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Progress...

§ Dates Content

10 Nov 23, Dec 2 Kernel statistical tests
11 Dec 7 Speed and Scaling Part 3
12 Dec 9 Probabilistic Integration

Dec 14, 16 Final project presentations

I Final project presentations Monday Dec 14, 16
I Present 5-7 minutes of your project results.
I Build off of project progress report.
I Send 1-5 pdf slides to me beforehand.

I Monday: Richard, Gamal, Jalaj, Francois, Xu S., Xu R., Tim, Swupnil.

I Wednesday: Kashif, Hal, Ruoxi, Ben, Ryan, Gabriel, Shuawein, Hanxi.

I Soon-to-be-randomly-assigned: Yuanjun, Lichi, Gonzalo, Daniel, Rayleigh.

I Final project writeup then due Friday Dec 18 at noon.
I 8-16 pages pdf, using the tex template from hw3.
I Deadline strictly enforced.
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Quadrature

I Quadrature (aka numerical integration) is the problem of calculating

Z =

∫
g(x)dx.

I We will equivalently consider the familiar expectation problem:

Z = Ep(`) =

∫
`(x)p(x)dx

for p(x) = N (x;m0, s0), which by `(x) = g(x)
p(x) is (sort of) wlog.

I Our simplest, traditional Monte Carlo estimator is:

Ẑ =
1

n

n∑
i=1

`(xi) x1, ..., xn ∼iid p(x).

I Bayesian quadrature (aka probabilistic integration) simply observes that
smoothness in `(x) should allow us to learn more about the integral from a
finite set of samples x1, ..., xn.

I Example: suppose two draws xi and xj are equal (or very close); ignoring
this fact leads to double counting.
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Bayesian Quadrature (simplest form, as in [O’H91, GR02])

I One of the biggest themes in this course has been to replace complicated or
unknown functions with gp. Let’s do that again.

I Assume the function `(x) ∼ GP(m, k). Then Z = Ep(`) is also a random
variable, which we can condition on xi, `(xi) pairs.

I Repeat:
I Draw xi ∼iid p(x)
I Observe (evaluate) `(xi)
I Infer the posterior Z|x1, `(x1), ...xi, `(xi).

I Posterior mean E` (Z|D) = E` (Ep(`)|D)
...using the usual data D , x1, `(x1), ..., xn, `(xn).

I E (Z|D) is the quantity of interest: expected quadrature value.

I It can have (surprisingly?) tractable form...
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Intuitive picture
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modified from http://arxiv.org/abs/1512.00933.



Another intuitive picture

draw from GP
draw from GP
draw from GP
p(Z|samples)
expected Z
GP mean ± SD
GP mean
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from [OGG+12].



Bayesian Quadrature (simplest form, as in [O’H91, GR02])

I The expected quadrature value:

E(Z|D) = E` (Ep(`)|D)

=

∫
`

(∫
x
`(x)p(x)dx

)
p(`|D)d`

=

∫
x

(∫
`
`(x)p(`|D)d`

)
p(x)dx

=

∫
x

(
mx +KxD(KDD + σ2

ε I)
−1 (`D −m`)

)
p(x)dx

=

∫
x
mxp(x)dx+

(∫
x
KxDp(x)dx

)
(KDD + σ2

ε I)
−1 (`D −m`)

= Ep(m) + µpD
>(KDD + σ2

ε I)
−1 (`D −m`)

where µp = Ep(kx) is the familiar kernel mean embedding in the rkhs H.

I Recall that when k(x, x′) = σ2
`N (x;x′, w`) (an SE or RBF kernel), we have

the further simplification:

µp(xi) =

∫
k(xi, x)p(x)dx = σ2

`N (xi;m0, s0 + w`).

I Often σ` = 0 when the integrand can be evaluated precisely.
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= Ep(m) + µpD
>(KDD + σ2

ε I)
−1 (`D −m`)

where µp = Ep(kx) is the familiar kernel mean embedding in the rkhs H.

I Recall that when k(x, x′) = σ2
`N (x;x′, w`) (an SE or RBF kernel), we have

the further simplification:

µp(xi) =

∫
k(xi, x)p(x)dx = σ2

`N (xi;m0, s0 + w`).

I Often σ` = 0 when the integrand can be evaluated precisely.
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Closed-form kernel mean embeddings

I Things got simpler when we had k(x, x′) = σ2
`N (x;x′, w`) (SE kernel):

µp(xi) =

∫
k(xi, x)p(x)dx = σ2

`N (xi;m0, s0 + w`).

I That is, the kernel mean embedding is closed form.

I Here are some other p, k,X triplets such that µp is closed form:

X p k Reference

[0, 1]d Unif(X ) Wendland TP Oates and Girolami (2015)
[0, 1]d Unif(X ) Matérn Weighted TP Sec. 5.2.3
[0, 1]d Unif(X ) Korobov TP Appendix D
[0, 1]d Unif(X ) Exponentiated quadratic Appendix J
R d Mixt. of Gaussians Exponentiated quadratic O’Hagan (1991)
Sd Unif(X ) Gegenbauer Sec. 5.2.1

Arbitrary Unif(X ) / Mixt. of Gauss. trigonometric Integration by parts
Arbitrary Unif(X ) Splines Minka (2000)
Arbitrary Known moments Polynomial TP Briol et al. (2015)
Arbitrary Known ∂ log π(x) Control functional Sec. 4.3

again from http://arxiv.org/abs/1512.00933.

I Here TP means tensor product.
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Possible extensions

I BQ uses gp to share information about input points x1, ..., xn via a kernel.

I But also, throughout the semester we have seen other possible moves...

I Exploiting structure in `:
I Often `(x) is likelihood or other density, hence nonnegative:

p(D) =

∫
p(D|x)p(x)dx ,

∫
`(x)p(x)dx.

I Maybe a ratio of integrals with common terms:

p(f |D) =

∫
p(f |D, θ)p(D|θ)p(θ)dθ∫

p(D|θ)p(θ)dθ
.

I Active learning: choose point xi+1 based on observations `(x1), ..., `(xi).

I Model selection: in the simplest version we would do something like
optimization of hyperparameters, but properly marginalizing over
hyperparameters should improve accuracy.

I These extensions in BQ: [OGR+12, OGG+12, GOH14, GOG+14, HOG15].

I Theory for BQ is just starting; see http://arxiv.org/abs/1512.00933.
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Exploiting structure in `

I If we know `(x) ≥ 0 everywhere, a gp prior on `(x) is a bad model.

I [OGG+12] uses a log transform, namely:

E(Z|D) = Elog ` (Ep(`)|D)

=

∫
log `

(∫
x
exp {log `(x)} p(x)dx

)
p(log `|D)d log `

where log ` = ˆ̀∼ GP(0, k),

which for tractability subsequently linearizes the integrand as:

exp {log `(x)} ≈ exp {log `0(x)}+ exp {log `(x)} (log `(x)− log `0(x)) .

I [GOG+14] uses a square-root transformation:

ˆ̀=
√
2(`− α) ∼ GP(0, k), such that ˆ̀(x) = α+

1

2
ˆ̀2(x).

I As you might expect these choices induce some technical details but improve
estimation in the right settings.
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exp {log `(x)} ≈ exp {log `0(x)}+ exp {log `(x)} (log `(x)− log `0(x)) .

I [GOG+14] uses a square-root transformation:

ˆ̀=
√
2(`− α) ∼ GP(0, k), such that ˆ̀(x) = α+
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2
ˆ̀2(x).

I As you might expect these choices induce some technical details but improve
estimation in the right settings.
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Model selection

I In §02 we considered approximate integration of hyperparameters [GOH14].

I Accurate uncertainty estimates on ` seem valuable:

true marginalised length scale
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data

f(x)

I [OGG+12, GOG+14, HOG15] use model selection to good effect.
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Actively choosing quadrature points x1, ..., xn

I In §07 we considered bayesian active learning via [GSW+15].

I A sensible BQ acquisition function is to minimize the variance of the
estimate E(Z|D).

I [OGG+12, GOG+14, HOG15] use this active learning to good effect:
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Performance against other competitive sampling methods
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I SMC: simple Monte Carlo

I BMC: Bayesian Monte Carlo (what we called BQ [GR02]).

I WSABI: warped sequential active bayesian integration [GOG+14], which uses
the tricks we just laid out (plus a bit).
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Convergence diagnostic in BQ? [HOG15]

I Is V ar(Z|D) = V ar(Ep(`)|D) a suitable BQ convergence diagnostic?
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I Short answer: really only when the kernel is matched to the function itself.

I Bottom: error and posterior variance estimates thereof, showing the issue.
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