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Progress...

Week Lectures Content
9 Nov 16, 18 Introduction to kernel methods
e [SSMO8] (intentionally light reading; work on projects)
10 Nov 23, Dec 2 Kernel statistical tests
. [GBR+12] (intentionally light reading; work on projects)
11 Nov 30 (Project progress report)

» HW4 due this past weekend.
» HWS5 due next Monday:

> Present 2-3 minutes of your project progress, in class.
Solicit feedback from all of us.

Identify key issues.

Attendance here is important.

vYyy

v

Class will not be held this Wednesday Nov 25.

v

We will contextualize kernel methods today.



Outline

Following up from last time: mean embedding



Mean embeddings

> In §09, we discussed pp = Ep(,)(é(x)) € H.

» Note Ef £ Ep(,)(f(z)) is a linear operator % — R.

» Thus F bounded = up € H.

> Due to Riesz: Ef = Ep(,y(f(x)) = (f, pp)y -
» Take a moment to make sense of that statement.

» Then:

)
|

IN

Efl = |Epw(f(@))]
Ep@)(If(z)])
Epa) ([ (f,0(@))5 )

Epy (VE@.2)) I/l

IN

» Thus up € H exists if Ep(y) ( k(sc,x)) < o0.
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Products of kernels are kernels

» Back in §04, we hinted that & = k'k? is a kernel for kernels k!, k2.

» We hinted at this fact via Euclidean feature maps ¢! : X — R%:
k(r,a') = K (x,2)k(r,a)

¢! () o' (a')p?(2) T §° ()

= tr(¢'(a") "¢ (2)¢?(2) " ¢* ("))

= tr(¢*(@)¢! («)) ¢! (2)d" () T)

= (@) (61 @)¢*(@)T)

= (6" (@) (@)7), (6" (@)0* (@) ")) gy xa »

thus showing that the product is itself a kernel.

> We will derive this in more generality so as to motivate Hilbert-Schmidt
operators (and to satisfy ourselves that this property is true in generality).



Product of kernels are kernels

v

Consider fi € Hq, fo € Ho for two separable rkhs with rk k!, k2.
For any f € H,, define the tensor product operator f1 ® fo : Ho — Hq as:

(f1® f2)f = (fos [)a, f1-

The above form reminds us of:

» typical Euclidean outer products: (abT)c = (b, ¢)a.

> the Kronecker trick: (A® B )vec(C) = vec (BTC)AT).
More generally, f1 ® fo is just a (rank one) operator L : Ho — H.
When such an operator (not necessarily rank one) is:

v

v

vy

_ LSl

> bounded: ||L| = sup; T, < O

> has finite Hilbert-Schmidt norm (for an onb {(?}; of Ha):
ILIEs = > 19 I3 »

i€EN

...then L is called a Hilbert-Schmidt operator. We say L € HS(Ha, H1).
HS(Ho,H,) is itself a Hilbert space, using the implied inner product

<L7M>HS = Z <L<1‘9127M3022>7.[1 .
€N

v



Product of kernels are kernels

> Show f1 ® fo € HS(HQ,Hl)Z

> The operator f1 ® fo is bounded:

lf1 ® fzll

1(f1 ® f2) fllaey
sup ————————=

[1F 1l
1 (f2s Fagy frllae,
sup —=————
[ BAlET
[ (f25 Fagy N F2ll9e4
sup ————
1 £ 11725

1 £2ll2¢o 1 f1 11244 -

> The operator f1 ® f2 has finite HS norm:

1 ® Fall%ys

> Thus f1 ® fo € HS(Hz2, H1).

STIIA ® f2)97 113,

i€N

S (a0t ), fill,

1€EN
2 2
113, D2 (f2007)
1€N

2 2
12130, 012,

Ha



Product of kernels

» Now consider
(6@ L)ys = D ((6®9") i Loi),,

i€EN
= D A pidy, (6 Loi)s,

1€EN

= <¢,Z<¢’,%>H2 L«pi>

i€N
1€ 1

= (5L @ty

i EN
i€ 1

= <¢>,L¢’>H1 .
> In particular, if L = ¢9 @ ¢, € HS(Ha,H1), then:
(01061, 62@¢0) g = (01,(d2® $3)61),,,
(61,465, 62050, 92)
= (d1,02)q, <¢,17¢l2>1{2 .

» Now finally, the product k = k'k2 is a kernel:
k(z, ') = k' (2,2 )k? (2, a) = (¢1, 91 )4, (D2, 90) 5, = (D1 @ ¢, 62 @ %) g -
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Context

» We have covered the kernel versions of a number of hugely important
methods:

v

Kernel ridge regression

Kernel mean estimation

Kernel PCA

(Kernel SVM, nearest neighbors, k-means, ...)

vvyy

> The broader context: we can answer more general questions by kernelizing
our canon of statistical methods on linear features.

» However, | do acknowledge that sometimes ‘kernelized’ methods seem cute
as opposed to fundamentally interesting.

» Hereafter we will focus on some statistical testing applications that, in my
view (and that of many others) are of quite fundamental importance...



Statistical independence tests

» Detecting statistical independence between data sets is a fundamental (and
hugely important) problem in statistics.

» Classic: the two-sample t-test for normals with different means.

Two Gaussians with different means

o
S

o
@
&

o
w

o
o
&

0.2

Prob. density

» How do we think about statistical independence more generally?

» Certainly comparing pay Vs pxpy for rv's X, Y is the ideal step, but
approaching this with finite data is usually quite challenging.

Note for remainder: we're covering Gretton's papers, so we'll often use his figures.



Statistical independence tests

» What if we have different features (other than the mean) that define the
difference between two distributions?

» Example: normals with different variance.

H 2
> Consider a feature map ¢(z) = z°.
Two Gaussians with different variances Densities of feature X2
04 = 14 =
0.35 Q, 12 - a,
03
2 z !
‘® 025 ‘@
= C 08
% 0.2 8
Fel g 06
O 0.15 <]
o o4
0.1
02
0.05
% 4 2 > " s 107" 10° 10' 10°

X o

» If these distributions have means ‘far enough apart’, then we can conclude
two distributions with independent variance.

> Can we now see where this all is going?



Statistical independence tests

» What if we have two distributions with same means and variance but
different higher order features?

Gaussian and Laplace densities

0.7

Prob. density
o o ©
o R o

o
)

0.1

We can use an rkhs to give us an infinite feature map.

v

We can then compute the means of each of these features.

And we can perform a statistical test to see if two samples of data have the
same mean (of a bunch of features) or different.

This basic strategy underlies much literature; we will highlight two
particularly excellent examples.

v

v

v



Outline

Hilbert-Schmidt independence criterion [GBSS05]



Setup

» Some basic assumptions for what follows:

Assume a distribution P, on X (with Borel o-algebra).
Assume a distribution P, on ) (with Borel o-algebra).
Assume representers and rkhs ¢, : X — H, and ¢y 1 Y — Hy.

| 4
>
>
> All rkhs are separable (easiest sufficient: continuous k on separable X)

> As before we define the mean: E,(f(z)) = Ex ({¢e: f)3,) = (Has oy, -
» New: define the cross-covariance operator:
Cacy £ Emy ((¢r - ,Um) ® (¢y - Ny))
2 Cuy— My,
...recall our focus on tensor products and Hilbert-Schmidt earlier today.
» Critically, note that Cy, € HS(Ha, Hy).



Hilbert-Schmidt independence criteria

» [GBSSO05] defines the Hilbert-Schmidt Independence Criterion as:

HSIC (p-ryv%m’%y) £ HCTyHHS

> In concrete ‘kernel’ terms:
“CZ?J”%IS <Ezy (¢z ® ¢y) — pz ® My » Ez’y’ (d):c/ ® ¢y/) — Uzt @ 'u'y/>HS
= Eccy:r:/y/ (<¢I ® ¢y7¢1/ ® ¢y’>Hs> - 2E:1;y ((1”‘1 ® Uyﬂﬁz ® ¢y>HS)

+{ttx ® piy, flz @ py) g -
= Eacy;t/y/ (kfﬂ(m’m/)ky(yvyl)) - 2Ewy (Eac/ (km(xrx/)) Ey’ (ky(y,y/)))
+E (kz(a:,x/)) Eyyr (ky(y7 y/)) .

Notice that we have used our product kernel knowledge in a nontrivial way!

» We must now:

» Compute this quantity in a finite setting
» Show how we can use it for an independence test.



Finite HSIC

> Say we have a finite data set D = {(x1,%1), ..., (Zn, yn)}, drawn from the
joint distribution pg,,.
» The following estimator is proposed:

1 1
HSIC(D,Ha, Hy) = tr (KI(I — 11K, (I — 711T))
(n—1)2 n n
1 1 1 1
= ——tr| KKy —2-11T K, Ky + ~11TK,—11T K, |.
(n—1)2 n n n
where K and K, are the appropriate kernel matrices.
> Interpret each use of 2117 as a mean operation 4i,... a sensible estimator.

» (This estimator is also biased, and will be improved in subsequent work.)

» [GBSS05] to use large deviation bounds to show this finite expectation is
appropriately behaved.



Independence testing using HSIC

> Important theorem: ||Cyy||rs = 0 < x,y are independent.

v

Accordingly, set an indicator function:
L(HSIC(D,Hy, Hy) > Ya),

where 7, is a suitably chosen constant such that this rejection test will have
miss rate less than «. This is the typical setup for a rejection test.

v

Based on the bound we skipped above, this value has form C'\/—log a/n.

v

And no particular clarity is given on how to choose C'.



Results

[n]m_ [Rep.|FICA[Jade [IMAXRAD [CFIC|KCC [COg [COl |KGV [KMIg[KMII [HSg [HSI |

2 (250 [1000{10.54[9.5 +[44.4%(5.4 +[7.2 £|7.0 £[|7.8 £|7.0 £|5.3 £|6.0 £|5.7 £|5.9 £|5.8 £
0.4 0.4 0.9 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.3
21000{1000{6.0 £{5.1 £{11.3%[2.4 £{3.2 £(3.3 £[3.5 £(2.9 £{2.3 £{2.6 £({2.3 £(2.6 £({2.4 &+
0.3 0.2 0.6 0.1 |0.1 0.1 0.1 0.1 0.1 |0.1 0.1 |0.1 0.1
411000(100 [5.7 £[5.6 £[13.3%£[2.5 £(3.3 £[4.5 £[4.2 £[4.6 £[3.1 £[4.0 £[3.5 £[2.7 £[2.5 £
0.4 0.4 1.1 0.1 0.2 0.4 0.3 0.6 0.6 0.7 0.7 0.1 0.2
414000{100 [3.1 £[2.3 £[5.9 £{1.3 £[1.5 £[2.4 £[1.9 £[1.6 £[{1.4 £[{1.4 £[{1.2 £{1.3 £[{1.2 £+
0.2 0.1 0.7 0.1 |0.1 0.5 0.1 0.1 0.1 0.05 |0.05 |0.05 |0.05
812000[50 [4.1 £[3.6 £[9.3 £[1.8 £[2.4 £[4.8 £[3.7 £[5.2 £[2.6 £[2.1 £[1.9 £[1.9 £[1.8 £
0.2 0.2 0.9 0.1 0.1 0.9 0.9 1.3 0.3 0.1 0.1 0.1 |0.1
814000(50 [3.2 £[2.7 £[6.4 £[{1.3 £[1.6 £[2.1 £[2.0 £[1.9 £[{1.7 £{1.4 £[{1.3 £{1.4 £[1.3 £+
0.2 0.1 0.9 0.05 |0.1 0.2 0.1 0.1 0.2 0.1 |0.05 |0.05 |0.05
165000(25 [2.9 £[3.1 £[9.4 £[|1.2 £[1.7 £[3.7 £[2.4 £[2.6 £|1.7 £[|1.5 £[1.5 £|1.3 £|1.3 =
0.1 0.3 1.1 0.05 0.1 0.6 0.1 0.2 0.1 0.1 0.1 0.05 |0.05

» Benchmark used is demixing data via ICA.

» HSIC (and others) are used to test whether ICA has recovered true
independent components.

» Sample size m, repetitions rep, dimensionality n, measure is Amari
divergence (to quantify independence of resulting distributions).

> Takeaway: HSIC (in the gaussian g and laplace [ kernel cases) is
performant with many bespoke algorithms for ICA.
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Dependence tests

> Detecting statistical independence between variables is a fundamental (and
hugely important) problem in statistics.

Dependent va

Sample from va

15
-05
‘ vy ;
e -
0.5 *’“ o
o & 15 -1 05 0 05 1 15
o .
> 0 ° .
D A
05 o’ ® Independent va=Px Pv
4” 15
-1 Ld 1
15 05
-15 -1 -05 0 0.5 1 1.5
X 0
-05
-1
-15
15 -1 05 0 05 1 15

(from Gretton's recent MLSS)



Dependence tests

» Detecting statistical independence between variables is a fundamental (and
hugely important) problem in statistics.

Discretized empirical P, .,

Sample from P, I
! Py f
“3'e
05 ""

Discretized empirical PPy




Dependence tests

» Detecting statistical independence between variables is a fundamental (and
hugely important) problem in statistics.

Discretized empirical va

Sample from P, .,

1 o s
LX)

05 *1"
o ® °
> 0 ° L4
D A}
-0.5 }o‘ o° Discretized empirical P, P,
Cd

-1

-15
45 -1 05 0 05 1 15 \(
X




Dependence tests

Discretized empirical P,

Sample from P, f
1
1 -,
(Xra

05 *"‘
oo s
et
> o e
:} Wl
0| }.;' o Discretized empirical P, P,,

» Discretize and use a statistical test for categorical variables?
» Unfortunately, the curse of dimensionality quickly leads to failure.

> Intuition: each bin needs adequate data to distinguish p,p, from pg,,.



Revisiting Hilbert-Schmidt independence criteria

> Earlier we defined the Hilbert-Schmidt Independence Criterion as:

HSIC? (pay, Hay Hy) 2 ||Cuyllirs
||Ezy(¢z®¢y)*#w®ﬂy”%15

||#pn, — Hpzpy H%&

L

where the last line defines the mean (HS) operators of the joint and the
product of the marginals.

» This shows us that HSIC is a distance between mean feature maps.
» Also we proved conditions for existence of w, (...E,/k(x,x) < 00).
» This reminds us that testing dependence between two rv's X and Y really

boils down to some distance measure between the joint and the product of
their marginals.



Maximum mean discrepancy [GBR™12]

» Again, our fundamental problem of interest is:
> Given z; ~jiq p and y; ~iiq q
> Isp#q?
> Certainly pzy # pzpy is such an example.

Apologies: = and y now have different roles.

» Define the maximum mean discrepancy as:

MMD(H,p,q) = sup (Ep(f(x)) = Eq(f(y))) -

» Break this down:

Take a set of smooth functions H....

> ...(which of course is going to be something like an rkhs)...

> And calculate the difference in the expectation of that function under p and q.
> Think this should be small when p = ¢, big when p # q.

v



Maximum mean discrepancy

» Maximum mean discrepancy:

MMD(H,p,q) £ P (Ep(f(2)) = Eq(f(y))) -

Samples from P and Q

0.5¢

oreeé 00 ¢ 060606 o o0

0 0.2 0.4 0.6 0.8



Maximum mean discrepancy

» Maximum mean discrepancy:

MMD(H,p,q)

Smooth function

0.5r

-1 I I I I
0.2 0.4 0.6 0.8

» Small MMD!



Maximum mean discrepancy

» Maximum mean discrepancy:

MMD(H,p,q) = P (Ep(f(2)) = Eq(f(y))) -

Samples from P and Q

0.5 1

o ® e o® o * e *e O ¢

0 0.2 0.4 0.6 0.8 1



Maximum mean discrepancy

» Maximum mean discrepancy:

Smooth function

0 0.2 0.4 0.6 0.8 1

> Large MM D!



Maximum mean discrepancy

» Maximum mean discrepancy:

MMD(H,p,q) £ sup (Bp(f(x)) — Bq(f(y)))-

» Smoothness matters!

Bounded continuous function Bounded continuous function
1 1
0.5 0.5|
E E
~0.5] -0.5|
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8




Maximum mean discrepancy

> Assume L, jiq exist as before. Notice:

sup (Ep(f(2)) = Eq(f(9)))

feH
= ]ch% (</Ap, f>H — (g, f>7-[)

MMD(H,p,q)

= s ((p — qs f)ay)

= sup [lup — plly [1£1l5
fer
o< sup |lup = plly
IFllee<1
= Hﬂp - Mq”y .
...hence the name maximum mean discrepancy.
> Note this allows us to equivalently think about function space (as in the
previous figures) or feature space (as in i, etc.).
» Choosing p as the joint and ¢ as the product of the marginals recovers HSIC:

HSIC (pay, Has Hy) = llitp., — Mpop, |l HS-



Conditions such that MMD is a metric

» For MMD to be useful, we want MM D(H,p,q) =0< p=gq.

Simple counterexample: k(z,z’) = ¢ & MMD = 0Yp, q.
> Then MMD is a metric (already has > 0, symmetry, triangle inequality).

» Literature has many types of kernels:
> Characteristic: ;1 — [, k(-,2)du(z) is injective.
(Note this is precisely preserving the above condition, since injectivity = distinctness.)
» Universal: k is continuous, X compact, and H dense in the space of bounded
continuous functions on X (wrt ¢).
> Strictly pd (the usual)
» Conditionally strictly pd (the usual, but ¥"1 =0 in v" Kv > 0.
> Integrally strictly pd...

» Universal and characteristic kernels both have MM D(H,p,q) =0< p =q.

For radial kernels on R?, all above coincide.

v

v

In particular, a stationary k with power spectral density that is nonzero
everywhere (support = R%) < k is characteristic.

The similarities/differences are clarified in [SFL11].

v



Computing MMD

> Assume i, jiq exist as before. Then:

2
MMD*(H,p,q) = <Sup (Ep(f(m))Eq(f(y)))>

il <1
= ||Np - NqH?-t
= <vaﬂp> -2 <:U'P7:U'q> + (Mqvﬂq>7—1
= <E (¢(2)), Ep(¢ >H
B (9(0), &)
= Eup(k(z, y0')) = 2Bay (k(z,9)) + Byyr (k(y,y))-

» Which suggests the following finite (unbiased) sample statistic:

MMD?(H) =

x])_izzk(xuy])"" sz(y@ Yj)-

11]¢1 i=1j=1 11]#

» There is a similar biased, minimum variance estimator (see [GBRT12]).



Another example
MMD(H,p,q) = e (Ep(f(2) = Eq(f¥)) = lltp — bglls-

> Because we used C-S, we know f is a scaled version of y, — 11y € H. Thus:

f@) = (@) alup —pg))y  x Eo(k(a' 7)) — Ey(k(2', y)).

densities and f*(t)

Prob.
I

> f is the (scaled) function achieving the supremum of the MMD objective.
» It is often called the witness function, as it witnesses the MMD value.



Hypothesis testing

» Using the unbiased statistic:

m n

m(mfl sz(m“zl sz(x“yj)+ sz(yu%

i=1j#i =1 11];&

MMD?(H) =

v

[GBRT12, Thm 10] shows that for:

null hypothesis Ho = {p = ¢},

> equal sample sizes m = n,

> bound kmas = max, . k(z,z'),

> and power o = Prob( reject Ho |Ho true ),

v

> A simple rejection test with rejection region R will achieve power a, where

1
R = {x1,y17...7xm,ym : MMD?(H) > \/>4kmaw\/—loga}.
m

v

Note these are conservative in that they don't depend on the distribution,
and can be improved; see [GBRT12, §5].

» MMD two-sample tests can be applied out of the box (in principle).



Another example

» Consider two test cases to see the distribution of M M D2 under finite
sampling.

> Left: test statistic under p = g = N(0,1); 50 samples.
» Right: test statistic under p = Lap(0, 1), ¢ = Lap(0,3v/2); 100 samples.

.. 2 " . "
Empirical MMDu density under HO Empirical MMDi density under H1

45 9

40 8

35 7
2 2

@ 30 ‘@ 6
< 2
(] @

T 25 T 5
Fel

O 20 o 4
o

15 3

10 2

5 1

0 0

-004 -002 0 002 004 006 008 01 005 01 015 02 025 03 035 04
MMD? MMD?

» Note: unclear (to me) which kernel (equiv, H) is used here.



Results

> Performance separating gaussians with different means (left) and different
variance (right). Test level is o = 0.05.

0.8

0.6

0.4

0.2

percent correctly rejecting H0 >

Normal dist. having different means B Normal dist. having different variances
1
<<1<1 4 <1<
s QM ‘E»
3 55{, awﬂ 0.8 " »WW
x h 4« >
e < qe o6t
. sw; x 4 B oA AA ADMMNN ABA A AA A
o s 5% B 0.44 HQ@ A MMD, @ test
TV O an, © N 4 MMDZM o FRWolf
Ty 02 o MMD’H o FR Smimov
. ¢ > MMD? o Hal
T 3
. 0 OG-
10’ 10° 10° 10 10 10’ 10° 10° 10
Dimension Dimension

» MMD,H is the rejection region described earlier (Hoeffding bound).

» MMD,M is an improved (but somewhat snoopy) moment-matched region.
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