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Progress...

Week Lectures Content
8 Nov 9, 11 Reproducing kernel Hilbert spaces
e [Wah90, ch. 1] (intentionally light reading; work on projects)
9 Nov 16, 18 Basic kernel methods

e [SSMO8] (intentionally light reading; work on projects)

» HW4 due this Friday.

» The final project will look like:

» Final project presentation (3-5 minutes, with slides) on Monday 14 December.

> Final project written submission (8-16 pages, typeset in KTEX) on Friday 18
December at noon (sharp).
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Reminder: ridge regression

v

Consider ¢y penalized least squares regression:
argmmz —B8Tx)? + plpl3

where 3 € R? is the parameter coefficient.

v

We shrink 8 with Tikhonov regularization to avoid overfitting (large d).

v

Regularization seems sensible (and necessary) when in an rkhs H (vs R9).

v

This choice corresponds to nonlinear or kernel ridge regression:

argmmz zi)? + pllfIl3-



Kernel ridge regression?
» For an rkhs H with rk k, we know:

H= {fleaikx,i where a; € R, z; EX},

iEN
i.e., H is the span of the representers of evaluation. We also defined inner product:

<Zaikri7zajk?wj> :Zzaiajk‘(l‘i,mj).
H

€N JEN iENJEN

> Because k is a reproducing kernel, we have (f,k;),, = f(z) Vf cH.
> ..all of which suggests (remember f(x;) = dq, f = (f, ka,) %)

i

n

arg mfin Z(yz - f(ivz))Q + P”f”%—( <

i=1
2
n
argmain Z (yi - Zajk(zj,zi)> + pz Z ajoik(ms, ).
i=1 jEN i€N jEN

» That expression parses, but is an infinite dimensional optimization...



Representer theorem (intuitively)

> In the usual ridge case, consider the solution for data X € Raxn.

g* = argmlnz -B8Tz:)* + olBl3

= (XX +pIy) "Xy
(...and let X = UDV" be the full svd, i.e. D € R"*™)
= (UD*UT +plIy) 'UDV Ty
= UD2UTUDV Ty
= U(D,*D)V'y
_ —2 T
= UMDD,")V'y
= UDV'VD,?VTy
= X(XTX+pl,) 1y
n
= Zaizi, where a = (X "X + pI,,) "'y € R™.
=1

where w; are scalar weights on each data point X = [x1, ..., Z,].

» The ridge regression solution lives in the span of the data points.



Representer theorem (intuitively)

> We had: §* = argming S0 (yi — 87202 + pllBlI} = X(XTX +pl)

» Consider H; replace X with representer ‘matrix' ® = [k,,, ..., ks, ] € H".

» An intuitively appealing solution to kernel ridge regression might be:

~o= argmmz f@))? + pllfls

= <I>(<I>T<I>+p]n) Ly
= (K +pl)" 'y

n
= E ke, .
i=1

: T oacin &Td —
where we have defined " asin @' ® = {(k,,, k%>H}i,je1,...,n
» Reducing optimization of {«;};eny — optimization over o € R".
> Representer theorem in a nutshell: under certain conditions, the solution f*
lives in the n-dimensional linear span of the data's representers of evaluation!

...hence representer theorem.



Representer theorem (properly)

> (Representer theorem) For f € H, H an rkhs with rk k, an arbitrary loss
function ¢, a monotonically increasing regularizer g, and data

{(x4,yi) }ie1,....n, the program
argmin £ (g1, /(1)) s (s (@) + 09 (17 ]12)

has minimizer f* with the form f* =>"" | a;k,,, where k,, € H are the

representers of evaluation for k. (Common to define ¢ : X — H,z — k,.)
> This is variously written in a few ways:

f= En:aikcci = Zn:aqu(xz) = Do or f(x) = k;(x7 {xl}l)a
=1 =1

» Original: [KWT71]; generalization: [SHSO1]; recently interesting: [DS12].
» We will prove it by considering £ and g in turn. For both, consider the
orthogonal complement of the span of the data representers:

<f%2aikzi> =0, Ya; € R} .
=1 H

H)L(:{fLeH




Representer theorem proof (loss function /)

> Assume that the solution f* € H is arbitrary. Then:

n
= aiks, + 5 freMHx i ER
i=1

> Noting that ¢ depends only on f(z;) for j € 1,...,n, we see:

= <Zaikxi+f%kwj>
1=1 H
= <;aikzi,kzj>ﬂ+<fﬁkmj N

= < aikz,; 5 kzj >
H

oaik(zg, xj).

Il
SOSTSE

1

.
Il

> Thus, the loss function ¢ is invariant to any part of f* ¢ span (k,, ...



Representer theorem proof (regularizer g)

» Again assume that the solution f* € H is arbitrary. Then:

n
1= aiks, + f+, fteHs, 0 €R.

([ o]

(o 1))
! < ; H) .

n
> aika,
1=1
» Since £ does not depend on f+ and g is monotonically increasing, the
minimizer must have f+ = 0.

» Then:

g (Ifll%)

Xn: aikzi + fJ_
i=1

%

n

» Thus it is proven that f* € span(ky,, ..., ks, ); thatis, f* =>"" | a;kq,.
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Kernel ridge regression
» For f € H, the rkhs with rk k, we seek the nonlinear regressor:
fr= argmlnz f@))? + pllfl3
> For p > 0, the representer theorem holds. Thus f =3""_, a;k,,, so:

i argmmz z)? + plfI5

n n 2
= argmin) yi—<2ajk:zj,kzm> + P
i=1 j=1 n j=1

2

zn:oajk:g;j

H
2
n n n
= argn’gnz <yi — Zajk(xi,xj)) + pz Zaiajk(xi,xj)
i=1 j=1 i=1j=1
= argmin|y — Kol + pa’ Ka.
«
= argmina' (K?+ pK)a —2a' Ky.
«

= o =(K+p)ly.

> Thus f* =37 | atk,; = ®(K + pI)~'y, as intuitively expected.



Kernel ridge regression: a familiar form
» For f € H, the rkhs with rk k, we have that the nonlinear regressor:
fr —argmlnz f@))? + pllfli3

has form f* =3>""_| alk,; = ®(K + pI)~!

v

Prediction at z is f*(z) = <Z;;1 a;szj,kx>7{ = Ko (Ksp+pD)!

v

This is precisely our usual form for the gp posterior mean:

E(f(@)|X,y) = Kop(Kpp 4+ pI) 'y = Koy Ky,

v

Thus gp inference is kernel ridge regression with a bayesian interpretation.

v

Kernel ridge regression is very widely used. Often no mention of gp at all.

v

Differences between kernel methods and gp methods seem largely cultural.

v

While true, there is a surprising difference (lest we get too comfortable).
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Kernel ridge regression and gp

» We just saw that krr and gp regression give the same results in the sense
that, given data X = [x1,...,2,] and a rkhs H with rk k, the krr prediction
and gp posterior mean of a point = are the same:

for () = B(f(2)|X,y) = Koy (Kgs + p) 7'y = Ko p Kty

» Kernel ridge regression optimizes over all functions f € H, by definition.

> It is then tempting to think that a draw f from a gp with kernel & will be a
point in k's rkhs H, i.e., f ~ GP(0,k) € H.

» The intuition:
> Riesz = f(z) = (f, kz)4, S0 @ gp seems to be an iid gaussian weighted sum
(with weights f*) of basis elements k.
> Take linear regression: f(z) = 8"z, where 8 ~ N(0, pI).
> or some arbitrary polynomial on R: f(z) = Zle Bra®, again with

> This intuition is false when # is infinite dimensional (sadly).



RKHS of a GP draw [Wah90, ch. 1]

> Let k be a Mercer kernel, so that k(x,2") = >, Aidi(x)ds ('), where
{¢;} forms an orthonormal basis of Ls.

» The Karhunen-Loeve transform tells us f ~ GP(0, k) has expansion:
f(w) =3 ;cn 2i¢i(x), where the variables z; are independent and normal.

» The z; are the projection onto that eigenfunction z; = [ f(x)¢;(x)dz; thus:
B = B[ 1) = [Bu@e@e=o
B(uz) = E( [/ f(x)f(a?')¢¢(x)¢j(x')d:cd:c’)

/ / E(f() f(2'))¢i (26 (+')dada’

z)¢;(x')drda’

Il
—
—

W

w

&

Il
>/
=
—~
<
I
<.
—

» Here again is that tempting intuition: a gp is just a sequence of weighted
independent A/(0, \;) variables, which looks like (but is not) it is in H.



RKHS of a GP draw [Wah90, ch. 1]

> Consider fy(z) = Zf\il zi¢i(x). far — f in quadratic mean:

JER)

D> Nidi(@)

i=M+1
— 0.

9]

> zidi(x)

i=M+1

E(|fu(z) — f(2)?)

» However, H does not contain the limit of this sequence, which is hinted at
by the fact that its expectation:

M o

B (Il3) = E(ZA>

i=1
= M
— OQ.

» The above is not a proof; see [Kal70, Dri73, LP*73, H4j62, LBO1].
> Nonetheless, it is the case that for a rkhs H with rk k, a gp draw
f~GP(0,k) is not (a.s.) a member of H.
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Kernel mean estimation

v

Consider an rkhs H with rk £ : X x X — R, and representers ¢ : X — R.

v

(can be a bit more generic: the rk machinery is not explicitly needed)

v

‘H offers a sensible notion of (squared) distance between points:

lo(x) — o(2")I3,
(B(x), p(2))3¢ — 2(d(2), d(a"))5, + (B(2"), B(2))y,
= k(z,z) - 2k(z,2") + k(z/,2).

d3,(z,2)

» Given a probability distribution P, an object of regular interest is:

pr = argmin [ o(a) - ulf, dP(a)
HoJx

...e.g. in kernel PCA (upcoming).

v

This object looks like the usual expected value/mean...



Kernel mean estimation

> This object looks like the usual expected value/mean:

pp = asgmin [ (@) - ulf dP(a)
- argmuin (s )3 — 2Ep ({1, 9()) ) -
= argmﬂin (1 1)3y — 2, Ep((2)))yy -
= pp = Ep(0()).

v

Similarly we have the finite case ip = £ 31" | ¢(x;).

v

Notice that both up, fip € H. Sometimes useful, sometimes not useful...

v

What point z,, € X is the pre-image of up, i.e. up = ¢(x,)?

v

This is called the pre-image problem (for kernel mean estimation).



Pre-image problem

» The pre-image problem, for finite data and some statistic S, is:

z,={xeX:d(x)=5(d(x1),...,0(zn))}.

» The pre-image problem is useful:
> Consider the mean S (¢(x1), ..., p(wn)) = L 37 | p(w4).
> We have seen kernels on interesting spaces (graphs, rankings, etc.).
» We do not know how to sensibly average n graphs.
» Kernel — a distance metric; pre-image — the mean under that distance.
> Also useful in simple spaces (R?) — consider distance in # rather than R<.

» The pre-image problem is a problem:

> ¢: X — H is not injective. Example: ¢ : R — Ry, x — z°.
> ¢: X — H is not surjective. Note ® = {¢(z) € HVz € X} C H.
> Thus x, such that up = ¢(x,) generally exists only in trivial circumstances.



Pre-image problem

» Common approach: optimize over X through the mapping ¢.
> That is, apply the constraint set ® = {¢(z) € H Voz € X} C H.

Convex? No.
Bounded? Yes.

= — g i) — bl forx; ~ P
e argmﬂm " lo(x;) — pll or T
—
T, = argmm— g lo(x )”H
= i 71 E E( ) — 2k( )+ k(z, x)
T arg min i T; i) , ).
“ gmi n 2 T, X Ti, X T,x

> Not the unconstrained optimum in most cases (restating ¢ is not invertible).
» Optimization over X is also often difficult (gradients on ranking space?).

» The pre-image problem is not solved in any satisfactory way...



Outline

Kernel principal component analysis [SSM98]



Principal components analysis

» PCA produces an r dimensional orthogonal projection by:

2

n

arg min E T; — E vjv] T;

v v;=1(4=5)

[o1 . v]

2

= arg _ max E ’UTXXT’UJ
v, v;=1(6=j)

where X = X — L1 X117 € R¥" is the centered data matrix.
> Solution is the first 7 eigenvectors v; of XX XXTU]' = A\jv;.

» Observations:

> The loss ¢ operates only on inner products )_(ij.
> The constraint is equivalent (up to a normalizer) with any increasing g(||v;]|).
» XX "wv; = \ju; means vj € span(z1, ..., Tn).

» Thus we suspect that PCA can be readily ‘kernelized’, and that the
representer theorem will hold. (cache this remark...)



Kernel eigenvalue problem

» [SSMO8] calls kernel PCA (kpca) the solution to Ajv; = Cv;, where

T
n n
1

C = - Z d(z;) — %Zd)(%‘) () — izlﬁﬁ(‘”j) ’

i=1 j=1
the covariance ‘matrix’ in .

This ‘outer product’ notation is frustrating but common. All steps are legitimate, just loosely written.

» Now the eigenvector v; € H, and we know (assert) that v; obeys the
representer theorem (lies in the span); thus: v; = Y77 | al¢(z;).

» We now use this representation of v; in the quadratic form vaC'vj, the
Rayleigh quotient whose solutions form the eigenvector basis.



Kernel eigenvalue problem

» The kernel

T =
v; Cvj

Rayleigh quotient UJTC’vj:

n T n n
= (Za§¢?<zi>> (%Z&m%mf) <Za§¢?<zi>>
i=1 i=1 i=1

ST C I SR (CCO R TE) S S O

1 120
= —oa; K aj .
J
n

...where this last equation is a properly defined quadratic form of a finite dimensional matrix.

» Centering operations in H behave as expected:

_ 1--1)\ -
Cv; = — 0P Doy
n
1. 1 T 1
= -3 (<1> - 7<I>11T) <<1> - 7<1>11T) o
n n n
1. 1 1 1
= 7<I>(K—711TK—7K11T+—11TK11T>04]-
n n n n?
1
= —®Kaj
n

...and thus K is often called the centered kernel matrix.



Kernel PCA

> We know the eigenvectors (functions) v; = ®a; = > 1 ald(z;) € H.
» We know \jv; = Cv; = %i)]_(ozj eH.

> v; € span{¢(x1),...,¢(xn)} — equivalently consider projection onto ®:

EJT)\]'”UJ' = (iTC'Uj
_ _ _ 1. -
&7 (A\j®a) = T (ECDKQJ')
_ 15
)\jKOéj = ZK Qg

» Thus a; € R™ an eigenvector of K = v = ®q; is an eigenfunction in H.
T

» o a; = 1(i = j) because they are eigenvectors of K (symmetric and real).

> Accordingly, (vi,v;), = a;Ka; = 1(i = j) also, so v; are orthogonal.

» For v; to be orthonormal, o, = \/% since we had n)\ja; = Ka;.

J

> KPCA then projects 2’ onto v; as (v;, ¢(2')),, = Y1y alk(zi, o).



Kernel PCA

» KPCA is widely used as a compression or visualization tool.

PCA

KPCA

» We were fast and loose (in the common way that linear dimensionality
reduction <> eigenproblem) with the representer theorem. Let's revisit that...
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KPCA through the lens of the Stiefel manifold

» PCA produces an r dimensional orthogonal projection by:

[’Ul vr} = argvgvjrr:lzi}((ezj);v;)f)?rvj
V = argmax tr(VTXXTV)

subject to V € St(R%, r),

where St(R?,7) = {M € R>*": MM = 1,}, the Stiefel manifold of
orthonormal r-frames in d dimensions [CG15].
> The Stiefel manifold exists similarly in a (separable) Hilbert space:

St(H,r) = {[m1,....m,] € H" : (ms,my),, = 1(i=j)}.
» The underlying problem of KPCA is then:

V = argmax tr(V'CV)
subject to V' € St(H,r).

» This does not obey the representer theorem — two neat implications...



Implication 1: KPCA asserts the representer theorem
» Decompose V € St(H,r) as
V=Vx+V"=0A+3"B

where ® is a basis of the orthogonal complement of @ (ignoring centering),
A={a’}iz1,.. myj=1,..r as previously, and B = {f!}icn;j=1,...., similarly.
» Then V € St(H,r) = VTV = 1I,, so:

vy

(<1>A + <I>J‘B)T (<1>A + <I>J‘B)
ATKA+ (@J‘B)T o+ B.

ATKA+ Tt

» Notice ¥ is positive semidefinite:

T T
vl oty = Z Z Vv i
k=

r

S
>3 vk 2Bk 3 B0
i=1 j=

k=16=1 j=1 "
ke o0 N ks o0 1
= (& Sowsinet 3 5 w0t )
k=1i=1 f=1j=1 H
T o0 2
= | X S ensisi| 2o
k=1i=1 H




Implication 1: KPCA asserts the representer theorem

» fVeSt(H,r)=VIV=ILadV'V=ATKA+ Tt for U+ =0,
> Then the original KPCA problem:

V = argmax tr (VTC_'V)
subject to V € St(H,r).

is equivalent to:

V = argmax tr (VTC_’V)
subject to o1(V) <1
V € span(®),

where o1 (V)< 1=V € {M EH - MTM < L} (spectral norm unit ball).

In fact, the spectral norm unit ball is the convex hull of the corresponding Stiefel manifold.
> This is a (very) different problem than the KPCA solution.

» So what happened?



Implication 1: KPCA asserts the representer theorem

» Compare

V. = argmax tr (VTC'V)
subject to V € St(H, ).

V. = argmax tr (VTC'V)
subject to o1(V) <1
V € span(®),
.with...
V. = argmax tr (VTC’V)
subject to V' € St(H,r).
V € span(®).

» This latter problem asserts the representer theorem, and results in the
familiar KPCA solution.

» An outcome of our earlier, seemingly harmless claim, “just like how the
eigenvectors of XX T are in the span of the data X, the eigenvectors
(functions) of ®® T are also in the span of ®.”



Implication 2: KPCA projects the cholesky factors

> We'll use regular KPCA (i.e., assert the representer theorem):

V. = argmax tr (VTC’V)
subject to V' € St(H,r).
V € span(®).
» Then, recalling that V'V = I,., we see
viv = ATo" oA
= ATKA
= M'cTkc'm
I.

where K = C'TC is the Cholesky decomposition, and M € St(R",r).

v

Thatis, ATKA =1 = A must factor as C~1M for some M : M"M = 1.

v

Then the projection V' é = MTC~TdTd =MTC.

v

In short, KPCA is just an orthogonal projection of the Cholesky factors C.
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