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Progress...

§ Dates Content

10 Nov 23, Dec 2 Kernel statistical tests

11 Dec 7 Speed and Scaling Part 3

12 Dec 9 Probabilistic Integration
Dec 14, 16 Final project presentations

» Final project presentations Monday Dec 14, 16
> Present 5-7 minutes of your project results.
> Build off of project progress report.
» Send 1-5 pdf slides to me beforehand.

v

Monday: Richard, Gamal, Jalaj, Francois, Xu S., Xu R., Tim, Swupnil.

v

Wednesday: Kashif, Hal, Ruoxi, Ben, Ryan, Gabriel, Shuawein, Hanxi.

v

Soon-to-be-randomly-assigned: Yuanjun, Lichi, Gonzalo, Daniel, Rayleigh.

v

Final project writeup then due Friday Dec 18 at noon.

> 8-16 pages pdf, using the tex template from hw3.
> Deadline strictly enforced.
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Quadrature

» Quadrature (aka numerical integration) is the problem of calculating

Z = /g(a:)dx.

» We will equivalently consider the familiar expectation problem:
Z=E,({) = /E(Jf)p(x)dx

for p(x) = N (z;myg, so), which by ¢(z) = % is (sort of) wlog.

» Our simplest, traditional Monte Carlo estimator is:

n

|
Z=— Ux; T1yeeny Ty ~iig P(T).
PR (2)

» Bayesian quadrature (aka probabilistic integration) simply observes that
smoothness in £(x) should allow us to learn more about the integral from a
finite set of samples z1, ..., z,.

» Example: suppose two draws z; and x; are equal (or very close); ignoring
this fact leads to double counting.
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> One of the biggest themes in this course has been to replace complicated or
unknown functions with gp. Let's do that again.

> Assume the function {(z) ~ GP(m, k). Then Z = E,(¢) is also a random
variable, which we can condition on z;, ¢(x;) pairs.

> Repeat:
> Draw x; ~iiq p(x)

> Observe (evaluate) (x;)
> Infer the posterior Z|x1,0(x1),...zi, £(x;).

» Posterior mean E, (Z|D) = E¢ (E,(£)| D)

...using the usual data D £ z1, (1), sy, b(xy).
» FE(Z|D) is the quantity of interest: expected quadrature value.

» It can have (surprisingly?) tractable form...



Intuitive picture

n=0

Integrand

true integral true integral o true integral

Posterior distribution

modified from http://arxiv.org/abs/1512.00933.



Another intuitive picture

x samples
o GP mean

. V4 GP mean + SD
() expected Z
p(Z|samples)
draw from GP
draw from GP
draw from GP

from [0GG112].
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» The expected quadrature value:
E(Z|D) = Ep(£)|D)

( (z)p m)d:c) p(¢| D)de
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where i = E,(k;) is the familiar kernel mean embedding in the rkhs #.

» Recall that when k(z,2") = 0Z N (z; 2", we) (an SE or RBF kernel), we have
the further simplification:

P (x;) = /k(xi,w)p(:p)dac = 02N (i3m0, 50 + wp).

» Often o, = 0 when the integrand can be evaluated precisely.
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Empirical result from [GR02]

> A toy example:

o ij % Bayesian inference

§ * | Lo_simple Monte Carlo
%
x

— — N
o =) o <]

average squared error

minus log density of correct value
o

|
o)

10' 10° 10 10

sample size sample size
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Empirical result from [GR02]

> A toy example:

—— function f(x)
— — measure p(x)

% Bayesian inference
O Simple Monte Carlo
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» BQ uses larger sample sizes more effectively.

» BQ has higher variance with small sample sizes. Why?
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Closed-form kernel mean embeddings
» Things got simpler when we had k(z,z') = 02N (z;2', w,) (SE kernel):

P (x;) = /k(z,, x)p(z)de = og/\/’(xi; mo, S0 + we).

» That is, the kernel mean embedding is closed form.

» Here are some other p, k, X triplets such that u? is closed form:

X p k Reference
0,19 Unif(X) Wendland TP Oates and Girolami (2015)
[0,1]¢ Unif(X) Matérn Weighted TP Sec. 5.2.3
[0,1)¢ Unif(X) Korobov TP Appendix D
[0,1]¢ Unif(X) Exponentiated quadratic ~Appendix J
R¢ Mixt. of Gaussians Exponentiated quadratic O’Hagan (1991)
s¢ Unif(X) Gegenbauer Sec. 5.2.1
Arbitrary  Unif(X) / Mixt. of Gauss. trigonometric Integration by parts
Arbitrary Unif(X) Splines Minka (2000)
Arbitrary Known moments Polynomial TP Briol et al. (2015)
Arbitrary Known 0log m(x) Control functional Sec. 4.3

again from http://arxiv.org/abs/1512.00933.
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» Things got simpler when we had k(z,z') = 02N (z;2', w,) (SE kernel):

P (x;) = /k(z,, x)p(z)de = og/\/’(xi; mo, S0 + we).

» That is, the kernel mean embedding is closed form.

» Here are some other p, k, X triplets such that u? is closed form:

X p k Reference
0,19 Unif(X) Wendland TP Oates and Girolami (2015)
[0, 1] Unif(X) Matérn Weighted TP Sec. 5.2.3
[0,1)¢ Unif(X) Korobov TP Appendix D
[0,1]¢ Unif(X) Exponentiated quadratic ~Appendix J
R¢ Mixt. of Gaussians Exponentiated quadratic O’Hagan (1991)
s¢ Unif(X) Gegenbauer Sec. 5.2.1
Arbitrary  Unif(X) / Mixt. of Gauss. trigonometric Integration by parts
Arbitrary Unif(X) Splines Minka (2000)
Arbitrary Known moments Polynomial TP Briol et al. (2015)
Arbitrary Known dlog7(x) Control functional Sec. 4.3

» Here TP means tensor product.

again from http://arxiv.org/abs/1512.00933.
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» BQ uses gp to share information about input points x1, ..., x, via a kernel.

» But also, throughout the semester we have seen other possible moves...

> Exploiting structure in £:
> Often {(x) is likelihood or other density, hence nonnegative:

p(D) = [ p(Dle)p(@)dn 2 [ t(a)p(a)da.

> Maybe a ratio of integrals with common terms:

[ (1D, 0)p(DI0)p(6)do
PUID) = D) p(6)de

> Active learning: choose point x;41 based on observations ¢(x1), ..., £(z;).

> Model selection: in the simplest version we would do something like
optimization of hyperparameters, but properly marginalizing over
hyperparameters should improve accuracy.

> These extensions in BQ: [0OGRt12, 0GGt12, GOH14, GOGt14, HOG15].

» Theory for BQ is just starting; see http://arxiv.org/abs/1512.00933.
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Exploiting structure in ¢

> If we know £(z) > 0 everywhere, a gp prior on £(z) is a bad model.
» [OGGT12] uses a log transform, namely:
E(ZID) = Eige(Ep())|D)

= /10g£ (/ exp {log K(w)}p(a:)da:) p(log ¢|D)dlog ¢

x

where logl =0~ GP(0,k),

which for tractability subsequently linearizes the integrand as:

exp {log 4(z)} ~ exp {log lo(x)} + exp {log £(z)} (log £(z) — log £o(x)) .

» [GOGT14] uses a square-root transformation:
R R 1.
{=+/2({ —a)~GP(0,k), suchthat {(z) =a+ 562(96).

» As you might expect these choices induce some technical details but improve
estimation in the right settings.
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Model selection

> In §02 we considered approximate integration of hyperparameters [GOH14].

» Accurate uncertainty estimates on £ seem valuable:

f(x)

data

mean

variance

approx. marginalised length scale
true marginalised length scale

» [0OGGT12, GOGT14, HOG15] use model selection to good effect.
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Actively choosing quadrature points x1, ..., z,

» In §07 we considered bayesian active learning via [GSWT15].

» A sensible BQ acquisition function is to minimize the variance of the
estimate E(Z|D).

» [OGGT12, GOG*14, HOGL15] use this active learning to good effect:

expected variance
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&

N
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éﬁ —— WSABI
e A ERLnt SMC
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b --- BMC
]

)

2

1072 107" 10° 10" 10% 10°
Time in seconds

v

AIS: annealed importance sampling (from §02).

v

SMC: simple Monte Carlo

BMC: Bayesian Monte Carlo (what we called BQ [GR02]).

v

v

WSABI: warped sequential active bayesian integration [GOG™14], which uses
the tricks we just laid out (plus a bit).
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> Short answer: really only when the kernel is matched to the function itself.

» Bottom: error and posterior variance estimates thereof, showing the issue.
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