STAT G8325 Gaussian Processes and Kernel Methods §12: Probabilistic Integration

John P. Cunningham

Department of Statistics Columbia University Administrative interlude

Probabilistic integration

Interlude: closed-form kernel mean embeddings

Extending probabilistic integration

References

Administrative interlude

Probabilistic integration

Interlude: closed-form kernel mean embeddings

Extending probabilistic integration

References

Progress...

§	Dates	Content
10 11 12	Nov 23, Dec 2 Dec 7 Dec 9 Dec 14, 16	Kernel statistical tests Speed and Scaling Part 3 Probabilistic Integration Final project presentations

- Final project presentations Monday Dec 14, 16
 - Present 5-7 minutes of your project results.
 - Build off of project progress report.
 - Send 1-5 pdf slides to me beforehand.
- Monday: Richard, Gamal, Jalaj, Francois, Xu S., Xu R., Tim, Swupnil.
- ▶ Wednesday: Kashif, Hal, Ruoxi, Ben, Ryan, Gabriel, Shuawein, Hanxi.
- Soon-to-be-randomly-assigned: Yuanjun, Lichi, Gonzalo, Daniel, Rayleigh.
- Final project writeup then due Friday Dec 18 at noon.
 - 8-16 pages pdf, using the tex template from hw3.
 - Deadline strictly enforced.

Administrative interlude

Probabilistic integration

Interlude: closed-form kernel mean embeddings

Extending probabilistic integration

References

▶ Quadrature (aka numerical integration) is the problem of calculating

$$Z = \int g(x) dx.$$

Quadrature (aka numerical integration) is the problem of calculating

$$Z = \int g(x) dx.$$

▶ We will equivalently consider the familiar expectation problem:

$$Z = E_p(\ell) = \int \ell(x) p(x) dx$$

for $p(x) = \mathcal{N}(x; m_0, s_0)$, which by $\ell(x) = \frac{g(x)}{p(x)}$ is (sort of) wlog.

Quadrature (aka numerical integration) is the problem of calculating

$$Z = \int g(x) dx.$$

▶ We will equivalently consider the familiar expectation problem:

$$Z = E_p(\ell) = \int \ell(x) p(x) dx$$

for $p(x) = \mathcal{N}(x; m_0, s_0)$, which by $\ell(x) = \frac{g(x)}{p(x)}$ is (sort of) wlog.

Our simplest, traditional Monte Carlo estimator is:

$$\hat{Z} = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i) \quad x_1, ..., x_n \sim_{iid} p(x)$$

Quadrature (aka numerical integration) is the problem of calculating

$$Z = \int g(x) dx.$$

▶ We will equivalently consider the familiar expectation problem:

$$Z = E_p(\ell) = \int \ell(x) p(x) dx$$

for $p(x) = \mathcal{N}(x; m_0, s_0)$, which by $\ell(x) = \frac{g(x)}{p(x)}$ is (sort of) wlog.

Our simplest, traditional Monte Carlo estimator is:

$$\hat{Z} = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i) \quad x_1, ..., x_n \sim_{iid} p(x).$$

▶ Bayesian quadrature (aka probabilistic integration) simply observes that smoothness in ℓ(x) should allow us to learn more about the integral from a finite set of samples x₁,...,x_n.

Quadrature (aka numerical integration) is the problem of calculating

$$Z = \int g(x) dx.$$

▶ We will equivalently consider the familiar expectation problem:

$$Z = E_p(\ell) = \int \ell(x) p(x) dx$$

for $p(x) = \mathcal{N}(x; m_0, s_0)$, which by $\ell(x) = \frac{g(x)}{p(x)}$ is (sort of) wlog.

Our simplest, traditional Monte Carlo estimator is:

$$\hat{Z} = \frac{1}{n} \sum_{i=1}^{n} \ell(x_i) \quad x_1, ..., x_n \sim_{iid} p(x).$$

- ▶ Bayesian quadrature (aka probabilistic integration) simply observes that smoothness in ℓ(x) should allow us to learn more about the integral from a finite set of samples x₁,...,x_n.
- Example: suppose two draws x_i and x_j are equal (or very close); ignoring this fact leads to double counting.

One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{GP}(m,k)$. Then $Z = E_p(\ell)$ is also a random variable, which we can condition on $x_i, \ell(x_i)$ pairs.

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function ℓ(x) ~ GP(m,k). Then Z = E_p(ℓ) is also a random variable, which we can condition on x_i, ℓ(x_i) pairs.

Repeat:

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{GP}(m,k)$. Then $Z = E_p(\ell)$ is also a random variable, which we can condition on $x_i, \ell(x_i)$ pairs.
- Repeat:
 - Draw $x_i \sim_{iid} p(x)$

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{GP}(m,k)$. Then $Z = E_p(\ell)$ is also a random variable, which we can condition on $x_i, \ell(x_i)$ pairs.
- Repeat:
 - Draw $x_i \sim_{iid} p(x)$
 - Observe (evaluate) $\ell(x_i)$

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{GP}(m,k)$. Then $Z = E_p(\ell)$ is also a random variable, which we can condition on $x_i, \ell(x_i)$ pairs.
- Repeat:
 - Draw $x_i \sim_{iid} p(x)$
 - Observe (evaluate) $\ell(x_i)$
 - Infer the posterior $Z|x_1, \ell(x_1), ..., x_i, \ell(x_i)$.

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{GP}(m,k)$. Then $Z = E_p(\ell)$ is also a random variable, which we can condition on $x_i, \ell(x_i)$ pairs.

Repeat:

- Draw $x_i \sim_{iid} p(x)$
- Observe (evaluate) $\ell(x_i)$
- Infer the posterior $Z|x_1, \ell(x_1), ..., x_i, \ell(x_i)$.
- Posterior mean $E_{\ell}(Z|D) = E_{\ell}(E_p(\ell)|D)$

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{GP}(m,k)$. Then $Z = E_p(\ell)$ is also a random variable, which we can condition on $x_i, \ell(x_i)$ pairs.
- Repeat:
 - Draw $x_i \sim_{iid} p(x)$
 - Observe (evaluate) $\ell(x_i)$
 - Infer the posterior $Z|x_1, \ell(x_1), ..., x_i, \ell(x_i)$.
- Posterior mean $E_{\ell}(Z|D) = E_{\ell}(E_p(\ell)|D)$

...using the usual data $D \triangleq x_1, \ell(x_1), ..., x_n, \ell(x_n)$.

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{GP}(m,k)$. Then $Z = E_p(\ell)$ is also a random variable, which we can condition on $x_i, \ell(x_i)$ pairs.
- Repeat:
 - Draw $x_i \sim_{iid} p(x)$
 - Observe (evaluate) $\ell(x_i)$
 - Infer the posterior $Z|x_1, \ell(x_1), ..., x_i, \ell(x_i)$.
- Posterior mean $E_{\ell}(Z|D) = E_{\ell}(E_p(\ell)|D)$

...using the usual data $D \triangleq x_1, \ell(x_1), ..., x_n, \ell(x_n)$.

• E(Z|D) is the quantity of interest: expected quadrature value.

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{GP}(m,k)$. Then $Z = E_p(\ell)$ is also a random variable, which we can condition on $x_i, \ell(x_i)$ pairs.
- Repeat:
 - Draw $x_i \sim_{iid} p(x)$
 - Observe (evaluate) $\ell(x_i)$
 - Infer the posterior $Z|x_1, \ell(x_1), ..., x_i, \ell(x_i)$.
- Posterior mean $E_{\ell}(Z|D) = E_{\ell}(E_p(\ell)|D)$

...using the usual data $D \triangleq x_1, \ell(x_1), ..., x_n, \ell(x_n)$.

- E(Z|D) is the quantity of interest: expected quadrature value.
- It can have (surprisingly?) tractable form...

Intuitive picture

modified from http://arxiv.org/abs/1512.00933.

Another intuitive picture

x

from [OGG⁺12].

► The expected quadrature value:

The expected quadrature value:

 $E(Z|D) = E_{\ell} \left(E_p(\ell) | D \right)$

The expected quadrature value:

$$\begin{split} E(Z|D) &= E_{\ell} \left(E_{p}(\ell) | D \right) \\ &= \int_{\ell} \left(\int_{x} \ell(x) p(x) dx \right) p(\ell|D) d\ell \end{split}$$

The expected quadrature value:

$$\begin{split} E(Z|D) &= E_{\ell} \left(E_{p}(\ell) | D \right) \\ &= \int_{\ell} \left(\int_{x} \ell(x) p(x) dx \right) p(\ell|D) d\ell \\ &= \int_{x} \left(\int_{\ell} \ell(x) p(\ell|D) d\ell \right) p(x) dx \end{split}$$

► The expected quadrature value:

$$\begin{split} E(Z|D) &= E_{\ell}\left(E_{p}(\ell)|D\right) \\ &= \int_{\ell}\left(\int_{x}\ell(x)p(x)dx\right)p(\ell|D)d\ell \\ &= \int_{x}\left(\int_{\ell}\ell(x)p(\ell|D)d\ell\right)p(x)dx \\ &= \int_{x}\left(m_{x}+K_{xD}(K_{DD}+\sigma_{\epsilon}^{2}I)^{-1}\left(\ell_{D}-m_{\ell}\right)\right)p(x)dx \end{split}$$

► The expected quadrature value:

$$\begin{split} E(Z|D) &= E_{\ell} \left(E_{p}(\ell) | D \right) \\ &= \int_{\ell} \left(\int_{x} \ell(x) p(x) dx \right) p(\ell|D) d\ell \\ &= \int_{x} \left(\int_{\ell} \ell(x) p(\ell|D) d\ell \right) p(x) dx \\ &= \int_{x} \left(m_{x} + K_{xD} (K_{DD} + \sigma_{\epsilon}^{2}I)^{-1} \left(\ell_{D} - m_{\ell} \right) \right) p(x) dx \\ &= \int_{x} m_{x} p(x) dx + \left(\int_{x} K_{xD} p(x) dx \right) (K_{DD} + \sigma_{\epsilon}^{2}I)^{-1} \left(\ell_{D} - m_{\ell} \right) \end{split}$$

▶ The expected quadrature value:

$$\begin{split} E(Z|D) &= E_{\ell} \left(E_{p}(\ell) | D \right) \\ &= \int_{\ell} \left(\int_{x} \ell(x) p(x) dx \right) p(\ell|D) d\ell \\ &= \int_{x} \left(\int_{\ell} \ell(x) p(\ell|D) d\ell \right) p(x) dx \\ &= \int_{x} \left(m_{x} + K_{xD} (K_{DD} + \sigma_{\epsilon}^{2}I)^{-1} \left(\ell_{D} - m_{\ell} \right) \right) p(x) dx \\ &= \int_{x} m_{x} p(x) dx + \left(\int_{x} K_{xD} p(x) dx \right) (K_{DD} + \sigma_{\epsilon}^{2}I)^{-1} \left(\ell_{D} - m_{\ell} \right) \\ &= E_{p}(m) + \mu_{D}^{p \top} (K_{DD} + \sigma_{\epsilon}^{2}I)^{-1} \left(\ell_{D} - m_{\ell} \right) \end{split}$$

where $\mu^p = E_p(k_x)$ is the familiar kernel mean embedding in the rkhs \mathcal{H} .

► The expected quadrature value:

$$\begin{split} E(Z|D) &= E_{\ell}\left(E_{p}(\ell)|D\right) \\ &= \int_{\ell}\left(\int_{x}\ell(x)p(x)dx\right)p(\ell|D)d\ell \\ &= \int_{x}\left(\int_{\ell}\ell(x)p(\ell|D)d\ell\right)p(x)dx \\ &= \int_{x}\left(m_{x}+K_{xD}(K_{DD}+\sigma_{\epsilon}^{2}I)^{-1}\left(\ell_{D}-m_{\ell}\right)\right)p(x)dx \\ &= \int_{x}m_{x}p(x)dx+\left(\int_{x}K_{xD}p(x)dx\right)\left(K_{DD}+\sigma_{\epsilon}^{2}I\right)^{-1}\left(\ell_{D}-m_{\ell}\right) \\ &= E_{p}(m)+\mu_{D}^{p}^{\top}(K_{DD}+\sigma_{\epsilon}^{2}I)^{-1}\left(\ell_{D}-m_{\ell}\right) \end{split}$$

where $\mu^p = E_p(k_x)$ is the familiar kernel mean embedding in the rkhs \mathcal{H} .

▶ Recall that when $k(x, x') = \sigma_{\ell}^2 \mathcal{N}(x; x', w_{\ell})$ (an SE or RBF kernel), we have the further simplification:

$$\mu^p(x_i) = \int k(x_i, x) p(x) dx = \sigma_\ell^2 \mathcal{N}(x_i; m_0, s_0 + w_\ell).$$

► The expected quadrature value:

$$\begin{split} E(Z|D) &= E_{\ell}\left(E_{p}(\ell)|D\right) \\ &= \int_{\ell}\left(\int_{x}\ell(x)p(x)dx\right)p(\ell|D)d\ell \\ &= \int_{x}\left(\int_{\ell}\ell(x)p(\ell|D)d\ell\right)p(x)dx \\ &= \int_{x}\left(m_{x}+K_{xD}(K_{DD}+\sigma_{\epsilon}^{2}I)^{-1}\left(\ell_{D}-m_{\ell}\right)\right)p(x)dx \\ &= \int_{x}m_{x}p(x)dx+\left(\int_{x}K_{xD}p(x)dx\right)\left(K_{DD}+\sigma_{\epsilon}^{2}I\right)^{-1}\left(\ell_{D}-m_{\ell}\right) \\ &= E_{p}(m)+\mu_{D}^{p}^{\top}(K_{DD}+\sigma_{\epsilon}^{2}I)^{-1}\left(\ell_{D}-m_{\ell}\right) \end{split}$$

where $\mu^p = E_p(k_x)$ is the familiar kernel mean embedding in the rkhs \mathcal{H} .

▶ Recall that when $k(x, x') = \sigma_{\ell}^2 \mathcal{N}(x; x', w_{\ell})$ (an SE or RBF kernel), we have the further simplification:

$$\mu^p(x_i) = \int k(x_i, x) p(x) dx = \sigma_\ell^2 \mathcal{N}(x_i; m_0, s_0 + w_\ell).$$

• Often $\sigma_{\ell} = 0$ when the integrand can be evaluated precisely.

Empirical result from [GR02]

Empirical result from [GR02]

► A toy example:
Empirical result from [GR02]

A toy example:

Empirical result from [GR02]

► A toy example:

BQ uses larger sample sizes more effectively.

Empirical result from [GR02]

► A toy example:

BQ uses larger sample sizes more effectively.

BQ has higher variance with small sample sizes. Why?

Administrative interlude

Probabilistic integration

Interlude: closed-form kernel mean embeddings

Extending probabilistic integration

References

▶ Things got simpler when we had $k(x, x') = \sigma_{\ell}^2 \mathcal{N}(x; x', w_{\ell})$ (SE kernel):

$$\mu^p(x_i) = \int k(x_i, x) p(x) dx = \sigma_\ell^2 \mathcal{N}(x_i; m_0, s_0 + w_\ell).$$

▶ Things got simpler when we had $k(x, x') = \sigma_{\ell}^2 \mathcal{N}(x; x', w_{\ell})$ (SE kernel):

$$\mu^{p}(x_{i}) = \int k(x_{i}, x) p(x) dx = \sigma_{\ell}^{2} \mathcal{N}(x_{i}; m_{0}, s_{0} + w_{\ell}).$$

That is, the kernel mean embedding is closed form.

► Things got simpler when we had $k(x, x') = \sigma_{\ell}^2 \mathcal{N}(x; x', w_{\ell})$ (SE kernel):

$$\mu^{p}(x_{i}) = \int k(x_{i}, x) p(x) dx = \sigma_{\ell}^{2} \mathcal{N}(x_{i}; m_{0}, s_{0} + w_{\ell}).$$

- > That is, the kernel mean embedding is closed form.
- \blacktriangleright Here are some other p,k,\mathcal{X} triplets such that μ^p is closed form:

► Things got simpler when we had $k(x, x') = \sigma_{\ell}^2 \mathcal{N}(x; x', w_{\ell})$ (SE kernel):

$$\mu^p(x_i) = \int k(x_i, x) p(x) dx = \sigma_\ell^2 \mathcal{N}(x_i; m_0, s_0 + w_\ell)$$

- That is, the kernel mean embedding is closed form.
- Here are some other p, k, \mathcal{X} triplets such that μ^p is closed form:

\mathcal{X}	р	k	Reference
$[0, 1]^d$	$\operatorname{Unif}(\mathcal{X})$	Wendland TP	Oates and Girolami (2015)
$[0, 1]^d$	$\operatorname{Unif}(\mathcal{X})$	Matérn Weighted TP	Sec. 5.2.3
$[0, 1]^d$	$\operatorname{Unif}(\mathcal{X})$	Korobov TP	Appendix D
$[0, 1]^d$	$\operatorname{Unif}(\mathcal{X})$	Exponentiated quadratic	Appendix J
\mathbb{R}^{d}	Mixt. of Gaussians	Exponentiated quadratic	O'Hagan (1991)
\mathbb{S}^d	$\operatorname{Unif}(\mathcal{X})$	Gegenbauer	Sec. 5.2.1
Arbitrary	$\operatorname{Unif}(\mathcal{X}) / \operatorname{Mixt.}$ of Gauss.	trigonometric	Integration by parts
Arbitrary	$\operatorname{Unif}(\mathcal{X})$	Splines	Minka (2000)
Arbitrary	Known moments	Polynomial TP	Briol et al. (2015)
Arbitrary	Known $\partial \log \pi(\boldsymbol{x})$	Control functional	Sec. 4.3

again from http://arxiv.org/abs/1512.00933.

► Things got simpler when we had $k(x, x') = \sigma_{\ell}^2 \mathcal{N}(x; x', w_{\ell})$ (SE kernel):

$$\mu^p(x_i) = \int k(x_i, x) p(x) dx = \sigma_\ell^2 \mathcal{N}(x_i; m_0, s_0 + w_\ell).$$

- That is, the kernel mean embedding is closed form.
- Here are some other p, k, \mathcal{X} triplets such that μ^p is closed form:

\mathcal{X}	р	k	Reference
$[0, 1]^d$	$\operatorname{Unif}(\mathcal{X})$	Wendland TP	Oates and Girolami (2015)
$[0, 1]^d$	$\operatorname{Unif}(\mathcal{X})$	Matérn Weighted TP	Sec. 5.2.3
$[0, 1]^d$	$\operatorname{Unif}(\mathcal{X})$	Korobov TP	Appendix D
$[0, 1]^d$	$\operatorname{Unif}(\mathcal{X})$	Exponentiated quadratic	Appendix J
\mathbb{R}^{d}	Mixt. of Gaussians	Exponentiated quadratic	O'Hagan (1991)
\mathbb{S}^d	$\operatorname{Unif}(\mathcal{X})$	Gegenbauer	Sec. 5.2.1
Arbitrary	$\operatorname{Unif}(\mathcal{X}) / \operatorname{Mixt.}$ of Gauss.	trigonometric	Integration by parts
Arbitrary	$\operatorname{Unif}(\mathcal{X})$	Splines	Minka (2000)
Arbitrary	Known moments	Polynomial TP	Briol et al. (2015)
Arbitrary	Known $\partial \log \pi(\boldsymbol{x})$	Control functional	Sec. 4.3

again from http://arxiv.org/abs/1512.00933.

▶ Here TP means tensor product.

Administrative interlude

Probabilistic integration

Interlude: closed-form kernel mean embeddings

Extending probabilistic integration

References

▶ BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.

- ▶ BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.
- But also, throughout the semester we have seen other possible moves...

- ▶ BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
 - Exploiting structure in ℓ :

- ▶ BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
 - Exploiting structure in ℓ :
 - Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$p(D) = \int p(D|x)p(x)dx \triangleq \int \ell(x)p(x)dx$$

- ▶ BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
 - Exploiting structure in *l*:
 - Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$p(D) = \int p(D|x)p(x)dx \triangleq \int \ell(x)p(x)dx.$$

$$p(f|D) = \frac{\int p(f|D,\theta)p(D|\theta)p(\theta)d\theta}{\int p(D|\theta)p(\theta)d\theta}.$$

- ▶ BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
 - Exploiting structure in *l*:
 - Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$p(D) = \int p(D|x)p(x)dx \triangleq \int \ell(x)p(x)dx$$

Maybe a ratio of integrals with common terms:

$$p(f|D) = \frac{\int p(f|D,\theta)p(D|\theta)p(\theta)d\theta}{\int p(D|\theta)p(\theta)d\theta}.$$

• Active learning: choose point x_{i+1} based on observations $\ell(x_1), ..., \ell(x_i)$.

- ▶ BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
 - Exploiting structure in *l*:
 - Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$p(D) = \int p(D|x)p(x)dx \triangleq \int \ell(x)p(x)dx$$

$$p(f|D) = \frac{\int p(f|D,\theta)p(D|\theta)p(\theta)d\theta}{\int p(D|\theta)p(\theta)d\theta}.$$

- Active learning: choose point x_{i+1} based on observations $\ell(x_1), ..., \ell(x_i)$.
- Model selection: in the simplest version we would do something like optimization of hyperparameters, but properly marginalizing over hyperparameters should improve accuracy.

- ▶ BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
 - Exploiting structure in *l*:
 - Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$p(D) = \int p(D|x)p(x)dx \triangleq \int \ell(x)p(x)dx$$

$$p(f|D) = \frac{\int p(f|D,\theta)p(D|\theta)p(\theta)d\theta}{\int p(D|\theta)p(\theta)d\theta}.$$

- Active learning: choose point x_{i+1} based on observations $\ell(x_1), ..., \ell(x_i)$.
- Model selection: in the simplest version we would do something like optimization of hyperparameters, but properly marginalizing over hyperparameters should improve accuracy.
- ► These extensions in BQ: [OGR⁺12, OGG⁺12, GOH14, GOG⁺14, HOG15].

- BQ uses gp to share information about input points $x_1, ..., x_n$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
 - Exploiting structure in *l*:
 - Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$p(D) = \int p(D|x)p(x)dx \triangleq \int \ell(x)p(x)dx$$

$$p(f|D) = \frac{\int p(f|D,\theta)p(D|\theta)p(\theta)d\theta}{\int p(D|\theta)p(\theta)d\theta}.$$

- Active learning: choose point x_{i+1} based on observations $\ell(x_1), ..., \ell(x_i)$.
- Model selection: in the simplest version we would do something like optimization of hyperparameters, but properly marginalizing over hyperparameters should improve accuracy.
- These extensions in BQ: [OGR⁺12, OGG⁺12, GOH14, GOG⁺14, HOG15].
- Theory for BQ is just starting; see http://arxiv.org/abs/1512.00933.

▶ If we know $\ell(x) \ge 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.

- If we know $\ell(x) \ge 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.
- $[OGG^+12]$ uses a log transform, namely:

 $E(Z|D) = E_{\log \ell} (E_p(\ell)|D)$

- $\blacktriangleright \ \, \mbox{ If we know } \ell(x) \geq 0 \ \, \mbox{ everywhere, a gp prior on } \ell(x) \ \, \mbox{ is a bad model}.$
- ▶ [OGG⁺12] uses a log transform, namely:

$$\begin{split} E(Z|D) &= & E_{\log \ell} \left(E_p(\ell) | D \right) \\ &= & \int_{\log \ell} \left(\int_x \exp \left\{ \log \ell(x) \right\} p(x) dx \right) p(\log \ell | D) d \log \ell \\ &\text{where} \quad \log \ell = \hat{\ell} \sim \mathcal{GP}(0, k), \end{split}$$

• If we know $\ell(x) \ge 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.

▶ [OGG⁺12] uses a log transform, namely:

$$\begin{split} E(Z|D) &= & E_{\log \ell} \left(E_p(\ell) | D \right) \\ &= & \int_{\log \ell} \left(\int_x \exp \left\{ \log \ell(x) \right\} p(x) dx \right) p(\log \ell | D) d \log \ell \\ & \text{where} \quad \log \ell = \hat{\ell} \sim \mathcal{GP}(0,k), \end{split}$$

which for tractability subsequently linearizes the integrand as:

 $\exp\left\{\log\ell(x)\right\} \approx \exp\left\{\log\ell_0(x)\right\} + \exp\left\{\log\ell(x)\right\} \left(\log\ell(x) - \log\ell_0(x)\right).$

- ▶ If we know $\ell(x) \ge 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.
- ▶ [OGG⁺12] uses a log transform, namely:

$$\begin{split} E(Z|D) &= & E_{\log \ell} \left(E_p(\ell) | D \right) \\ &= & \int_{\log \ell} \left(\int_x \exp \left\{ \log \ell(x) \right\} p(x) dx \right) p(\log \ell | D) d \log \ell \\ &\text{where} \quad \log \ell = \hat{\ell} \sim \mathcal{GP}(0,k), \end{split}$$

which for tractability subsequently linearizes the integrand as: $\exp \left\{ \log \ell(x) \right\} \approx \exp \left\{ \log \ell_0(x) \right\} + \exp \left\{ \log \ell(x) \right\} \left(\log \ell(x) - \log \ell_0(x) \right).$

▶ [GOG⁺14] uses a square-root transformation:

$$\hat{\ell} = \sqrt{2(\ell - \alpha)} \sim \mathcal{GP}(0, k), \quad \text{ such that } \hat{\ell}(x) = \alpha + \frac{1}{2} \hat{\ell}^2(x).$$

- ▶ If we know $\ell(x) \ge 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.
- ▶ [OGG⁺12] uses a log transform, namely:

$$\begin{split} E(Z|D) &= & E_{\log \ell} \left(E_p(\ell) | D \right) \\ &= & \int_{\log \ell} \left(\int_x \exp \left\{ \log \ell(x) \right\} p(x) dx \right) p(\log \ell | D) d \log \ell \\ &\text{where} \quad \log \ell = \hat{\ell} \sim \mathcal{GP}(0,k), \end{split}$$

which for tractability subsequently linearizes the integrand as: $\exp \left\{ \log \ell(x) \right\} \approx \exp \left\{ \log \ell_0(x) \right\} + \exp \left\{ \log \ell(x) \right\} \left(\log \ell(x) - \log \ell_0(x) \right).$

▶ [GOG⁺14] uses a square-root transformation:

$$\hat{\ell} = \sqrt{2(\ell - \alpha)} \sim \mathcal{GP}(0, k), \quad \text{ such that } \hat{\ell}(x) = \alpha + \frac{1}{2} \hat{\ell}^2(x).$$

As you might expect these choices induce some technical details but improve estimation in the right settings.

▶ In §02 we considered approximate integration of hyperparameters [GOH14].

- ▶ In §02 we considered approximate integration of hyperparameters [GOH14].
- Accurate uncertainty estimates on ℓ seem valuable:

- ▶ In §02 we considered approximate integration of hyperparameters [GOH14].
- Accurate uncertainty estimates on ℓ seem valuable:

- ▶ In §02 we considered approximate integration of hyperparameters [GOH14].
- Accurate uncertainty estimates on ℓ seem valuable:

▶ [OGG⁺12, GOG⁺14, HOG15] use model selection to good effect.

Actively choosing quadrature points $x_1, ..., x_n$

Actively choosing quadrature points $x_1, ..., x_n$

> In $\S07$ we considered bayesian active learning via [GSW+15].

Actively choosing quadrature points $x_1, ..., x_n$

- In $\S07$ we considered bayesian active learning via [GSW+15].
- ► A sensible BQ acquisition function is to minimize the variance of the estimate *E*(*Z*|*D*).
Actively choosing quadrature points $x_1, ..., x_n$

- ▶ In §07 we considered bayesian active learning via [GSW⁺15].
- ► A sensible BQ acquisition function is to minimize the variance of the estimate *E*(*Z*|*D*).
- ▶ [OGG⁺12, GOG⁺14, HOG15] use this active learning to good effect:

Actively choosing quadrature points $x_1, ..., x_n$

- ▶ In §07 we considered bayesian active learning via [GSW⁺15].
- ► A sensible BQ acquisition function is to minimize the variance of the estimate E(Z|D).
- ▶ [OGG⁺12, GOG⁺14, HOG15] use this active learning to good effect:

Performance against other competitive sampling methods

Performance against other competitive sampling methods

- ► AIS: annealed importance sampling (from §02).
- SMC: simple Monte Carlo
- BMC: Bayesian Monte Carlo (what we called BQ [GR02]).
- WSABI: warped sequential active bayesian integration [GOG⁺14], which uses the tricks we just laid out (plus a bit).

▶ Is $Var(Z|D) = Var(E_p(\ell)|D)$ a suitable BQ convergence diagnostic?

▶ Is $Var(Z|D) = Var(E_p(\ell)|D)$ a suitable BQ convergence diagnostic?

▶ Is $Var(Z|D) = Var(E_p(\ell)|D)$ a suitable BQ convergence diagnostic?

Short answer: really only when the kernel is matched to the function itself.

Bottom: error and posterior variance estimates thereof, showing the issue.

Administrative interlude

Probabilistic integration

Interlude: closed-form kernel mean embeddings

Extending probabilistic integration

References

References

[GOG ⁺ 14]	Tom Gunter, Michael A Osborne, Roman Garnett, Philipp Hennig, and Stephen J Roberts. Sampling for inference in probabilistic models with fast bayesian quadrature. In Advances in Neural Information Processing Systems, pages 2789–2797, 2014.
[GOH14]	Roman Garnett, Michael A Osborne, and Philipp Hennig. Active learning of linear embeddings for gaussian processes. <i>UAI</i> , 2014.
[GR02]	Zoubin Ghahramani and Carl E Rasmussen. Bayesian monte carlo. In Advances in neural information processing systems, pages 489–496, 2002.
[GSW ⁺ 15]	Jacob R Gardner, Xinyu Song, Kilian Q Weinberger, Dennis Barbour, and John P Cunningham. Psychophysical detection testing with bayesian active learning. UAI, 2015.
[HOG15]	Philipp Hennig, Michael A Osborne, and Mark Girolami. Probabilistic numerics and uncertainty in computations. In Proc. R. Soc. A, volume 471, page 20150142. The Royal Society, 2015.
[OGG ⁺ 12]	Michael Osborne, Roman Garnett, Zoubin Ghahramani, David K Duvenaud, Stephen J Roberts, and Carl E Rasmussen. Active learning of model evidence using bayesian quadrature. In Advances in Neural Information Processing Systems, pages 46–54, 2012.
[OGR ⁺ 12]	Michael A Osborne, Roman Garnett, Stephen J Roberts, Christopher Hart, Suzanne Aigrain, and Neale Gibson. Bayesian quadrature for ratios. In International Conference on Artificial Intelligence and Statistics, pages 832–840, 2012.
[O'H91]	Anthony O'Hagan. Bayes-hermite quadrature. Journal of statistical planning and inference, 29(3):245–260, 1991.