STAT G8325

Gaussian Processes and Kernel Methods §08: Reproducing Kernel Hilbert Spaces

John P. Cunningham

Department of Statistics
Columbia University

Outline

Administrative interlude

Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

References

Outline

Administrative interlude

Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

References

Progress...

Week	Lectures	Content
7	Nov 4,9	Bayesian optimization and active learning
8	Nov 9,11	Reproducing kernel Hilbert spaces $\bullet \quad$ [Wah90, ch. 1] (intentionally light reading; work on projects) 9
	Introduction to kernel methods	

- HW3 due yesterday.
- HW4 due next Friday. Choose either:
- complete introduction, background, literature review.
- complete a code prototype, initial proof of concept.
- Who will be here Wednesday Nov 25?

Attribution

- The following sections introduce important concepts to gaussian processes and kernel methods more generally.
- We cover basic topics from functional analysis, and their applications.
- There are numerous reviews/introductions/texts.
- As such, the following draws heavily from:
- Arthur Gretton [Gre13]
- Dino Sejdinovic [SG12]
- Christopher Heil [Hei06]
- Sayan Mukherjee [Muk15]
- Terry Tao [Tao09]
- ... plus a few key textbooks [Kre89]; [TL58]; [SC08].
- These modern technical reports and lecture notes have clear examples and an appealing machine learning orientation.

Outline

Administrative interlude

Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

References

Vector space

- We restrict our interest to a vector space \mathcal{V} over the field of real numbers \mathbb{R}.
- As a reminder, a vector space is a set \mathcal{V} with:
- (using $f, g, h, 0 \in \mathcal{V}$ and $\alpha, \beta, 1 \in \mathbb{R}$)
- additivity:

$$
\begin{aligned}
f+(g+h) & =(f+g)+h \\
f+g & =g+f \\
f+0 & =f \\
f+-f & =0
\end{aligned}
$$

- scalar multiplication:

$$
\begin{aligned}
\alpha(\beta f) & =(\alpha \beta) f \\
1 f & =f \\
\alpha(f+g) & =\alpha f+\alpha g \\
(\alpha+\beta) f & =\alpha f+\beta f
\end{aligned}
$$

- Nothing unusual here.

Normed space

- A vector space \mathcal{V} is a normed space if $\forall f \in \mathcal{V}$, there exists $\|f\| \in \mathbb{R}$ with:

$$
\begin{aligned}
& \text { i. }\|f\| \geq 0 \\
& \text { ii. }\|f\|=0 \Leftrightarrow f=0 \\
& \text { iii. }\|\alpha f\|=|\alpha|\|f\| \quad \forall \alpha \in \mathbb{R} \\
& \text { iv. }\|f+g\| \leq\|f\|+\|g\| \text {. }
\end{aligned}
$$

- If \mathcal{V} is a normed space, with a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}, f_{n} \in \mathcal{V}$:
- We say $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges to $f \in \mathcal{V}$ if:

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|=0 \quad \Leftrightarrow \quad \forall \epsilon>0, \exists N \text { such that } \forall n \geq N,\left\|f-f_{n}\right\|<\epsilon
$$

- We say $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy if:

$$
\forall \epsilon>0, \exists N \text { such that } \forall n, m \geq N,\left\|f_{m}-f_{n}\right\|<\epsilon
$$

- Convergent sequences are Cauchy; Cauchy need not imply convergent:

$$
\left\|f_{m}-f_{n}\right\| \leq\left\|f_{m}-f\right\|+\left\|f-f_{n}\right\| .
$$

- This distinction is relevant...

Cauchy sequences need not be convergent

- Consider the normed space $\{\mathbb{Q},|\cdot|\}$, and the sequence $1,1.4,1.41, \ldots$.
- This sequence is Cauchy... for any $\epsilon>0$, choose N such that $\epsilon>10^{-N}$.
- Then we have: $\forall n, m \geq N,\left\|f_{m}-f_{n}\right\|<\epsilon$.
- This sequence is not convergent: the limit is $\sqrt{2} \notin \mathbb{Q}$.
- Take $C^{[0,1]}$, all continuous functions on $[0,1]$, with $\|f\|=\sqrt{\int_{0}^{1}|f(x)|^{2} d x}$.
- The sequence of functions below is again Cauchy, but with limit $f \notin C^{[0,1]}$.

Banach space

- A normed vector space for which all Cauchy sequences are convergent is called complete.
- A Banach space is a complete normed space; it contains the limits of all Cauchy sequences in that space.
- Some examples of Banach spaces (without proof):

$$
\begin{aligned}
L_{p}(\mathbb{R}) & =\left\{f: \mathbb{R} \rightarrow \mathbb{R}, \int_{\mathbb{R}}|f(x)|^{p} d x<\infty\right\}, & & \|f\|_{p}=\left(\int|f(x)|^{p} d x\right)^{\frac{1}{p}} \\
L_{\infty}(\mathbb{R}) & =\{f: \mathbb{R} \rightarrow \mathbb{R}, \quad f \text { essentially bounded }\}, & & \|f\|_{p}=\operatorname{esssup}_{x \in \mathbb{R}}|f(x)| \\
C_{b}(\mathbb{R}) & =\left\{f \in L_{\infty}(\mathbb{R}), \quad f \text { bounded and continuous }\right\}, & & \|f\|_{\infty}=\sup _{x \in \mathbb{R}}|f(x)| \\
C_{0}(\mathbb{R}) & =\left\{f \in C_{b}(\mathbb{R}), \quad \lim _{|x| \rightarrow \infty} f(x)=0\right\}, & & \|f\|_{\infty}=\sup _{x \in \mathbb{R}}|f(x)| .
\end{aligned}
$$

- Closed subspaces of Banach spaces are also Banach spaces. Examples:
- $C_{b}(\mathbb{R})$ and $C_{0}(\mathbb{R})$ are closed subspaces of $L_{\infty}(\mathbb{R})$ with ℓ_{∞} norm.

Hilbert space

- A vector spaced \mathcal{V} is an inner product space if $\forall f, g \in \mathcal{V}, \exists\langle f, g\rangle$ with:
i. $\langle f, g\rangle=\overline{\langle g, f\rangle}$ (...which implies $\langle f, f\rangle \in \mathbb{R}$).
ii. $\langle f, f\rangle \geq 0$,
iii. $\langle f, f\rangle=0 \Rightarrow f=0$,
iv. $\langle\alpha f+\beta g, h\rangle=\alpha\langle f, h\rangle+\beta\langle g, h\rangle$.
- Some additional facts:
- An induced norm is $\|f\|=\langle f, f\rangle^{\frac{1}{2}}$.
- Thus all inner product spaces are normed spaces.
- Cauchy-Schwartz inequality: $|\langle f, g\rangle| \leq\|f\|\| \| \|$.
- Parallelogram rule: $\|f+g\|^{2}+\|f-g\|^{2}=2\|f\|^{2}+2\|g\|^{2}$.
- Polarization identity: $4\langle f, g\rangle=\|f+g\|^{2}-\|f-g\|^{2}$.
- A Hilbert space is a complete inner product space.
- A Hilbert space is a Banach space with norm induced by an inner product.
- Signpost: remember a kernel $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{V}}$. Hilbert spaces will help us properly understand kernels.

Examples of Hilbert spaces

- Euclidean space:

$$
\mathbb{R}^{d}, \text { with }\langle f, g\rangle=\sum_{i=1}^{d} f_{i} g_{i} \forall f, g \in \mathbb{R}^{d} .
$$

- $\ell_{2}(S)$, the set of square summable sequences of a countable index set S :
$\left\{f_{i}\right\}_{i \in S}$, such that $f_{i} \in \mathbb{R}$ and $\sum_{i \in S}\left|f_{i}\right|^{2}<\infty$, with $\left\langle\left\{f_{i}\right\},\left\{g_{i}\right\}\right\rangle=\sum_{i \in S} f_{i} g_{i}$.
- $L_{2}(\mathcal{X}, \mu)$, the set of all square integrable functions:

$$
\begin{aligned}
L_{2}(\mathcal{X}, \mu) & \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \text { and measurable, with }\|f\|_{2}=\left(\int_{\mathcal{X}}|f(x)|^{2} d \mu\right)^{\frac{1}{2}}<\infty\right\} \\
\text { with }\langle f, g\rangle & =\int_{\mathcal{X}} f(x) g(x) d \mu
\end{aligned}
$$

- $L_{2}(\mathcal{X})$ typically means implied Lebesgue measure $\langle f, g\rangle=\int_{\mathcal{X}} f(x) g(x) d x$.

Separability

- Separability is a detail that is often skipped or assumed.
- We will revisit it later when considering rkhs, but for now we just define it and offer intuition.
- Consider a subspace \mathcal{S} of a Banach space \mathcal{V} :
- The closure $\overline{\mathcal{S}}$ is the union of \mathcal{S} and all limit points (limits of sequences in \mathcal{S}).
- \mathcal{S} is dense in \mathcal{V} if and only if $\overline{\mathcal{S}}=\mathcal{V}$.
- Example: \mathbb{Q} is a countable dense subset of \mathbb{R}.
- A normed space \mathcal{V} is separable if and only if \exists a countable dense subset of \mathcal{V}.
- Separable Hilbert spaces have countable orthonormal bases.
- This means that we can very (very!) loosely consider a Hilbert space to be intuitively like (possibly infinite dimensional) Euclidean space.
- More rigorously, any separable infinite dimensional Hilbert space is isometrically isomorphic to $\ell_{2}(\mathbb{N})$ (i.e., square summable sequences).
- We will sometimes assume separability.

Operators and basic definitions

- Operator. a map from one vector space to another.
- Linear operator: a map $L: \mathcal{V} \rightarrow \mathcal{H}$ obeying superposition and homogeneity:

$$
\begin{aligned}
L(f+g) & =L f+L g & & \forall f, g \in \mathcal{V} \\
L(\alpha f) & =\alpha L f & & \forall f \in \mathcal{V}, \alpha \in \mathbb{R}
\end{aligned}
$$

- Continuous (at a point) operator: at some point $f_{0} \in \mathcal{V}$:

$$
\forall \epsilon>0, \quad \exists \delta\left(\epsilon, f_{0}\right)>0 \text { such that }\left\|f-f_{0}\right\|_{\mathcal{V}}<\delta\left(\epsilon, f_{0}\right) \Rightarrow\left\|L f-L f_{0}\right\|_{\mathcal{H}}<\epsilon .
$$

- Continuous operator. an operator that is continuous at all points $f_{0} \in \mathcal{V}$.
- Uniformly continuous operator: $\delta\left(\epsilon, f_{0}\right)=\delta(\epsilon)$, i.e. independent of f_{0}.
- Lipschitz continuous operator:

$$
\exists K>0 \text { such that } \forall f_{1}, f_{2} \in \mathcal{V},\left\|L f_{1}-L f_{2}\right\|_{\mathcal{H}} \leq K\left\|f_{1}-f_{2}\right\|_{\mathcal{V}} .
$$

- Bounded operator. an operator L is bounded if it has finite operator norm:

$$
\|L\|=\sup _{f \in \mathcal{V}} \frac{\|L f\|_{\mathcal{H}}}{\|f\|_{\mathcal{V}}}<\infty .
$$

... L maps bounded subsets in \mathcal{V} to bounded subsets in \mathcal{H}.

- Linear operator L : continuous a.a.p. \Leftrightarrow continuous \Leftrightarrow bounded.

Riesz representation theorem

- Functional: an operator that maps to \mathbb{R}, namely $L: \mathcal{V} \rightarrow \mathbb{R}$.
- (Riesz representation theorem): in a Hilbert space \mathcal{V}, all continuous linear functionals L are inner products $\langle w, \cdot\rangle_{\mathcal{V}}: \mathcal{V} \rightarrow \mathbb{R}$, where $w \in \mathcal{V}$. In other words, $L v=\langle w, v\rangle_{\mathcal{V}}$.
- If you are still thinking in Euclidean space, this is obvious.
- More generally, it is not at all obvious.
- Riesz representation theorem is not the representer theorem (coming later).
- Riesz helps us define kernels using linear functionals in a Hilbert space.
- Dual space: all continuous linear functionals $\mathcal{V}^{\prime}=\left\{\phi_{w}=\langle w, \cdot\rangle_{\mathcal{V}}: \mathcal{V} \rightarrow \mathbb{R}\right\}$.
- Note that Riesz lets us write $\phi_{w}=\langle w, \cdot\rangle_{\mathcal{V}}$.
- This is the continuous or topological dual, a subset of the algebraic dual (same definition absent 'continuous'), though these duals coincide if \mathcal{V} is finite dimensional.)
- \mathcal{V} and \mathcal{V}^{\prime} are isometrically isomorphic.
- Distance preserving transformation (isometry): $\left\|\phi_{w}(w)\right\|_{\mathcal{V}^{\prime}}=\|w\|_{\mathcal{V}}$.
- Linear bijection (isomorphism): $w \in \mathcal{V} \leftrightarrow \phi \in \mathcal{V}^{\prime}$ uniquely (see [Tao09]).

Outline

Administrative interlude
 Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

References

Reproducing kernel Hilbert space

- Dirac delta $\delta_{x}: \mathcal{H} \rightarrow \mathbb{R}$ for a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \rightarrow \mathbb{R}$.
- δ_{x} is the map from $f \in \mathcal{H}$ to $f(x) \in \mathbb{R}$.
- For this reason it is often here called the evaluation functional.
- δ_{x} is linear: $\delta_{x}(\alpha f+\beta g)=\alpha f(x)+\beta g(x)$.
- δ_{x} bounded (equiv. continuous) $\Rightarrow \delta_{x}=\left\langle\cdot, k_{x}\right\rangle_{\mathcal{H}}$ (via Riesz).
- (Reproducing kernel Hilbert space) A Hilbert space with bounded linear evaluation functional δ_{x}.
- Pause to appreciate this property: bounded δ_{x} means that $\exists k_{x} \in \mathcal{H}$ that achieves the action of δ_{x} via an inner product.
- that is, $\delta_{x} f=\left\langle f, k_{x}\right\rangle_{\mathcal{H}}=f(x) \in \mathbb{R}$.
- Notice the absence of any kernel in this definition.

Example and counterexample

- We have already seen $\ell_{2}(\mathbb{N})$ and $L_{2}(\mathbb{R})$; both are Hilbert spaces.
- $\ell_{2}(\mathbb{N})$, all countable square summable sequences:
$\ell_{2}(\mathbb{N})=\left\{f_{i}\right\}_{i \in \mathbb{N}}$, such that $f_{i} \in \mathbb{R}$ and $\sum_{i \in \mathbb{N}}\left|f_{i}\right|^{2}<\infty$, with $\left\langle\left\{f_{i}\right\},\left\{g_{i}\right\}\right\rangle=\sum_{i \in S} f_{i} g_{i}$.
- Consider $\delta_{j}=\langle\cdot, \mathbb{1}(i=j)\rangle_{\mathcal{H}}$ (the Kronecker delta):
- δ_{j} is the evaluation operator:

$$
\delta_{j} f=\langle f, \mathbb{1}(i=j)\rangle_{\mathcal{H}}=f_{j} .
$$

- δ_{j} is bounded (consider operator norm):

$$
\left\|\delta_{j}\right\|=\sup _{f \in \mathcal{H}} \frac{\left|\delta_{j} f\right|}{\|f\|_{\mathcal{H}}}=\sup _{f \in \mathcal{H}} \frac{f_{j}}{\left(\sum_{i}\left|f_{i}\right|^{2}\right)^{\frac{1}{2}}} \leq 1<\infty .
$$

- Conclude $\ell_{2}(\mathbb{N})$ is an rkhs.
- $L_{2}(\mathbb{R})$, all square integrable functions (with Lebesgue measure).
- The Dirac delta is the evaluation functional $f(x)=\int f(u) \delta(x-u) d u$.
- However, $\delta(x-u) \notin L_{2}(\mathbb{R})$, since $\int \delta(x-u)^{2} d u \nless \infty$.
- Conclude $L_{2}(\mathbb{R})$ is not an rkhs.

Reproducing kernel

- As before consider a Hilbert space \mathcal{H} of functions $f: \mathcal{X} \rightarrow \mathbb{R}$.
- (Reproducing kernel) A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ such that:

$$
\begin{aligned}
k_{x} & \triangleq k(\cdot, x) \in \mathcal{H} & & \forall x \in \mathcal{X} . \\
f(x) & =\left\langle f, k_{x}\right\rangle_{\mathcal{H}} & & \forall x \in \mathcal{X}, \forall f \in \mathcal{H} .
\end{aligned}
$$

- This latter property means:
- $\delta_{x}=\left\langle\cdot, k_{x}\right\rangle_{\mathcal{H}}$ is the evaluation functional.
- $k_{x^{\prime}}$ is also in \mathcal{H}, so $\delta_{x} k_{x^{\prime}}=\left\langle k_{x}, k_{x^{\prime}}\right\rangle_{\mathcal{H}}=k\left(x, x^{\prime}\right)=\left\langle k(\cdot, x), k\left(\cdot, x^{\prime}\right)\right\rangle_{\mathcal{H}}$.
- ...called the reproducing property, as the kernel 'reproduces itself.'
- Four important (remarkable) properties follow:
- \mathcal{H} has a reproducing kernel $k \Leftrightarrow \mathcal{H}$ is an rkhs.
- \mathcal{H} has a reproducing kernel $k \Rightarrow k$ is unique.
- Reproducing kernels k are positive definite.
- (Moore-Aronszajn) Given a positive definite k, there exists a unique (pre-) rkhs \mathcal{H} with k as its reproducing kernel.

Proof of property 1

- \mathcal{H} has a reproducing kernel $k \Leftrightarrow \mathcal{H}$ is an rkhs.
- Assume \mathcal{H} has a reproducing kernel k :

$$
\begin{aligned}
\left|\delta_{x} f\right| & =\left|\left\langle f, k_{x}\right\rangle_{\mathcal{H}}\right| \\
& \leq\left\|k_{x}\right\|_{\mathcal{H}}\|f\|_{\mathcal{H}} \\
& =\sqrt{\left\langle k_{x}, k_{x}\right\rangle_{\mathcal{H}}}\|f\|_{\mathcal{H}} \\
& =\sqrt{k(x, x)}\|f\|_{\mathcal{H}} .
\end{aligned}
$$

...thus δ_{x} is bounded, so \mathcal{H} is an rkhs.

- Assume \mathcal{H} is an rkhs with bounded δ_{x} :
- Riesz $\Rightarrow \exists \delta_{x}: \delta_{x} f=\left\langle f, k_{x}\right\rangle_{\mathcal{H}} \forall f \in \mathcal{H}$.
- Define a function $k\left(x, x^{\prime}\right)=k_{x}\left(x^{\prime}\right) \forall x, x^{\prime} \in \mathbb{R}$.
- Then $k(x, \cdot)=k_{x} \in \mathcal{H}$ (...first property of a reproducing kernel).
- And $f(x)=\left\langle f, k_{x}\right\rangle_{\mathcal{H}}$ (...reproducing property).
...thus k is the reproducing kernel for \mathcal{H}.

Proof of property 2

- \mathcal{H} has a reproducing kernel $k \Rightarrow k$ is unique.
- Assume existence of two reproducing kernels k and k^{\prime}. For any $f \in \mathcal{H}$:

$$
\begin{aligned}
0 & =f(x)-f(x) \\
& =\left\langle f, k_{x}\right\rangle_{\mathcal{H}}-\left\langle f, k_{x}^{\prime}\right\rangle_{\mathcal{H}} \\
& =\left\langle f, k_{x}-k_{x}^{\prime}\right\rangle_{\mathcal{H}} .
\end{aligned}
$$

Note this is enough (since $\forall f$), but the following spells it out...

- Let $f=k_{x}-k_{x}^{\prime}$ (these are both in \mathcal{H} so this is fine), and then:

$$
\begin{aligned}
\left\|k_{x}-k_{x}^{\prime}\right\|_{\mathcal{H}}^{2} & =\left\langle k_{x}-k_{x}^{\prime}, k_{x}-k_{x}^{\prime}\right\rangle_{\mathcal{H}} \\
& =0
\end{aligned}
$$

... so k and k^{\prime} are identical.

Proof of property 3

- Reproducing kernels k are positive definite.
- Recall we say a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is positive definite if:

$$
v^{\top} K v=\sum_{i=1}^{n} \sum_{j=1}^{n} k\left(x_{i}, x_{j}\right) v_{i} v_{j} \geq 0 \quad \forall n \in \mathbb{N}_{+}, v \in \mathbb{R}^{n}
$$

- Thus:

$$
\begin{aligned}
v^{\top} K v & =\sum_{i=1}^{n} \sum_{j=1}^{n} k\left(x_{i}, x_{j}\right) v_{i} v_{j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle k_{x_{i}}, k_{x_{j}}\right\rangle_{\mathcal{H}} v_{i} v_{j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle v_{i} k_{x_{i}}, v_{j} k_{x_{j}}\right\rangle_{\mathcal{H}} \\
& =\left\|\sum_{i=1}^{n} v_{i} k_{x_{i}}\right\|_{\mathcal{H}}^{2} \\
& \geq 0
\end{aligned}
$$

Observations

- P.D. holds for any Hilbert space \mathcal{H} and a mapping $\phi: \mathcal{X} \rightarrow \mathcal{H}$.
- Define a kernel $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ (no reproducing property) \ldots

$$
v^{\top} K v=\sum_{i=1}^{n} \sum_{j=1}^{n} k\left(x_{i}, x_{j}\right) v_{i} v_{j}=\ldots=\left\|\sum_{i=1}^{n} v_{i} \phi\left(x_{i}\right)\right\|_{\mathcal{H}}^{2} \geq 0 \quad \forall n \in \mathbb{N}_{+}, v \in \mathbb{R}^{n}
$$

- All reproducing kernels are kernels with $\phi(x)=k_{x}$.
- We know \exists non-unique feature mappings ϕ for a given kernel:

$$
k\left(x, x^{\prime}\right)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1} x_{2}
\end{array}\right]^{\top}\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{1}^{\prime} x_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} x_{1} \\
\frac{1}{\sqrt{2}} x_{1} \\
x_{2} \\
x_{1} x_{2}
\end{array}\right]^{\top}\left[\begin{array}{c}
\frac{1}{\sqrt{2}} x_{1}^{\prime} \\
\frac{1}{\sqrt{2}} x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{1}^{\prime} x_{2}^{\prime}
\end{array}\right]
$$

- However, the spaces implied by the above ϕ choices are not rkhs.
- The Moore-Aronszajn theorem proves that, for every kernel k, there is a unique rkhs \mathcal{H} whose reproducing kernel is k.
- Thus every kernel is the reproducing kernel of some rkhs.
- We will sketch a key piece of the proof of this theorem.

Proof sketch of property 4 (Moore-Aronszajn)

- Given a reproducing kernel k (more generally, any p.d. k), there exists a unique (pre-) rkhs \mathcal{H} with k as its reproducing kernel. Define $k_{x} \triangleq k(\cdot, x)$.
- Construct the rkhs as the completion of the span of all k_{x} :

$$
\mathcal{H}=\left\{f \mid f=\sum_{i \in \mathbb{N}} \alpha_{i} k_{x_{i}} \quad \text { where } \alpha_{i} \in \mathbb{R}, x_{i} \in \mathcal{X}\right\}
$$

with inner product

$$
\left\langle\sum_{i \in \mathbb{N}} \alpha_{i} k_{x_{i}}, \sum_{j \in \mathbb{N}} \alpha_{j} k_{x_{j}}\right\rangle_{\mathcal{H}} \triangleq \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) .
$$

- Because k is a reproducing kernel, we have $\left\langle f, k_{x}\right\rangle_{\mathcal{H}}=f(x) \forall f \in \mathcal{H}$.
- Then, for a Cauchy sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ (with the fact that pointwise convergence is norm convergence in \mathcal{H}):

$$
\left|f_{n}(x)-f(x)\right|=\left|\left\langle f_{n}-f, k_{x}\right\rangle_{\mathcal{H}}\right| \leq\left\|f_{n}-f\right\|_{\mathcal{H}}\left\|k_{x}\right\|_{\mathcal{H}} .
$$

...which shows that every Cauchy sequence converges in \mathcal{H} (thus complete).

- Several details omitted here; a thorough treatment is [SG12].

A few takeaways from Moore-Aronszajn

- Given a positive definite function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, there exists a unique (pre-) rkhs \mathcal{H} with k as its reproducing kernel.
- Every positive definite function is a reproducing kernel.
- There is a unique rkhs \mathcal{H} corresponding to each positive definite function.
- Reminder: rkhs \mathcal{H} is a subspace of functions $f: \mathcal{X} \rightarrow \mathbb{R}$; thus $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$.

Outline

> Administrative interlude

> Review of functional analysis

> Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

References

Mercer's theorem

- Moore-Aronszajn placed no interesting conditions on \mathcal{X} (non-empty).
- When \mathcal{X} is a compact metric space (with some metric d) and k is a continuous function on that space, Mercer's theorem allows a simpler 'constructive' understanding of rkhs.
- Again $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a positive definite function.
- Fact: the integral transform $\kappa f=\int_{\mathcal{X}} k(x, u) f(u) d u=g(u)$ is positive definite $\Leftrightarrow k$ is positive definite.
- Accordingly, the eigenvalues $\left\{\lambda_{i}\right\}$ are positive with orthonormal eigenfunctions $\phi_{i}: \mathcal{X} \rightarrow \mathbb{R}$:

$$
\kappa \phi_{i}=\int_{\mathcal{X}} k(x, u) \phi_{i}(u) d u=\lambda_{i} \phi_{i}(x)
$$

cf. the more familiar discrete case.

- (Mercer's theorem): Given the eigenvalues and eigenfunctions $\left\{\lambda_{i}, \phi_{i}\right\}$ of the integral operator defined by k, the kernel k can be written as:

$$
k\left(x, x^{\prime}\right)=\sum_{i \in \mathbb{N}} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)
$$

with $L_{2}(\mathcal{X})$ norm convergence.

Mercer's theorem

- (Mercer's theorem): Given the eigenvalues and eigenfunctions $\left\{\lambda_{i}, \phi_{i}\right\}$ of the integral operator defined by k, the kernel k can be written as:

$$
k\left(x, x^{\prime}\right)=\sum_{i \in \mathbb{N}} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right),
$$

with $L_{2}(\mathcal{X})$ norm convergence.

- Importantly, the rkhs corresponding to this kernel k can be shown to be:

$$
\mathcal{H}=\left\{f \mid f=\sum_{i \in \mathbb{N}} \alpha_{i} \phi_{i}, \quad \forall \alpha_{i} \in \mathbb{R},\|f\|_{\mathcal{H}}<\infty\right\}
$$

with inner product

$$
\langle f, g\rangle_{\mathcal{H}}=\left\langle\sum_{i \in \mathbb{N}} \alpha_{i} \phi_{i}, \sum_{j \in \mathbb{N}} \beta_{j} \phi_{j}\right\rangle_{\mathcal{H}} \triangleq \sum_{i \in \mathbb{N}} \frac{\alpha_{i} \beta_{i}}{\lambda_{i}} .
$$

... a weighted $\ell_{2}(\mathbb{N})$ inner product.

Why is the $\frac{1}{\lambda_{i}}$ factor appropriate?

- Note: $k\left(x, x^{\prime}\right)=\sum_{i \in \mathbb{N}} \lambda_{i} \phi_{i}(x) \phi_{i}\left(x^{\prime}\right)=\left\langle\sum_{i \in \mathbb{N}} \sqrt{\lambda_{i}} \phi_{i}, \sum_{j \in \mathbb{N}} \sqrt{\lambda_{j}} \phi_{j}\right\rangle_{L_{2}}$.
- Consider $f(x)=\sum_{i \in \mathbb{N}} \alpha_{i} \phi_{i}(x)$:

$$
\begin{aligned}
|f(x)|^{2} & =\sum_{i \in \mathbb{N}}\left|\alpha_{i} \phi_{i}(x)\right|^{2} \\
& \leq\left(\sum_{i \in \mathbb{N}}\left|\frac{\alpha_{i}}{\sqrt{\lambda_{i}}}\right|^{2}\right)\left(\sum_{i \in \mathbb{N}}\left|\sqrt{\lambda_{i}} \phi_{i}(x)\right|^{2}\right) \\
& =\left(\sum_{i \in \mathbb{N}}\left|\frac{\alpha_{i}}{\sqrt{\lambda_{i}}}\right|^{2}\right) k(x, x),
\end{aligned}
$$

which is finite if the sequence $\left\{\frac{\alpha_{i}}{\sqrt{\lambda_{i}}}\right\}$ is square summable.

- Alternatively, for the reproducing property:

$$
\begin{aligned}
\left\langle f, k_{x}\right\rangle_{\mathcal{H}} & =\left\langle\sum_{i} \alpha_{i} \phi_{i}, \sum_{j}\left(\lambda_{j} \phi_{j}(x)\right) \phi_{j}\right\rangle_{\mathcal{H}} \\
& =\sum_{i \in \mathbb{N}} \frac{\alpha_{i} \lambda_{i} \phi_{i}(x)}{\lambda_{i}} \\
& =f(x) .
\end{aligned}
$$

Outline

```
Administrative interlude
Review of functional analysis
Reproducing kernel Hilbert spaces
Mercer's theorem
```

What this understanding buys us

References

Revisit sums of kernels

- Now we understand better what a kernel actually is.
- We can now return to some of our previous claims and be more rigorous.
- For example, kernel algebra:
- We said $k=\alpha k^{1}+\beta k^{2}$ is a kernel for $\alpha, \beta \in \mathbb{R}_{+}$.
- We said $k=k^{1} k^{2}$ is a kernel.
- The sum $k=\alpha k^{1}+\beta k^{2}$:
- Consider $\alpha\left\langle\phi^{1}(x), \phi^{1}\left(x^{\prime}\right)\right\rangle_{\mathcal{H}_{1}}+\beta\left\langle\phi^{2}(x), \phi^{2}\left(x^{\prime}\right)\right\rangle_{\mathcal{H}_{2}}$ in terms of all properties of an inner product:
i. $\langle f, g\rangle=\overline{\langle g, f\rangle}$ (...which implies $\langle f, f\rangle \in \mathbb{R}$).
ii. $\langle f, f\rangle \geq 0$,
iii. $\langle f, f\rangle=0 \Rightarrow f=0$,
iv. $\langle\gamma f+\rho g, h\rangle=\gamma\langle f, h\rangle+\rho\langle g, h\rangle$.
- Essentially saying that k is positive definite if k^{1}, k^{2} are pd and $\alpha, \beta \geq 0$.
- If the input domains of k^{1} and k^{2} are the same, the resulting rkhs can be shown to be

$$
\mathcal{H}=\mathcal{H}_{1}+\mathcal{H}_{2}=\left\{f_{1}+f_{2}: f_{1} \in \mathcal{H}_{1}, f_{2} \in \mathcal{H}_{2}\right\}
$$

with rkhs norm:

$$
\|f\|_{\mathcal{H}}^{2}=\min _{f_{1}+f_{2}=f}\left\|f_{1}\right\|_{\mathcal{H}_{1}}^{2}+\left\|f_{2}\right\|_{\mathcal{H}_{2}}^{2}
$$

Roadmap

- Representer theorem.
- Kernel ridge regression.
- Posterior mean inference in a gp.
- Using the inner product $\langle f, g\rangle_{\mathcal{H}}$ (from Mercer) to understand the 'inconvenient fact' (re rkhs of a gp draw) from [Wah90, ch. 1].
- Kernel mean estimation.
- Kernel principal components analysis.
- More interesting kernel methods...

Outline

Administrative interlude
Review of functional analysis
Reproducing kernel Hilbert spaces
Mercer's theorem
What this understanding buys us
References

References

```
[Gre13] Arthur Gretton.
    Introduction to rkhs, and some simple kernel algorithms.
    Advanced Topics in Machine Learning. Lecture conducted from University College London, 2013.
[Hei06] Christopher Heil.
    Banach and hilbert space review.
    Technical Report, Georgia Tech, }2006
[Kre89] Erwin Kreyszig.
    Introductory functional analysis with applications, volume }81
    wiley New York, 1989.
[Muk15] Sayan Mukherjee.
    Probabilistic machine learning.
    Technical Report, Duke University, }2015
[SC08] Ingo Steinwart and Andreas Christmann.
    Support vector machines.
    Springer Science and Business Media, }2008
[SG12] Dino Sejdinovic and Arthur Gretton.
    What is an rkhs?
    2012.
[Tao09] Terence Tao.
    245b, notes 5: Hilbert spaces.
    math 245B real analysis lecture notes (https://terrytao.wordpress.com/2009/01/17/254a-notes-5-hilbert-spaces/), 2009.
[TL58] Angus Ellis Taylor and David C Lay.
    Introduction to functional analysis, volume 2.
    Wiley New York, }1958
[Wah90] Grace Wahba.
    Spline models for observational data, volume }59
    Siam, 1990.
```

