## STAT G8325

# Gaussian Processes and Kernel Methods §12: Probabilistic Integration 

John P. Cunningham

Department of Statistics
Columbia University

## Outline

Administrative interlude

Probabilistic integration

Interlude: closed-form kernel mean embeddings

Extending probabilistic integration

References

## Outline

Administrative interlude

Probabilistic integration

Interlude: closed-form kernel mean embeddings

## Extending probabilistic integration

References

## Progress...

| $\S$ | Dates | Content |
| :---: | :--- | :--- |
| 10 | Nov 23, Dec 2 | Kernel statistical tests |
| 11 | Dec 7 | Speed and Scaling Part 3 |
| 12 | Dec 9 14, 16 | Probabilistic Integration |
|  | Dec 14, Final project presentations |  |

- Final project presentations Monday Dec 14, 16
- Present 5-7 minutes of your project results.
- Build off of project progress report.
- Send 1-5 pdf slides to me beforehand.
- Monday: Richard, Gamal, Jalaj, Francois, Xu S., Xu R., Tim, Swupnil.
- Wednesday: Kashif, Hal, Ruoxi, Ben, Ryan, Gabriel, Shuawein, Hanxi.
- Soon-to-be-randomly-assigned: Yuanjun, Lichi, Gonzalo, Daniel, Rayleigh.
- Final project writeup then due Friday Dec 18 at noon.
- 8-16 pages pdf, using the tex template from hw3.
- Deadline strictly enforced.


## Outline

Administrative interlude
Probabilistic integration
Interlude: closed-form kernel mean embeddings
Extending probabilistic integration
References

## Quadrature

## Quadrature

- Quadrature (aka numerical integration) is the problem of calculating

$$
Z=\int g(x) d x
$$

## Quadrature

- Quadrature (aka numerical integration) is the problem of calculating

$$
Z=\int g(x) d x
$$

- We will equivalently consider the familiar expectation problem:

$$
Z=E_{p}(\ell)=\int \ell(x) p(x) d x
$$

for $p(x)=\mathcal{N}\left(x ; m_{0}, s_{0}\right)$, which by $\ell(x)=\frac{g(x)}{p(x)}$ is (sort of) wlog.

## Quadrature

- Quadrature (aka numerical integration) is the problem of calculating

$$
Z=\int g(x) d x
$$

- We will equivalently consider the familiar expectation problem:

$$
Z=E_{p}(\ell)=\int \ell(x) p(x) d x
$$

for $p(x)=\mathcal{N}\left(x ; m_{0}, s_{0}\right)$, which by $\ell(x)=\frac{g(x)}{p(x)}$ is (sort of) wlog.

- Our simplest, traditional Monte Carlo estimator is:

$$
\hat{Z}=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}\right) \quad x_{1}, \ldots, x_{n} \sim_{i i d} p(x) .
$$

## Quadrature

- Quadrature (aka numerical integration) is the problem of calculating

$$
Z=\int g(x) d x
$$

- We will equivalently consider the familiar expectation problem:

$$
Z=E_{p}(\ell)=\int \ell(x) p(x) d x
$$

for $p(x)=\mathcal{N}\left(x ; m_{0}, s_{0}\right)$, which by $\ell(x)=\frac{g(x)}{p(x)}$ is (sort of) wlog.

- Our simplest, traditional Monte Carlo estimator is:

$$
\hat{Z}=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}\right) \quad x_{1}, \ldots, x_{n} \sim_{i i d} p(x) .
$$

- Bayesian quadrature (aka probabilistic integration) simply observes that smoothness in $\ell(x)$ should allow us to learn more about the integral from a finite set of samples $x_{1}, \ldots, x_{n}$.


## Quadrature

- Quadrature (aka numerical integration) is the problem of calculating

$$
Z=\int g(x) d x
$$

- We will equivalently consider the familiar expectation problem:

$$
Z=E_{p}(\ell)=\int \ell(x) p(x) d x
$$

for $p(x)=\mathcal{N}\left(x ; m_{0}, s_{0}\right)$, which by $\ell(x)=\frac{g(x)}{p(x)}$ is (sort of) wlog.

- Our simplest, traditional Monte Carlo estimator is:

$$
\hat{Z}=\frac{1}{n} \sum_{i=1}^{n} \ell\left(x_{i}\right) \quad x_{1}, \ldots, x_{n} \sim_{i i d} p(x) .
$$

- Bayesian quadrature (aka probabilistic integration) simply observes that smoothness in $\ell(x)$ should allow us to learn more about the integral from a finite set of samples $x_{1}, \ldots, x_{n}$.
- Example: suppose two draws $x_{i}$ and $x_{j}$ are equal (or very close); ignoring this fact leads to double counting.


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G} \mathcal{P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.
- Repeat:


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G} \mathcal{P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.
- Repeat:
- Draw $x_{i} \sim_{\text {iid }} p(x)$


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G} \mathcal{P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.
- Repeat:
- Draw $x_{i} \sim_{i i d} p(x)$
- Observe (evaluate) $\ell\left(x_{i}\right)$


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G} \mathcal{P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.
- Repeat:
- Draw $x_{i} \sim_{i i d} p(x)$
- Observe (evaluate) $\ell\left(x_{i}\right)$
- Infer the posterior $Z \mid x_{1}, \ell\left(x_{1}\right), \ldots x_{i}, \ell\left(x_{i}\right)$.


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G} \mathcal{P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.
- Repeat:
- Draw $x_{i} \sim_{\text {iid }} p(x)$
- Observe (evaluate) $\ell\left(x_{i}\right)$
- Infer the posterior $Z \mid x_{1}, \ell\left(x_{1}\right), \ldots x_{i}, \ell\left(x_{i}\right)$.
- Posterior mean $E_{\ell}(Z \mid D)=E_{\ell}\left(E_{p}(\ell) \mid D\right)$


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G} \mathcal{P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.
- Repeat:
- Draw $x_{i} \sim_{\text {iid }} p(x)$
- Observe (evaluate) $\ell\left(x_{i}\right)$
- Infer the posterior $Z \mid x_{1}, \ell\left(x_{1}\right), \ldots x_{i}, \ell\left(x_{i}\right)$.
- Posterior mean $E_{\ell}(Z \mid D)=E_{\ell}\left(E_{p}(\ell) \mid D\right)$


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G} \mathcal{P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.
- Repeat:
- Draw $x_{i} \sim_{\text {iid }} p(x)$
- Observe (evaluate) $\ell\left(x_{i}\right)$
- Infer the posterior $Z \mid x_{1}, \ell\left(x_{1}\right), \ldots x_{i}, \ell\left(x_{i}\right)$.
- Posterior mean $E_{\ell}(Z \mid D)=E_{\ell}\left(E_{p}(\ell) \mid D\right)$
...using the usual data $D \triangleq x_{1}, \ell\left(x_{1}\right), \ldots, x_{n}, \ell\left(x_{n}\right)$.
- $E(Z \mid D)$ is the quantity of interest: expected quadrature value.


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- One of the biggest themes in this course has been to replace complicated or unknown functions with gp. Let's do that again.
- Assume the function $\ell(x) \sim \mathcal{G} \mathcal{P}(m, k)$. Then $Z=E_{p}(\ell)$ is also a random variable, which we can condition on $x_{i}, \ell\left(x_{i}\right)$ pairs.
- Repeat:
- Draw $x_{i} \sim_{i i d} p(x)$
- Observe (evaluate) $\ell\left(x_{i}\right)$
- Infer the posterior $Z \mid x_{1}, \ell\left(x_{1}\right), \ldots x_{i}, \ell\left(x_{i}\right)$.
- Posterior mean $E_{\ell}(Z \mid D)=E_{\ell}\left(E_{p}(\ell) \mid D\right)$
...using the usual data $D \triangleq x_{1}, \ell\left(x_{1}\right), \ldots, x_{n}, \ell\left(x_{n}\right)$.
- $E(Z \mid D)$ is the quantity of interest: expected quadrature value.
- It can have (surprisingly?) tractable form...


## Intuitive picture


modified from http://arxiv.org/abs/1512.00933.

## Another intuitive picture


from $\left[\mathrm{OGG}^{+} 12\right]$.

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:


## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:

$$
E(Z \mid D)=E_{\ell}\left(E_{p}(\ell) \mid D\right)
$$

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:

$$
\begin{aligned}
E(Z \mid D) & =E_{\ell}\left(E_{p}(\ell) \mid D\right) \\
& =\int_{\ell}\left(\int_{x} \ell(x) p(x) d x\right) p(\ell \mid D) d \ell
\end{aligned}
$$

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:

$$
\begin{aligned}
E(Z \mid D) & =E_{\ell}\left(E_{p}(\ell) \mid D\right) \\
& =\int_{\ell}\left(\int_{x} \ell(x) p(x) d x\right) p(\ell \mid D) d \ell \\
& =\int_{x}\left(\int_{\ell} \ell(x) p(\ell \mid D) d \ell\right) p(x) d x
\end{aligned}
$$

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:

$$
\begin{aligned}
E(Z \mid D) & =E_{\ell}\left(E_{p}(\ell) \mid D\right) \\
& =\int_{\ell}\left(\int_{x} \ell(x) p(x) d x\right) p(\ell \mid D) d \ell \\
& =\int_{x}\left(\int_{\ell} \ell(x) p(\ell \mid D) d \ell\right) p(x) d x \\
& =\int_{x}\left(m_{x}+K_{x D}\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)\right) p(x) d x
\end{aligned}
$$

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:

$$
\begin{aligned}
E(Z \mid D) & =E_{\ell}\left(E_{p}(\ell) \mid D\right) \\
& =\int_{\ell}\left(\int_{x} \ell(x) p(x) d x\right) p(\ell \mid D) d \ell \\
& =\int_{x}\left(\int_{\ell} \ell(x) p(\ell \mid D) d \ell\right) p(x) d x \\
& =\int_{x}\left(m_{x}+K_{x D}\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)\right) p(x) d x \\
& =\int_{x} m_{x} p(x) d x+\left(\int_{x} K_{x D} p(x) d x\right)\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)
\end{aligned}
$$

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:

$$
\begin{aligned}
E(Z \mid D) & =E_{\ell}\left(E_{p}(\ell) \mid D\right) \\
& =\int_{\ell}\left(\int_{x} \ell(x) p(x) d x\right) p(\ell \mid D) d \ell \\
& =\int_{x}\left(\int_{\ell} \ell(x) p(\ell \mid D) d \ell\right) p(x) d x \\
& =\int_{x}\left(m_{x}+K_{x D}\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)\right) p(x) d x \\
& =\int_{x} m_{x} p(x) d x+\left(\int_{x} K_{x D} p(x) d x\right)\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right) \\
& =E_{p}(m)+\mu_{D}^{p}{ }^{\top}\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)
\end{aligned}
$$

where $\mu^{p}=E_{p}\left(k_{x}\right)$ is the familiar kernel mean embedding in the rkhs $\mathcal{H}$.

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:

$$
\begin{aligned}
E(Z \mid D) & =E_{\ell}\left(E_{p}(\ell) \mid D\right) \\
& =\int_{\ell}\left(\int_{x} \ell(x) p(x) d x\right) p(\ell \mid D) d \ell \\
& =\int_{x}\left(\int_{\ell} \ell(x) p(\ell \mid D) d \ell\right) p(x) d x \\
& =\int_{x}\left(m_{x}+K_{x D}\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)\right) p(x) d x \\
& =\int_{x} m_{x} p(x) d x+\left(\int_{x} K_{x D} p(x) d x\right)\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right) \\
& =E_{p}(m)+\mu_{D}^{p}\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)
\end{aligned}
$$

where $\mu^{p}=E_{p}\left(k_{x}\right)$ is the familiar kernel mean embedding in the rkhs $\mathcal{H}$.

- Recall that when $k\left(x, x^{\prime}\right)=\sigma_{\ell}^{2} \mathcal{N}\left(x ; x^{\prime}, w_{\ell}\right)$ (an SE or RBF kernel), we have the further simplification:

$$
\mu^{p}\left(x_{i}\right)=\int k\left(x_{i}, x\right) p(x) d x=\sigma_{\ell}^{2} \mathcal{N}\left(x_{i} ; m_{0}, s_{0}+w_{\ell}\right)
$$

## Bayesian Quadrature (simplest form, as in [O'H91, GR02])

- The expected quadrature value:

$$
\begin{aligned}
E(Z \mid D) & =E_{\ell}\left(E_{p}(\ell) \mid D\right) \\
& =\int_{\ell}\left(\int_{x} \ell(x) p(x) d x\right) p(\ell \mid D) d \ell \\
& =\int_{x}\left(\int_{\ell} \ell(x) p(\ell \mid D) d \ell\right) p(x) d x \\
& =\int_{x}\left(m_{x}+K_{x D}\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)\right) p(x) d x \\
& =\int_{x} m_{x} p(x) d x+\left(\int_{x} K_{x D} p(x) d x\right)\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right) \\
& =E_{p}(m)+\mu_{D}^{p}{ }^{\top}\left(K_{D D}+\sigma_{\epsilon}^{2} I\right)^{-1}\left(\ell_{D}-m_{\ell}\right)
\end{aligned}
$$

where $\mu^{p}=E_{p}\left(k_{x}\right)$ is the familiar kernel mean embedding in the rkhs $\mathcal{H}$.

- Recall that when $k\left(x, x^{\prime}\right)=\sigma_{\ell}^{2} \mathcal{N}\left(x ; x^{\prime}, w_{\ell}\right)$ (an SE or RBF kernel), we have the further simplification:

$$
\mu^{p}\left(x_{i}\right)=\int k\left(x_{i}, x\right) p(x) d x=\sigma_{\ell}^{2} \mathcal{N}\left(x_{i} ; m_{0}, s_{0}+w_{\ell}\right)
$$

- Often $\sigma_{\ell}=0$ when the integrand can be evaluated precisely.


## Empirical result from [GR02]

## Empirical result from [GR02]

- A toy example:


## Empirical result from [GR02]

- A toy example:





## Empirical result from [GR02]

- A toy example:



- BQ uses larger sample sizes more effectively.


## Empirical result from [GR02]

- A toy example:



- BQ uses larger sample sizes more effectively.
- BQ has higher variance with small sample sizes. Why?


## Outline

## Administrative interlude <br> Probabilistic integration

Interlude: closed-form kernel mean embeddings

## Extending probabilistic integration

## References

## Closed-form kernel mean embeddings

## Closed-form kernel mean embeddings

- Things got simpler when we had $k\left(x, x^{\prime}\right)=\sigma_{\ell}^{2} \mathcal{N}\left(x ; x^{\prime}, w_{\ell}\right)$ (SE kernel):

$$
\mu^{p}\left(x_{i}\right)=\int k\left(x_{i}, x\right) p(x) d x=\sigma_{\ell}^{2} \mathcal{N}\left(x_{i} ; m_{0}, s_{0}+w_{\ell}\right) .
$$

## Closed-form kernel mean embeddings

- Things got simpler when we had $k\left(x, x^{\prime}\right)=\sigma_{\ell}^{2} \mathcal{N}\left(x ; x^{\prime}, w_{\ell}\right)$ (SE kernel):

$$
\mu^{p}\left(x_{i}\right)=\int k\left(x_{i}, x\right) p(x) d x=\sigma_{\ell}^{2} \mathcal{N}\left(x_{i} ; m_{0}, s_{0}+w_{\ell}\right) .
$$

- That is, the kernel mean embedding is closed form.


## Closed-form kernel mean embeddings

- Things got simpler when we had $k\left(x, x^{\prime}\right)=\sigma_{\ell}^{2} \mathcal{N}\left(x ; x^{\prime}, w_{\ell}\right)$ (SE kernel):

$$
\mu^{p}\left(x_{i}\right)=\int k\left(x_{i}, x\right) p(x) d x=\sigma_{\ell}^{2} \mathcal{N}\left(x_{i} ; m_{0}, s_{0}+w_{\ell}\right) .
$$

- That is, the kernel mean embedding is closed form.
- Here are some other $p, k, \mathcal{X}$ triplets such that $\mu^{p}$ is closed form:


## Closed-form kernel mean embeddings

- Things got simpler when we had $k\left(x, x^{\prime}\right)=\sigma_{\ell}^{2} \mathcal{N}\left(x ; x^{\prime}, w_{\ell}\right)$ (SE kernel):

$$
\mu^{p}\left(x_{i}\right)=\int k\left(x_{i}, x\right) p(x) d x=\sigma_{\ell}^{2} \mathcal{N}\left(x_{i} ; m_{0}, s_{0}+w_{\ell}\right) .
$$

- That is, the kernel mean embedding is closed form.
- Here are some other $p, k, \mathcal{X}$ triplets such that $\mu^{p}$ is closed form:

| $\mathcal{X}$ | p | $k$ | Reference |
| :---: | :---: | :---: | :--- |
| $[0,1]^{d}$ | $\operatorname{Unif}(\mathcal{X})$ | Wendland TP | Oates and Girolami (2015) |
| $[0,1]^{d}$ | $\operatorname{Unif}(\mathcal{X})$ | Matérn Weighted TP | Sec. 5.2.3 |
| $[0,1]^{d}$ | Unif $(\mathcal{X})$ | Korobov TP | Appendix D |
| $[0,1]^{d}$ | Unif $(\mathcal{X})$ | Exponentiated quadratic | Appendix J |
| $\mathbb{R}^{d}$ | Mixt. of Gaussians | Exponentiated quadratic | O'Hagan (1991) |
| $\mathbb{S}^{d}$ | Unif $(\mathcal{X})$ | Gegenbauer | Sec. 5.2.1 |
| Arbitrary | Unif $(\mathcal{X}) /$ Mixt. of Gauss. | trigonometric | Integration by parts |
| Arbitrary | Unif $\mathcal{X})$ | Splines | Minka (2000) |
| Arbitrary | Known moments | Polynomial TP | Briol et al. (2015) |
| Arbitrary | Known $\partial \log \pi(\boldsymbol{x})$ | Control functional | Sec. 4.3 |

## Closed-form kernel mean embeddings

- Things got simpler when we had $k\left(x, x^{\prime}\right)=\sigma_{\ell}^{2} \mathcal{N}\left(x ; x^{\prime}, w_{\ell}\right)$ (SE kernel):

$$
\mu^{p}\left(x_{i}\right)=\int k\left(x_{i}, x\right) p(x) d x=\sigma_{\ell}^{2} \mathcal{N}\left(x_{i} ; m_{0}, s_{0}+w_{\ell}\right) .
$$

- That is, the kernel mean embedding is closed form.
- Here are some other $p, k, \mathcal{X}$ triplets such that $\mu^{p}$ is closed form:

| $\mathcal{X}$ | p | $k$ | Reference |
| :---: | :---: | :---: | :--- |
| $[0,1]^{d}$ | $\operatorname{Unif}(\mathcal{X})$ | Wendland TP | Oates and Girolami (2015) |
| $[0,1]^{d}$ | $\operatorname{Unif}(\mathcal{X})$ | Matérn Weighted TP | Sec. 5.2.3 |
| $[0,1]^{d}$ | Unif $(\mathcal{X})$ | Korobov TP | Appendix D |
| $[0,1]^{d}$ | Unif $(\mathcal{X})$ | Exponentiated quadratic | Appendix J |
| $\mathbb{R}^{d}$ | Mixt. of Gaussians | Exponentiated quadratic | O'Hagan (1991) |
| $\mathbb{S}^{d}$ | Unif $(\mathcal{X})$ | Gegenbauer | Sec. 5.2.1 |
| Arbitrary | Unif $(\mathcal{X}) /$ Mixt. of Gauss. | trigonometric | Integration by parts |
| Arbitrary | Unif $\mathcal{X})$ | Splines | Minka (2000) |
| Arbitrary | Known moments | Polynomial TP | Briol et al. (2015) |
| Arbitrary | Known $\partial \log \pi(\boldsymbol{x})$ | Control functional | Sec. 4.3 |

again from http://arxiv.org/abs/1512.00933.

- Here TP means tensor product.


## Outline

> Administrative interlude

> Probabilistic integration

> Interlude: closed-form kernel mean embeddings

Extending probabilistic integration

References

## Possible extensions

## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.


## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.
- But also, throughout the semester we have seen other possible moves...


## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
- Exploiting structure in $\ell$ :


## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
- Exploiting structure in $\ell$ :
- Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$
p(D)=\int p(D \mid x) p(x) d x \triangleq \int \ell(x) p(x) d x \text {. }
$$

## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
- Exploiting structure in $\ell$ :
- Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$
p(D)=\int p(D \mid x) p(x) d x \triangleq \int \ell(x) p(x) d x .
$$

- Maybe a ratio of integrals with common terms:

$$
p(f \mid D)=\frac{\int p(f \mid D, \theta) p(D \mid \theta) p(\theta) d \theta}{\int p(D \mid \theta) p(\theta) d \theta}
$$

## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
- Exploiting structure in $\ell$ :
- Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$
p(D)=\int p(D \mid x) p(x) d x \triangleq \int \ell(x) p(x) d x
$$

- Maybe a ratio of integrals with common terms:

$$
p(f \mid D)=\frac{\int p(f \mid D, \theta) p(D \mid \theta) p(\theta) d \theta}{\int p(D \mid \theta) p(\theta) d \theta}
$$

- Active learning: choose point $x_{i+1}$ based on observations $\ell\left(x_{1}\right), \ldots, \ell\left(x_{i}\right)$.


## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
- Exploiting structure in $\ell$ :
- Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$
p(D)=\int p(D \mid x) p(x) d x \triangleq \int \ell(x) p(x) d x
$$

- Maybe a ratio of integrals with common terms:

$$
p(f \mid D)=\frac{\int p(f \mid D, \theta) p(D \mid \theta) p(\theta) d \theta}{\int p(D \mid \theta) p(\theta) d \theta}
$$

- Active learning: choose point $x_{i+1}$ based on observations $\ell\left(x_{1}\right), \ldots, \ell\left(x_{i}\right)$.
- Model selection: in the simplest version we would do something like optimization of hyperparameters, but properly marginalizing over hyperparameters should improve accuracy.


## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
- Exploiting structure in $\ell$ :
- Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$
p(D)=\int p(D \mid x) p(x) d x \triangleq \int \ell(x) p(x) d x
$$

- Maybe a ratio of integrals with common terms:

$$
p(f \mid D)=\frac{\int p(f \mid D, \theta) p(D \mid \theta) p(\theta) d \theta}{\int p(D \mid \theta) p(\theta) d \theta}
$$

- Active learning: choose point $x_{i+1}$ based on observations $\ell\left(x_{1}\right), \ldots, \ell\left(x_{i}\right)$.
- Model selection: in the simplest version we would do something like optimization of hyperparameters, but properly marginalizing over hyperparameters should improve accuracy.
- These extensions in BQ: [OGR $\left.{ }^{+} 12, \mathrm{OGG}^{+} 12, \mathrm{GOH}^{2} 4, \mathrm{GOG}^{+} 14, \mathrm{HOG} 15\right]$.


## Possible extensions

- BQ uses gp to share information about input points $x_{1}, \ldots, x_{n}$ via a kernel.
- But also, throughout the semester we have seen other possible moves...
- Exploiting structure in $\ell$ :
- Often $\ell(x)$ is likelihood or other density, hence nonnegative:

$$
p(D)=\int p(D \mid x) p(x) d x \triangleq \int \ell(x) p(x) d x \text {. }
$$

- Maybe a ratio of integrals with common terms:

$$
p(f \mid D)=\frac{\int p(f \mid D, \theta) p(D \mid \theta) p(\theta) d \theta}{\int p(D \mid \theta) p(\theta) d \theta}
$$

- Active learning: choose point $x_{i+1}$ based on observations $\ell\left(x_{1}\right), \ldots, \ell\left(x_{i}\right)$.
- Model selection: in the simplest version we would do something like optimization of hyperparameters, but properly marginalizing over hyperparameters should improve accuracy.
- These extensions in BQ: [OGR ${ }^{+} 12, \mathrm{OGG}^{+} 12, \mathrm{GOH}^{2} 4, \mathrm{GOG}^{+} 14$, HOG15].
- Theory for BQ is just starting; see http://arxiv.org/abs/1512.00933.


## Exploiting structure in $\ell$

## Exploiting structure in $\ell$

- If we know $\ell(x) \geq 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.


## Exploiting structure in $\ell$

- If we know $\ell(x) \geq 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.
- $\left[\mathrm{OGG}^{+} 12\right.$ ] uses a log transform, namely:

$$
E(Z \mid D) \quad=\quad E_{\log \ell}\left(E_{p}(\ell) \mid D\right)
$$

## Exploiting structure in $\ell$

- If we know $\ell(x) \geq 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.
- $\left[\mathrm{OGG}^{+} 12\right]$ uses a log transform, namely:

$$
\begin{aligned}
& E(Z \mid D)=E_{\log \ell}\left(E_{p}(\ell) \mid D\right) \\
&=\int_{\log \ell}\left(\int_{x} \exp \{\log \ell(x)\} p(x) d x\right) p(\log \ell \mid D) d \log \ell \\
& \text { where } \log \ell=\hat{\ell} \sim \mathcal{G P} \mathcal{P}(0, k),
\end{aligned}
$$

## Exploiting structure in $\ell$

- If we know $\ell(x) \geq 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.
- [ $\mathrm{OGG}^{+} 12$ ] uses a log transform, namely:

$$
\begin{aligned}
& E(Z \mid D)=E_{\log \ell}\left(E_{p}(\ell) \mid D\right) \\
&=\int_{\log \ell}\left(\int_{x} \exp \{\log \ell(x)\} p(x) d x\right) p(\log \ell \mid D) d \log \ell \\
& \text { where } \log \ell=\hat{\ell} \sim \mathcal{G P}(0, k),
\end{aligned}
$$

which for tractability subsequently linearizes the integrand as:

$$
\exp \{\log \ell(x)\} \approx \exp \left\{\log \ell_{0}(x)\right\}+\exp \{\log \ell(x)\}\left(\log \ell(x)-\log \ell_{0}(x)\right)
$$

## Exploiting structure in $\ell$

- If we know $\ell(x) \geq 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.
- $\left[\mathrm{OGG}^{+} 12\right]$ uses a log transform, namely:

$$
\begin{aligned}
& E(Z \mid D)=E_{\log \ell}\left(E_{p}(\ell) \mid D\right) \\
&=\int_{\log \ell}\left(\int_{x} \exp \{\log \ell(x)\} p(x) d x\right) p(\log \ell \mid D) d \log \ell \\
& \text { where } \log \ell=\hat{\ell} \sim \mathcal{G P} \mathcal{P}(0, k),
\end{aligned}
$$

which for tractability subsequently linearizes the integrand as:

$$
\exp \{\log \ell(x)\} \approx \exp \left\{\log \ell_{0}(x)\right\}+\exp \{\log \ell(x)\}\left(\log \ell(x)-\log \ell_{0}(x)\right)
$$

- [GOG $\left.{ }^{+} 14\right]$ uses a square-root transformation:

$$
\hat{\ell}=\sqrt{2(\ell-\alpha)} \sim \mathcal{G} \mathcal{P}(0, k), \quad \text { such that } \hat{\ell}(x)=\alpha+\frac{1}{2} \hat{\ell}^{2}(x) .
$$

## Exploiting structure in $\ell$

- If we know $\ell(x) \geq 0$ everywhere, a gp prior on $\ell(x)$ is a bad model.
- [OGG ${ }^{+} 12$ ] uses a log transform, namely:

$$
\begin{aligned}
& E(Z \mid D) \quad=E_{\log \ell}\left(E_{p}(\ell) \mid D\right) \\
&=\int_{\log \ell}\left(\int_{x} \exp \{\log \ell(x)\} p(x) d x\right) p(\log \ell \mid D) d \log \ell \\
& \text { where } \quad \log \ell=\hat{\ell} \sim \mathcal{G P}(0, k),
\end{aligned}
$$

which for tractability subsequently linearizes the integrand as:

$$
\exp \{\log \ell(x)\} \approx \exp \left\{\log \ell_{0}(x)\right\}+\exp \{\log \ell(x)\}\left(\log \ell(x)-\log \ell_{0}(x)\right)
$$

- GGOG $\left.^{+} 14\right]$ uses a square-root transformation:

$$
\hat{\ell}=\sqrt{2(\ell-\alpha)} \sim \mathcal{G} \mathcal{P}(0, k), \quad \text { such that } \hat{\ell}(x)=\alpha+\frac{1}{2} \hat{\ell}^{2}(x) .
$$

- As you might expect these choices induce some technical details but improve estimation in the right settings.


## Model selection

## Model selection

- In $\S 02$ we considered approximate integration of hyperparameters [GOH14].


## Model selection

- In $\S 02$ we considered approximate integration of hyperparameters [GOH14].
- Accurate uncertainty estimates on $\ell$ seem valuable:


## Model selection

- In $\S 02$ we considered approximate integration of hyperparameters [GOH14].
- Accurate uncertainty estimates on $\ell$ seem valuable:



## Model selection

- In $\S 02$ we considered approximate integration of hyperparameters [GOH14].
- Accurate uncertainty estimates on $\ell$ seem valuable:

- $\left[\mathrm{OGG}^{+} 12, \mathrm{GOG}^{+} 14\right.$, HOG15] use model selection to good effect.

Actively choosing quadrature points $x_{1}, \ldots, x_{n}$

## Actively choosing quadrature points $x_{1}, \ldots, x_{n}$

- In $\S 07$ we considered bayesian active learning via [GSW $\left.{ }^{+} 15\right]$.


## Actively choosing quadrature points $x_{1}, \ldots, x_{n}$

- In $\S 07$ we considered bayesian active learning via [GSW $\left.{ }^{+} 15\right]$.
- A sensible $B Q$ acquisition function is to minimize the variance of the estimate $E(Z \mid D)$.


## Actively choosing quadrature points $x_{1}, \ldots, x_{n}$

- In $\S 07$ we considered bayesian active learning via [GSW $\left.{ }^{+} 15\right]$.
- A sensible $B Q$ acquisition function is to minimize the variance of the estimate $E(Z \mid D)$.
- [OGG $^{+} 12, \mathrm{GOG}^{+} 14$, HOG15] use this active learning to good effect:


## Actively choosing quadrature points $x_{1}, \ldots, x_{n}$

- In $\S 07$ we considered bayesian active learning via [GSW $\left.{ }^{+} 15\right]$.
- A sensible $B Q$ acquisition function is to minimize the variance of the estimate $E(Z \mid D)$.
- $\left[\mathrm{OGG}^{+} 12, \mathrm{GOG}^{+} 14\right.$, HOG15] use this active learning to good effect:



## Performance against other competitive sampling methods

## Performance against other competitive sampling methods



- AIS: annealed importance sampling (from §02).
- SMC: simple Monte Carlo
- BMC: Bayesian Monte Carlo (what we called BQ [GR02]).
- WSABI: warped sequential active bayesian integration [GOG ${ }^{+} 14$ ], which uses the tricks we just laid out (plus a bit).


## Convergence diagnostic in BQ ? [HOG15]

## Convergence diagnostic in BQ ? [HOG15]

- Is $\operatorname{Var}(Z \mid D)=\operatorname{Var}\left(E_{p}(\ell) \mid D\right)$ a suitable BQ convergence diagnostic?


## Convergence diagnostic in BQ? [HOG15]

- Is $\operatorname{Var}(Z \mid D)=\operatorname{Var}\left(E_{p}(\ell) \mid D\right)$ a suitable BQ convergence diagnostic?



## Convergence diagnostic in BQ ? [HOG15]

- Is $\operatorname{Var}(Z \mid D)=\operatorname{Var}\left(E_{p}(\ell) \mid D\right)$ a suitable BQ convergence diagnostic?

- Short answer: really only when the kernel is matched to the function itself.
- Bottom: error and posterior variance estimates thereof, showing the issue.


## Outline

Administrative interlude<br>Probabilistic integration<br>Interlude: closed-form kernel mean embeddings<br>Extending probabilistic integration

References

## References

| $\left[\mathrm{GOG}^{+} 14\right]$ | Tom Gunter, Michael A Osborne, Roman Garnett, Philipp Hennig, and Stephen J Roberts. Sampling for inference in probabilistic models with fast bayesian quadrature. In Advances in Neural Information Processing Systems, pages 2789-2797, 2014. |
| :---: | :---: |
| [GOH14] | Roman Garnett, Michael A Osborne, and Philipp Hennig. Active learning of linear embeddings for gaussian processes. UAI, 2014. |
| [GR02] | Zoubin Ghahramani and Carl E Rasmussen. <br> Bayesian monte carlo. <br> In Advances in neural information processing systems, pages 489-496, 2002. |
| $\left[\mathrm{GSW}^{+}{ }^{\text {15] }}\right.$ | Jacob R Gardner, Xinyu Song, Kilian Q Weinberger, Dennis Barbour, and John P Cunningham. Psychophysical detection testing with bayesian active learning. <br> UAI, 2015. |
| [HOG15] | Philipp Hennig, Michael A Osborne, and Mark Girolami. <br> Probabilistic numerics and uncertainty in computations. <br> In Proc. R. Soc. A, volume 471, page 20150142. The Royal Society, 2015. |
| $\left[\mathrm{OGG}^{+}{ }^{12}\right.$ ] | Michael Osborne, Roman Garnett, Zoubin Ghahramani, David K Duvenaud, Stephen J Roberts, and Carl E Rasmussen. Active learning of model evidence using bayesian quadrature. <br> In Advances in Neural Information Processing Systems, pages 46-54, 2012. |
| $\left[\mathrm{OGR}^{+}{ }_{12}\right]$ | Michael A Osborne, Roman Garnett, Stephen J Roberts, Christopher Hart, Suzanne Aigrain, and Neale Gibson. Bayesian quadrature for ratios. <br> In International Conference on Artificial Intelligence and Statistics, pages 832-840, 2012. |
| [ $\left.{ }^{\prime} \mathrm{H} 91\right]$ | Anthony O'Hagan. <br> Bayes-hermite quadrature. <br> Journal of statistical planning and inference, 29(3):245-260, 1991. |

