STAT G8325

Gaussian Processes and Kernel Methods §09: Basic Kernel Methods

John P. Cunningham

Department of Statistics
Columbia University

Outline

Administrative interlude
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problem
Kernel principal component analysis [SSM98]
Alternative view of KPCA
References

Outline

Administrative interlude

```
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problem
Kernel principal component analysis [SSM98]
Alternative view of KPCA
References
```


Progress...

Week	Lectures	Content
8	Nov 9,11	Reproducing kernel Hilbert spaces \bullet 9
	Nov 16,18	Basic kernel methods \bullet
	[SSM98] (intentionally light reading; work on projects)	

- HW4 due this Friday.
- The final project will look like:
- Final project presentation (3-5 minutes, with slides) on Monday 14 December.
- Final project written submission ($8-16$ pages, typeset in $\mathbb{L T}_{\mathrm{E}} \mathrm{X}$) on Friday 18 December at noon (sharp).

Outline

```
Administrative interlude
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problem
Kernel principal component analysis [SSM98]
Alternative view of KPCA
References
```


Reminder: ridge regression

- Consider ℓ_{2} penalized least squares regression:

$$
\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\rho\|\beta\|_{2}^{2}
$$

where $\beta \in \mathbb{R}^{d}$ is the parameter coefficient.

- We shrink β with Tikhonov regularization to avoid overfitting (large d).
- Regularization seems sensible (and necessary) when in an rkhs \mathcal{H} (vs \mathbb{R}^{d}).
- This choice corresponds to nonlinear or kernel ridge regression:

$$
\arg \min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\rho\|f\|_{\mathcal{H}}^{2} .
$$

Kernel ridge regression?

- For an rkhs \mathcal{H} with rk k, we know:

$$
\mathcal{H}=\left\{f \mid f=\sum_{i \in \mathbb{N}} \alpha_{i} k_{x_{i}} \quad \text { where } \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{X}\right\},
$$

i.e., \mathcal{H} is the span of the representers of evaluation. We also defined inner product:

$$
\left\langle\sum_{i \in \mathbb{N}} \alpha_{i} k_{x_{i}}, \sum_{j \in \mathbb{N}} \alpha_{j} k_{x_{j}}\right\rangle_{\mathcal{H}}=\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) .
$$

- Because k is a reproducing kernel, we have $\left\langle f, k_{x}\right\rangle_{\mathcal{H}}=f(x) \forall f \in \mathcal{H}$.
- ...all of which suggests (remember $\left.f\left(x_{i}\right)=\delta_{x_{i}} f=\left\langle f, k_{x_{i}}\right\rangle_{\mathcal{H}}\right)$:

$$
\begin{array}{ll}
\underset{f}{\arg \min _{f}} & \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\rho\|f\|_{\mathcal{H}}^{2}
\end{array} \Leftrightarrow
$$

- That expression parses, but is an infinite dimensional optimization...

Representer theorem (intuitively)

- In the usual ridge case, consider the solution for data $X \in \mathbb{R}^{d \times n}$:

$$
\begin{aligned}
\beta^{*}= & \arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\rho\|\beta\|_{2}^{2} \\
= & \left(X X^{\top}+\rho I_{d}\right)^{-1} X y \\
= & \left(\ldots D^{2} U^{\top}+\rho I_{d}\right)^{-1} U D V^{\top} y \\
= & U D_{\rho}^{-2} U^{\top} U D V^{\top} y \\
= & U\left(D_{\rho}^{-2} D\right) V^{\top} y \\
= & U\left(D D_{\rho}^{-2}\right) V^{\top} y \\
= & U D V^{\top} V D_{\rho}^{-2} V^{\top} y \\
= & X\left(X^{\top} X+\rho I_{n}\right)^{-1} y \\
= & \sum_{i=1}^{n} \alpha_{i} x_{i}, \text { where } \alpha=\left(X^{\top} X+\rho I_{n}\right)^{-1} y \in \mathbb{R}^{n} .
\end{aligned}
$$

where w_{i} are scalar weights on each data point $X=\left[x_{1}, \ldots, x_{n}\right]$.

- The ridge regression solution lives in the span of the data points.

Representer theorem (intuitively)

- We had: $\beta^{*}=\arg \min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta^{\top} x_{i}\right)^{2}+\rho\|\beta\|_{2}^{2}=X\left(X^{\top} X+\rho I_{n}\right)^{-1} y$.
- Consider \mathcal{H}; replace X with representer 'matrix' $\Phi=\left[k_{x_{1}}, \ldots, k_{x_{n}}\right] \in \mathcal{H}^{n}$.
- An intuitively appealing solution to kernel ridge regression might be:

$$
\begin{aligned}
f^{*} & =\arg \min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\rho\|f\|_{\mathcal{H}}^{2} \\
& =\Phi\left(\Phi^{\top} \Phi+\rho I_{n}\right)^{-1} y \\
& =\Phi\left(K+\rho I_{n}\right)^{-1} y \\
& =\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}
\end{aligned}
$$

where we have defined ${ }^{\top}$ as in $\Phi^{\top} \Phi=\left\{\left\langle k_{x_{i}}, k_{x_{j}}\right\rangle_{\mathcal{H}}\right\}_{i, j \in 1, \ldots, n}$.

- Reducing optimization of $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}} \rightarrow$ optimization over $\alpha \in \mathbb{R}^{n}$.
- Representer theorem in a nutshell: under certain conditions, the solution f^{*} lives in the n-dimensional linear span of the data's representers of evaluation!

Representer theorem (properly)

- (Representer theorem) For $f \in \mathcal{H}, \mathcal{H}$ an rkhs with rk k, an arbitrary loss function ℓ, a monotonically increasing regularizer g, and data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i \in 1, \ldots, n}$, the program

$$
\arg \min _{f} \ell\left(\left(y_{1}, f\left(x_{1}\right)\right), \ldots,\left(y_{n}, f\left(x_{n}\right)\right)\right)+\rho g\left(\|f\|_{\mathcal{H}}\right)
$$

has minimizer f^{*} with the form $f^{*}=\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}$, where $k_{x_{i}} \in \mathcal{H}$ are the representers of evaluation for k. (Common to define $\phi: \mathcal{X} \rightarrow \mathcal{H}, x \rightarrow k_{x}$.)

- This is variously written in a few ways:

$$
f=\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}=\sum_{i=1}^{n} \alpha_{i} \phi\left(x_{i}\right)=\Phi \alpha \quad \text { or } \quad f(x)=k\left(x,\left\{x_{i}\right\}_{i}\right) \alpha
$$

- Original: [KW71]; generalization: [SHS01]; recently interesting: [DS12].
- We will prove it by considering ℓ and g in turn. For both, consider the orthogonal complement of the span of the data representers:

$$
\mathcal{H}_{X}^{\perp}=\left\{f^{\perp} \in \mathcal{H} \mid\left\langle f^{\perp}, \sum_{i=1}^{n} \alpha_{i} k_{x_{i}}\right\rangle_{\mathcal{H}}=0, \forall \alpha_{i} \in \mathbb{R}\right\} .
$$

Representer theorem proof (loss function ℓ)

- Assume that the solution $f^{*} \in \mathcal{H}$ is arbitrary. Then:

$$
f^{*}=\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}+f^{\perp}, \quad f^{\perp} \in \mathcal{H}_{X}^{\perp}, \alpha_{i} \in \mathbb{R}
$$

- Noting that ℓ depends only on $f\left(x_{j}\right)$ for $j \in 1, \ldots, n$, we see:

$$
\begin{aligned}
f^{*}\left(x_{j}\right) & =\left\langle f, k_{x_{j}}\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}+f^{\perp}, k_{x_{j}}\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}, k_{x_{j}}\right\rangle_{\mathcal{H}}+\left\langle f^{\perp}, k_{x_{j}}\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}, k_{x_{j}}\right\rangle_{\mathcal{H}} \\
& =\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x_{j}\right) .
\end{aligned}
$$

- Thus, the loss function ℓ is invariant to any part of $f^{*} \notin \operatorname{span}\left(k_{x_{1}}, \ldots, k_{x_{n}}\right)$.

Representer theorem proof (regularizer g)

- Again assume that the solution $f^{*} \in \mathcal{H}$ is arbitrary. Then:

$$
f^{*}=\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}+f^{\perp}, \quad f^{\perp} \in \mathcal{H}_{X}^{\perp}, \alpha_{i} \in \mathbb{R} .
$$

- Then:

$$
\begin{aligned}
g\left(\|f\|_{\mathcal{H}}\right) & =g\left(\left\|\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}+f^{\perp}\right\|_{\mathcal{H}}\right) \\
& =g\left(\left(\left\|\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}\right\|_{\mathcal{H}}^{2}+\left\|f^{\perp}\right\|_{\mathcal{H}}^{2}\right)^{\frac{1}{2}}\right) \\
& \geq g\left(\left\|\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}\right\|_{\mathcal{H}}\right) .
\end{aligned}
$$

- Since ℓ does not depend on f^{\perp} and g is monotonically increasing, the minimizer must have $f^{\perp}=0$.
- Thus it is proven that $f^{*} \in \operatorname{span}\left(k_{x_{1}}, \ldots, k_{x_{n}}\right)$; that is, $f^{*}=\sum_{i=1}^{n} \alpha_{i} k_{x_{i}}$.

Outline

```
Administrative interlude
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problem
Kernel principal component analysis [SSM98]
Alternative view of KPCA
References
```


Kernel ridge regression

- For $f \in \mathcal{H}$, the rkhs with $\mathrm{rk} k$, we seek the nonlinear regressor:

$$
f^{*}=\arg \min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\rho\|f\|_{\mathcal{H}}^{2}
$$

- For $\rho>0$, the representer theorem holds. Thus $f=\sum_{j=1}^{n} \alpha_{j} k_{x_{j}}$, so:

$$
\begin{aligned}
f^{*} & =\arg \min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\rho\|f\|_{\mathcal{H}}^{2} \\
& =\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\left\langle\sum_{j=1}^{n} \alpha_{j} k_{x_{j}}, k_{x_{i}}\right\rangle_{\mathcal{H}}\right)^{2}+\rho \sum_{j=1}^{n} \alpha_{j} k_{x_{j}} \|_{\mathcal{H}}^{2} \\
& =\arg \min _{\alpha} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{n} \alpha_{j} k\left(x_{i}, x_{j}\right)\right)^{2}+\rho \sum_{i=1} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) \\
& =\arg \min _{\alpha}\|y-K \alpha\|_{2}^{2}+\rho \alpha^{\top} K \alpha . \\
& =\arg \min _{\alpha} \alpha^{\top}\left(K^{2}+\rho K\right) \alpha-2 \alpha^{\top} K y . \\
& \Rightarrow \alpha^{*}=(K+\rho I)^{-1} y
\end{aligned}
$$

- Thus $f^{*}=\sum_{j=1}^{n} \alpha_{j}^{*} k_{x_{j}}=\Phi(K+\rho I)^{-1} y$, as intuitively expected.

Kernel ridge regression: a familiar form

- For $f \in \mathcal{H}$, the rkhs with rk k, we have that the nonlinear regressor:

$$
f^{*}=\arg \min _{f} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\rho\|f\|_{\mathcal{H}}^{2}
$$

has form $f^{*}=\sum_{j=1}^{n} \alpha_{j}^{*} k_{x_{j}}=\Phi(K+\rho I)^{-1} y$.

- Prediction at x is $f^{*}(x)=\left\langle\sum_{j=1}^{n} \alpha_{j}^{*} k_{x_{j}}, k_{x}\right\rangle_{\mathcal{H}}=K_{x f}\left(K_{f f}+\rho I\right)^{-1} y$.
- This is precisely our usual form for the gp posterior mean:

$$
E(f(x) \mid X, y)=K_{x f}\left(K_{f f}+\rho I\right)^{-1} y=K_{x f} K_{y y}^{-1} y
$$

- Thus gp inference is kernel ridge regression with a bayesian interpretation.
- Kernel ridge regression is very widely used. Often no mention of gp at all.
- Differences between kernel methods and gp methods seem largely cultural.
- While true, there is a surprising difference (lest we get too comfortable).

Outline

```
Administrative interlude
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problem
Kernel principal component analysis [SSM98]
Alternative view of KPCA
References
```


Kernel ridge regression and gp

- We just saw that krr and gp regression give the same results in the sense that, given data $X=\left[x_{1}, \ldots, x_{n}\right]$ and a rkhs \mathcal{H} with $\mathrm{rk} k$, the krr prediction and gp posterior mean of a point x are the same:

$$
f_{\alpha^{*}}(x)=E(f(x) \mid X, y)=K_{x f}\left(K_{f f}+\rho I\right)^{-1} y=K_{x f} K_{y y}^{-1} y .
$$

- Kernel ridge regression optimizes over all functions $f \in \mathcal{H}$, by definition.
- It is then tempting to think that a draw f from a gp with kernel k will be a point in k 's rkhs \mathcal{H}, i.e., $f \sim \mathcal{G P}(0, k) \in \mathcal{H}$.
- The intuition:
- Riesz $\Rightarrow f(x)=\left\langle f, k_{x}\right\rangle_{\mathcal{H}}$, so a gp seems to be an iid gaussian weighted sum (with weights f^{i}) of basis elements k_{x}^{i}.
- Take linear regression: $f(x)=\beta^{\top} x$, where $\beta \sim \mathcal{N}(0, \rho I)$.
- or some arbitrary polynomial on $\mathbb{R}: f(x)=\sum_{k=1}^{K} \beta_{k} x^{k}$, again with $\beta \sim \mathcal{N}(0, \rho I)$.
- This intuition is false when \mathcal{H} is infinite dimensional (sadly).

RKHS of a GP draw [Wah90, ch. 1]

- Let k be a Mercer kernel, so that $k\left(x, x^{\prime}\right)=\sum_{i \in \mathbb{N}} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)$, where $\left\{\phi_{i}\right\}$ forms an orthonormal basis of L_{2}.
- The Karhunen-Loeve transform tells us $f \sim \mathcal{G} \mathcal{P}(0, k)$ has expansion: $f(x)=\sum_{i \in \mathbb{N}} z_{i} \phi_{i}(x)$, where the variables z_{i} are independent and normal.
- The z_{i} are the projection onto that eigenfunction $z_{i}=\int f(x) \phi_{i}(x) d x$; thus:

$$
\begin{aligned}
E\left(z_{i}\right) & =E\left(\int f(x) \phi_{i}(x) d x\right)=\int E(f(x)) \phi_{i}(x) d x=0 . \\
E\left(z_{i} z_{j}\right) & =E\left(\iint f(x) f\left(x^{\prime}\right) \phi_{i}(x) \phi_{j}\left(x^{\prime}\right) d x d x^{\prime}\right) \\
& =\iint E\left(f(x) f\left(x^{\prime}\right)\right) \phi_{i}(x) \phi_{j}\left(x^{\prime}\right) d x d x^{\prime} \\
& =\iint k\left(x, x^{\prime}\right) \phi_{i}(x) \phi_{j}\left(x^{\prime}\right) d x d x^{\prime} \\
& =\lambda_{i} \mathbb{\mathbb { 1 }}(i=j) .
\end{aligned}
$$

- Here again is that tempting intuition: a gp is just a sequence of weighted independent $\mathcal{N}\left(0, \lambda_{i}\right)$ variables, which looks like (but is not) it is in \mathcal{H}.

RKHS of a GP draw [Wah90, ch. 1]

- Consider $f_{M}(x)=\sum_{i=1}^{M} z_{i} \phi_{i}(x) . f_{M} \rightarrow f$ in quadratic mean:

$$
\begin{aligned}
E\left(\left|f_{M}(x)-f(x)\right|^{2}\right) & =E\left(\left|\sum_{i=M+1}^{\infty} z_{i} \phi_{i}(x)\right|^{2}\right) \\
& =\sum_{i=M+1}^{\infty} \lambda_{i} \phi_{i}^{2}(x) \\
& \rightarrow 0
\end{aligned}
$$

- However, \mathcal{H} does not contain the limit of this sequence, which is hinted at by the fact that its expectation:

$$
\begin{aligned}
E\left(\left\|f_{M}\right\|_{\mathcal{H}}^{2}\right) & =E\left(\sum_{i=1}^{M} \frac{z_{i}^{2}}{\lambda_{i}}\right) \\
& =M \\
& \rightarrow \infty
\end{aligned}
$$

- The above is not a proof; see [Kal70, Dri73, LP+73, Háj62, LB01].
- Nonetheless, it is the case that for a rkhs \mathcal{H} with rk k, a gp draw $f \sim \mathcal{G P}(0, k)$ is not (a.s.) a member of \mathcal{H}.

Outline

```
Administrative interlude
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problem
Kernel principal component analysis [SSM98]
Alternative view of KPCA
References
```


Kernel mean estimation

- Consider an rkhs \mathcal{H} with rk $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, and representers $\phi: \mathcal{X} \rightarrow \mathbb{R}$.
- (can be a bit more generic: the rk machinery is not explicitly needed)
- \mathcal{H} offers a sensible notion of (squared) distance between points:

$$
\begin{aligned}
d_{\mathcal{H}}^{2}\left(x, x^{\prime}\right) & =\left\|\phi(x)-\phi\left(x^{\prime}\right)\right\|_{\mathcal{H}}^{2} \\
& =\langle\phi(x), \phi(x)\rangle_{\mathcal{H}}-2\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}+\left\langle\phi\left(x^{\prime}\right), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}} \\
& =k(x, x)-2 k\left(x, x^{\prime}\right)+k\left(x^{\prime}, x^{\prime}\right)
\end{aligned}
$$

- Given a probability distribution P, an object of regular interest is:

$$
\mu_{P}=\arg \min _{\mu} \int_{\mathcal{X}}\|\phi(x)-\mu\|_{\mathcal{H}}^{2} d P(x)
$$

...e.g. in kernel PCA (upcoming).

- This object looks like the usual expected value/mean...

Kernel mean estimation

- This object looks like the usual expected value/mean:

$$
\begin{aligned}
\mu_{P} & =\arg \min _{\mu} \int_{\mathcal{X}}\|\phi(x)-\mu\|_{\mathcal{H}}^{2} d P(x) \\
& =\arg \min _{\mu}\langle\mu, \mu\rangle_{\mathcal{H}}-2 E_{P}\left(\langle\mu, \phi(x)\rangle_{\mathcal{H}}\right) \\
& =\arg \min _{\mu}\langle\mu, \mu\rangle_{\mathcal{H}}-2\left\langle\mu, E_{P}(\phi(x))\right\rangle_{\mathcal{H}} \\
& \Rightarrow \mu_{P}=E_{P}(\phi(x))
\end{aligned}
$$

- Similarly we have the finite case $\hat{\mu}_{P}=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)$.
- Notice that both $\mu_{P}, \hat{\mu}_{P} \in \mathcal{H}$. Sometimes useful, sometimes not useful...
- What point $x_{\mu} \in \mathcal{X}$ is the pre-image of μ_{P}, i.e. $\mu_{P}=\phi\left(x_{\mu}\right)$?
- This is called the pre-image problem (for kernel mean estimation).

Pre-image problem

- The pre-image problem, for finite data and some statistic S, is:

$$
x_{\mu}=\left\{x \in \mathcal{X}: \phi(x)=S\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)\right\} .
$$

- The pre-image problem is useful:
- Consider the mean $S\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right)=\frac{1}{n} \sum_{i=1}^{n} \phi\left(x_{i}\right)$.
- We have seen kernels on interesting spaces (graphs, rankings, etc.).
- We do not know how to sensibly average n graphs.
- Kernel \rightarrow a distance metric; pre-image \rightarrow the mean under that distance.
- Also useful in simple spaces $\left(\mathbb{R}^{d}\right) \rightarrow$ consider distance in \mathcal{H} rather than \mathbb{R}^{d}.
- The pre-image problem is a problem:
- $\phi: \mathcal{X} \rightarrow \mathcal{H}$ is not injective. Example: $\phi: \mathbb{R} \rightarrow \mathbb{R}_{+}, x \rightarrow x^{2}$.
- $\phi: \mathcal{X} \rightarrow \mathcal{H}$ is not surjective. Note $\Phi=\{\phi(x) \in \mathcal{H} \forall x \in \mathcal{X}\} \subset \mathcal{H}$.
- Thus x_{μ} such that $\mu_{P}=\phi\left(x_{\mu}\right)$ generally exists only in trivial circumstances.

Pre-image problem

- Common approach: optimize over \mathcal{X} through the mapping ϕ.
- That is, apply the constraint set $\Phi=\{\phi(x) \in \mathcal{H} \forall x \in \mathcal{X}\} \subset \mathcal{H}$.

$$
\begin{aligned}
\mu_{P} & =\arg \min _{\mu} \frac{1}{n} \sum_{i=1}^{n}\left\|\phi\left(x_{i}\right)-\mu\right\|_{\mathcal{H}}^{2} \quad \text { for } x_{i} \sim P \\
& \rightarrow \\
x_{\mu} & =\arg \min _{x} \frac{1}{n} \sum_{i=1}^{n}\left\|\phi\left(x_{i}\right)-\phi(x)\right\|_{\mathcal{H}}^{2} \\
x_{\mu} & =\arg \min _{x} \frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, x_{i}\right)-2 k\left(x_{i}, x\right)+k(x, x)
\end{aligned}
$$

- Not the unconstrained optimum in most cases (restating ϕ is not invertible).
- Optimization over \mathcal{X} is also often difficult (gradients on ranking space?).
- The pre-image problem is not solved in any satisfactory way...

Outline

Administrative interlude
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problemKernel principal component analysis [SSM98]
Alternative view of KPCA
References

Principal components analysis

- PCA produces an r dimensional orthogonal projection by:

$$
\begin{aligned}
{\left[\begin{array}{lll}
v_{1} & \ldots & v_{r}
\end{array}\right] } & =\arg \min _{v_{\ell}^{\top} v_{j}=\mathbb{1}(\ell=j)} \sum_{i=1}^{n}\left\|\bar{x}_{i}-\sum_{j=1}^{r} v_{j} v_{j}^{\top} \bar{x}_{i}\right\|_{2}^{2} \\
& =\arg \max _{v_{\ell}^{\top} v_{j}=\mathbb{1}(\ell=j)} \sum_{j=1}^{r} v_{j}^{\top} \bar{X} \bar{X}^{\top} v_{j}
\end{aligned}
$$

where $\bar{X}=X-\frac{1}{n} X 11^{\top} \in \mathbb{R}^{d \times n}$ is the centered data matrix.

- Solution is the first r eigenvectors v_{j} of $\bar{X} \bar{X}^{\top}: \bar{X} \bar{X}^{\top} v_{j}=\lambda_{j} v_{j}$.
- Observations:
- The loss ℓ operates only on inner products $\bar{X}^{\top} v_{j}$.
- The constraint is equivalent (up to a normalizer) with any increasing $g\left(\left\|v_{j}\right\|\right)$.
- $\bar{X} \bar{X}^{\top} v_{j}=\lambda_{j} v_{j}$ means $v_{j} \in \operatorname{span}\left(x_{1}, \ldots, x_{n}\right)$.
- Thus we suspect that PCA can be readily 'kernelized', and that the representer theorem will hold. (cache this remark...)

Kernel eigenvalue problem

- [SSM98] calls kernel PCA (kpca) the solution to $\lambda_{j} v_{j}=\bar{C} v_{j}$, where

$$
\bar{C}=\frac{1}{n} \sum_{i=1}^{n}\left(\phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right)\left(\phi\left(x_{i}\right)-\frac{1}{n} \sum_{j=1}^{n} \phi\left(x_{j}\right)\right)^{\top},
$$

the covariance 'matrix' in \mathcal{H}.
This 'outer product' notation is frustrating but common. All steps are legitimate, just loosely written.

- Now the eigenvector $v_{j} \in \mathcal{H}$, and we know (assert) that v_{j} obeys the representer theorem (lies in the span); thus: $v_{j}=\sum_{i=1}^{n} \alpha_{j}^{i} \bar{\phi}\left(x_{i}\right)$.
- We now use this representation of v_{j} in the quadratic form $v_{j}^{\top} \bar{C} v_{j}$, the Rayleigh quotient whose solutions form the eigenvector basis.

Kernel eigenvalue problem

- The kernel Rayleigh quotient $v_{j}^{\top} \bar{C} v_{j}$:

$$
\begin{aligned}
v_{j}^{\top} \bar{C} v_{j} & =\left(\sum_{i=1}^{n} \alpha_{j}^{i} \bar{\phi}\left(x_{i}\right)\right)^{\top}\left(\frac{1}{n} \sum_{i=1}^{n} \bar{\phi}\left(x_{i}\right) \bar{\phi}\left(x_{i}\right)^{\top}\right)\left(\sum_{i=1}^{n} \alpha_{j}^{i} \bar{\phi}\left(x_{i}\right)\right) \\
& =\frac{1}{n} \alpha^{\top}\left(\left\{\left\langle\bar{\phi}\left(x_{i}\right), \bar{\phi}\left(x_{j}\right)\right\rangle_{\mathcal{H}}\right\}_{i, j \in 1, \ldots, n}\left\{\left\langle\bar{\phi}\left(x_{i}\right), \bar{\phi}\left(x_{j}\right)\right\rangle_{\mathcal{H}}\right\}_{i, j \in 1, \ldots, n}\right) \alpha \\
& =\frac{1}{n} \alpha_{j}^{\top} \bar{K}^{2} \alpha_{j}
\end{aligned}
$$

...where this last equation is a properly defined quadratic form of a finite dimensional matrix.

- Centering operations in \mathcal{H} behave as expected:

$$
\begin{aligned}
\bar{C} v_{j} & =\left(\frac{1}{n} \bar{\Phi} \bar{\Phi}^{\top}\right) \bar{\Phi} \alpha_{j} \\
& =\frac{1}{n} \bar{\Phi}\left(\Phi-\frac{1}{n} \Phi 11^{\top}\right)^{\top}\left(\Phi-\frac{1}{n} \Phi 11^{\top}\right) \alpha_{j} \\
& =\frac{1}{n} \bar{\Phi}\left(K-\frac{1}{n} 11^{\top} K-\frac{1}{n} K 11^{\top}+\frac{1}{n^{2}} 11^{\top} K 11^{\top}\right) \alpha_{j} \\
& =\frac{1}{n} \bar{\Phi} \bar{K} \alpha_{j}
\end{aligned}
$$

...and thus \bar{K} is often called the centered kernel matrix.

Kernel PCA

- We know the eigenvectors (functions) $v_{j}=\bar{\Phi} \alpha_{j}=\sum_{i=1}^{n} \alpha_{j}^{i} \bar{\phi}\left(x_{i}\right) \in \mathcal{H}$.
- We know $\lambda_{j} v_{j}=\bar{C} v_{j}=\frac{1}{n} \bar{\Phi} \bar{K} \alpha_{j} \in \mathcal{H}$.
- $v_{j} \in \operatorname{span}\left\{\phi\left(x_{1}\right), \ldots, \phi\left(x_{n}\right)\right\} \rightarrow$ equivalently consider projection onto $\bar{\Phi}$:

$$
\begin{aligned}
\bar{\Phi}^{\top} \lambda_{j} v_{j} & =\bar{\Phi}^{\top} \bar{C} v_{j} \\
\bar{\Phi}^{\top}\left(\lambda_{j} \bar{\Phi} \alpha\right) & =\bar{\Phi}^{\top}\left(\frac{1}{n} \bar{\Phi} \bar{K} \alpha_{j}\right) \\
\lambda_{j} \bar{K} \alpha_{j} & =\frac{1}{n} \bar{K}^{2} \alpha_{j} .
\end{aligned}
$$

- Thus $\alpha_{j} \in \mathbb{R}^{n}$ an eigenvector of $\bar{K} \Rightarrow v=\bar{\Phi} \alpha_{j}$ is an eigenfunction in \mathcal{H}.
- $\alpha_{i}^{\top} \alpha_{j}=\mathbb{1}(i=j)$ because they are eigenvectors of \bar{K} (symmetric and real).
- Accordingly, $\left\langle v_{i}, v_{j}\right\rangle_{\mathcal{H}}=\alpha_{i} \bar{K} \alpha_{j}=\mathbb{1}(i=j)$ also, so v_{i} are orthogonal.
- For v_{j} to be orthonormal, $\left\|\alpha_{j}\right\|=\frac{1}{\sqrt{n \lambda_{j}}}$, since we had $n \lambda_{j} \alpha_{j}=\bar{K} \alpha_{j}$.
- KPCA then projects x^{\prime} onto v_{j} as $\left\langle v_{j}, \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}=\sum_{i=1}^{n} \alpha_{j}^{i} k\left(x_{i}, x^{\prime}\right)$.

Kernel PCA

- KPCA is widely used as a compression or visualization tool.

- We were fast and loose (in the common way that linear dimensionality reduction \leftrightarrow eigenproblem) with the representer theorem. Let's revisit that...

Outline

```
Administrative interlude
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problem
Kernel principal component analysis [SSM98]
```

Alternative view of KPCA

References

KPCA through the lens of the Stiefel manifold

- PCA produces an r dimensional orthogonal projection by:

$$
\begin{aligned}
{\left[\begin{array}{lll}
v_{1} & \ldots & v_{r}
\end{array}\right]=} & \arg \max _{v_{\ell}^{\top} v_{j}=1(\ell=j)} \sum_{j=1}^{r} v_{j}^{\top} \bar{X} \bar{X}^{\top} v_{j} \\
V= & \arg \max \quad \operatorname{tr}\left(V^{\top} \bar{X} \bar{X}^{\top} V\right) \\
& \text { subject to } V \in \operatorname{St}\left(\mathbb{R}^{d}, r\right),
\end{aligned}
$$

where $\operatorname{St}\left(\mathbb{R}^{d}, r\right)=\left\{M \in \mathbb{R}^{d \times r}: M^{\top} M=I_{d}\right\}$, the Stiefel manifold of orthonormal r-frames in d dimensions [CG15].

- The Stiefel manifold exists similarly in a (separable) Hilbert space:

$$
\operatorname{St}(\mathcal{H}, r)=\left\{\left[m_{1}, \ldots, m_{r}\right] \in \mathcal{H}^{r}:\left\langle m_{i}, m_{j}\right\rangle_{\mathcal{H}}=\mathbb{1}(i=j)\right\} .
$$

- The underlying problem of KPCA is then:

$$
\begin{aligned}
V= & \arg \max \quad \operatorname{tr}\left(V^{\top} \bar{C} V\right) \\
& \text { subject to } V \in \operatorname{St}(\mathcal{H}, r) .
\end{aligned}
$$

- This does not obey the representer theorem \rightarrow two neat implications...

Implication 1: KPCA asserts the representer theorem

- Decompose $V \in \operatorname{St}(\mathcal{H}, r)$ as:

$$
V=V_{\mathcal{X}}+V^{\perp}=\Phi A+\Phi^{\perp} B
$$

where Φ^{\perp} is a basis of the orthogonal complement of Φ (ignoring centering), $A=\left\{\alpha_{j}^{i}\right\}_{i=1, \ldots, n ; j=1, \ldots, r}$ as previously, and $B=\left\{\beta_{j}^{i}\right\}_{i \in \mathbb{N} ; j=1, \ldots, r}$ similarly.

- Then $V \in \operatorname{St}(\mathcal{H}, r) \Rightarrow V^{\top} V=I_{r}$, so:

$$
\begin{aligned}
V^{\top} V & =\left(\Phi A+\Phi^{\perp} B\right)^{\top}\left(\Phi A+\Phi^{\perp} B\right) \\
& =A^{\top} K A+\left(\Phi^{\perp} B\right)^{\top} \Phi^{\perp} B \\
& =A^{\top} K A+\Psi^{\perp}
\end{aligned}
$$

- Notice Ψ^{\perp} is positive semidefinite:

$$
\begin{aligned}
v^{\top} \Psi^{\perp} v & =\sum_{k=1}^{r} \sum_{\ell=1}^{r} v_{k} v_{\ell} \Psi \frac{\perp}{k \ell} \\
& =\sum_{k=1}^{r} \sum_{\ell=1}^{r} v_{k} v_{\ell}\left\langle\sum_{i=1}^{\infty} \beta_{i, k} \phi_{i}^{\perp}, \sum_{j=1}^{\infty} \beta_{j, \ell} \phi_{j}^{\perp}\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{k=1}^{r} \sum_{i=1}^{\infty} v_{k} \beta_{i, k} \phi_{i}^{\perp}, \sum_{\ell=1}^{r} \sum_{j=1}^{\infty} v_{\ell} \beta_{j, \ell} \phi_{j}^{\perp}\right\rangle_{\mathcal{H}} \\
& =\left\|\sum_{k=1}^{r} \sum_{i=1}^{\infty} v_{k} \beta_{i, k} \phi_{i}^{\perp}\right\|_{\mathcal{H}}^{2} \geq 0 .
\end{aligned}
$$

Implication 1: KPCA asserts the representer theorem

- If $V \in \operatorname{St}(\mathcal{H}, r) \Rightarrow V^{\top} V=I_{r}$ and $V^{\top} V=A^{\top} K A+\Psi^{\perp}$ for $\Psi^{\perp} \succeq 0$,
- Then the original KPCA problem:

$$
\begin{array}{rlrl}
V= & \arg \max & \operatorname{tr}\left(V^{\top} \bar{C} V\right) \\
& \text { subject to } V \in \operatorname{St}(\mathcal{H}, r) .
\end{array}
$$

is equivalent to:

$$
\begin{aligned}
& V=\arg \max \operatorname{tr}\left(V^{\top} \bar{C} V\right) \\
& \text { subject to } \sigma_{1}(V) \leq 1 \\
& V \in \operatorname{span}(\Phi),
\end{aligned}
$$

where $\sigma_{1}(V) \leq 1 \Rightarrow V \in\left\{M \in \mathcal{H}^{r}: M^{\top} M \preceq I_{r}\right\}$ (spectral norm unit ball).
In fact, the spectral norm unit ball is the convex hull of the corresponding Stiefel manifold.

- This is a (very) different problem than the KPCA solution.
- So what happened?

Implication 1: KPCA asserts the representer theorem

- Compare

$$
\begin{array}{rlll}
V= & \arg \max \quad \operatorname{tr}\left(V^{\top} \bar{C} V\right) \\
& \text { subject to } V \in \operatorname{St}(\mathcal{H}, r) . \\
\Leftrightarrow & & \\
V= & \arg \max \quad \operatorname{tr}\left(V^{\top} \bar{C} V\right) \\
& \text { subject to } \quad \sigma_{1}(V) \leq 1 \\
& & V \in \operatorname{span}(\Phi),
\end{array}
$$

...with...

$$
\begin{aligned}
V= & \arg \max \\
& \operatorname{tr}\left(V^{\top} \bar{C} V\right) \\
& \text { subject to } \\
& V \in \operatorname{St}(\mathcal{H}, r) . \\
& V \in \operatorname{span}(\Phi) .
\end{aligned}
$$

- This latter problem asserts the representer theorem, and results in the familiar KPCA solution.
- An outcome of our earlier, seemingly harmless claim, "just like how the eigenvectors of $X X^{\top}$ are in the span of the data X, the eigenvectors (functions) of $\Phi \Phi^{\top}$ are also in the span of Φ."

Implication 2: KPCA projects the cholesky factors

- We'll use regular KPCA (i.e., assert the representer theorem):

$$
\begin{aligned}
V= & \arg \max \\
& \operatorname{tr}\left(V^{\top} \bar{C} V\right) \\
& \text { subject to } V \in \operatorname{St}(\mathcal{H}, r) . \\
& V \in \operatorname{span}(\Phi) .
\end{aligned}
$$

- Then, recalling that $V^{\top} V=I_{r}$, we see

$$
\begin{aligned}
V^{\top} V & =A^{\top} \Phi^{\top} \Phi A \\
& =A^{\top} K A \\
& =M^{\top} C^{-T} K C^{-1} M \\
& =I
\end{aligned}
$$

where $K=C^{\top} C$ is the Cholesky decomposition, and $M \in \operatorname{St}\left(\mathbb{R}^{n}, r\right)$.

- That is, $A^{\top} K A=I \Rightarrow A$ must factor as $C^{-1} M$ for some $M: M^{\top} M=I$.
- Then the projection $V^{\top} \Phi=M^{\top} C^{-\top} \Phi^{\top} \Phi=M^{\top} C$.
- In short, KPCA is just an orthogonal projection of the Cholesky factors C.

Outline

```
Administrative interlude
Representer theorem
Kernel ridge regression
RKHS of a GP draw [Wah90, ch. 1]
Kernel means and the pre-image problem
Kernel principal component analysis [SSM98]
Alternative view of KPCA
```

References

References

[CG15] John P Cunningham and Zoubin Ghahramani.
Linear dimensionality reduction: Survey, insights, and generalizations.
Journal of Machine Learning Research, 2015.
[Dri73] Michael F Driscoll.
The reproducing kernel hilbert space structure of the sample paths of a gaussian process.
Probability Theory and Related Fields, 26(4):309-316, 1973.
[DS12] Francesco Dinuzzo and Bernhard Schölkopf.
The representer theorem for hilbert spaces: a necessary and sufficient condition.
In Advances in neural information processing systems, pages 189-196, 2012.
[Háj62] Jaroslav Hájek.
On linear statistical problems in stochastic processes.
Czechoslovak Mathematical Journal, 12(3):404-444, 1962.
[Kal70] Gopinath Kallianpur.
The role of reproducing kernel hilbert spaces in the study of gaussian processes.
Advances in probability and related topics, 2:49-83, 1970.
[KW71] George Kimeldorf and Grace Wahba.
Some results on tchebycheffian spline functions.
Journal of mathematical analysis and applications, 33(1):82-95, 1971.
[LB01] Milan Lukić and Jay Beder.
Stochastic processes with sample paths in reproducing kernel hilbert spaces.
Transactions of the American Mathematical Society, 353(10):3945-3969, 2001.
$\left[\mathrm{LP}^{+}{ }^{7} 73\right.$ Raoul Le Page et al.
Subgroups of paths and reproducing kernels.
The Annals of Probability, 1(2):345-347, 1973.
[SHS01] Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola.
A generalized representer theorem.
In Computational learning theory, pages 416-426. Springer, 2001.
[SSM98] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Nonlinear component analysis as a kernel eigenvalue problem.
Neural computation, 10(5):1299-1319, 1998.
[Wah90] Grace Wahba.
Spline models for observational data, volume 59.
Siam, 1990.

