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Progress...

Week Lectures Content

7 Nov 4,9 Bayesian optimization and active learning
8 Nov 9, 11 Reproducing kernel Hilbert spaces

• [Wah90, ch. 1] (intentionally light reading; work on projects)
9 Introduction to kernel methods

I HW3 due yesterday.

I HW4 due next Friday. Choose either:
I complete introduction, background, literature review.
I complete a code prototype, initial proof of concept.

I Who will be here Wednesday Nov 25?



Attribution

I The following sections introduce important concepts to gaussian processes
and kernel methods more generally.

I We cover basic topics from functional analysis, and their applications.

I There are numerous reviews/introductions/texts.

I As such, the following draws heavily from:
I Arthur Gretton [Gre13]
I Dino Sejdinovic [SG12]
I Christopher Heil [Hei06]
I Sayan Mukherjee [Muk15]
I Terry Tao [Tao09]
I ... plus a few key textbooks [Kre89]; [TL58]; [SC08].

I These modern technical reports and lecture notes have clear examples and
an appealing machine learning orientation.
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Vector space

I We restrict our interest to a vector space V over the field of real numbers R.

I As a reminder, a vector space is a set V with:

I (using f, g, h, 0 ∈ V and α, β, 1 ∈ R)
I additivity:

f + (g + h) = (f + g) + h

f + g = g + f

f + 0 = f

f +−f = 0

I scalar multiplication:

α(βf) = (αβ)f

1f = f

α(f + g) = αf + αg

(α+ β)f = αf + βf

I Nothing unusual here.



Normed space

I A vector space V is a normed space if ∀f ∈ V, there exists ‖f‖ ∈ R with:

i. ‖f‖ ≥ 0,

ii. ‖f‖ = 0⇔ f = 0,

iii. ‖αf‖ = |α|‖f‖ ∀α ∈ R,

iv. ‖f + g‖ ≤ ‖f‖+ ‖g‖.

I If V is a normed space, with a sequence {fn}n∈N, fn ∈ V:
I We say {fn}n∈N converges to f ∈ V if:

lim
n→∞

‖f − fn‖ = 0 ⇔ ∀ε > 0, ∃N such that ∀n ≥ N, ‖f − fn‖ < ε.

I We say {fn}n∈N is Cauchy if:

∀ε > 0, ∃N such that ∀n,m ≥ N, ‖fm − fn‖ < ε.

I Convergent sequences are Cauchy; Cauchy need not imply convergent:

‖fm − fn‖ ≤ ‖fm − f‖+ ‖f − fn‖.

I This distinction is relevant...



Cauchy sequences need not be convergent

I Consider the normed space {Q, | · |}, and the sequence 1, 1.4, 1.41, ....
I This sequence is Cauchy... for any ε > 0, choose N such that ε > 10−N .
I Then we have: ∀n,m ≥ N, ‖fm − fn‖ < ε.
I This sequence is not convergent: the limit is

√
2 /∈ Q.

I Take C [0,1], all continuous functions on [0, 1], with ‖f‖ =
√∫ 1

0
|f(x)|2dx.

I The sequence of functions below is again Cauchy, but with limit f /∈ C [0,1].

1
2 − 1

2n
1
2 + 1

2n
0 1

1
fn

1
n



Banach space

I A normed vector space for which all Cauchy sequences are convergent is
called complete.

I A Banach space is a complete normed space; it contains the limits of all
Cauchy sequences in that space.

I Some examples of Banach spaces (without proof):

Lp(R) =

{
f : R→ R,

∫
R
|f(x)|pdx <∞

}
, ‖f‖p =

(∫
|f(x)|pdx

) 1
p

.

L∞(R) = {f : R→ R, f essentially bounded} , ‖f‖p = esssupx∈R|f(x)|.
Cb(R) = {f ∈ L∞(R), f bounded and continuous} , ‖f‖∞ = supx∈R|f(x)|.

C0(R) =

{
f ∈ Cb(R), lim

|x|→∞
f(x) = 0

}
, ‖f‖∞ = supx∈R|f(x)|.

...recall esssup excludes points of zero measure

I Closed subspaces of Banach spaces are also Banach spaces. Examples:

I Cb(R) and C0(R) are closed subspaces of L∞(R) with `∞ norm.



Hilbert space

I A vector spaced V is an inner product space if ∀f, g ∈ V, ∃ 〈f, g〉 with:

i. 〈f, g〉 = 〈g, f〉 (...which implies 〈f, f〉 ∈ R).
ii. 〈f, f〉 ≥ 0,
iii. 〈f, f〉 = 0 ⇒ f = 0,
iv. 〈αf + βg, h〉 = α 〈f, h〉+ β 〈g, h〉.

I Some additional facts:
I An induced norm is ‖f‖ = 〈f, f〉

1
2 .

I Thus all inner product spaces are normed spaces.
I Cauchy-Schwartz inequality: |〈f, g〉| ≤ ‖f‖‖g‖.
I Parallelogram rule: ‖f + g‖2 + ‖f − g‖2 = 2‖f‖2 + 2‖g‖2.
I Polarization identity: 4 〈f, g〉 = ‖f + g‖2 − ‖f − g‖2.

I A Hilbert space is a complete inner product space.

I A Hilbert space is a Banach space with norm induced by an inner product.

I Signpost: remember a kernel k(x, x′) = 〈φ(x), φ(x′)〉V . Hilbert spaces will
help us properly understand kernels.



Examples of Hilbert spaces

I Euclidean space:

Rd, with 〈f, g〉 =
d∑
i=1

figi ∀f, g ∈ Rd.

I `2(S), the set of square summable sequences of a countable index set S:

{fi}i∈S , such that fi ∈ R and
∑
i∈S
|fi|2 <∞, with 〈{fi}, {gi}〉 =

∑
i∈S

figi.

I L2(X , µ), the set of all square integrable functions:

L2(X , µ) ,

{
f : X → R and measurable, with ‖f‖2 =

(∫
X
|f(x)|2dµ

) 1
2

<∞
}
,

with 〈f, g〉 =

∫
X
f(x)g(x)dµ.

I L2(X ) typically means implied Lebesgue measure 〈f, g〉 =
∫
X f(x)g(x)dx.



Separability

I Separability is a detail that is often skipped or assumed.

I We will revisit it later when considering rkhs, but for now we just define it
and offer intuition.

I Consider a subspace S of a Banach space V:
I The closure S̄ is the union of S and all limit points (limits of sequences in S).
I S is dense in V if and only if S̄ = V.
I Example: Q is a countable dense subset of R.
I A normed space V is separable if and only if ∃ a countable dense subset of V.

I Separable Hilbert spaces have countable orthonormal bases.
I This means that we can very (very!) loosely consider a Hilbert space to be

intuitively like (possibly infinite dimensional) Euclidean space.
I More rigorously, any separable infinite dimensional Hilbert space is

isometrically isomorphic to `2(N) (i.e., square summable sequences).
I We will sometimes assume separability.



Operators and basic definitions

I Operator: a map from one vector space to another.
I Linear operator: a map L : V → H obeying superposition and homogeneity:

L(f + g) = Lf + Lg ∀f, g ∈ V
L(αf) = αLf ∀f ∈ V, α ∈ R

I Continuous (at a point) operator: at some point f0 ∈ V:

∀ε > 0, ∃δ(ε, f0) > 0 such that ‖f − f0‖V < δ(ε, f0)⇒ ‖Lf − Lf0‖H < ε.

I Continuous operator: an operator that is continuous at all points f0 ∈ V.
I Uniformly continuous operator: δ(ε, f0) = δ(ε), i.e. independent of f0.
I Lipschitz continuous operator:

∃K > 0 such that ∀f1, f2 ∈ V, ‖Lf1 − Lf2‖H ≤ K‖f1 − f2‖V .
I Bounded operator: an operator L is bounded if it has finite operator norm:

‖L‖ = sup
f∈V

‖Lf‖H
‖f‖V

<∞.

...L maps bounded subsets in V to bounded subsets in H.

I Linear operator L: continuous a.a.p. ⇔ continuous ⇔ bounded.



Riesz representation theorem

I Functional: an operator that maps to R, namely L : V → R.

I (Riesz representation theorem): in a Hilbert space V, all continuous linear
functionals L are inner products 〈w, ·〉V : V → R, where w ∈ V. In other
words, Lv = 〈w, v〉V .

I If you are still thinking in Euclidean space, this is obvious.
I More generally, it is not at all obvious.
I Riesz representation theorem is not the representer theorem (coming later).
I Riesz helps us define kernels using linear functionals in a Hilbert space.

I Dual space: all continuous linear functionals V ′ = {φw = 〈w, ·〉V : V → R}.
I Note that Riesz lets us write φw = 〈w, ·〉V .
I This is the continuous or topological dual, a subset of the algebraic dual

(same definition absent ‘continuous’), though these duals coincide if V is
finite dimensional.)

I V and V ′ are isometrically isomorphic.
I Distance preserving transformation (isometry): ‖φw(w)‖V′ = ‖w‖V .
I Linear bijection (isomorphism): w ∈ V ↔ φ ∈ V ′ uniquely (see [Tao09]).
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Reproducing kernel Hilbert space

I Dirac delta δx : H → R for a Hilbert space H of functions f : X → R.
I δx is the map from f ∈ H to f(x) ∈ R.
I For this reason it is often here called the evaluation functional.
I δx is linear: δx(αf + βg) = αf(x) + βg(x).

I δx bounded (equiv. continuous) ⇒ δx = 〈·, kx〉H (via Riesz).

I (Reproducing kernel Hilbert space) A Hilbert space with bounded linear
evaluation functional δx.

I Pause to appreciate this property: bounded δx means that ∃ kx ∈ H that
achieves the action of δx via an inner product.

I that is, δxf = 〈f, kx〉H = f(x) ∈ R.
I Notice the absence of any kernel in this definition.



Example and counterexample

I We have already seen `2(N) and L2(R); both are Hilbert spaces.
I `2(N), all countable square summable sequences:

`2(N) = {fi}i∈N, such that fi ∈ R and
∑
i∈N
|fi|2 <∞, with 〈{fi}, {gi}〉 =

∑
i∈S

figi.

I Consider δj = 〈·,1(i = j)〉H (the Kronecker delta):
I δj is the evaluation operator:

δjf = 〈f,1(i = j)〉H = fj .

I δj is bounded (consider operator norm):

‖δj‖ = sup
f∈H

|δjf |
‖f‖H

= sup
f∈H

fj(∑
i |fi|2

) 1
2

≤ 1 <∞.

I Conclude `2(N) is an rkhs.

I L2(R), all square integrable functions (with Lebesgue measure).
I The Dirac delta is the evaluation functional f(x) =

∫
f(u)δ(x− u)du.

I However, δ(x− u) /∈ L2(R), since
∫
δ(x− u)2du ≮∞.

I Conclude L2(R) is not an rkhs.



Reproducing kernel

I As before consider a Hilbert space H of functions f : X → R.

I (Reproducing kernel) A function k : X × X → R such that:

kx , k(·, x) ∈ H ∀x ∈ X .
f(x) = 〈f, kx〉H ∀x ∈ X , ∀f ∈ H.

I This latter property means:
I δx = 〈·, kx〉H is the evaluation functional.
I kx′ is also in H, so δxkx′ = 〈kx, kx′〉H = k(x, x′) = 〈k(·, x), k(·, x′)〉H .
I ...called the reproducing property, as the kernel ‘reproduces itself.’

I Four important (remarkable) properties follow:
I H has a reproducing kernel k ⇔ H is an rkhs.
I H has a reproducing kernel k ⇒ k is unique.
I Reproducing kernels k are positive definite.
I (Moore-Aronszajn) Given a positive definite k, there exists a unique (pre-)

rkhs H with k as its reproducing kernel.



Proof of property 1

I H has a reproducing kernel k ⇔ H is an rkhs.

I Assume H has a reproducing kernel k:

|δxf | = | 〈f, kx〉H |
≤ ‖kx‖H‖f‖H
=

√
〈kx, kx〉H‖f‖H

=
√
k(x, x)‖f‖H.

...thus δx is bounded, so H is an rkhs.

I Assume H is an rkhs with bounded δx:
I Riesz ⇒ ∃δx : δxf = 〈f, kx〉H ∀f ∈ H.
I Define a function k(x, x′) = kx(x′) ∀x, x′ ∈ R.
I Then k(x, ·) = kx ∈ H (...first property of a reproducing kernel).
I And f(x) = 〈f, kx〉H (...reproducing property).

...thus k is the reproducing kernel for H.



Proof of property 2

I H has a reproducing kernel k ⇒ k is unique.

I Assume existence of two reproducing kernels k and k′. For any f ∈ H:

0 = f(x)− f(x)
= 〈f, kx〉H − 〈f, k′x〉H
= 〈f, kx − k′x〉H .

Note this is enough (since ∀f), but the following spells it out...

I Let f = kx − k′x (these are both in H so this is fine), and then:

‖kx − k′x‖2H = 〈kx − k′x, kx − k′x〉H
= 0,

... so k and k′ are identical.



Proof of property 3

I Reproducing kernels k are positive definite.
I Recall we say a function k : X × X → R is positive definite if:

v>Kv =

n∑
i=1

n∑
j=1

k(xi, xj)vivj ≥ 0 ∀n ∈ N+, v ∈ Rn.

I Thus:

v>Kv =

n∑
i=1

n∑
j=1

k(xi, xj)vivj

=

n∑
i=1

n∑
j=1

〈
kxi , kxj

〉
H vivj

=

n∑
i=1

n∑
j=1

〈
vikxi

, vjkxj

〉
H

=

∥∥∥∥∥
n∑
i=1

vikxi

∥∥∥∥∥
2

H
≥ 0.



Observations

I P.D. holds for any Hilbert space H and a mapping φ : X → H.
I Define a kernel k(x, x′) = 〈φ(x), φ(x′)〉H (no reproducing property)...

v>Kv =
n∑

i=1

n∑
j=1

k(xi, xj)vivj = ... =

∥∥∥∥∥
n∑

i=1

viφ(xi)

∥∥∥∥∥
2

H

≥ 0 ∀n ∈ N+, v ∈ Rn.

I All reproducing kernels are kernels with φ(x) = kx.
I We know ∃ non-unique feature mappings φ for a given kernel:

k(x, x′) =

 x1
x2
x1x2

>  x′1
x′2
x′1x
′
2

 =


1√
2
x1

1√
2
x1
x2
x1x2


> 

1√
2
x′1

1√
2
x′1
x′2
x′1x
′
2

 .
I However, the spaces implied by the above φ choices are not rkhs.
I The Moore-Aronszajn theorem proves that, for every kernel k, there is a

unique rkhs H whose reproducing kernel is k.
I Thus every kernel is the reproducing kernel of some rkhs.
I We will sketch a key piece of the proof of this theorem.



Proof sketch of property 4 (Moore-Aronszajn)

I Given a reproducing kernel k (more generally, any p.d. k), there exists a
unique (pre-) rkhs H with k as its reproducing kernel. Define kx , k(·, x).

I Construct the rkhs as the completion of the span of all kx:

H =

{
f |f =

∑
i∈N

αikxi
where αi ∈ R, xi ∈ X

}
,

with inner product〈∑
i∈N

αikxi ,
∑
j∈N

αjkxj

〉
H

,
∑
i∈N

∑
j∈N

αiαjk(xi, xj).

I Because k is a reproducing kernel, we have 〈f, kx〉H = f(x) ∀f ∈ H.
I Then, for a Cauchy sequence {fn}n∈N (with the fact that pointwise

convergence is norm convergence in H):

|fn(x)− f(x)| = |〈fn − f, kx〉H| ≤ ‖fn − f‖H ‖kx‖H.
...which shows that every Cauchy sequence converges in H (thus complete).

I Several details omitted here; a thorough treatment is [SG12].



A few takeaways from Moore-Aronszajn

I Given a positive definite function k : X × X → R, there exists a unique
(pre-) rkhs H with k as its reproducing kernel.

I Every positive definite function is a reproducing kernel.

I There is a unique rkhs H corresponding to each positive definite function.

I Reminder: rkhs H is a subspace of functions f : X → R; thus H ⊂ RX .
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Mercer’s theorem

I Moore-Aronszajn placed no interesting conditions on X (non-empty).
I When X is a compact metric space (with some metric d) and k is a

continuous function on that space, Mercer’s theorem allows a simpler
‘constructive’ understanding of rkhs.

I Again k : X × X → R is a positive definite function.
I Fact: the integral transform κf =

∫
X k(x, u)f(u)du = g(u) is positive

definite ⇔ k is positive definite.
I Accordingly, the eigenvalues {λi} are positive with orthonormal

eigenfunctions φi : X → R:

κφi =

∫
X
k(x, u)φi(u)du = λiφi(x).

cf. the more familiar discrete case.

I (Mercer’s theorem): Given the eigenvalues and eigenfunctions {λi, φi} of the
integral operator defined by k, the kernel k can be written as:

k(x, x′) =
∑
i∈N

λiφi(x)φi(x
′),

with L2(X ) norm convergence.



Mercer’s theorem

I (Mercer’s theorem): Given the eigenvalues and eigenfunctions {λi, φi} of the
integral operator defined by k, the kernel k can be written as:

k(x, x′) =
∑
i∈N

λiφi(x)φi(x
′),

with L2(X ) norm convergence.

I Importantly, the rkhs corresponding to this kernel k can be shown to be:

H =

{
f |f =

∑
i∈N

αiφi, ∀αi ∈ R , ‖f‖H <∞
}
,

with inner product

〈f, g〉H =

〈∑
i∈N

αiφi,
∑
j∈N

βjφj

〉
H

,
∑
i∈N

αiβi
λi

.

... a weighted `2(N) inner product.



Why is the 1
λi

factor appropriate?

I Note: k(x, x′) =
∑
i∈N λiφi(x)φi(x

′) =
〈∑

i∈N
√
λiφi,

∑
j∈N

√
λjφj

〉
L2

.

I Consider f(x) =
∑
i∈N αiφi(x):

|f(x)|2 =
∑
i∈N
|αiφi(x)|2

≤

∑
i∈N

∣∣∣∣ αi√
λi

∣∣∣∣2
∑

i∈N

∣∣∣√λiφi(x)∣∣∣2


=

∑
i∈N

∣∣∣∣ αi√
λi

∣∣∣∣2
 k(x, x),

which is finite if the sequence
{

αi√
λi

}
is square summable.

I Alternatively, for the reproducing property:

〈f, kx〉H =

〈∑
i

αiφi,
∑
j

(λjφj(x))φj

〉
H

=
∑
i∈N

αiλiφi(x)

λi

= f(x).
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Revisit sums of kernels

I Now we understand better what a kernel actually is.

I We can now return to some of our previous claims and be more rigorous.
I For example, kernel algebra:

I We said k = αk1 + βk2 is a kernel for α, β ∈ R+.
I We said k = k1k2 is a kernel.

I The sum k = αk1 + βk2:
I Consider α

〈
φ1(x), φ1(x′)

〉
H1

+ β
〈
φ2(x), φ2(x′)

〉
H2

in terms of all properties

of an inner product:

i. 〈f, g〉 = 〈g, f〉 (...which implies 〈f, f〉 ∈ R).
ii. 〈f, f〉 ≥ 0,
iii. 〈f, f〉 = 0 ⇒ f = 0,
iv. 〈γf + ρg, h〉 = γ 〈f, h〉+ ρ 〈g, h〉.

I Essentially saying that k is positive definite if k1, k2 are pd and α, β ≥ 0.
I If the input domains of k1 and k2 are the same, the resulting rkhs can be

shown to be

H = H1 +H2 = {f1 + f2 : f1 ∈ H1, f2 ∈ H2} ,

with rkhs norm:
‖f‖2H = min

f1+f2=f
‖f1‖2H1

+ ‖f2‖2H2
.



Roadmap

I Representer theorem.

I Kernel ridge regression.

I Posterior mean inference in a gp.

I Using the inner product 〈f, g〉H (from Mercer) to understand the
‘inconvenient fact’ (re rkhs of a gp draw) from [Wah90, ch. 1].

I Kernel mean estimation.

I Kernel principal components analysis.

I More interesting kernel methods...
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