 22:38:31
Tue Nov 7, 22:38:42
Tue Nov 7, 02:41:30
Tue Nov 7, 02:41:41

Relative

3h 30m 47s
3h 30m 46s
3h 30m 23s
3h 30m 23s

92/94

9. HYPERPARAMETER SEARCH

To further improve performance, carefully search the free (hyper)parameters:

Change the filters

Change the architecture

Change the optimization method

Change the parameters of those methods (Adam learning rate, dropout prob, etc.)
Scrutinize mislabels to look for patterns

Be mindful of overfitting, including overfitting to your validation set

Excellence in deep learning comes from experience and empiricism.

Tools and tricks at your disposal (many more to come):

Advanced Machine L

Convolutional layers: filter size, zero padding, striding
Optimization: SGD, Adam, RMSProp, etc.
Intermediate layers: pooling, dropout, normalization

Monitoring: validation data, tensorboard, classic debugging

earning

SUMMARIZING CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks are one key idea behind modern computer vision
« The idea of a convolution saves parameters and exploits knowledge of local statistics
« In challenging datasets, CNNs produce excellent results
» They require much care and attention to be performant
» Deeper networks can achieve superhuman classification performance

» A particular architecture can be (very) problem specific

. ®
5
1

224\{stride

o

3 W

Discuss: is this general/full Al or weak/narrow/applied AI?

s

« Have we solved digit recognition, or simply MNIST and SVHN (separately)?
« How much more general is the problem of full computer vision?

« What about object recognition, multi-object tracking, video, prediction, etc.?

Next: under the hood of optimization (SGD and autodiff)

Advanced Machine Learning

94794

