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Progress...

Week Lectures Content
10 Nov 23, Dec 2 Kernel statistical tests
11 Dec 7 Speed and Scaling Part 3
e [RRO7] (intentionally light reading; work on projects)
12 Dec 9

Probabilistic Integration? Random kitchen sinks / fastfood?

» Final project presentations Monday Dec 14, 16
> Present 5-7 minutes of your project results.
> Build off of project progress report.
> Send 1-5 pdf slides to me beforehand.

» Can everyone make Wed Dec 167

» Final project writeup then due Friday Dec 18 at noon.

> 8-16 pages pdf, using the tex template from hw3.
> Deadline strictly enforced.
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Speed and scaling of kernel methods

805 and §06 discussed speed and scaling gp methods.
All boiled down to kernel approximations (the key bottleneck).

No surprise, kernel methods more generally have scaling methods.

vV v. vy

In some kernel methods (e.g. SVM), K1 is not required, but even still
O(n?) runtime and storage is burdensome.
Setup:

» X =R%

> k(x,z') = (¢(x), ¢(x")),, in the usual way.

> k stationary: k(z,2') = k(x — o).

v

» We have some kernel machine admitting the representer theorem:

flz*) = Zaik‘(xi,x*)

e.g. Kpp(Kpp+0*D)™y

n

= Z [(Kyf+ 021)71y}i k(x;, z*).

i=1



Speed and scaling of kernel methods

> We have some kernel machine obeying the representer theorem:

v

vy

/()

= iaikz(xi,x).
i=1

Prediction has cost O(nd); in the large n setting, even this is burdensome.
The essential idea of [RR07] is to approximate:

k(z,2') = ($(2),d(a"))y =~ 2(x)"2(2)

for some approximating (randomized) feature map z : RY — RP.
Note that again we have a low-rank kernel approximation K ~ Z ' Z.

The subsequent kernel machine then becomes linear in the z feature space:

f(x)

which is an inner product in R”

= zn:aik(xi,x)
i=1

~ w'z(z),

with resulting cost O(D + d).
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Random Fourier Features

v

The essential question is then how to choose that feature map z : R* — RP.
Reminder (§04; Bochner): k(z,z') = k(x — 2’) = k(7) is positive definite <

v

p(w) = F{k}w) >0 V w.

In other words, the power spectral density p(w) is nonnegative everywhere.

v

| write yp(w) to clarify that p(w) is a pdf from which we can sample
frequencies. Hereafter assume k normalized such that v = 1 (wlog).
» Reminder: a real and even function k(7) has:

plw) = /k(T) exp {7271'in7'} dr

/k:(T) cos(2nw ' 7)dr

.. and similarly...
/p(w) cos(2nw ' 7)dw

= Ep (COS(QWUJTT)) .

k()

> ldea: an unbiased estimate of k(7) is gained from sampling from p(w)...



Random Fourier Features

» Standard trigonometric identities show:
/ p(w) cos (27er¢) dus

Ep(w) <cos (2mﬂ7>) _

By (cos (2n07 (@ = 2))) .

= Epw)Buo,n (2 cos (me + b) cos (sz’ N b)) .

where b ~ U(0, 2) is the uniform distribution.

k()

» Random fourier features thus defines the approximate feature map:
V/2/D cos (2nw{ &’ + by)

V/2/D cos (2nw]a’ + bp)
where w1, ...,wp ~iiqa p(w) and by, ..., bp ~iiqa U(0,27).

> Then 2(2)T2(2") = 5 31, Zup ()20, (') is an unbiased estimate of k(7).



Random Fourier Features

v

Frpp(e,a') = 2(2)T2(@') = §5 Y0y 2 (@) 20, (@) 2 k(7), where

V/2/D cos (2nw{ &’ + by)

z(z) = :
V/2/D cos (2mwj,a’ + bp)

where wy, ...,wp ~q p(w) and by, ...,bp ~q U(0, 27).

» k(x,2') is approximated to within € with D = O(de~2loge~?) [RRO7].

v

RFF replaces a kernel with a low-rank kernel K ~ Z T Z.

v

Allows one to train a linear kernel in the feature space of size D.

v

This method is heavily used with good results.
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Random Binning Features

» Random fourier features compared = and 2’ in terms of how close they are in

the cos(2mw " (z — 2')) sense.
» Random binning features asks if z and 2’ live in the same bin after randomly

gridding input space R<.
» To understand why this is a sensible idea, consider the univariate triangle
kernel k(z,2') = max(0,1 — 3|z — 2/|):

2

> Notice if we grid up R with width (‘pitch’) ¢:
k(z,2')=0 < x,2 are in different bins.

k(z,2') >0 < x,2' are in the same bin.



Random Binning Features

> Next grid R with some random shift u ~ U(0, d), so bins are:

[u+nd,u+ (n+1)d].

» Notice then that =, 2’ are in bins ¢ = VE’LJ L= {%J
» Define z(z) such that z(x) " z(z') = 1 < x,2’ are in the same bin.
> This feature vector is simply an indicator vector z(x) = {1( « is in bin i )},.
» Now notice, for a given 4:
E, (2(z)"2(z')) = Prob (z )T2(2") =1)
= Prob(i=
= max (0, |$ — )
= k(z,2")

...where the third line is either from the convolution of two uniform r.v.'s or basic reasoning.

» Then D random grid shifts yields an unbiased estimator of k(z,z’).



Random Binning Features

v

With the triangle ka (z,2";0) = E,(2(x) T 2(2')|6), we can consider a more
general class of kernels:

k(z,2") = /kA(x,x’;5)p(5)d(5.

v

This binning trick can then be extended by the law of total expectation:

k(z,2') = Es (BEy (2(z) " 2(2')]6)) .

v

The multivariate Laplace kernel is such an example. The RBF kernel is not.

This is sensible, as binning feels more ¢1 than £s.

2

[RRO7] shows that p(8) = §-45k(0) recovers p from k.

v

v

Laplace: p(d) = d exp(—4) for k(x,a’) = exp(—|z — z']).



Random Binning Features

» An example picture of random binning features:

1000000Q 01000000 o~y
00100000 " 00010000 4= \
ooovioo0 "+ 00000100 [N

oago00to Boooo001 E(Xi,Xj) 21000/ 210)  2a(xi) z20x))  250x0) 25(x)) z(x;)'z(x;)
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Random Binning Features

» Some results:

Dataset Fourier+IS Binning+IS CW Fxact SYM

CPU 3.6% 53% 55% 11%

regression 20 secs 3 mins 51 secs 31 secs

6500 instances 21 dims D = 300 P = 350 ASWVM

Census 5% 7.5% 8.8% 9%

regression 36 secs 19 mins 7.5 mins 13 mins

18,000 instances 119 dims D = 500 P = 30 SVMTorch

Aduk 14.9% 15.3% 14.8% 15.1%

classification 9 secs 1.5 mins 73 mins 7 mins

32,000 instances 123 dims D = 500 P = 30 svMlight

Forest Cover 11.6% 22% 23% 22%

classification 71 mins 25 mins 7.5 hrs 44 hrs

522,000 instances 54 dims D = 5000 P =50 libSVM

KDDCUP99 (see footnote) 73% 7.3% 6.2% (18%) 8.3%

classification 1.5 min 35 mins 1.4 secs (20 secs) <1ls

4,900,000 instances 127 dims | D = 50 P =10 SVM+sampling
> Extensions include [RR09] and [LSS13], both of which are interesting...
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