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Progress...

Week Lectures Content

9 Nov 16, 18 Introduction to kernel methods
• [SSM98] (intentionally light reading; work on projects)

10 Nov 23, Dec 2 Kernel statistical tests
• [GBR+12] (intentionally light reading; work on projects)

11 Nov 30 (Project progress report)

I HW4 due this past weekend.

I HW5 due next Monday:
I Present 2-3 minutes of your project progress, in class.
I Solicit feedback from all of us.
I Identify key issues.
I Attendance here is important.

I Class will not be held this Wednesday Nov 25.

I We will contextualize kernel methods today.
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Mean embeddings

I In §09, we discussed µP = EP (x)(φ(x)) ∈ H.

I Note Ef , EP (x)(f(x)) is a linear operator H → R.

I Thus E bounded ⇒ µP ∈ H.
I Due to Riesz: Ef = EP (x)(f(x)) = 〈f, µP 〉H .
I Take a moment to make sense of that statement.

I Then:

|Ef | = |EP (x)(f(x))|
≤ EP (x)(|f(x)|)
= EP (x)(| 〈f, φ(x)〉H |)

≤ EP (x)

(√
k(x, x)

)
‖f‖H.

I Thus µP ∈ H exists if EP (x)

(√
k(x, x)

)
<∞.
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Products of kernels are kernels

I Back in §04, we hinted that k = k1k2 is a kernel for kernels k1, k2.

I We hinted at this fact via Euclidean feature maps φ1 : X → Rd1 :

k(x, x′) = k1(x, x′)k2(x, x′)

= φ1(x)>φ1(x′)φ2(x)>φ2(x′)

= tr
(
φ1(x′)>φ1(x)φ2(x)>φ2(x′)

)
= tr

(
φ2(x′)φ1(x′)>φ1(x)φ2(x)>

)
=

(
φ1(x′)φ2(x′)>

)> (
φ1(x)φ2(x)>

)
=

〈(
φ1(x′)φ2(x′)>

)
,
(
φ1(x)φ2(x)>

)〉
Rd1×d2

,

thus showing that the product is itself a kernel.

I We will derive this in more generality so as to motivate Hilbert-Schmidt
operators (and to satisfy ourselves that this property is true in generality).



Product of kernels are kernels

I Consider f1 ∈ H1, f2 ∈ H2 for two separable rkhs with rk k1, k2.
I For any f ∈ H2, define the tensor product operator f1 ⊗ f2 : H2 → H1 as:

(f1 ⊗ f2)f = 〈f2, f〉H2
f1.

I The above form reminds us of:
I typical Euclidean outer products: (ab>)c = 〈b, c〉a.
I the Kronecker trick: (A⊗B>)vec(C) = vec

(
(B>C)A>

)
.

I More generally, f1 ⊗ f2 is just a (rank one) operator L : H2 → H1.
I When such an operator (not necessarily rank one) is:

I bounded: ‖L‖ = supf

‖Lf‖H1
‖f‖H2

<∞.

I has finite Hilbert-Schmidt norm (for an onb {ϕ2
i }i of H2):

‖L‖2HS =
∑
i∈N

‖Lϕ2
i ‖2H1

,

...then L is called a Hilbert-Schmidt operator. We say L ∈ HS(H2,H1).
I HS(H2,H1) is itself a Hilbert space, using the implied inner product

〈L,M〉HS =
∑
i∈N

〈
Lϕ2

i ,Mϕ2
i

〉
H1
.



Product of kernels are kernels

I Show f1 ⊗ f2 ∈ HS(H2,H1):
I The operator f1 ⊗ f2 is bounded:

‖f1 ⊗ f2‖ = sup
f

‖(f1 ⊗ f2)f‖H1

‖f‖H2

= sup
f

‖ 〈f2, f〉H2
f1‖H1

‖f‖H2

= sup
f

| 〈f2, f〉H2
|‖f1‖H1

‖f‖H2

= ‖f2‖H2
‖f1‖H1

.

I The operator f1 ⊗ f2 has finite HS norm:

‖f1 ⊗ f2‖2HS =
∑
i∈N
‖(f1 ⊗ f2)ϕ2

i ‖
2
H1

=
∑
i∈N
‖
〈
f2, ϕ

2
i

〉
H2

f1‖2H1

= ‖f1‖2H1

∑
i∈N

〈
f2, ϕ

2
i

〉
H2

= ‖f1‖2H1
‖f2‖2H1

.

I Thus f1 ⊗ f2 ∈ HS(H2,H1).



Product of kernels

I Now consider 〈
φ⊗ φ′, L

〉
HS

=
∑
i∈N

〈(
φ⊗ φ′

)
ϕi, Lϕi

〉
H1

=
∑
i∈N

〈
φ
′
, ϕi

〉
H2
〈φ, Lϕi〉H1

=

〈
φ,
∑
i∈N

〈
φ
′
, ϕi

〉
H2

Lϕi

〉
H1

=

〈
φ, L

∑
i∈N

〈
φ
′
, ϕi

〉
H2

ϕi

〉
H1

=
〈
φ, Lφ

′〉
H1

.

I In particular, if L = φ2 ⊗ φ′2 ∈ HS(H2,H1), then:〈
φ1 ⊗ φ′1, φ2 ⊗ φ′2

〉
HS

=
〈
φ1, (φ2 ⊗ φ′2)φ

′
1

〉
H1

=
〈
φ1,
〈
φ
′
1, φ
′
2

〉
H2

φ2

〉
H1

= 〈φ1, φ2〉H1

〈
φ
′
1, φ
′
2

〉
H2

.

I Now finally, the product k = k1k2 is a kernel:
k(x, x′) = k1(x, x′)k2(x, x′) =

〈
φ1, φ

′
1

〉
H1

〈
φ2, φ

′
2

〉
H2

=
〈
φ1 ⊗ φ′1, φ2 ⊗ φ′2

〉
HS

.
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Context

I We have covered the kernel versions of a number of hugely important
methods:

I Kernel ridge regression
I Kernel mean estimation
I Kernel PCA
I (Kernel SVM, nearest neighbors, k-means, ...)

I The broader context: we can answer more general questions by kernelizing
our canon of statistical methods on linear features.

I However, I do acknowledge that sometimes ‘kernelized’ methods seem cute
as opposed to fundamentally interesting.

I Hereafter we will focus on some statistical testing applications that, in my
view (and that of many others) are of quite fundamental importance...



Statistical independence tests

I Detecting statistical independence between data sets is a fundamental (and
hugely important) problem in statistics.

I Classic: the two-sample t-test for normals with different means.
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I How do we think about statistical independence more generally?

I Certainly comparing pxy vs pxpy for rv’s X,Y is the ideal step, but
approaching this with finite data is usually quite challenging.

Note for remainder: we’re covering Gretton’s papers, so we’ll often use his figures.



Statistical independence tests

I What if we have different features (other than the mean) that define the
difference between two distributions?

I Example: normals with different variance.

I Consider a feature map φ(x) = x2.
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I If these distributions have means ‘far enough apart’, then we can conclude
two distributions with independent variance.

I Can we now see where this all is going?



Statistical independence tests

I What if we have two distributions with same means and variance but
different higher order features?
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I We can use an rkhs to give us an infinite feature map.

I We can then compute the means of each of these features.

I And we can perform a statistical test to see if two samples of data have the
same mean (of a bunch of features) or different.

I This basic strategy underlies much literature; we will highlight two
particularly excellent examples.
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Setup

I Some basic assumptions for what follows:
I Assume a distribution Px on X (with Borel σ-algebra).
I Assume a distribution Py on Y (with Borel σ-algebra).
I Assume representers and rkhs φx : X → Hx and φy : Y → Hy.
I All rkhs are separable (easiest sufficient: continuous k on separable X )

I As before we define the mean: Ex(f(x)) = Ex
(
〈φx, f〉Hx

)
, 〈µx, f〉Hx

.

I New: define the cross-covariance operator:

Cxy , Exy ((φx − µx)⊗ (φy − µy))
= Exy (φx ⊗ φy)− µx ⊗ µy
, C̃xy −Mxy.

...recall our focus on tensor products and Hilbert-Schmidt earlier today.

I Critically, note that Cxy ∈ HS(Hx,Hy).



Hilbert-Schmidt independence criteria

I [GBSS05] defines the Hilbert-Schmidt Independence Criterion as:

HSIC (pxy,Hx,Hy) , ‖Cxy‖HS .

I In concrete ‘kernel’ terms:

‖Cxy‖2HS =
〈
Exy (φx ⊗ φy)− µx ⊗ µy , Ex′y′

(
φx′ ⊗ φy′

)
− µx′ ⊗ µy′

〉
HS

= Exyx′y′

(〈
φx ⊗ φy , φx′ ⊗ φy′

〉
HS

)
− 2Exy

(
〈µx ⊗ µy , φx ⊗ φy〉HS

)
+ 〈µx ⊗ µy , µx ⊗ µy〉HS .

= Exyx′y′
(
kx(x, x

′)ky(y, y
′)
)
− 2Exy

(
Ex′

(
kx(x, x

′)
)
Ey′

(
ky(y, y

′)
))

+Exx′
(
kx(x, x

′)
)
Eyy′

(
ky(y, y

′)
)
.

Notice that we have used our product kernel knowledge in a nontrivial way!

I We must now:
I Compute this quantity in a finite setting
I Show how we can use it for an independence test.



Finite HSIC

I Say we have a finite data set D = {(x1, y1), ..., (xn, yn)}, drawn from the
joint distribution pxy.

I The following estimator is proposed:

HSIC(D,Hx,Hy) ,
1

(n− 1)2
tr

(
Kx(I −

1

n
11>)Ky(I −

1

n
11>)

)
=

1

(n− 1)2
tr

(
KxKy − 2

1

n
11>KxKy +

1

n
11>Kx

1

n
11>Ky

)
.

where Kx and Ky are the appropriate kernel matrices.

I Interpret each use of 1
n11

> as a mean operation µx... a sensible estimator.

I (This estimator is also biased, and will be improved in subsequent work.)

I [GBSS05] to use large deviation bounds to show this finite expectation is
appropriately behaved.



Independence testing using HSIC

I Important theorem: ‖Cxy‖HS = 0⇔ x, y are independent.

I Accordingly, set an indicator function:

1 (HSIC(D,Hx,Hy) > γα) ,

where γα is a suitably chosen constant such that this rejection test will have
miss rate less than α. This is the typical setup for a rejection test.

I Based on the bound we skipped above, this value has form C
√
− logα/n.

I And no particular clarity is given on how to choose C.



Results

n m Rep. FICA Jade IMAXRAD CFIC KCC COg COl KGV KMIg KMIl HSg HSl

2 250 1000 10.5±
0.4

9.5 ±
0.4

44.4±
0.9

5.4 ±
0.2

7.2 ±
0.3

7.0 ±
0.3

7.8 ±
0.3

7.0 ±
0.3

5.3 ±
0.2

6.0 ±
0.2

5.7 ±
0.2

5.9 ±
0.2

5.8 ±
0.3

2 1000 1000 6.0 ±
0.3

5.1 ±
0.2

11.3±
0.6

2.4 ±
0.1

3.2 ±
0.1

3.3 ±
0.1

3.5 ±
0.1

2.9 ±
0.1

2.3 ±
0.1

2.6 ±
0.1

2.3 ±
0.1

2.6 ±
0.1

2.4 ±
0.1

4 1000 100 5.7 ±
0.4

5.6 ±
0.4

13.3±
1.1

2.5 ±
0.1

3.3 ±
0.2

4.5 ±
0.4

4.2 ±
0.3

4.6 ±
0.6

3.1 ±
0.6

4.0 ±
0.7

3.5 ±
0.7

2.7 ±
0.1

2.5 ±
0.2

4 4000 100 3.1 ±
0.2

2.3 ±
0.1

5.9 ±
0.7

1.3 ±
0.1

1.5 ±
0.1

2.4 ±
0.5

1.9 ±
0.1

1.6 ±
0.1

1.4 ±
0.1

1.4 ±
0.05

1.2 ±
0.05

1.3 ±
0.05

1.2 ±
0.05

8 2000 50 4.1 ±
0.2

3.6 ±
0.2

9.3 ±
0.9

1.8 ±
0.1

2.4 ±
0.1

4.8 ±
0.9

3.7 ±
0.9

5.2 ±
1.3

2.6 ±
0.3

2.1 ±
0.1

1.9 ±
0.1

1.9 ±
0.1

1.8 ±
0.1

8 4000 50 3.2 ±
0.2

2.7 ±
0.1

6.4 ±
0.9

1.3 ±
0.05

1.6 ±
0.1

2.1 ±
0.2

2.0 ±
0.1

1.9 ±
0.1

1.7 ±
0.2

1.4 ±
0.1

1.3 ±
0.05

1.4 ±
0.05

1.3 ±
0.05

165000 25 2.9 ±
0.1

3.1 ±
0.3

9.4 ±
1.1

1.2 ±
0.05

1.7 ±
0.1

3.7 ±
0.6

2.4 ±
0.1

2.6 ±
0.2

1.7 ±
0.1

1.5 ±
0.1

1.5 ±
0.1

1.3 ±
0.05

1.3 ±
0.05

I Benchmark used is demixing data via ICA.

I HSIC (and others) are used to test whether ICA has recovered true
independent components.

I Sample size m, repetitions rep, dimensionality n, measure is Amari
divergence (to quantify independence of resulting distributions).

I Takeaway: HSIC (in the gaussian g and laplace l kernel cases) is
performant with many bespoke algorithms for ICA.
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Dependence tests

I Detecting statistical independence between variables is a fundamental (and
hugely important) problem in statistics.
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Dependence tests

I Detecting statistical independence between variables is a fundamental (and
hugely important) problem in statistics.
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Dependence tests

I Detecting statistical independence between variables is a fundamental (and
hugely important) problem in statistics.
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Dependence tests
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I Discretize and use a statistical test for categorical variables?

I Unfortunately, the curse of dimensionality quickly leads to failure.

I Intuition: each bin needs adequate data to distinguish pxpy from pxy.



Revisiting Hilbert-Schmidt independence criteria

I Earlier we defined the Hilbert-Schmidt Independence Criterion as:

HSIC2 (pxy ,Hx,Hy) , ‖Cxy‖2HS

= ‖Exy(φx ⊗ φy)− µx ⊗ µy‖2HS

, ‖µpxy − µpxpy‖2HS ,

where the last line defines the mean (HS) operators of the joint and the
product of the marginals.

I This shows us that HSIC is a distance between mean feature maps.

I Also we proved conditions for existence of µp (...Ep
√
k(x, x) <∞).

I This reminds us that testing dependence between two rv’s X and Y really
boils down to some distance measure between the joint and the product of
their marginals.



Maximum mean discrepancy [GBR+12]

I Again, our fundamental problem of interest is:
I Given xi ∼iid p and yj ∼iid q
I Is p 6= q?
I Certainly pxy 6= pxpy is such an example.

Apologies: x and y now have different roles.

I Define the maximum mean discrepancy as:

MMD(H, p, q) , sup
f∈H

(Ep(f(x))− Eq(f(y))) .

I Break this down:
I Take a set of smooth functions H...
I ...(which of course is going to be something like an rkhs)...
I And calculate the difference in the expectation of that function under p and q.
I Think this should be small when p = q, big when p 6= q.



Maximum mean discrepancy

I Maximum mean discrepancy:

MMD(H, p, q) , sup
f∈H

(Ep(f(x))− Eq(f(y))) .
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Maximum mean discrepancy

I Maximum mean discrepancy:

MMD(H, p, q) , sup
f∈H

(Ep(f(x))− Eq(f(y))) .
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Maximum mean discrepancy

I Maximum mean discrepancy:

MMD(H, p, q) , sup
f∈H

(Ep(f(x))− Eq(f(y))) .
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Maximum mean discrepancy

I Maximum mean discrepancy:

MMD(H, p, q) , sup
f∈H

(Ep(f(x))− Eq(f(y))) .
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I Large MMD!



Maximum mean discrepancy

I Maximum mean discrepancy:

MMD(H, p, q) , sup
f∈H

(Ep(f(x))− Eq(f(y))) .

I Smoothness matters!
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Maximum mean discrepancy

I Assume µp, µq exist as before. Notice:

MMD(H, p, q) = sup
f∈H

(Ep(f(x))− Eq(f(y)))

= sup
f∈H

(
〈µp, f〉H − 〈µq, f〉H

)
= sup

f∈H

(
〈µp − µq, f〉H

)
= sup

f∈H
‖µp − µq‖H ‖f‖H

∝ sup
‖f‖H≤1

‖µp − µq‖H

= ‖µp − µq‖H .

...hence the name maximum mean discrepancy.
I Note this allows us to equivalently think about function space (as in the

previous figures) or feature space (as in µp, etc.).
I Choosing p as the joint and q as the product of the marginals recovers HSIC:

HSIC (pxy,Hx,Hy) = ‖µpxy
− µpxpy‖HS .



Conditions such that MMD is a metric

I For MMD to be useful, we want MMD(H, p, q) = 0⇔ p = q.
Simple counterexample: k(x, x′) = c⇔MMD = 0∀p, q.

I Then MMD is a metric (already has ≥ 0, symmetry, triangle inequality).

I Literature has many types of kernels:
I Characteristic: µ→

∫
X k(·, x)dµ(x) is injective.

(Note this is precisely preserving the above condition, since injectivity = distinctness.)

I Universal: k is continuous, X compact, and H dense in the space of bounded
continuous functions on X (wrt `∞).

I Strictly pd (the usual)
I Conditionally strictly pd (the usual, but v>1 = 0 in v>Kv > 0.
I Integrally strictly pd...

I Universal and characteristic kernels both have MMD(H, p, q) = 0⇔ p = q.

I For radial kernels on Rd, all above coincide.

I In particular, a stationary k with power spectral density that is nonzero
everywhere (support = Rd) ⇔ k is characteristic.

I The similarities/differences are clarified in [SFL11].



Computing MMD

I Assume µp, µq exist as before. Then:

MMD2(H, p, q) =

(
sup

‖f‖H≤1
(Ep(f(x))− Eq(f(y)))

)2

= ‖µp − µq‖2H
= 〈µp, µp〉H − 2 〈µp, µq〉H + 〈µq , µq〉H
=

〈
Ep(φ(x)), Ep(φ(x

′))
〉
H ...

= Exx′
〈
φ(x), φ(x′)

〉
H ...

= Exx′ (k(x, x
′))− 2Exy(k(x, y)) + Eyy′ (k(y, y

′)).

I Which suggests the following finite (unbiased) sample statistic:

MMD
2
u(H) =

1

m(m− 1)

m∑
i=1

∑
j 6=i

k(xi, xj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj)+
1

n(n− 1)

n∑
i=1

∑
j 6=i

k(yi, yj).

I There is a similar biased, minimum variance estimator (see [GBR+12]).



Another example

MMD(H, p, q) = sup
‖f‖H≤1

(Ep(f(x))− Eq(f(y))) = ‖µp − µq‖H.

I Because we used C-S, we know f is a scaled version of µp − µq ∈ H. Thus:

f(x′) = 〈φ(x′), α(µp − µq)〉H ∝ Ex(k(x
′, x))− Ey(k(x′, y)).
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I f is the (scaled) function achieving the supremum of the MMD objective.

I It is often called the witness function, as it witnesses the MMD value.



Hypothesis testing

I Using the unbiased statistic:

MMD
2
u(H) =

1

m(m− 1)

m∑
i=1

∑
j 6=i

k(xi, xj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, yj)+
1

n(n− 1)

n∑
i=1

∑
j 6=i

k(yi, yj).

I [GBR+12, Thm 10] shows that for:
I null hypothesis H0 = {p = q},
I equal sample sizes m = n,
I bound kmax = maxx,x′ k(x, x

′),
I and power α = Prob( reject H0 |H0 true ),

I A simple rejection test with rejection region R will achieve power α, where

R =

{
x1, y1, ..., xm, ym :MMD2

u(H) ≥
1√
m
4kmax

√
− logα

}
.

I Note these are conservative in that they don’t depend on the distribution,
and can be improved; see [GBR+12, §5].

I MMD two-sample tests can be applied out of the box (in principle).



Another example

I Consider two test cases to see the distribution of MMD2
u under finite

sampling.

I Left: test statistic under p = q = N (0, 1); 50 samples.

I Right: test statistic under p = Lap(0, 1), q = Lap(0, 3
√
2); 100 samples.

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

25

30

35

40

45

50

Empirical MMD2
u density under H0

MMD2
u

Pr
ob

. d
en

si
ty

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8

9

10

Empirical MMD2
u density under H1

MMD2
u

Pr
ob

. d
en

si
ty

I Note: unclear (to me) which kernel (equiv, H) is used here.



Results

I Performance separating gaussians with different means (left) and different
variance (right). Test level is α = 0.05.
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I MMDuH is the rejection region described earlier (Hoeffding bound).

I MMDuM is an improved (but somewhat snoopy) moment-matched region.



Outline

Administrative interlude

Following up from last time: mean embedding

Hilbert-Schmidt operators

Context: kernel statistical tests

Hilbert-Schmidt independence criterion [GBSS05]

Kernel two-sample tests [GBR+12]
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