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ADMINISTRATIVE REMINDERS

Welcome! Let’s discuss the syllabus...
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CONTEXT: WHAT YOU HAVE LEARNED

The machine learning canon
• Tools: linear algebra, optimization, sampling, model selection, ...
• Principles: loss, risk, regularization, probabilistic modeling,...
• Algorithms/Problems: classification, dimension reduction, regression,...

All supervised methods share a common recipe:
• Frame the problem as learning a function from a family F = {fθ : θ ∈ Θ}

fθ : Rd → {0, 1} (or [0, 1]) fθ : Rd → ∆K fθ : Rd1 → Rd2 fθ : S× A → S

• Specify a loss function between model and data

L (fθ(x), y) = −y log fθ(x) − (1 − y) log (1 − fθ(x)) L = −
K∑

k=1

yk log fθ(x)k L = ∥y − fθ(x)∥2
2 L = ...

• Minimize the empirical risk on a dataset {(x1, y1), ..., (xn, yn)}

θ∗ = argminθ

1
n

n∑
i=1

L (fθ(xi), yi)

Key point: this is machine learning. It works.
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BUT WHAT ABOUT ALL THE AI HYPE?

Modern AI/ML is the same recipe
• Gather data, choose F = {fθ : θ ∈ Θ}, specify loss, minimize empirical risk
• All the same potential issues exist (wrong F , under/overfitting, optimization issues,...)
• The same statistical and computational thinking is necessary

The four catalysts of the AI explosion
1. Large and readily available datasets

2. Massive and cheap computational power

3. Flexible and general function families F
4. Open-source ML software libraries with powerful abstractions

We will study some neural network families F . While neural networks are powerful, there is nothing
magical or fundamentally different than what you already know.
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CATALYST 1: DATA

Computer Vision

SVHN CIFAR10 ImageNet ...

...

Reinforcement Learning

OpenAI Breakout OpenAI Cartpole UCB Pacman ...

...

Natural Language Processing

Wikipedia (English) Twitter Jeopardy ...

...

And so much more...
• https://www.data.gov/

• https://opendata.cityofnewyork.us/

• https://github.com/caesar0301/awesome-public-datasets

• ...
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CATALYST 2: COMPUTATIONAL POWER

Processing power has continued to grow... and become cheaper...

GPUs have accelerated this trend, especially important for ML-relevant computation

Cloud computing has made this even easier (abstracting away IT and system ops)
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CATALYST 3: NEURAL NETWORKS
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With enough layers and enough units per layer, the network is a universal function approximator: any function
can be fit (given enough data...).

• Inputs x0
i enter into unit j, weighted by edges w0

ij, and are summed with bias b1
j

• σ(·) provides elementwise nonlinearity
• The result x1

j is transmitted to layer 2, the next layer

Learning/Training is then minimizing an empirical risk over the parameter set

θ =
{

wℓ
ij, bℓ

j

}
i,j,ℓ

= {Wℓ, bℓ}ℓ

Advanced Machine Learning 7 / 94



EXAMPLE: LOGISTIC REGRESSION → NEURAL NETWORKS

Logistic Regression

x W b fθ(x)
σ(Wx + b)

Neural Network

x

W1 b1 f (1)
θ (x)

σ(W1x+ b1)

W2 b2 f (2)
θ (x)

σ(W2 f(1)(x) + b2)
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EXAMPLE: LOGISTIC REGRESSION → NEURAL NETWORKS

Neural Network

W1 b1 f (1)
θ (x)

σ(W1x+ b1)

W2 b2 f (2)
θ (x)

σ(W2 f(1)(x) + b2)

x1
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.

.

.

x784

f 1
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f 1
2

.

.

.

f 1
20

f 2
1

f 2
2

.

.

.

f 2
10

Input layer x Hidden layer f (1)(x) Output layer f (2)(x)

Cascade layers for any amount of depth and complexity!

Naive conclusion: deep learning is easy...
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...DEEP LEARNING IS HARD

• How do I choose
∣∣∣f (1)

∣∣∣, the number of units in the hidden layers?
• How do I choose L, the number of layers?
• How do I choose the activation function σ(·)?

sigmoid tanh relu softplus softmax ...
1

1+e−x
ex−e−x

ex−e−x max(0, x) log (1 + ex) exi∑
k exk ...

• Are there other choices to make?
• What about overfitting?
• Will my optimizer converge?
• Is my problem solvable with a particular architecture F?

• Can my data be fit by a particular architecture F?
MNIST vs. SVHN

Deep learning requires engineering skill, statistical thinking, and thoughtful empiricism.
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CATALYST 4: SOFTWARE

Machine Learning libraries have abstracted {math, stats, optimization, ...} → engineering

...

Under the hood are several essential elements to understand:
• Neural networks in detail

(sounds obvious, but we’ll spend some time here...)

• Automatic differentiation

• Stochastic optimization

(much more to come here also...)

To understand modern ML, we need to understand why these work... and when they don’t.
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NEURAL NETWORKS



ADMINISTRATIVE REMINDERS

• Slides and syllabus on courseworks (and Assignment 1 soon)
• A few comments about textbooks:

• There is no textbook for this course... for a good reason.
• When there is a relevant background reading or survey/review, I will note it in class.
• Mathematics for Machine Learning A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth
• Probabilistic Machine Learning Kevin P. Murphy
• Deep Learning Aaron Courville, Yoshua Bengio, Ian Goodfellow
• Pattern Recognition and Machine Learning Christopher Bishop

• Ask questions in class. Don’t wait until after class and then divide the impact of that question by 100x.
• Also, so you don’t think I’m just making stuff up, a DALL-E sample:
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A MOST IMPORTANT REMINDER

A neural network represents a function fθ : Rd1 → Rd2 .
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BUILDING BLOCKS

Units
The basic building block is a node or unit:

ϕ

• The unit has incoming and outgoing arrows. We think of each arrow as
“transmitting” a signal.

• The signal is always a scalar.
• A unit represents a function ϕ.

We read the diagram as: A scalar value (say x) is transmitted to the unit, the function ϕ is applied, and the
result ϕ(x) is transmitted from the unit along the outgoing arrow.

Weights

w

f (x)

x

ϕ

• If we want to “input” a scalar x, we represent it as a unit, too.
• We can think of this as the unit representing the constant function

g(x) = x.
• Additionally, each arrow is usually inscribed with a (scalar) weight w.
• As the signal x passes along the edge, it is multiplied by the edge weight

w.

The diagram above represents the function f (x) := ϕ(wx).
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READING NEURAL NETWORKS

f : R3 → R3 with input x =

x1

x2

x3



w11
w12

w13
w21

w22

w23 w31

w32

w33

f1(x)=ϕ1(⟨w1, x⟩) f2(x)=ϕ2(⟨w2, x⟩) f3(x)=ϕ3(⟨w3, x⟩)

x1 x2 x3

ϕ1 ϕ2 ϕ3

f (x) =

 f1(x)
f2(x)
f3(x)

 with fi(x) = ϕi

( 3∑
j=1

wjixj

)
(recall inner product ⟨wi, x⟩ = w⊤

i x =
∑

j wjixj )
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FEED-FORWARD NETWORKS

A feed-forward network is a neural network whose units can be arranged into groups L1, . . . ,LK so that
connections (arrows) only pass from units in group Lk to units in group Lk+1. The groups are called layers. In
a feed-forward network:

• There are no connections within a layer.
• There are no backwards connections.
• There are no connections that skip layers, e.g. from Lk to units in group Lk+2.

(but see Huang...Weinberger 2017 CVPR)

feed-forward

L1

L2

L3

not feed-forward not feed-forward (but still useful...)
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LAYERS

w1
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21
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22
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1 ϕ1

2

ϕ2
1

f (x)

• This network computes the function

f (x1, x2) = ϕ2
1

(
w2

11ϕ
1
1
(
w1

11x1 + w1
21x2
)
+ w2

21ϕ
1
2
(
w1

12x1 + w1
22x2
))

• Clearly, writing out f gets complicated fairly quickly as the network
grows.

First shorthand: Scalar products
• Collect all weights coming into a unit into a vector, e.g.

w2
1 := (w2

11,w2
21)

• Same for inputs: x = (x1, x2)

• The function then becomes

f (x) = ϕ2
1

(〈
w2

1,

(
ϕ1

1(
〈
w1

1, x
〉
)

ϕ1
2(
〈
w1

2, x
〉
)

)〉)
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LAYERS

w1
11

w1
12 w1

21
w1

22

ϕ1
1 ϕ1

2 f (2)

• Each layer represents a function, which takes the output
values of the previous layers as its arguments.

• Suppose the output values of the two nodes at the top are
y1, y2.

• Then the second layer defines the (two-dimensional) function

f (2)(y) =

(
ϕ1

1(
〈
w1

1, y
〉
)

ϕ1
2(
〈
w1

2, y
〉
)

)
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COMPOSITION OF FUNCTIONS

Basic composition
Suppose f and g are two function R → R. Their composition g ◦ f is the function

g ◦ f (x) := g(f (x)) .

For example:
f (x) = x + 1 g(y) = y2 g ◦ f (x) = (x + 1)2

We could combine the same functions the other way around:

f ◦ g(x) = x2 + 1

In multiple dimensions
Suppose f : Rd1 → Rd2 and g : Rd2 → Rd3 . Then

g ◦ f (x) = g(f (x)) is a function Rd1 → Rd3 .

For example:
f (x) = ⟨x, v⟩ − c g(y) = sgn(y) g ◦ f (x) = sgn(⟨x, v⟩ − c)
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LAYERS AND COMPOSITION
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• As above, we write

f (2)( • ) =

(
ϕ1

1(
〈
w1

1, •
〉
)

ϕ1
2(
〈
w1

2, •
〉
)

)
• The function for the third layer is similarly

f (3)( • ) = ϕ2
1(
〈

w2
1, •

〉
)

• The entire network represents the function

f (x) = f (3)( f (2)(x)) = f (3) ◦ f (2)(x)

A feed-forward network represents a function as a composition of several functions, each given by one
layer.
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THE FULLY CONNECTED DEEP NETWORK (OFTEN “MLP”)

x1 x2

. . .

xd

. . .

. . .

.

.

.
.
.
.

.

.

.

. . .

. . .

= f (1)

= f (2)

= f (K)

f (x) = f (K)(· · · f (2)(f (1)(x))) = f (K) ◦ . . . ◦ f (1)(x)
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LAYERS AND COMPOSITIONS

General feed-forward networks
A feed-forward network with K layers represents a function

f (x) = f (K) ◦ . . . ◦ f (1)(x)

Each layer represents a function f (k). These functions are of the form:

f (k)( • ) =


ϕ
(k)
1 (
〈
w(k)

1 , •
〉
)

...
ϕ
(k)
d (
〈
w(k)

d , •
〉
)

 typically: ϕ(k)(x) =



σ(x) (sigmoid)
I{±x > τ} (threshold)
c (constant)
x (linear)
max {0, x} (rectified linear)

Dimensions
• Each function f (k) is of the form

f (k) : Rdk → Rdk+1

• dk is the number of nodes in the kth layer. It is also called the width of the layer.
• We mostly assume for simplicity: d1 = . . . = dK =: d.

Advanced Machine Learning 23 / 94



ORIGIN OF THE NAME

If you look up the term “neuron” online, you will find illustrations like this:

This one comes from a web site called easyscienceforkids.com, which means it is likely to be scientifically more accurate than typical references to “neuron” and
“neural” in machine learning.

Very roughly, a neuron is a cell that:
• Collects signals (often electrical, often from other neurons)
• Processes them
• Generates an output signal

What happens inside a neuron is an intensely studied problem in neuroscience and is far more complex than
this three-step concept, so only in the rarest settings is there any connection between deep learning and
“understanding the brain”.
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HISTORICAL PERSPECTIVE: MCCULLOCH-PITTS NEURON

A neuron is modeled as a “thresholding device” that combines input signals:

v1 v2 v3

x1 x2 x3

y

I{• > 0}

McCulloch-Pitts neuron model (1943)
• Collect the input signals x1, x2, x3 into a vector x = (x1, x2, x3) ∈ R3

• Choose fixed vector v ∈ R3 and constant c ∈ R.
• Compute:

y = I{⟨v, x⟩ > 0} for some c ∈ R .

• In hindsight, this is a neural network with two layers, and function ϕ( • ) = I{⟨v, x⟩ > 0} at the bottom
unit.
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RECALL: LINEAR CLASSIFICATION

v

x

⟨x,v⟩
∥v∥

f (x) = sgn(⟨v, x⟩ − c)
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LINEAR CLASSIFIER IN R2 AS TWO-LAYER NN

v1 v2 −1

x1 x2 c

f (x)

I{• > 0}

f (x) = I{ v1x1 + v2x2 + (−1)c > 0 } = I{⟨v, x⟩ > c}

Equivalent to linear classifier
The linear classifier on the previous slide and f differ only in whether they encode the “blue” class as -1 or as 0:

sgn(⟨v, x⟩ − c) = 2f (x)− 1
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REMARKS

v1 v2 −1

y = I{vtx > c}

x1 x2 c

• This neural network represents a linear two-class classifier (on R2).
• We can more generally define a classifier on Rd by adding input units, one per dimension.
• It does not specify the training method.
• To train the classifier, we need a loss function (for ERM!) and an optimization method.
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TYPICAL COMPONENT FUNCTIONS

Linear units

ϕ(x) = x

This function simply “passes on” its incoming signal. These are used for example to represent inputs (data
values).

Constant functions

ϕ(x) = c

These can be used e.g. in combination with an indicator function to define a threshold, as in the linear classifier
above.
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TYPICAL COMPONENT FUNCTIONS

Indicator function

ϕ(x) = I{x > 0}

Example: Final unit is indicator

v1 v2 −1

x1 x2 c

f (x)

I{• > 0}
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TYPICAL COMPONENT FUNCTIONS

Sigmoids

ϕ(x) =
1

1 + e−x

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

Example: Final unit is sigmoid

v1 v2 −1

x1 x2 c

f (x)

σ(•)
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TYPICAL COMPONENT FUNCTIONS

Rectified linear units

ϕ(x) = max {0, x}

These are currently the most commonly used unit in the “inner” layers of a neural network (those layers that
are not the input or output layer).
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HIDDEN LAYERS AND NONLINEAR FUNCTIONS

Hidden units
• Any nodes (or “units”) in the network that are neither input nor output nodes are called hidden.
• Every network has an input layer and an output layer.
• If there any additional layers (which hence consist of hidden units), they are called hidden layers.

Linear and nonlinear networks
• If a network has no hidden units, then

fi(x) = ϕi(
〈
wi, x

〉
)

That means: f is a linear functions, except perhaps for the final application of ϕ.
• For example: In a classification problem, a two layer network can only represent linear decision

boundaries.
• Networks with at least one hidden layer can represent nonlinear decision surfaces.
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TWO VS THREE LAYERS

10 CHAPTER 6. MULTILAYER NEURAL NETWORKS

While we can be confident that a complete set of functions, such as all polynomi-
als, can represent any function it is nevertheless a fact that a single functional form
also suffices, so long as each component has appropriate variable parameters. In the
absence of information suggesting otherwise, we generally use a single functional form
for the transfer functions.

While these latter constructions show that any desired function can be imple-
mented by a three-layer network, they are not particularly practical because for most
problems we know ahead of time neither the number of hidden units required, nor
the proper weight values. Even if there were a constructive proof, it would be of little
use in pattern recognition since we do not know the desired function anyway — it
is related to the training patterns in a very complicated way. All in all, then, these
results on the expressive power of networks give us confidence we are on the right
track, but shed little practical light on the problems of designing and training neural
networks — their main benefit for pattern recognition (Fig. 6.3).
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Figure 6.3: Whereas a two-layer network classifier can only implement a linear decision
boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex, nor simply connected.

6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.
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6.3 Backpropagation algorithm

We have just seen that any function from input to output can be implemented as a
three-layer neural network. We now turn to the crucial problem of setting the weights
based on training patterns and desired output.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Advanced Machine Learning 34 / 94



THE XOR PROBLEM

6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 7
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Figure 6.1: The two-bit parity or exclusive-OR problem can be solved by a three-layer
network. At the bottom is the two-dimensional feature space x1 − x2, and the four
patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their (feature) values through multiplicative
weights to the hidden units. The hidden and output units here are linear threshold
units, each of which forms the linear sum of its inputs times their associated weight,
and emits a +1 if this sum is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive (“excitatory”) weights are denoted by solid lines, negative
(“inhibitory”) weights by dashed lines; the weight magnitude is indicated by the
relative thickness, and is labeled. The single output unit sums the weighted signals
from the hidden units (and bias) and emits a +1 if that sum is greater than or equal
to 0 and a -1 otherwise. Within each unit we show a graph of its input-output or
transfer function — f(net) vs. net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers.
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relative thickness, and is labeled. The single output unit sums the weighted signals
from the hidden units (and bias) and emits a +1 if that sum is greater than or equal
to 0 and a -1 otherwise. Within each unit we show a graph of its input-output or
transfer function — f(net) vs. net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers.

Solution regions we would like to represent Neural network representation

• Two ridges at different locations are substracted from each other.
• That generates a region bounded on both sides.
• A linear classifier cannot represent this decision region.
• Note this requires at least one hidden layer.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Advanced Machine Learning 35 / 94



6.2. FEEDFORWARD OPERATION AND CLASSIFICATION 9

input feature xi. Each hidden unit emits a nonlinear function Ξ of its total input; the
output unit merely emits the sum of the contributions of the hidden units.

Unfortunately, the relationship of Kolmogorov’s theorem to practical neural net-
works is a bit tenuous, for several reasons. In particular, the functions Ξj and ψij

are not the simple weighted sums passed through nonlinearities favored in neural net-
works. In fact those functions can be extremely complex; they are not smooth, and
indeed for subtle mathematical reasons they cannot be smooth. As we shall soon
see, smoothness is important for gradient descent learning. Most importantly, Kol-
mogorov’s Theorem tells us very little about how to find the nonlinear functions based
on data — the central problem in network based pattern recognition.

A more intuitive proof of the universal expressive power of three-layer nets is in-
spired by Fourier’s Theorem that any continuous function g(x) can be approximated
arbitrarily closely by a (possibly infinite) sum of harmonic functions (Problem 2). One
can imagine networks whose hidden units implement such harmonic functions. Proper
hidden-to-output weights related to the coefficients in a Fourier synthesis would then
enable the full network to implement the desired function. Informally speaking, we
need not build up harmonic functions for Fourier-like synthesis of a desired function.
Instead a sufficiently large number of “bumps” at different input locations, of different
amplitude and sign, can be put together to give our desired function. Such localized
bumps might be implemented in a number of ways, for instance by sigmoidal transfer
functions grouped appropriately (Fig. 6.2). The Fourier analogy and bump construc-
tions are conceptual tools, they do not explain the way networks in fact function. In
short, this is not how neural networks “work” — we never find that through train-
ing (Sect. 6.3) simple networks build a Fourier-like representation, or learn to group
sigmoids to get component bumps.

y1

y2

y4

y3

y3 y4y2y1

x1 x2

z1

z1

x1

x2

Figure 6.2: A 2-4-1 network (with bias) along with the response functions at different
units; each hidden and output unit has sigmoidal transfer function f(·). In the case
shown, the hidden unit outputs are paired in opposition thereby producing a “bump”
at the output unit. Given a sufficiently large number of hidden units, any continuous
function from input to output can be approximated arbitrarily well by such a network.

Illustration: R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, Wiley 2001Advanced Machine Learning 36 / 94



NUMBER OF LAYERS

We have observed
• We have seen that two-layer classification networks always represent linear class boundaries.
• With three layers, the boundaries can be non-linear.

Obvious question
• What happens if we use more than three layers? Do four layers again increase expressive power?
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WIDTH VS DEPTH

A neural network represents a (typically) complicated function f by simple functions ϕ(k)
i .

What functions can be represented?
A well-known result in approximation theory says: Every continuous function f : [0, 1]d → R can be
represented in the form

f (x) =
2d+1∑
j=1

ξj

( d∑
i=1

τij(xi)
)

where ξi and τij are functions R → R. A similar result shows one can approximate f to arbitrary precision
using specifically sigmoids, as

f (x) ≈
M∑

j=1

w(2)
j σ

( d∑
i=1

w(1)
ij xi + ci

)
for some finite M and constants ci.

Note the representations above can both be written as neural networks with three layers (i.e. with one hidden
layer).
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WIDTH VS DEPTH

Depth rather than width
• The representations above can achieve arbitrary precision with a single hidden layer (roughly: a

three-layer neural network can represent any continuous function).
• In the first representation, ξj and τij are “simpler” than f because they map R → R.
• In the second representation, the functions are more specific (sigmoids), and we typically need more of

them (M is large).
• That means: The price of precision is many hidden units, i.e. the network grows wide.
• The last years have shown: We can obtain very good results by limiting layer width, and instead

increasing depth (= number of layers).
• Theory is starting to emerge to properly explain this behavior.

(see e.g. Pleiss and Cunningham 2021 NeurIPS)

Limiting width
• Limiting layer width means we limit the degrees of freedom of each function f (k).
• That is a notion of parsimony.

...hence “Deep Learning”
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TRAINING NEURAL NETWORKS

Task
• We decide on a neural network “architecture”: We fix the network diagram, including all functions ϕ at

the units. Only the weights w on the edges can be changed during by training algorithm. Suppose the
architecture we choose has d1 input units and d2 output units.

• We collect all weights and biases into a vector θ. The entire network then represents a function fθ(x) that
maps Rd1 → Rd2 .

• To “train” the network now means that, given training data, we have to determine a suitable parameter
vector w, i.e. we fit the network to data by fitting the weights.

More specifically: Classification
Suppose the network is meant to represent a two-class classifier.

• That means the output dimension is d2 = 1, so fw is a function Rd1 → R.
• We are given data x1, x2, . . . with labels y1, y2, . . ..
• We split this data into training, validation and test data, according to the requirements of the problem we

are trying to solve.
• We then fit the network to the training data.
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TRAINING NEURAL NETWORKS

x

fw(x)

• We run each training data point xi through the network fθ and compare
fθ(xi) to yi to measure the error.

• Recall how gradient descent works: We make “small” changes to θ, and
choose the one which decreases the error most. That is one step of the
gradient scheme.

• For each such changed value θ′, we again run each training data point xi

through the network fθ′ , and measure the error by comparing fθ′(xi) to
yi. This is our loss L(yi, xi).
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TRAINING NEURAL NETWORKS

Loss function
• We have to specify how we compare the network’s output fθ(x) to the correct answer y.
• To do so, we specify a function L with two arguments that serves as an error measure.
• The choice of L depends on the problem.

Typical loss functions
• Classification problem:

L(ŷ, y) := −
K∑

k=1

yk log ŷk (with convention 0 log 0 = 0)

• Regression problem:
L(ŷ, y) := ∥y − ŷ∥2

Training as an optimization problem
• Given: Training data (x1, y1), . . . , (xn, yn) with labels yi.
• We specify a loss L, and define the total error on the training set – the empirical risk – as

R(θ) :=

n∑
i=1

L( fθ(xi), yi)
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BACKPROPAGATION

Training problem
In summary, neural network training attempts to solve the optimization problem

θ∗ = argmin
θ

R(θ)

using gradient descent. For feed-forward networks, the gradient descent algorithm takes a specific form that is
called backpropagation.

Backpropagation is gradient descent applied to R(θ) in a feed-forward network.

In practice (foreshadowing): Stochastic gradient descent
• The vector θ can be very high-dimensional. In high dimensions, computing a gradient is computationally

expensive, because we have to make “small changes” to θ in many different directions and compare them
to each other.

• Each time the gradient algorithm computes R(θ′) for a changed value θ′, we have to apply the network
to every data point, since R(θ′) =

∑n
i=1 L(fθ′(xi), yi).

• To save computation, the gradient algorithm typically computes L(fθ′(xi), yi) only for some small subset
of a the training data. This subset is called a mini batch, and the resulting algorithm is called stochastic
gradient descent.
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BACKPROPAGATION

Neural network training optimization problem

min
θ

R(θ)

The application of gradient descent to this problem is called backpropagation.

Backpropagation is gradient descent applied to R(θ) in a feed-forward network.

Deriving backpropagation
• We have to evaluate the derivative ∇θR(θ).
• Since R is additive over training points, R(θ) =

∑
i L(fθ(xi), yi), it suffices to derive ∇θL(fθ(xi), yi).
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CHAIN RULE

Recall from calculus: Chain rule
Consider a composition of functions f ◦ g(x) = f (g(x)).

d(f ◦ g)
dx

=
df
dg

dg
dx

If the derivatives of f and g are f ′ and g′, that means: d(f◦g)
dx (x) = f ′(g(x))g′(x)

Application to feed-forward network
Let θ(k) denote the weights in layer k. The function represented by the network is

fθ(x) = f (K)
θ ◦ · · · ◦ f (1)

θ (x) = f (K)

θ(K) ◦ · · · ◦ f (1)
θ(1)(x)

To solve the optimization problem, we have to compute derivatives of the form

d
dθ

L(fθ(xi), yi) =
dL( • , yi)

dfθ
dfθ
dθ
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DECOMPOSING THE DERIVATIVES

• The chain rule means we compute the derivatives layer by layer.
• Suppose we are only interested in the weights of layer k, and keep all other weights fixed. The function f

represented by the network is then

fθ(k)(x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)
θ(k) ◦ f (k−1) ◦ · · · ◦ f (1)(x)

• The first k − 1 layers enter only as the function value of x, so we define

z(k) := f (k−1) ◦ · · · ◦ f (1)(x)

and get
fθ(k)(x) = f (K) ◦ · · · ◦ f (k+1) ◦ f (k)

θ(k)(z
(k))

• If we differentiate with respect to θ(k), the chain rule gives

d
dθ(k) fθ(k)(x) =

df (K)

df (K−1) · · ·
df (k+1)

df (k) ·
df (k)

θ(k)

dθ(k)
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WITHIN A SINGLE LAYER

• Each f (k) is a vector-valued function f (k) : Rdk → Rdk+1 .
• It is parametrized by the weights θ(k) of the kth layer and takes an input vector z ∈ Rdk .
• We write f (k)(z, θ(k)).

Layer-wise derivative
Since f (k) and f (k−1) are vector-valued, we get a Jacobian matrix

df (k+1)

df (k) =


∂f (k+1)

1

∂f (k)
1

. . .
∂f (k+1)

1

∂f (k)
dk

...
...

∂f (k+1)
dk+1

∂f (k)
1

. . .
∂f (k+1)

dk+1

∂f (k)
dk

 =: ∆(k)(z, θ(k+1))

• ∆(k) is a matrix of size dk+1 × dk.
• The derivatives in the matrix quantify how f (k+1) reacts to changes in the argument of f (k) if the weights
θ(k+1) and θ(k) of both functions are fixed.
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BACKPROPAGATION ALGORITHM

Let θ(1), . . . , θ(K) be the current settings of the layer weights. These have either been computed in the previous
iteration, or (in the first iteration) are initialized at random.

Step 1: Forward pass
We start with an input vector x and compute

z(k) := f (k) ◦ · · · ◦ f (1)(x)

for all layers k.

Step 2: Backward pass
• Start with the last layer. Update the weights θ(K) by performing a gradient step on

L
(

f (K)(z(K), θ(K)), y
)

regarded as a function of θ(K) (so z(K) and y are fixed). Denote the updated weights θ̃(K).
• Move backwards one layer at a time. At layer k, we have already computed updates θ̃(K), . . . , θ̃(k+1).

Update θ(k) by a gradient step, where the derivative is computed as

∆(K−1)(z(K−1), θ̃(K)) · . . . ·∆(k)(z(k), θ̃(k+1))
df (k)

dθ(k) (z, θ
(k))

On reaching level 1, go back to step 1 and recompute the z(k) using the updated weights.
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SUMMARY: BACKPROPAGATION

• Backpropagation is a gradient descent method for the optimization problem

min
θ

R(θ) =

N∑
i=1

L(fθ(xi), yi)

L must be chosen such that it is additive over data points.
• It alternates between forward passes that update the layer-wise function values z(k) given the current

weights, and backward passes that update the weights using the current z(k).
• The layered architecture means we can (1) compute each z(k) from z(k−1) and (2) we can use the weight

updates computed in layers K, . . . , k + 1 to update weights in layer k.

So that’s great, but implementing these steps seems hard and tedious...
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CONVOLUTIONAL NEURAL NETWORKS



INFORMATION BOTTLENECKS IN NEURAL NETWORKS

Neural Network

W1 b1 f (1)
θ (x)

σ(W1x+ b1)

W2 b2 f (2)
θ (x)

σ(W2 f(1)(x) + b2)

Notice:
• The first layer bottlenecks the 28 × 28 space R784 → R20... loss of expressivity?
• Increasing 20 → 64 would drastically increase |θ|... slow algorithm and overfitting!
• ...because every unit sees all input units... that is, W1 is a full matrix

Opportunity:
• What dependency does x1 have on x784? x2? x29?
• Exploiting known (in)dependencies is a good thing
• Idea: make linear maps local... and rely on later layers to capture long-range features.
• Exploiting local statistics allows more outputs for the same net |θ|!
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CRITICAL IDEA: LOCAL STATISTICS

A new view of the same fully connected layer that we have been using:

• Blue: input units (eg 7 × 7 image)

• Green: output units (5 × 5 readout)

• Weight matrix (not shown): R49×25 → |θ| = 1225

Input Units (7x7)

Output Units (5x5)

Local linear filter: consider only a 3 × 3 linear map, and sweep it locally

• New weight matrix: R3×3 → |θ| = 9

• > 100× savings in parameters!

• But we have lost expressivity...

Image credit for all of these and the following: https://github.com/vdumoulin/conv_arithmetic
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CONVOLUTIONAL LAYER

Call this 3 × 3 linear map a filter or convolution

Now use multiple filters (below K = 4), producing multiple activation maps (each 5 × 5)

K activation
maps

Convolutional layer: linear map applied as above; a 3 × 3 × 1 × 4 parameter tensor.

Our/tf convention for 2D convolution: filter width × filter height × input depth × output depth.
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CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Network: a neural network with some number of
convolutional layers. The workhorse of modern computer vision.

You should now be able to interpret/implement published models such as:

[LeCun et al 1998]

• What is the filter size from input to C1? 5 × 5

• What is the size of the weight matrix from S4 to C5? 16 × 5 × 5 × 120 = 48, 000

• What is subsampling? It’s now called average pooling. What’s average pooling? ...
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TRICKS OF THE TRADE: ZERO PADDING

Note a few potential drawbacks:
• Filtering reduces spatial extent of activation map
• Edge pixels/activations are less frequently seen
• (Note these can also be benefits)

Zero Padding:
• Add rows/cols of zeros to the input map, solving both problems
• Output activation maps will preserve size when

Mpad =
1
2
(Mfilter − 1)

Note: one can zero-pad more/less/asymetrically/otherwise, with varied problem-specific effects
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TRICKS OF THE TRADE: STRIDING

On the other hand:
• Filtering processes the same information repeatedly
• Possibly wasteful if images are quite smooth
• Could get more activation maps if each was smaller

Stride:
• Jump the filter by some Mstride pixels/activations
• Output activation map (assuming square) will be of height/width

Moutput =
Minput − Mfilter + 2Mpad

Mstride
+ 1

• Caution! Non-integer results in above will be problematic. Care is required.

Note: striding and zero-padding give design flexibility and balance each other
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TRICKS OF THE TRADE: FILTER SIZE

Notice:
• Smaller filters process finer features
• Larger filters process broader features
• Common choices: 3 × 3, 5 × 5, 7 × 7, 1 × 1
• Empiricism dictates which to use (again: the art of deep learning)

Wait! What is a 1 × 1 layer? Isn’t that meaningless?
• No! Remember, the conv layer is filter width × filter height × input depth × output depth
• Critical: filters always operate on the whole depth of the input activation stack
• 1 × 1 conv layers → dimension reduction: preserve map size, reduce output dimension K
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PUTTING THESE ALL TOGETHER

Context
• Convolutional layers specify the linear map (and how to calculate it)
• An elementwise nonlinearity is still expected to follow
• tf.nn.relu( tf.nn.conv2d( x , W_cnn ) + b )

• Compare to tf.nn.relu( tf.matmul( x , W ) + b)

Specific example
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Questions
• What is the filter?
• What is the filter width?
• What is the zero padding?
• What is the stride?
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IN PRACTICE

Make cnn_cf: a single convolutional layer network with 64 activation maps

Note:
• logits are the real-valued inputs to the final nonlinear (softmax) transformation.
• This network should be more expressive than logistic regression
• Compare |θ| with logistic regression
• (this code is lower-level than we will need...)
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IN PRACTICE: FROM tf TO keras

Make cnn_cf: a single convolutional layer network with 64 activation maps

Compare to:

Keras:
• ...is a high-level API that is now (almost) fully integrated into tensorflow.
• ...is what many of you will use in your projects.
• ...is quite a bit easier than direct tensorflow
• ...obscures some key didactic details, so we will go back and forth in presentation
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GENERALIZING THE LOGISTIC MAP

We need to map continuous outputs to a set of K probabilities (in fact, the K-simplex):

softmax(x)j =
exj∑K

k=1 exk

Cross-entropy loss, with a one-hot encoded label yi:

L(yi, fθ(xi)) = −
K∑

k=1

yk
i log fθ(xi)

k

Warning
• The softmax operation should > 0, but numerically can sometimes be == 0
• log 0 will cause your training to crash with some NaN errors (possibly just in tb)
• Numerical stability is always a concern in practical machine learning
• Conveniently, tf and keras obscure most of these details from you
• ...but you will still run into issues at some point
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CAUTION: CHOICE OF OPTIMIZER

Consider different SGD variants (much more on SGD in subsequent lectures)

We will stick mostly with Adam for remainder, but again, empiricism...
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PROGRESS WITH cnn_cf

Training and Test

Questions
• Why is test/train nonsmooth/smooth?
• How do I set up tensorboard summaries for train and test?
• Will we do better if we make this network more complicated/deeper?
• Am I concerned by a ≈ 0.4% difference between train and test?
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TRICKS OF THE TRADE: POOLING

Idea
• Perhaps we care less about the precise location of activations in every layer
• And we know that parameters will be creeping upwards with padded layers
• Pooling adds a layer that averages or takes the max of a small window of activations
• Note: operates on each activation map individually
• Also called subsampling/downsampling (cf [Lecun et al 1998] figure earlier)

Max Pooling (most popular) Average Pooling
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Now
• I can reduce the number of parameters without (hopefully) losing much expressivity...
• I can increase the expressivity (hopefully) without increasing the number of parameters
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ADDING COMPLEXITY

Make cnn_cpcpff: conv→pool→conv→pool→fc→fc

Worth it?
• Better, but not much better.
• More costly

This story will change with more complex datasets...
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IMAGENET

The textbook large-scale vision dataset
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IMAGENET CHALLENGE

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)

• Annual computer vision challenge

• e.g. ILSVRC 2014 had > 1MM training, 50K
validation, 100K test

• Multinomial classification K = 1000

• Since 2012, dominated by CNNs of increasing
complexity

• Human performance surpassed in 2015

• Not without controversy...
Beyer et al (2020) “Are we done with ImageNet?”

[Kaiming He]

[Canziani et al 2017]
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ALEXNET

The first ILSVRC winner with deep learning

[Krizhevsky et al 2012]

We can understand the entirety of this network
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TRICKS OF THE TRADE: DROPOUT

With increasing complexity comes increasing overfitting. Let’s regularize!

[Srivastava et al 2014]

This widely used strategy is dropout
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TRICKS OF THE TRADE: DROPOUT

Add a dropout layer: conv→pool→conv→pool→fc→drop→fc

Does not seem to affect training much...
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TRICKS OF THE TRADE: DROPOUT

But hopefully it mitigates overfitting

Discuss... again, we expect this to matter more in more complex networks
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TRICKS OF THE TRADE: DROPOUT

Dropout has become standard practice in modern network design

[Srivastava et al 2014]
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STRONGLY RECOMMENDED!

Play with the architectures and choices we have made so far.
Experience is the only way to improve your deep learning skills.

Some ideas:
• Change the filters: sizes, striding, padding
• Change the pooling: average/max, different sizes, different positions
• Change the architecture
• Change the optimization method
• Change the batch size
• Change the summary/tensorboard content
• ...
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INCEPTION MODULES

2014 ILSVRC winner added yet more complexity... Idea (for conceptual purposes; don’t worry the details):
• Build a useful block or module of layers
• Layer those modules together

Inception module

[Szegedy et al 2014]

Reminder: 1 × 1 layers operate on the whole depth; act as dimension reduction
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INCEPTION

Full network
[Szegedy et al 2014]

Notice auxiliary classifiers
• Concern: gradient info does not propagate deep into the network
• Not overfitting!
• A nice trick, but there is another that we will soon see
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INCEPTION

Another view
[Szegedy et al 2014]

More complex, but still components we understand.
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QUICK ASIDE: TRANSFER LEARNING

Networks are trained for a specific task, but we suspect they also learn some useful concepts

[Krizhevsky et al 2012]

[Szegedy et al 2014]]

Idea: exploit a large pre-trained network to solve your problem...
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QUICK ASIDE: TRANSFER LEARNING

Consider a network as having two stages:
• a feature extractor: many layers that extract a useful representation
• a classifier: a logistic regression to the output of interest
• (note the above is very hand wavy, but is useful intuition and fundamental to much of deep learning

thought)

Transfer learning: borrow the first stage (ex: A – ImageNET; B – your own small image dataset)

Conceptually transfer learning is easy; the challenge is the code... (see HW02!)
For more, see foundation models like CLIP: [Radford et al 2021]
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RETURNING TO PERFORMANCE: 2015 WAS A BIG YEAR

Two big (simple) ideas brought the next level of performance:

1. Batch Normalization
2. Residual connections (the 2015 ILSVRC winner)

• added (vastly) more depth to the network
• surpassed human level performance
• did so with reasonably fewer parameters

[Kaiming He], [Canziani et al 2017]

Both of these ideas have become fairly standard practice.
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TRICKS OF THE TRADE: BATCH NORM

Parameter initialization (and learning in general) is made complicated by nonlinearities
• What happens if all inputs are saturated (in say a relu or sigmoid)?
• Distribution of inputs matters (think gradients)!
• Normalization layers have been widely used to mitigate.

• Local response norm.: divide unit activation by sum of squares of local neighbors
[Krizhevsky et al 2012]

• Batch normalization:

• standardize all units (individually, for compute
considerations) across the minibatch to a learned
mean and var.

• γ, β are learned parameters

• Test time: often an exponentially weighted
average of mini-batch batch params

[Ioffe and Szegedy 2015]

• Batch norm is an important trick of the trade (somewhat replacing dropout and pooling...)
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PROBLEMS WTH DEPTH

Exploding and vanishing gradients were a major historical problem for deep networks
• Chain rule has multiplicative terms, nonlinearities can saturate, etc.

Degradation has been another key roadblock to increasing depth

[He et al 2015]

Notice:
• Training error increasing with increasing depth... not overfitting!
• Not an issue with the function family, since F20 ⊂ F56

• Cause is optimization practicalities...
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RESNET

Key idea: layers learn residuals xℓ+1 − xℓ rather than the signal xℓ+1 itself:

Layers naturally tend to identity transformation, degradation is avoided, large depth is enabled:

Resulting world leading performance, with many follow-on variations (layer dropout, e.g.)
[He et al 2015]
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RESNET

ResNets are still the dominant off-the-shelf architecture choice for computer vision (in 2022)
• Width helps: performance grows slowly in depth (loosely: the skip connections mean that blocks aren’t

forced to learn anything)
• For CIFAR 10/100: use a WideResNet 28-10 (28 blocks, 10× as wide)
• For ImageNet (or similar scale): use a WideResNet 50-3
• (also empiricism: conv-BN-relu → BN-relu-conv)

[Zagoruyko and Komodakis 2016]

Bleeding edge performance is always changing, but the basic ideas and architectures appear to be in a local
optimum.
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BACK TO PRACTICALITIES: MNIST → SVHN

Consider the same digit classification problem on (seemingly) similar data

MNIST vs. SVHN

Questions:
• If F was well chosen on MNIST, will it work well on SVHN?
• If yes, what does that mean?
• If no, what do we have to change to make it work?
• ...

• Key takeaway today: answering these questions is critical, hard, and very empirical
• We will go through a number of steps/lessons
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1. LOGISTIC REGRESSION AND BASIC DEBUGGING

Start with logistic regression and SGD

tb helps, but basic debugging is still useful

Not learning...
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2. CHOOSING AN OPTIMIZER

Switching from SGD to Adam has helped before; we’ll also try RMSProp

Performance is still terrible, but at least the loss function is not pathological. Progress...
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3. MEAN SUBTRACTION

Observation

• SVHN data has very different illumination/brightness
• Precondition via mean subtraction of each channel?

Progress! Preprocessing data matters... do not rely on the neural net to do all the work
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4. TENSORBOARD FOR EMPIRICISM

Look at the histograms of logits over time to choose which one is learning.
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5. ADDING COMPLEXITY

Add cnn_cf: conv→ fc and cnn_cnf: conv→ norm→ fc
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6. ADDING COMPLEXITY

Add cnn_cpncpnff: conv→pool→norm→ conv→pool→norm→fc→fc

Training performance is very high. Overfitting?
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7. VALIDATION DATA

A separate validation set:
• helps monitor training
• avoids data snooping (overfitting to the test set)
• clarifies overfitting (is train/val gap the same as overfitting?)

[Bartlett et al (2019) Benign overfitting in linear regression]
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8. DROPOUT

Add a dropout layer to regularize
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9. HYPERPARAMETER SEARCH

To further improve performance, carefully search the free (hyper)parameters:
• Change the filters
• Change the architecture
• Change the optimization method
• Change the parameters of those methods (Adam learning rate, dropout prob, etc.)
• Scrutinize mislabels to look for patterns
• Be mindful of overfitting, including overfitting to your validation set
• ...

Excellence in deep learning comes from experience and empiricism.

Tools and tricks at your disposal (many more to come):
• Convolutional layers: filter size, zero padding, striding
• Optimization: SGD, Adam, RMSProp, etc.
• Intermediate layers: pooling, dropout, normalization
• Monitoring: validation data, tensorboard, classic debugging
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SUMMARIZING CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks are one key idea behind modern computer vision
• The idea of a convolution saves parameters and exploits knowledge of local statistics
• In challenging datasets, CNNs produce excellent results
• They require much care and attention to be performant
• Deeper networks can achieve superhuman classification performance
• A particular architecture can be (very) problem specific

Discuss: is this general/full AI or weak/narrow/applied AI?
• Have we solved digit recognition, or simply MNIST and SVHN (separately)?
• How much more general is the problem of full computer vision?
• What about object recognition, multi-object tracking, video, prediction, etc.?

Next: under the hood of optimization (SGD and autodiff)
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