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Progress...

Week Lectures Content

8 Nov 9, 11 Reproducing kernel Hilbert spaces
• [Wah90, ch. 1] (intentionally light reading; work on projects)

9 Nov 16, 18 Basic kernel methods
• [SSM98] (intentionally light reading; work on projects)

I HW4 due this Friday.

I The final project will look like:
I Final project presentation (3-5 minutes, with slides) on Monday 14 December.
I Final project written submission (8-16 pages, typeset in LATEX) on Friday 18

December at noon (sharp).
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Reminder: ridge regression

I Consider `2 penalized least squares regression:

arg min
β

n∑
i=1

(yi − β>xi)2 + ρ‖β‖22

where β ∈ Rd is the parameter coefficient.

I We shrink β with Tikhonov regularization to avoid overfitting (large d).

I Regularization seems sensible (and necessary) when in an rkhs H (vs Rd).

I This choice corresponds to nonlinear or kernel ridge regression:

arg min
f

n∑
i=1

(yi − f(xi))
2 + ρ‖f‖2H.



Kernel ridge regression?

I For an rkhs H with rk k, we know:

H =

f |f =
∑
i∈N

αikxi where αi ∈ R, xi ∈ X

 ,

i.e., H is the span of the representers of evaluation. We also defined inner product:〈∑
i∈N

αikxi ,
∑
j∈N

αjkxj

〉
H

=
∑
i∈N

∑
j∈N

αiαjk(xi, xj).

I Because k is a reproducing kernel, we have 〈f, kx〉H = f(x) ∀f ∈ H.

I ...all of which suggests (remember f(xi) = δxif = 〈f, kxi〉H):

arg min
f

n∑
i=1

(yi − f(xi))
2 + ρ‖f‖2H ⇔

arg min
α

n∑
i=1

yi −∑
j∈N

αjk(xj , xi)

2

+ ρ
∑
i∈N

∑
j∈N

αiαjk(xi, xj).

I That expression parses, but is an infinite dimensional optimization...



Representer theorem (intuitively)

I In the usual ridge case, consider the solution for data X ∈ Rd×n:

β∗ = arg min
β

n∑
i=1

(yi − β>xi)2 + ρ‖β‖22

= (XX> + ρId)−1Xy

(...and let X = UDV > be the full svd, i.e. D ∈ Rn×n)

= (UD2U> + ρId)−1UDV >y

= UD−2
ρ U>UDV >y

= U(D−2
ρ D)V >y

= U(DD−2
ρ )V >y

= UDV >V D−2
ρ V >y

= X(X>X + ρIn)−1y

=
n∑
i=1

αixi, where α = (X>X + ρIn)−1y ∈ Rn.

where wi are scalar weights on each data point X = [x1, ..., xn].

I The ridge regression solution lives in the span of the data points.



Representer theorem (intuitively)

I We had: β∗ = arg minβ
∑n
i=1(yi − β>xi)2 + ρ‖β‖22 = X(X>X + ρIn)−1y.

I Consider H; replace X with representer ‘matrix’ Φ = [kx1
, ..., kxn ] ∈ Hn.

I An intuitively appealing solution to kernel ridge regression might be:

f∗ = arg min
f

n∑
i=1

(yi − f(xi))
2 + ρ‖f‖2H

= Φ(Φ>Φ + ρIn)−1y

= Φ(K + ρIn)−1y

=
n∑
i=1

αikxi .

where we have defined > as in Φ>Φ =
{〈
kxi , kxj

〉
H

}
i,j∈1,...,n

.

I Reducing optimization of {αi}i∈N → optimization over α ∈ Rn.

I Representer theorem in a nutshell: under certain conditions, the solution f∗

lives in the n-dimensional linear span of the data’s representers of evaluation!
...hence representer theorem.



Representer theorem (properly)

I (Representer theorem) For f ∈ H, H an rkhs with rk k, an arbitrary loss
function `, a monotonically increasing regularizer g, and data
{(xi, yi)}i∈1,...,n, the program

arg min
f
` ((y1, f(x1)) , ..., (yn, f(xn))) + ρg (‖f‖H)

has minimizer f∗ with the form f∗ =
∑n
i=1 αikxi , where kxi ∈ H are the

representers of evaluation for k. (Common to define φ : X → H, x→ kx.)
I This is variously written in a few ways:

f =

n∑
i=1

αikxi =

n∑
i=1

αiφ(xi) = Φα or f(x) = k(x, {xi}i)α

.
I Original: [KW71]; generalization: [SHS01]; recently interesting: [DS12].
I We will prove it by considering ` and g in turn. For both, consider the

orthogonal complement of the span of the data representers:

H⊥X =

{
f⊥ ∈ H

∣∣∣∣∣
〈
f⊥,

n∑
i=1

αikxi

〉
H

= 0 , ∀αi ∈ R

}
.



Representer theorem proof (loss function `)

I Assume that the solution f∗ ∈ H is arbitrary. Then:

f∗ =
n∑
i=1

αikxi + f⊥, f⊥ ∈ H⊥X , αi ∈ R.

I Noting that ` depends only on f(xj) for j ∈ 1, ..., n, we see:

f∗(xj) =
〈
f, kxj

〉
H

=

〈
n∑
i=1

αikxi + f⊥, kxj

〉
H

=

〈
n∑
i=1

αikxi , kxj

〉
H

+
〈
f⊥, kxj

〉
H

=

〈
n∑
i=1

αikxi , kxj

〉
H

=
n∑
i=1

αik(xi, xj).

I Thus, the loss function ` is invariant to any part of f∗ /∈ span (kx1
, ..., kxn).



Representer theorem proof (regularizer g)

I Again assume that the solution f∗ ∈ H is arbitrary. Then:

f∗ =
n∑
i=1

αikxi + f⊥, f⊥ ∈ H⊥X , αi ∈ R.

I Then:

g (‖f‖H) = g

(∥∥∥∥∥
n∑
i=1

αikxi + f⊥

∥∥∥∥∥
H

)

= g


∥∥∥∥∥

n∑
i=1

αikxi

∥∥∥∥∥
2

H

+
∥∥∥f⊥∥∥∥2

H

 1
2


≥ g

(∥∥∥∥∥
n∑
i=1

αikxi

∥∥∥∥∥
H

)
.

I Since ` does not depend on f⊥ and g is monotonically increasing, the
minimizer must have f⊥ = 0.

I Thus it is proven that f∗ ∈ span(kx1
, ..., kxn); that is, f∗ =

∑n
i=1 αikxi .
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Kernel ridge regression

I For f ∈ H, the rkhs with rk k, we seek the nonlinear regressor:

f∗ = arg min
f

n∑
i=1

(yi − f(xi))
2 + ρ‖f‖2H

I For ρ > 0, the representer theorem holds. Thus f =
∑n
j=1 αjkxj , so:

f∗ = arg min
f

n∑
i=1

(yi − f(xi))
2 + ρ‖f‖2H

= arg min
α

n∑
i=1

yi −〈 n∑
j=1

αjkxj , kxi

〉
H

2

+ ρ

∥∥∥∥∥∥
n∑
j=1

αjkxj

∥∥∥∥∥∥
2

H

= arg min
α

n∑
i=1

yi − n∑
j=1

αjk(xi, xj)

2

+ ρ
∑
i=1

n∑
j=1

αiαjk(xi, xj)

= arg min
α
‖y −Kα‖22 + ρα>Kα.

= arg min
α
α>(K2 + ρK)α− 2α>Ky.

⇒ α∗ = (K + ρI)−1y.

I Thus f∗ =
∑n
j=1 α

∗
jkxj = Φ(K + ρI)−1y, as intuitively expected.



Kernel ridge regression: a familiar form

I For f ∈ H, the rkhs with rk k, we have that the nonlinear regressor:

f∗ = arg min
f

n∑
i=1

(yi − f(xi))
2 + ρ‖f‖2H

has form f∗ =
∑n
j=1 α

∗
jkxj = Φ(K + ρI)−1y.

I Prediction at x is f∗(x) =
〈∑n

j=1 α
∗
jkxj , kx

〉
H

= Kxf (Kff + ρI)−1y.

I This is precisely our usual form for the gp posterior mean:

E(f(x)|X, y) = Kxf (Kff + ρI)−1y = KxfK
−1
yy y.

I Thus gp inference is kernel ridge regression with a bayesian interpretation.

I Kernel ridge regression is very widely used. Often no mention of gp at all.

I Differences between kernel methods and gp methods seem largely cultural.

I While true, there is a surprising difference (lest we get too comfortable).
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Kernel ridge regression and gp

I We just saw that krr and gp regression give the same results in the sense
that, given data X = [x1, ..., xn] and a rkhs H with rk k, the krr prediction
and gp posterior mean of a point x are the same:

fα∗ (x) = E(f(x)|X, y) = Kxf (Kff + ρI)−1y = KxfK
−1
yy y.

I Kernel ridge regression optimizes over all functions f ∈ H, by definition.

I It is then tempting to think that a draw f from a gp with kernel k will be a
point in k’s rkhs H, i.e., f ∼ GP(0, k) ∈ H.

I The intuition:
I Riesz ⇒ f(x) = 〈f, kx〉H, so a gp seems to be an iid gaussian weighted sum

(with weights f i) of basis elements kix.
I Take linear regression: f(x) = β>x, where β ∼ N (0, ρI).
I or some arbitrary polynomial on R: f(x) =

∑K
k=1 βkx

k, again with
β ∼ N (0, ρI).

I This intuition is false when H is infinite dimensional (sadly).



RKHS of a GP draw [Wah90, ch. 1]

I Let k be a Mercer kernel, so that k(x, x′) =
∑
i∈N λiφi(x)φi(x

′), where
{φi} forms an orthonormal basis of L2.

I The Karhunen-Loeve transform tells us f ∼ GP(0, k) has expansion:
f(x) =

∑
i∈N ziφi(x), where the variables zi are independent and normal.

I The zi are the projection onto that eigenfunction zi =
∫
f(x)φi(x)dx; thus:

E(zi) = E

(∫
f(x)φi(x)dx

)
=

∫
E(f(x))φi(x)dx = 0.

E(zizj) = E

(∫ ∫
f(x)f(x′)φi(x)φj(x

′)dxdx′
)

=

∫ ∫
E(f(x)f(x′))φi(x)φj(x

′)dxdx′

=

∫ ∫
k(x, x′)φi(x)φj(x

′)dxdx′

= λi1(i = j).

I Here again is that tempting intuition: a gp is just a sequence of weighted
independent N (0, λi) variables, which looks like (but is not) it is in H.



RKHS of a GP draw [Wah90, ch. 1]

I Consider fM (x) =
∑M
i=1 ziφi(x). fM → f in quadratic mean:

E(|fM (x)− f(x)|2) = E

∣∣∣∣∣∣
∞∑

i=M+1

ziφi(x)

∣∣∣∣∣∣
2

=
∞∑

i=M+1

λiφ
2
i (x)

→ 0.

I However, H does not contain the limit of this sequence, which is hinted at
by the fact that its expectation:

E
(
‖fM‖2H

)
= E

(
M∑
i=1

z2i
λi

)
= M

→ ∞.

I The above is not a proof; see [Kal70, Dri73, LP+73, Háj62, LB01].
I Nonetheless, it is the case that for a rkhs H with rk k, a gp draw
f ∼ GP(0, k) is not (a.s.) a member of H.
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Kernel mean estimation

I Consider an rkhs H with rk k : X × X → R, and representers φ : X → R.

I (can be a bit more generic: the rk machinery is not explicitly needed)

I H offers a sensible notion of (squared) distance between points:

d2
H(x, x′) = ‖φ(x)− φ(x′)‖2H

= 〈φ(x), φ(x)〉H − 2 〈φ(x), φ(x′)〉H + 〈φ(x′), φ(x′)〉H
= k(x, x)− 2k(x, x′) + k(x′, x′).

I Given a probability distribution P , an object of regular interest is:

µP = arg min
µ

∫
X
‖φ(x)− µ‖2H dP (x)

...e.g. in kernel PCA (upcoming).

I This object looks like the usual expected value/mean...



Kernel mean estimation

I This object looks like the usual expected value/mean:

µP = arg min
µ

∫
X
‖φ(x)− µ‖2H dP (x)

= arg min
µ
〈µ, µ〉H − 2EP (〈µ, φ(x)〉H) .

= arg min
µ
〈µ, µ〉H − 2 〈µ,EP (φ(x))〉H .

⇒ µP = EP (φ(x)).

I Similarly we have the finite case µ̂P = 1
n

∑n
i=1 φ(xi).

I Notice that both µP , µ̂P ∈ H. Sometimes useful, sometimes not useful...

I What point xµ ∈ X is the pre-image of µP , i.e. µP = φ(xµ)?

I This is called the pre-image problem (for kernel mean estimation).



Pre-image problem

I The pre-image problem, for finite data and some statistic S, is:

xµ = {x ∈ X : φ(x) = S (φ(x1), ..., φ(xn))} .

I The pre-image problem is useful:
I Consider the mean S (φ(x1), ..., φ(xn)) = 1

n

∑n
i=1 φ(xi).

I We have seen kernels on interesting spaces (graphs, rankings, etc.).
I We do not know how to sensibly average n graphs.
I Kernel → a distance metric; pre-image → the mean under that distance.
I Also useful in simple spaces (Rd) → consider distance in H rather than Rd.

I The pre-image problem is a problem:

I φ : X → H is not injective. Example: φ : R→ R+, x→ x2.
I φ : X → H is not surjective. Note Φ = {φ(x) ∈ H ∀x ∈ X} ⊂ H.
I Thus xµ such that µP = φ(xµ) generally exists only in trivial circumstances.



Pre-image problem

I Common approach: optimize over X through the mapping φ.

I That is, apply the constraint set Φ = {φ(x) ∈ H ∀x ∈ X} ⊂ H.
Convex? No.

Bounded? Yes.

µP = arg min
µ

1

n

n∑
i=1

‖φ(xi)− µ‖2H for xi ∼ P

→

xµ = arg min
x

1

n

n∑
i=1

‖φ(xi)− φ(x)‖2H

xµ = arg min
x

1

n

n∑
i=1

k(xi, xi)− 2k(xi, x) + k(x, x).

I Not the unconstrained optimum in most cases (restating φ is not invertible).

I Optimization over X is also often difficult (gradients on ranking space?).

I The pre-image problem is not solved in any satisfactory way...
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Principal components analysis

I PCA produces an r dimensional orthogonal projection by:

[
v1 ... vr

]
= arg min

v>` vj=1(`=j)

n∑
i=1

∥∥∥∥∥∥x̄i −
r∑
j=1

vjv
>
j x̄i

∥∥∥∥∥∥
2

2

= arg max
v>` vj=1(`=j)

r∑
j=1

v>j X̄X̄
>vj

where X̄ = X − 1
nX11> ∈ Rd×n is the centered data matrix.

I Solution is the first r eigenvectors vj of X̄X̄>: X̄X̄>vj = λjvj .

I Observations:
I The loss ` operates only on inner products X̄>vj .
I The constraint is equivalent (up to a normalizer) with any increasing g(‖vj‖).
I X̄X̄>vj = λjvj means vj ∈ span(x1, ..., xn).

I Thus we suspect that PCA can be readily ‘kernelized’, and that the
representer theorem will hold. (cache this remark...)



Kernel eigenvalue problem

I [SSM98] calls kernel PCA (kpca) the solution to λjvj = C̄vj , where

C̄ =
1

n

n∑
i=1

φ(xi)−
1

n

n∑
j=1

φ(xj)

φ(xi)−
1

n

n∑
j=1

φ(xj)

> ,
the covariance ‘matrix’ in H.

This ‘outer product’ notation is frustrating but common. All steps are legitimate, just loosely written.

I Now the eigenvector vj ∈ H, and we know (assert) that vj obeys the
representer theorem (lies in the span); thus: vj =

∑n
i=1 α

i
j φ̄(xi).

I We now use this representation of vj in the quadratic form v>j C̄vj , the
Rayleigh quotient whose solutions form the eigenvector basis.



Kernel eigenvalue problem

I The kernel Rayleigh quotient v>j C̄vj :

v
>
j C̄vj =

(
n∑
i=1

α
i
j φ̄(xi)

)>(
1

n

n∑
i=1

φ̄(xi)φ̄(xi)
>
)(

n∑
i=1

α
i
j φ̄(xi)

)

=
1

n
α
>
({〈

φ̄(xi), φ̄(xj)
〉
H

}
i,j∈1,...,n

{〈
φ̄(xi), φ̄(xj)

〉
H

}
i,j∈1,...,n

)
α

=
1

n
α
>
j K̄

2
αj .

...where this last equation is a properly defined quadratic form of a finite dimensional matrix.

I Centering operations in H behave as expected:

C̄vj =

(
1

n
Φ̄Φ̄
>
)

Φ̄αj

=
1

n
Φ̄

(
Φ−

1

n
Φ11

>
)> (

Φ−
1

n
Φ11

>
)
αj

=
1

n
Φ̄

(
K −

1

n
11
>
K −

1

n
K11

>
+

1

n2
11
>
K11

>
)
αj

=
1

n
Φ̄K̄αj ,

...and thus K̄ is often called the centered kernel matrix.



Kernel PCA

I We know the eigenvectors (functions) vj = Φ̄αj =
∑n
i=1 α

i
j φ̄(xi) ∈ H.

I We know λjvj = C̄vj = 1
n Φ̄K̄αj ∈ H.

I vj ∈ span {φ(x1), ..., φ(xn)} → equivalently consider projection onto Φ̄:

Φ̄>λjvj = Φ̄>C̄vj

Φ̄>
(
λjΦ̄α

)
= Φ̄>

(
1

n
Φ̄K̄αj

)
λjK̄αj =

1

n
K̄2αj .

I Thus αj ∈ Rn an eigenvector of K̄ ⇒ v = Φ̄αj is an eigenfunction in H.

I α>i αj = 1(i = j) because they are eigenvectors of K̄ (symmetric and real).

I Accordingly, 〈vi, vj〉H = αiK̄αj = 1(i = j) also, so vi are orthogonal.

I For vj to be orthonormal, ‖αj‖ = 1√
nλj

, since we had nλjαj = K̄αj .

I KPCA then projects x′ onto vj as 〈vj , φ(x′)〉H =
∑n
i=1 α

i
jk(xi, x

′).



Kernel PCA

I KPCA is widely used as a compression or visualization tool.

Gaussian noise ‘speckle’ noise
orig.

noisy

PCA

KPCA

{
{

I We were fast and loose (in the common way that linear dimensionality
reduction ↔ eigenproblem) with the representer theorem. Let’s revisit that...
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KPCA through the lens of the Stiefel manifold

I PCA produces an r dimensional orthogonal projection by:

[
v1 ... vr

]
= arg max

v>` vj=1(`=j)

r∑
j=1

v>j X̄X̄
>vj

V = arg max tr
(
V >X̄X̄>V

)
subject to V ∈ St(Rd, r),

where St(Rd, r) =
{
M ∈ Rd×r : M>M = Id

}
, the Stiefel manifold of

orthonormal r-frames in d dimensions [CG15].

I The Stiefel manifold exists similarly in a (separable) Hilbert space:

St(H, r) =
{

[m1, ...,mr] ∈ Hr : 〈mi,mj〉H = 1(i = j)
}
.

I The underlying problem of KPCA is then:

V = arg max tr
(
V >C̄V

)
subject to V ∈ St(H, r).

I This does not obey the representer theorem → two neat implications...



Implication 1: KPCA asserts the representer theorem

I Decompose V ∈ St(H, r) as:

V = VX + V
⊥

= ΦA+ Φ
⊥
B

where Φ⊥ is a basis of the orthogonal complement of Φ (ignoring centering),
A = {αij}i=1,...,n;j=1,...,r as previously, and B = {βij}i∈N;j=1,...,r similarly.

I Then V ∈ St(H, r)⇒ V >V = Ir, so:

V
>
V =

(
ΦA+ Φ

⊥
B
)> (

ΦA+ Φ
⊥
B
)

= A
>
KA+

(
Φ
⊥
B
)>

Φ
⊥
B.

= A
>
KA+ Ψ

⊥
.

I Notice Ψ⊥ is positive semidefinite:

v
>

Ψ
⊥
v =

r∑
k=1

r∑
`=1

vkv`Ψ
⊥
k`

=

r∑
k=1

r∑
`=1

vkv`

〈 ∞∑
i=1

βi,kφ
⊥
i ,
∞∑
j=1

βj,`φ
⊥
j

〉
H

=

〈 r∑
k=1

∞∑
i=1

vkβi,kφ
⊥
i ,

r∑
`=1

∞∑
j=1

v`βj,`φ
⊥
j

〉
H

=

∥∥∥∥∥∥
r∑
k=1

∞∑
i=1

vkβi,kφ
⊥
i

∥∥∥∥∥∥
2

H
≥ 0.



Implication 1: KPCA asserts the representer theorem

I If V ∈ St(H, r)⇒ V >V = Ir and V >V = A>KA+ Ψ⊥ for Ψ⊥ � 0,

I Then the original KPCA problem:

V = arg max tr
(
V >C̄V

)
subject to V ∈ St(H, r).

is equivalent to:

V = arg max tr
(
V >C̄V

)
subject to σ1(V ) ≤ 1

V ∈ span(Φ),

where σ1(V ) ≤ 1⇒ V ∈
{
M ∈ Hr : M>M � Ir

}
(spectral norm unit ball).

In fact, the spectral norm unit ball is the convex hull of the corresponding Stiefel manifold.

I This is a (very) different problem than the KPCA solution.

I So what happened?



Implication 1: KPCA asserts the representer theorem

I Compare

V = arg max tr
(
V
>
C̄V
)

subject to V ∈ St(H, r).
⇔

V = arg max tr
(
V
>
C̄V
)

subject to σ1(V ) ≤ 1

V ∈ span(Φ),

...with...

V = arg max tr
(
V
>
C̄V
)

subject to V ∈ St(H, r).
V ∈ span(Φ).

I This latter problem asserts the representer theorem, and results in the
familiar KPCA solution.

I An outcome of our earlier, seemingly harmless claim, “just like how the
eigenvectors of XX> are in the span of the data X, the eigenvectors
(functions) of ΦΦ> are also in the span of Φ.”



Implication 2: KPCA projects the cholesky factors

I We’ll use regular KPCA (i.e., assert the representer theorem):

V = arg max tr
(
V
>
C̄V
)

subject to V ∈ St(H, r).
V ∈ span(Φ).

I Then, recalling that V >V = Ir, we see

V
>
V = A

>
Φ
>

ΦA

= A
>
KA

= M
>
C
−T

KC
−1
M

= I.

where K = C>C is the Cholesky decomposition, and M ∈ St(Rn, r).

I That is, A>KA = I ⇒ A must factor as C−1M for some M : M>M = I.

I Then the projection V >Φ = M>C−>Φ>Φ = M>C.

I In short, KPCA is just an orthogonal projection of the Cholesky factors C.
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