
STAT G8325
Gaussian Processes and Kernel Methods
§11: Speed and Scaling Part 3

John P. Cunningham

Department of Statistics
Columbia University

Outline

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

References

Outline

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

References

Progress...

Week Lectures Content

10 Nov 23, Dec 2 Kernel statistical tests
11 Dec 7 Speed and Scaling Part 3

• [RR07] (intentionally light reading; work on projects)
12 Dec 9 Probabilistic Integration? Random kitchen sinks / fastfood?

I Final project presentations Monday Dec 14, 16
I Present 5-7 minutes of your project results.
I Build off of project progress report.
I Send 1-5 pdf slides to me beforehand.

I Can everyone make Wed Dec 16?

I Final project writeup then due Friday Dec 18 at noon.
I 8-16 pages pdf, using the tex template from hw3.
I Deadline strictly enforced.

Outline

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

References

Speed and scaling of kernel methods

I §05 and §06 discussed speed and scaling gp methods.

I All boiled down to kernel approximations (the key bottleneck).

I No surprise, kernel methods more generally have scaling methods.

I In some kernel methods (e.g. SVM), K−1 is not required, but even still
O(n2) runtime and storage is burdensome.

I Setup:
I X = Rd.
I k(x, x′) = 〈φ(x), φ(x′)〉H in the usual way.
I k stationary: k(x, x′) = k(x− x′).

I We have some kernel machine admitting the representer theorem:

f(x∗) =

n∑
i=1

αik(xi, x
∗)

e.g. Kf∗f (Kff + σ2I)−1y

=

n∑
i=1

[
(Kff + σ2I)−1y

]
i
k(xi, x

∗).

Speed and scaling of kernel methods

I We have some kernel machine obeying the representer theorem:

f(x) =

n∑
i=1

αik(xi, x).

I Prediction has cost O(nd); in the large n setting, even this is burdensome.
I The essential idea of [RR07] is to approximate:

k(x, x′) = 〈φ(x), φ(x′)〉H ≈ z(x)>z(x′)

for some approximating (randomized) feature map z : Rd → RD.
I Note that again we have a low-rank kernel approximation K ≈ Z>Z.
I The subsequent kernel machine then becomes linear in the z feature space:

f(x) =

n∑
i=1

αik(xi, x)

≈ w>z(x),

which is an inner product in RD with resulting cost O(D + d).

Outline

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

References

Random Fourier Features

I The essential question is then how to choose that feature map z : Rd → RD.
I Reminder (§04; Bochner): k(x, x′) = k(x− x′) = k(τ) is positive definite ⇔

γp(ω) = F{k}(ω) ≥ 0 ∀ ω.

In other words, the power spectral density p(ω) is nonnegative everywhere.
I I write γp(ω) to clarify that p(ω) is a pdf from which we can sample

frequencies. Hereafter assume k normalized such that γ = 1 (wlog).
I Reminder: a real and even function k(τ) has:

p(ω) =

∫
k(τ) exp

{
−2πiω>τ

}
dτ

=

∫
k(τ) cos(2πω>τ)dτ

... and similarly...

k(τ) =

∫
p(ω) cos(2πω>τ)dω

= Ep
(
cos(2πω>τ)

)
.

I Idea: an unbiased estimate of k(τ) is gained from sampling from p(ω)...

Random Fourier Features

I Standard trigonometric identities show:

k(τ) =

∫
p(ω) cos

(
2πω>τ

)
dω

= Ep(ω)

(
cos
(
2πω>τ

))
.

= Ep(ω)

(
cos
(
2πω>(x− x′)

))
.

= Ep(ω)EU(0,2π)

(
2 cos

(
ω>x+ b

)
cos
(
ω>x′ + b

))
.

where b ∼ U(0, 2π) is the uniform distribution.

I Random fourier features thus defines the approximate feature map:

z(x) =

√
2/D cos

(
2πω>1 x

′ + b1
)

...√
2/D cos

(
2πω>Dx

′ + bD
)

where ω1, ..., ωD ∼iid p(ω) and b1, ..., bD ∼iid U(0, 2π).

I Then z(x)>z(x′) = 1
D

∑D
k=1 zωk

(x)zωk
(x′) is an unbiased estimate of k(τ).

Random Fourier Features

I krff (x, x
′) = z(x)>z(x′) = 1

D

∑D
k=1 zωk

(x)zωk
(x′) ≈ k(τ), where

z(x) =

√
2/D cos

(
2πω>1 x

′ + b1
)

...√
2/D cos

(
2πω>Dx

′ + bD
)

where ω1, ..., ωD ∼iid p(ω) and b1, ..., bD ∼iid U(0, 2π).

I k(x, x′) is approximated to within ε with D = O(dε−2 log ε−2) [RR07].

I RFF replaces a kernel with a low-rank kernel K ≈ Z>Z.

I Allows one to train a linear kernel in the feature space of size D.

I This method is heavily used with good results.

Outline

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

References

Random Binning Features

I Random fourier features compared x and x′ in terms of how close they are in
the cos(2πω>(x− x′)) sense.

I Random binning features asks if x and x′ live in the same bin after randomly
gridding input space Rd.

I To understand why this is a sensible idea, consider the univariate triangle
kernel k(x, x′) = max(0, 1− 1

δ |x− x′|):

-20 -10 10 20

0.05

0.1

0.15

-2 -1 1 2

0.1

0.2

0.3

0.4

0.5

I Notice if we grid up R with width (‘pitch’) δ:

k(x, x′) = 0 ⇔ x, x′ are in different bins.

k(x, x′) > 0 ⇔ x, x′ are in the same bin.

Random Binning Features

I Next grid R with some random shift u ∼ U(0, δ), so bins are:

[u+ nδ, u+ (n+ 1)δ].

I Notice then that x, x′ are in bins i =
⌊
x−u
δ

⌋
, i′ =

⌊
x′−u
δ

⌋
.

I Define z(x) such that z(x)>z(x′) = 1⇔ x, x′ are in the same bin.

I This feature vector is simply an indicator vector z(x) = {1(x is in bin i)}i.
I Now notice, for a given δ:

Eu
(
z(x)>z(x′)

)
= Prob

(
z(x)>z(x′) = 1

)
= Prob (i = i′)

= max

(
0, 1− |x− x

′|
δ

)
= k(x, x′)

...where the third line is either from the convolution of two uniform r.v.’s or basic reasoning.

I Then D random grid shifts yields an unbiased estimator of k(x, x′).

Random Binning Features

I With the triangle k4(x, x′; δ) = Eu(z(x)
>z(x′)|δ), we can consider a more

general class of kernels:

k(x, x′) =
∫
k4(x, x

′; δ)p(δ)dδ.

I This binning trick can then be extended by the law of total expectation:

k(x, x′) = Eδ
(
Eu
(
z(x)>z(x′)|δ

))
.

I The multivariate Laplace kernel is such an example. The RBF kernel is not.
This is sensible, as binning feels more `1 than `2.

I [RR07] shows that p(δ) = δ d
2

dδ2 k(δ) recovers p from k.

I Laplace: p(δ) = δ exp(−δ) for k(x, x′) = exp(−|x− x′|).

Random Binning Features

I An example picture of random binning features:

10000000 01000000

00100000 00010000

00001000 00000100

00000010 00000001

≈ + + + · · · =

k(xi,xj) z1(xi)
′z1(xj) z2(xi)

′z2(xj) z3(xi)
′z3(xj) z(xi)

′z(xj)

Outline

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

References

Random Binning Features

I Some results:

Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P = 30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P = 30 SVMlight

Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P = 50 libSVM
KDDCUP99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) < 1 s
4,900,000 instances 127 dims D = 50 P = 10 SVM+sampling

I Extensions include [RR09] and [LSS13], both of which are interesting...

Outline

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

References

References

[LSS13] Quoc Le, Tamás Sarlós, and Alex Smola.
Fastfood-approximating kernel expansions in loglinear time.
In Proceedings of the international conference on machine learning, 2013.

[RR07] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines.
In Advances in neural information processing systems, pages 1177–1184, 2007.

[RR09] Ali Rahimi and Benjamin Recht.
Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning.
In Advances in neural information processing systems, pages 1313–1320, 2009.

	 Administrative interlude
	 Setup
	 Random Fourier Features rahimi2007random
	 Random Binning Features rahimi2007random
	 Results
	 References

