STAT G8325 Gaussian Processes and Kernel Methods §11: Speed and Scaling Part 3

John P. Cunningham

Department of Statistics Columbia University

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

Week	Lectures	Content
10	Nov 23, Dec 2	Kernel statistical tests
11	Dec 7	Speed and Scaling Part 3 • [RR07] (intentionally light reading; work on projects)
12	Dec 9	Probabilistic Integration? Random kitchen sinks / fastfood?

- Final project presentations Monday Dec 14, 16
 - Present 5-7 minutes of your project results.
 - Build off of project progress report.
 - Send 1-5 pdf slides to me beforehand.
- Can everyone make Wed Dec 16?
- Final project writeup then due Friday Dec 18 at noon.
 - 8-16 pages pdf, using the tex template from hw3.
 - Deadline strictly enforced.

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

Speed and scaling of kernel methods

- §05 and §06 discussed speed and scaling gp methods.
- All boiled down to kernel approximations (the key bottleneck).
- ▶ No surprise, kernel methods more generally have scaling methods.
- ▶ In some kernel methods (e.g. SVM), K^{-1} is not required, but even still $\mathcal{O}(n^2)$ runtime and storage is burdensome.

Setup:

- $\blacktriangleright \mathcal{X} = \mathbb{R}^d.$
- $k(x,x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$ in the usual way.
- k stationary: k(x, x') = k(x x').
- ▶ We have some kernel machine admitting the representer theorem:

$$f(x^*) = \sum_{i=1}^{n} \alpha_i k(x_i, x^*)$$

e.g. $K_{f^*f}(K_{ff} + \sigma^2 I)^{-1}y$
$$= \sum_{i=1}^{n} \left[(K_{ff} + \sigma^2 I)^{-1}y \right]_i k(x_i, x^*).$$

Speed and scaling of kernel methods

▶ We have some kernel machine obeying the representer theorem:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x).$$

- ▶ Prediction has cost O(nd); in the large n setting, even this is burdensome.
- The essential idea of [RR07] is to approximate:

$$k(x,x') \quad = \quad \langle \phi(x), \phi(x') \rangle_{\mathcal{H}} \quad \approx \quad z(x)^{\top} z(x')$$

for some approximating (randomized) feature map $z : \mathbb{R}^d \to \mathbb{R}^D$.

- ▶ Note that again we have a low-rank kernel approximation $K \approx Z^{\top}Z$.
- The subsequent kernel machine then becomes linear in the z feature space:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x_i, x)$$

 $\approx w^{\top} z(x),$

which is an inner product in \mathbb{R}^D with resulting cost $\mathcal{O}(D+d)$.

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

Random Fourier Features

- The essential question is then how to choose that feature map $z : \mathbb{R}^d \to \mathbb{R}^D$.
- ▶ Reminder (§04; Bochner): $k(x, x') = k(x x') = k(\tau)$ is positive definite \Leftrightarrow

$$\gamma p(\omega) = \mathcal{F}\{k\}(\omega) \ge 0 \quad \forall \quad \omega.$$

In other words, the power spectral density $p(\omega)$ is nonnegative everywhere.

- I write γp(ω) to clarify that p(ω) is a pdf from which we can sample frequencies. Hereafter assume k normalized such that γ = 1 (wlog).
- Reminder: a real and even function $k(\tau)$ has:

$$p(\omega) = \int k(\tau) \exp\left\{-2\pi i \omega^{\top} \tau\right\} d\tau$$

=
$$\int k(\tau) \cos(2\pi \omega^{\top} \tau) d\tau$$

... and similarly...
$$k(\tau) = \int p(\omega) \cos(2\pi \omega^{\top} \tau) d\omega$$

=
$$E_p \left(\cos(2\pi \omega^{\top} \tau)\right).$$

▶ Idea: an unbiased estimate of $k(\tau)$ is gained from sampling from $p(\omega)$...

Random Fourier Features

Standard trigonometric identities show:

$$\begin{aligned} k(\tau) &= \int p(\omega) \cos\left(2\pi\omega^{\top}\tau\right) d\omega \\ &= E_{p(\omega)} \left(\cos\left(2\pi\omega^{\top}\tau\right)\right). \\ &= E_{p(\omega)} \left(\cos\left(2\pi\omega^{\top}(x-x')\right)\right). \\ &= E_{p(\omega)} E_{U(0,2\pi)} \left(2\cos\left(\omega^{\top}x+b\right)\cos\left(\omega^{\top}x'+b\right)\right). \end{aligned}$$

where $b \sim U(0, 2\pi)$ is the uniform distribution.

Random fourier features thus defines the approximate feature map:

$$z(x) = \begin{bmatrix} \sqrt{2/D} \cos\left(2\pi\omega_1^\top x' + b_1\right) \\ \vdots \\ \sqrt{2/D} \cos\left(2\pi\omega_D^\top x' + b_D\right) \end{bmatrix}$$

where $\omega_1, ..., \omega_D \sim_{iid} p(\omega)$ and $b_1, ..., b_D \sim_{iid} U(0, 2\pi)$.

▶ Then $z(x)^{\top} z(x') = \frac{1}{D} \sum_{k=1}^{D} z_{\omega_k}(x) z_{\omega_k}(x')$ is an unbiased estimate of $k(\tau)$.

Random Fourier Features

•
$$k_{rff}(x, x') = z(x)^{\top} z(x') = \frac{1}{D} \sum_{k=1}^{D} z_{\omega_k}(x) z_{\omega_k}(x') \approx k(\tau)$$
, where
$$z(x) = \begin{bmatrix} \sqrt{2/D} \cos\left(2\pi\omega_1^{\top} x' + b_1\right) \\ \vdots \\ \sqrt{2/D} \cos\left(2\pi\omega_D^{\top} x' + b_D\right) \end{bmatrix}$$

where $\omega_1, ..., \omega_D \sim_{iid} p(\omega)$ and $b_1, ..., b_D \sim_{iid} U(0, 2\pi)$.

- ▶ k(x, x') is approximated to within ϵ with $D = O(d\epsilon^{-2} \log \epsilon^{-2})$ [RR07].
- ▶ RFF replaces a kernel with a low-rank kernel $K \approx Z^{\top}Z$.
- ▶ Allows one to train a linear kernel in the feature space of size D.
- This method is heavily used with good results.

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

- Random fourier features compared x and x' in terms of how close they are in the cos(2πω^T(x − x')) sense.
- ▶ Random binning features asks if x and x' live in the same bin after randomly gridding input space R^d.
- ► To understand why this is a sensible idea, consider the univariate triangle kernel k(x, x') = max(0, 1 ¹/_δ|x x'|):

• Notice if we grid up \mathbb{R} with width ('pitch') δ :

 $\begin{array}{ll} k(x,x')=0 & \Leftrightarrow & x,x' \text{ are in different bins.} \\ k(x,x')>0 & \Leftrightarrow & x,x' \text{ are in the same bin.} \end{array}$

• Next grid \mathbb{R} with some random shift $u \sim U(0, \delta)$, so bins are:

$$[u+n\delta, u+(n+1)\delta].$$

- ▶ Notice then that x, x' are in bins $i = \lfloor \frac{x-u}{\delta} \rfloor$, $i' = \lfloor \frac{x'-u}{\delta} \rfloor$.
- Define z(x) such that $z(x)^{\top}z(x') = 1 \Leftrightarrow x, x'$ are in the same bin.
- This feature vector is simply an indicator vector $z(x) = \{\mathbb{1}(x \text{ is in bin i })\}_i$.
- Now notice, for a given δ:

$$E_u \left(z(x)^\top z(x') \right) = \operatorname{Prob} \left(z(x)^\top z(x') = 1 \right)$$

= $\operatorname{Prob} \left(i = i' \right)$
= $\max \left(0, 1 - \frac{|x - x'|}{\delta} \right)$
= $k(x, x')$

...where the third line is either from the convolution of two uniform r.v.'s or basic reasoning.

• Then D random grid shifts yields an unbiased estimator of k(x, x').

With the triangle k_△(x, x'; δ) = E_u(z(x)^Tz(x')|δ), we can consider a more general class of kernels:

$$k(x, x') = \int k_{\triangle}(x, x'; \delta) p(\delta) d\delta.$$

This binning trick can then be extended by the law of total expectation:

$$k(x, x') = E_{\delta} \left(E_u \left(z(x)^{\top} z(x') | \delta \right) \right).$$

- ► The multivariate Laplace kernel is such an example. The RBF kernel is not. This is sensible, as binning feels more l₁ than l₂.
- ▶ [RR07] shows that $p(\delta) = \delta \frac{d^2}{d\delta^2} k(\delta)$ recovers p from k.
- ▶ Laplace: $p(\delta) = \delta \exp(-\delta)$ for $k(x, x') = \exp(-|x x'|)$.

An example picture of random binning features:

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

Some results:

Dataset	Fourier+LS	Binning+IS	CVM	Exact SVM
CPU	3.6%	5.3%	5.5%	11%
regression	20 secs	3 mins	51 secs	31 secs
6500 instances 21 dims	D = 300	P = 350		ASVM
Census	5%	7.5%	8.8%	9%
regression	36 secs	19 mins	7.5 mins	13 mins
18,000 instances 119 dims	D = 500	P = 30		SVMTorch
Adult	14.9%	15.3%	14.8%	15.1%
classification	9 secs	1.5 mins	73 mins	7 mins
32,000 instances 123 dims	D = 500	P = 30		SVM^{light}
Forest Cover	11.6%	2.2%	2.3%	2.2%
classification	71 mins	25 mins	7.5 hrs	44 hrs
522,000 instances 54 dims	D = 5000	P = 50		lib SVM
KDDCUP99 (see footnote)	7.3%	7.3%	6.2% (18%)	8.3%
classification	1.5 min	35 mins	1.4 secs (20 secs)	< 1 s
4,900,000 instances 127 dims	D = 50	P = 10		SVM+sampling

▶ Extensions include [RR09] and [LSS13], both of which are interesting...

Administrative interlude

Setup

Random Fourier Features [RR07]

Random Binning Features [RR07]

Results

[LSS13]	Quoc Le, Tamás Sarlós, and Alex Smola.				
	Fastfood-approximating kernel expansions in loglinear time.				
	In Proceedings of the international conference on machine learning, 2013.				

- [RR07] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in neural information processing systems, pages 1177–1184, 2007.
- [RR09] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Advances in neural information processing systems, pages 1313–1320, 2009.