# STAT G8325 Gaussian Processes and Kernel Methods §08: Reproducing Kernel Hilbert Spaces

John P. Cunningham

Department of Statistics Columbia University

Administrative interlude

Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

#### Administrative interlude

Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

-

| Week | Lectures  | Content                                                                                               |
|------|-----------|-------------------------------------------------------------------------------------------------------|
| 7    | Nov 4,9   | Bayesian optimization and active learning                                                             |
| 8    | Nov 9, 11 | Reproducing kernel Hilbert spaces<br>• [Wah90, ch. 1] (intentionally light reading; work on projects) |
| 9    |           | Introduction to kernel methods                                                                        |

- HW3 due yesterday.
- ▶ HW4 due next Friday. Choose either:
  - complete introduction, background, literature review.
  - complete a code prototype, initial proof of concept.
- Who will be here Wednesday Nov 25?

### Attribution

- The following sections introduce important concepts to gaussian processes and kernel methods more generally.
- ▶ We cover basic topics from functional analysis, and their applications.
- ► There are numerous reviews/introductions/texts.
- As such, the following draws heavily from:
  - Arthur Gretton [Gre13]
  - Dino Sejdinovic [SG12]
  - Christopher Heil [Hei06]
  - Sayan Mukherjee [Muk15]
  - Terry Tao [Tao09]
  - ... plus a few key textbooks [Kre89]; [TL58]; [SC08].
- These modern technical reports and lecture notes have clear examples and an appealing machine learning orientation.

Administrative interlude

#### Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

### Vector space

- $\blacktriangleright$  We restrict our interest to a vector space  ${\cal V}$  over the field of real numbers  ${\mathbb R}.$
- $\blacktriangleright$  As a reminder, a vector space is a set  ${\mathcal V}$  with:
  - (using  $f, g, h, 0 \in \mathcal{V}$  and  $\alpha, \beta, 1 \in \mathbb{R}$ )

additivity:

$$\begin{array}{rcl} f + (g + h) & = & (f + g) + h \\ f + g & = & g + f \\ f + 0 & = & f \\ f + - f & = & 0 \end{array}$$

scalar multiplication:

$$\begin{aligned} \alpha(\beta f) &= (\alpha\beta)f\\ 1f &= f\\ \alpha(f+g) &= \alpha f + \alpha g\\ (\alpha+\beta)f &= \alpha f + \beta f \end{aligned}$$

Nothing unusual here.

### Normed space

- A vector space  $\mathcal{V}$  is a *normed space* if  $\forall f \in \mathcal{V}$ , there exists  $||f|| \in \mathbb{R}$  with:
  - $$\begin{split} &\text{i. } \|f\| \geq 0, \\ &\text{ii. } \|f\| = 0 \Leftrightarrow f = 0, \\ &\text{iii. } \|\alpha f\| = |\alpha| \|f\| \ \forall \alpha \in \mathbb{R}, \\ &\text{iv. } \|f + g\| \leq \|f\| + \|g\|. \end{split}$$
- If  $\mathcal{V}$  is a normed space, with a sequence  $\{f_n\}_{n\in\mathbb{N}}, f_n\in\mathcal{V}$ :
  - We say  $\{f_n\}_{n\in\mathbb{N}}$  converges to  $f\in\mathcal{V}$  if:

 $\lim_{n \to \infty} \|f - f_n\| = 0 \quad \Leftrightarrow \quad \forall \epsilon > 0, \ \exists N \text{ such that } \forall n \ge N, \ \|f - f_n\| < \epsilon.$ 

• We say 
$$\{f_n\}_{n\in\mathbb{N}}$$
 is *Cauchy* if:

 $\forall \epsilon > 0, \exists N \text{ such that } \forall n, m \ge N, \|f_m - f_n\| < \epsilon.$ 

Convergent sequences are Cauchy; Cauchy need not imply convergent:

$$||f_m - f_n|| \le ||f_m - f|| + ||f - f_n||.$$

This distinction is relevant...

### Cauchy sequences need not be convergent

- Consider the normed space  $\{\mathbb{Q}, |\cdot|\}$ , and the sequence 1, 1.4, 1.41, ...
  - This sequence is Cauchy... for any  $\epsilon > 0$ , choose N such that  $\epsilon > 10^{-N}$ .
  - Then we have:  $\forall n, m \ge N, ||f_m f_n|| < \epsilon.$
  - This sequence is not convergent: the limit is  $\sqrt{2} \notin \mathbb{Q}$ .
- Take  $C^{[0,1]}$ , all continuous functions on [0,1], with  $||f|| = \sqrt{\int_0^1 |f(x)|^2 dx}$ .
- The sequence of functions below is again Cauchy, but with limit  $f \notin C^{[0,1]}$ .



## Banach space

- A normed vector space for which all Cauchy sequences are convergent is called *complete*.
- A Banach space is a complete normed space; it contains the limits of all Cauchy sequences in that space.
- Some examples of Banach spaces (without proof):

$$\begin{array}{lll} L_p(\mathbb{R}) &=& \left\{ f: \mathbb{R} \to \mathbb{R}, \int_{\mathbb{R}} |f(x)|^p dx < \infty \right\}, & \|f\|_p = \left( \int |f(x)|^p dx \right)^{\frac{1}{p}} \\ L_{\infty}(\mathbb{R}) &=& \left\{ f: \mathbb{R} \to \mathbb{R}, \ f \ \text{essentially bounded} \right\}, & \|f\|_p = \text{esssup}_{x \in \mathbb{R}} |f(x)|. \\ C_b(\mathbb{R}) &=& \left\{ f \in L_{\infty}(\mathbb{R}), \ f \ \text{bounded} \ \text{and continuous} \right\}, & \|f\|_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|. \\ C_0(\mathbb{R}) &=& \left\{ f \in C_b(\mathbb{R}), \ \lim_{|x| \to \infty} f(x) = 0 \right\}, & \|f\|_{\infty} = \sup_{x \in \mathbb{R}} |f(x)|. \end{array}$$

...recall esssup excludes points of zero measure

- Closed subspaces of Banach spaces are also Banach spaces. Examples:
  - $C_b(\mathbb{R})$  and  $C_0(\mathbb{R})$  are closed subspaces of  $L_\infty(\mathbb{R})$  with  $\ell_\infty$  norm.

### Hilbert space

- A vector spaced  $\mathcal{V}$  is an *inner product space* if  $\forall f, g \in \mathcal{V}, \exists \langle f, g \rangle$  with:
  - i.  $\langle f,g \rangle = \overline{\langle g,f \rangle}$  (...which implies  $\langle f,f \rangle \in \mathbb{R}$ ). ii.  $\langle f,f \rangle \ge 0$ , iii.  $\langle f,f \rangle = 0 \Rightarrow f = 0$ , iv.  $\langle \alpha f + \beta g,h \rangle = \alpha \langle f,h \rangle + \beta \langle g,h \rangle$ .

Some additional facts:

- An induced norm is  $||f|| = \langle f, f \rangle^{\frac{1}{2}}$ .
- Thus all inner product spaces are normed spaces.
- Cauchy-Schwartz inequality:  $|\langle f, g \rangle| \le ||f|| ||g||$ .
- Parallelogram rule:  $||f + g||^2 + ||f g||^2 = 2||f||^2 + 2||g||^2$ .
- Polarization identity:  $4\langle f, g \rangle = ||f + g||^2 ||f g||^2$ .
- A *Hilbert space* is a complete inner product space.
- A Hilbert space is a Banach space with norm induced by an inner product.
- Signpost: remember a kernel k(x, x') = ⟨φ(x), φ(x')⟩<sub>V</sub>. Hilbert spaces will help us properly understand kernels.

### Examples of Hilbert spaces

Euclidean space:

$$\mathbb{R}^d, ext{ with } \langle f,g
angle = \sum_{i=1}^d f_i g_i \; orall f,g \in \mathbb{R}^d.$$

▶  $\ell_2(S)$ , the set of square summable sequences of a countable index set S:

$$\{f_i\}_{i\in S}, \text{ such that } f_i\in \mathbb{R} \text{ and } \sum_{i\in S} |f_i|^2 < \infty, \text{ with } \langle\{f_i\}, \{g_i\}\rangle = \sum_{i\in S} f_i g_i.$$

•  $L_2(\mathcal{X}, \mu)$ , the set of all square integrable functions:

$$\begin{split} L_2(\mathcal{X},\mu) & \triangleq \quad \left\{ f: \mathcal{X} \to \mathbb{R} \text{ and measurable, with } \|f\|_2 = \left(\int_{\mathcal{X}} |f(x)|^2 d\mu\right)^{\frac{1}{2}} < \infty \right\},\\ \text{with } \langle f,g\rangle & = \quad \int_{\mathcal{X}} f(x)g(x)d\mu. \end{split}$$

▶  $L_2(\mathcal{X})$  typically means implied Lebesgue measure  $\langle f, g \rangle = \int_{\mathcal{X}} f(x)g(x)dx$ .

# Separability

- Separability is a detail that is often skipped or assumed.
- We will revisit it later when considering rkhs, but for now we just define it and offer intuition.
- Consider a subspace S of a Banach space V:
  - The *closure*  $\overline{S}$  is the union of S and all limit points (limits of sequences in S).
  - S is *dense* in V if and only if  $\overline{S} = V$ .
  - Example:  $\mathbb{Q}$  is a countable dense subset of  $\mathbb{R}$ .
  - A normed space  $\mathcal{V}$  is *separable* if and only if  $\exists$  a countable dense subset of  $\mathcal{V}$ .
- Separable Hilbert spaces have countable orthonormal bases.
  - This means that we can very (very!) loosely consider a Hilbert space to be intuitively like (possibly infinite dimensional) Euclidean space.
  - ► More rigorously, any separable infinite dimensional Hilbert space is isometrically isomorphic to ℓ<sub>2</sub>(N) (i.e., square summable sequences).
  - We will sometimes assume separability.

### Operators and basic definitions

- *Operator*: a map from one vector space to another.
- Linear operator: a map  $L: \mathcal{V} \to \mathcal{H}$  obeying superposition and homogeneity:

$$\begin{array}{lll} L(f+g) &=& Lf+Lg \qquad \forall f,g\in\mathcal{V} \\ L(\alpha f) &=& \alpha Lf \qquad \quad \forall f\in\mathcal{V}, \alpha\in\mathbb{R} \end{array}$$

• Continuous (at a point) operator: at some point  $f_0 \in \mathcal{V}$ :

 $\forall \epsilon > 0, \ \ \exists \delta(\epsilon, f_0) > 0 \ \text{such that} \ \|f - f_0\|_{\mathcal{V}} < \delta(\epsilon, f_0) \Rightarrow \|Lf - Lf_0\|_{\mathcal{H}} < \epsilon.$ 

- Continuous operator: an operator that is continuous at all points  $f_0 \in \mathcal{V}$ .
- Uniformly continuous operator:  $\delta(\epsilon, f_0) = \delta(\epsilon)$ , i.e. independent of  $f_0$ .
- Lipschitz continuous operator.

 $\exists K > 0 \text{ such that } \forall f_1, f_2 \in \mathcal{V}, \|Lf_1 - Lf_2\|_{\mathcal{H}} \leq K \|f_1 - f_2\|_{\mathcal{V}}.$ 

▶ Bounded operator: an operator L is bounded if it has finite operator norm:

$$||L|| = \sup_{f \in \mathcal{V}} \frac{||Lf||_{\mathcal{H}}}{||f||_{\mathcal{V}}} < \infty.$$

 $\ldots L$  maps bounded subsets in  $\mathcal{V}$  to bounded subsets in  $\mathcal{H}$ .

• Linear operator L: continuous a.a.p.  $\Leftrightarrow$  continuous  $\Leftrightarrow$  bounded.

### Riesz representation theorem

- Functional: an operator that maps to  $\mathbb{R}$ , namely  $L: \mathcal{V} \to \mathbb{R}$ .
- (Riesz representation theorem): in a Hilbert space V, all continuous linear functionals L are inner products ⟨w, ·⟩<sub>V</sub> : V → ℝ, where w ∈ V. In other words, Lv = ⟨w, v⟩<sub>V</sub>.
  - If you are still thinking in Euclidean space, this is obvious.
  - More generally, it is not at all obvious.
  - Riesz representation theorem is **not** the representer theorem (coming later).
  - Riesz helps us define kernels using linear functionals in a Hilbert space.
- Dual space: all continuous linear functionals  $\mathcal{V}' = \{\phi_w = \langle w, \cdot \rangle_{\mathcal{V}} : \mathcal{V} \to \mathbb{R}\}.$ 
  - Note that Riesz lets us write  $\phi_w = \langle w, \cdot \rangle_{\mathcal{V}}$ .
  - This is the continuous or topological dual, a subset of the algebraic dual (same definition absent 'continuous'), though these duals coincide if V is finite dimensional.)
  - $\mathcal{V}$  and  $\mathcal{V}'$  are isometrically isomorphic.
  - Distance preserving transformation (isometry):  $\|\phi_w(w)\|_{\mathcal{V}'} = \|w\|_{\mathcal{V}}$ .
  - Linear bijection (isomorphism):  $w \in \mathcal{V} \leftrightarrow \phi \in \mathcal{V}'$  uniquely (see [Tao09]).

Administrative interlude

Review of functional analysis

#### Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

### Reproducing kernel Hilbert space

- ▶ Dirac delta  $\delta_x : \mathcal{H} \to \mathbb{R}$  for a Hilbert space  $\mathcal{H}$  of functions  $f : \mathcal{X} \to \mathbb{R}$ .
  - $\delta_x$  is the map from  $f \in \mathcal{H}$  to  $f(x) \in \mathbb{R}$ .
  - For this reason it is often here called the evaluation functional.
  - $\delta_x$  is linear:  $\delta_x(\alpha f + \beta g) = \alpha f(x) + \beta g(x)$ .
- $\delta_x$  bounded (equiv. continuous)  $\Rightarrow \delta_x = \langle \cdot, k_x \rangle_{\mathcal{H}}$  (via Riesz).
- (Reproducing kernel Hilbert space) A Hilbert space with bounded linear evaluation functional  $\delta_x$ .
- ▶ Pause to appreciate this property: bounded  $\delta_x$  means that  $\exists k_x \in \mathcal{H}$  that achieves the action of  $\delta_x$  via an inner product.
  - that is,  $\delta_x f = \langle f, k_x \rangle_{\mathcal{H}} = f(x) \in \mathbb{R}.$
  - Notice the absence of any kernel in this definition.

### Example and counterexample

- ▶ We have already seen  $\ell_2(\mathbb{N})$  and  $L_2(\mathbb{R})$ ; both are Hilbert spaces.
- $\ell_2(\mathbb{N})$ , all countable square summable sequences:

 $\ell_2(\mathbb{N}) = \{f_i\}_{i \in \mathbb{N}}, \text{ such that } f_i \in \mathbb{R} \text{ and } \sum_{i \in \mathbb{N}} |f_i|^2 < \infty, \text{ with } \langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in S} f_i g_i.$ 

• Consider  $\delta_j = \langle \cdot, \mathbb{1}(i=j) \rangle_{\mathcal{H}}$  (the Kronecker delta):

•  $\delta_j$  is the evaluation operator:

$$\delta_j f = \langle f, \mathbb{1}(i=j) \rangle_{\mathcal{H}} = f_j.$$

•  $\delta_j$  is bounded (consider operator norm):

$$\|\delta_j\| = \sup_{f \in \mathcal{H}} \frac{|\delta_j f|}{\|f\|_{\mathcal{H}}} = \sup_{f \in \mathcal{H}} \frac{f_j}{\left(\sum_i |f_i|^2\right)^{\frac{1}{2}}} \le 1 < \infty.$$

- Conclude  $\ell_2(\mathbb{N})$  is an rkhs.
- $L_2(\mathbb{R})$ , all square integrable functions (with Lebesgue measure).
  - The Dirac delta is the evaluation functional  $f(x) = \int f(u)\delta(x-u)du$ .
  - However,  $\delta(x-u) \notin L_2(\mathbb{R})$ , since  $\int \delta(x-u)^2 du \not< \infty$ .
- ► Conclude L<sub>2</sub>(ℝ) is not an rkhs.

### Reproducing kernel

- As before consider a Hilbert space  $\mathcal{H}$  of functions  $f : \mathcal{X} \to \mathbb{R}$ .
- (Reproducing kernel) A function  $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  such that:

$$k_x \triangleq k(\cdot, x) \in \mathcal{H} \qquad \forall x \in \mathcal{X}.$$
  
$$f(x) = \langle f, k_x \rangle_{\mathcal{H}} \qquad \forall x \in \mathcal{X}, \ \forall f \in \mathcal{H}.$$

#### This latter property means:

- $\delta_x = \langle \cdot, k_x \rangle_{\mathcal{H}}$  is the evaluation functional.
- $\blacktriangleright \ k_{x'} \text{ is also in } \mathcal{H}, \text{ so } \delta_x k_{x'} = \langle k_x, k_{x'} \rangle_{\mathcal{H}} = k(x, x') = \langle k(\cdot, x), k(\cdot, x') \rangle_{\mathcal{H}}.$
- …called the reproducing property, as the kernel 'reproduces itself.'
- ► Four important (remarkable) properties follow:
  - $\mathcal{H}$  has a reproducing kernel  $k \Leftrightarrow \mathcal{H}$  is an rkhs.
  - $\mathcal{H}$  has a reproducing kernel  $k \Rightarrow k$  is unique.
  - Reproducing kernels k are positive definite.
  - (Moore-Aronszajn) Given a positive definite k, there exists a unique (pre-) rkhs H with k as its reproducing kernel.

# Proof of property 1

- $\mathcal{H}$  has a reproducing kernel  $k \Leftrightarrow \mathcal{H}$  is an rkhs.
- ► Assume *H* has a reproducing kernel *k*:

$$\begin{aligned} |\delta_x f| &= |\langle f, k_x \rangle_{\mathcal{H}} | \\ &\leq ||k_x||_{\mathcal{H}} ||f||_{\mathcal{H}} \\ &= \sqrt{\langle k_x, k_x \rangle_{\mathcal{H}}} ||f||_{\mathcal{H}} \\ &= \sqrt{k(x, x)} ||f||_{\mathcal{H}}. \end{aligned}$$

...thus  $\delta_x$  is bounded, so  $\mathcal H$  is an rkhs.

- Assume  $\mathcal{H}$  is an rkhs with bounded  $\delta_x$ :
  - Riesz  $\Rightarrow \exists \delta_x : \delta_x f = \langle f, k_x \rangle_{\mathcal{H}} \, \forall f \in \mathcal{H}.$
  - Define a function  $k(x, x') = k_x(x') \quad \forall x, x' \in \mathbb{R}.$
  - Then  $k(x, \cdot) = k_x \in \mathcal{H}$  (...first property of a reproducing kernel).
  - And  $f(x) = \langle f, k_x \rangle_{\mathcal{H}}$  (...reproducing property).

...thus k is the reproducing kernel for  $\mathcal{H}$ .

# Proof of property 2

- $\mathcal{H}$  has a reproducing kernel  $k \Rightarrow k$  is unique.
- Assume existence of two reproducing kernels k and k'. For any  $f \in \mathcal{H}$ :

$$0 = f(x) - f(x)$$
  
=  $\langle f, k_x \rangle_{\mathcal{H}} - \langle f, k'_x \rangle_{\mathcal{H}}$   
=  $\langle f, k_x - k'_x \rangle_{\mathcal{H}}$ .

Note this is enough (since  $\forall f$ ), but the following spells it out...

• Let  $f = k_x - k'_x$  (these are both in  $\mathcal{H}$  so this is fine), and then:

$$\begin{aligned} \|k_x - k'_x\|_{\mathcal{H}}^2 &= \langle k_x - k'_x, k_x - k'_x \rangle_{\mathcal{H}} \\ &= 0, \end{aligned}$$

 $\dots$  so k and k' are identical.

# Proof of property 3

▶ Reproducing kernels *k* are positive definite.

 $v^{\top}$ 

▶ Recall we say a function  $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is positive definite if:

$$v^{\top} K v = \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_i, x_j) v_i v_j \ge 0 \quad \forall n \in \mathbb{N}_+, v \in \mathbb{R}^n.$$

Thus:

$$Kv = \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_i, x_j) v_i v_j$$
  
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle k_{x_i}, k_{x_j} \rangle_{\mathcal{H}} v_i v_j$$
  
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \langle v_i k_{x_i}, v_j k_{x_j} \rangle_{\mathcal{H}}$$
  
$$= \left\| \sum_{i=1}^{n} v_i k_{x_i} \right\|_{\mathcal{H}}^2$$
  
$$\geq 0.$$

### Observations

- ▶ P.D. holds for any Hilbert space  $\mathcal{H}$  and a mapping  $\phi : \mathcal{X} \to \mathcal{H}$ .
- ▶ Define a kernel  $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$  (no reproducing property)...

$$v^{\top}Kv = \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_i, x_j) v_i v_j = \ldots = \left\| \sum_{i=1}^{n} v_i \phi(x_i) \right\|_{\mathcal{H}}^2 \ge 0 \quad \forall n \in \mathbb{N}_+, v \in \mathbb{R}^n.$$

- All reproducing kernels are kernels with  $\phi(x) = k_x$ .
- We know  $\exists$  non-unique feature mappings  $\phi$  for a given kernel:

$$k(x, x') = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix}^{\top} \begin{bmatrix} x'_1 \\ x'_2 \\ x'_1 x'_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} x_1 \\ \frac{1}{\sqrt{2}} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix}^{\top} \begin{bmatrix} \frac{1}{\sqrt{2}} x'_1 \\ \frac{1}{\sqrt{2}} x'_1 \\ \frac{1}{\sqrt{2}} x'_1 \\ x'_2 \\ x'_1 x'_2 \end{bmatrix}$$

- However, the spaces implied by the above  $\phi$  choices are not rkhs.
- The Moore-Aronszajn theorem proves that, for every kernel k, there is a unique rkhs H whose reproducing kernel is k.
- ► Thus every kernel is the reproducing kernel of some rkhs.
- We will sketch a key piece of the proof of this theorem.

# Proof sketch of property 4 (Moore-Aronszajn)

- ► Given a reproducing kernel k (more generally, any p.d. k), there exists a unique (pre-) rkhs H with k as its reproducing kernel. Define k<sub>x</sub> ≜ k(·, x).
- Construct the rkhs as the completion of the span of all  $k_x$ :

$$\mathcal{H} = \left\{ f | f = \sum_{i \in \mathbb{N}} \alpha_i k_{x_i} \quad \text{ where } \alpha_i \in \mathbb{R}, x_i \in \mathcal{X} \right\},$$

with inner product

$$\left\langle \sum_{i \in \mathbb{N}} \alpha_i k_{x_i}, \sum_{j \in \mathbb{N}} \alpha_j k_{x_j} \right\rangle_{\mathcal{H}} \triangleq \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \alpha_i \alpha_j k(x_i, x_j).$$

▶ Because k is a reproducing kernel, we have  $\langle f, k_x \rangle_{\mathcal{H}} = f(x) \quad \forall f \in \mathcal{H}.$ 

► Then, for a Cauchy sequence {f<sub>n</sub>}<sub>n∈ℕ</sub> (with the fact that pointwise convergence is norm convergence in ℋ):

$$|f_n(x) - f(x)| = |\langle f_n - f, k_x \rangle_{\mathcal{H}}| \le ||f_n - f||_{\mathcal{H}} ||k_x||_{\mathcal{H}}.$$

...which shows that every Cauchy sequence converges in *H* (thus complete).
Several details omitted here; a thorough treatment is [SG12].

## A few takeaways from Moore-Aronszajn

► Given a positive definite function k : X × X → R, there exists a unique (pre-) rkhs H with k as its reproducing kernel.

- Every positive definite function is a reproducing kernel.
- $\blacktriangleright$  There is a unique rkhs  ${\cal H}$  corresponding to each positive definite function.
- Reminder: rkhs  $\mathcal{H}$  is a subspace of functions  $f : \mathcal{X} \to \mathbb{R}$ ; thus  $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ .

Administrative interlude

Review of functional analysis

Reproducing kernel Hilbert spaces

#### Mercer's theorem

What this understanding buys us

## Mercer's theorem

- Moore-Aronszajn placed no interesting conditions on  $\mathcal{X}$  (non-empty).
- When X is a compact metric space (with some metric d) and k is a continuous function on that space, Mercer's theorem allows a simpler 'constructive' understanding of rkhs.
- Again  $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is a positive definite function.
- ▶ Fact: the integral transform  $\kappa f = \int_{\mathcal{X}} k(x, u) f(u) du = g(u)$  is positive definite  $\Leftrightarrow k$  is positive definite.
- Accordingly, the eigenvalues {λ<sub>i</sub>} are positive with orthonormal eigenfunctions φ<sub>i</sub> : X → ℝ:

$$\kappa \phi_i = \int_{\mathcal{X}} k(x, u) \phi_i(u) du = \lambda_i \phi_i(x).$$

cf. the more familiar discrete case.

(Mercer's theorem): Given the eigenvalues and eigenfunctions {λ<sub>i</sub>, φ<sub>i</sub>} of the integral operator defined by k, the kernel k can be written as:

$$k(x, x') = \sum_{i \in \mathbb{N}} \lambda_i \phi_i(x) \phi_i(x'),$$

with  $L_2(\mathcal{X})$  norm convergence.

### Mercer's theorem

(Mercer's theorem): Given the eigenvalues and eigenfunctions {λ<sub>i</sub>, φ<sub>i</sub>} of the integral operator defined by k, the kernel k can be written as:

$$k(x, x') = \sum_{i \in \mathbb{N}} \lambda_i \phi_i(x) \phi_i(x'),$$

with  $L_2(\mathcal{X})$  norm convergence.

• Importantly, the rkhs corresponding to this kernel k can be shown to be:

$$\mathcal{H} = \left\{ f | f = \sum_{i \in \mathbb{N}} \alpha_i \phi_i, \quad \forall \alpha_i \in \mathbb{R} \ , \ \|f\|_{\mathcal{H}} < \infty \right\},\$$

with inner product

$$\langle f,g \rangle_{\mathcal{H}} = \left\langle \sum_{i \in \mathbb{N}} \alpha_i \phi_i, \sum_{j \in \mathbb{N}} \beta_j \phi_j \right\rangle_{\mathcal{H}} \triangleq \sum_{i \in \mathbb{N}} \frac{\alpha_i \beta_i}{\lambda_i}$$

... a weighted  $\ell_2(\mathbb{N})$  inner product.

# Why is the $\frac{1}{\lambda_i}$ factor appropriate?

► Note:  $k(x, x') = \sum_{i \in \mathbb{N}} \lambda_i \phi_i(x) \phi_i(x') = \left\langle \sum_{i \in \mathbb{N}} \sqrt{\lambda_i} \phi_i, \sum_{j \in \mathbb{N}} \sqrt{\lambda_j} \phi_j \right\rangle_{L_2}$ .

• Consider 
$$f(x) = \sum_{i \in \mathbb{N}} \alpha_i \phi_i(x)$$
:  
 $|f(x)|^2 = \sum_{i \in \mathbb{N}} |\alpha_i \phi_i(x)|^2$   
 $\leq \left(\sum_{i \in \mathbb{N}} \left|\frac{\alpha_i}{\sqrt{\lambda_i}}\right|^2\right) \left(\sum_{i \in \mathbb{N}} \left|\sqrt{\lambda_i} \phi_i(x)\right|^2\right)$   
 $= \left(\sum_{i \in \mathbb{N}} \left|\frac{\alpha_i}{\sqrt{\lambda_i}}\right|^2\right) k(x, x),$ 

which is finite if the sequence  $\left\{\frac{\alpha_i}{\sqrt{\lambda_i}}\right\}$  is square summable.

Alternatively, for the reproducing property:

$$\begin{array}{lll} \langle f, k_x \rangle_{\mathcal{H}} & = & \left\langle \sum_i \alpha_i \phi_i, \sum_j (\lambda_j \phi_j(x)) \phi_j \right\rangle_{\mathcal{H}} \\ & = & \sum_{i \in \mathbb{N}} \frac{\alpha_i \lambda_i \phi_i(x)}{\lambda_i} \\ & = & f(x). \end{array}$$

Administrative interlude

Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

## Revisit sums of kernels

- Now we understand better what a kernel actually is.
- We can now return to some of our previous claims and be more rigorous.
- ► For example, kernel algebra:
  - We said  $k = \alpha k^1 + \beta k^2$  is a kernel for  $\alpha, \beta \in \mathbb{R}_+$ .
  - We said  $k = k^1 k^2$  is a kernel.
- The sum  $k = \alpha k^1 + \beta k^2$ :
  - ► Consider  $\alpha \langle \phi^1(x), \phi^1(x') \rangle_{\mathcal{H}_1} + \beta \langle \phi^2(x), \phi^2(x') \rangle_{\mathcal{H}_2}$  in terms of all properties of an inner product:
    - $\begin{array}{ll} \mathrm{i.} & \langle f,g\rangle = \overline{\langle g,f\rangle} \ (\mathrm{...which\ implies}\ \langle f,f\rangle \in \mathbb{R}).\\ \mathrm{ii.} & \langle f,f\rangle \geq 0,\\ \mathrm{iii.}\ & \langle f,f\rangle = 0 \quad \Rightarrow \quad f=0, \end{array}$
    - $\text{iv. } \langle \gamma f + \rho g, h \rangle = \gamma \, \langle f, h \rangle + \rho \, \langle g, h \rangle.$
  - Essentially saying that k is positive definite if  $k^1$ ,  $k^2$  are pd and  $\alpha, \beta \ge 0$ .
  - If the input domains of k<sup>1</sup> and k<sup>2</sup> are the same, the resulting rkhs can be shown to be

$$\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 = \left\{ f_1 + f_2 : f_1 \in \mathcal{H}_1, f_2 \in \mathcal{H}_2 \right\},\$$

with rkhs norm:

$$\|f\|_{\mathcal{H}}^2 = \min_{f_1+f_2=f} \|f_1\|_{\mathcal{H}_1}^2 + \|f_2\|_{\mathcal{H}_2}^2.$$

### Roadmap

- Representer theorem.
- Kernel ridge regression.
- Posterior mean inference in a gp.
- ► Using the inner product (f, g)<sub>H</sub> (from Mercer) to understand the 'inconvenient fact' (re rkhs of a gp draw) from [Wah90, ch. 1].
- Kernel mean estimation.
- Kernel principal components analysis.
- More interesting kernel methods...

Administrative interlude

Review of functional analysis

Reproducing kernel Hilbert spaces

Mercer's theorem

What this understanding buys us

| [Gre13] | Arthur Gretton.<br>Introduction to rkhs, and some simple kernel algorithms.<br>Advanced Topics in Machine Learning. Lecture conducted from University College London, 2013. |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [Hei06] | Christopher Heil.<br>Banach and hilbert space review.<br>Technical Report, Georgia Tech, 2006.                                                                              |  |  |
| [Kre89] | Erwin Kreyszig.<br>Introductory functional analysis with applications, volume 81.<br>wiley New York, 1989.                                                                  |  |  |
| [Muk15] | Sayan Mukherjee.<br>Probabilistic machine learning.<br><i>Technical Report, Duke University,</i> 2015.                                                                      |  |  |
| [SC08]  | Ingo Steinwart and Andreas Christmann.<br><i>Support vector machines.</i><br>Springer Science and Business Media, 2008.                                                     |  |  |
| [SG12]  | Dino Sejdinovic and Arthur Gretton.<br>What is an rkhs?<br>2012.                                                                                                            |  |  |
| [Tao09] | Terence Tao.<br>245b, notes 5: Hilbert spaces.<br>math 245B real analysis lecture notes (https://terrytao.wordpress.com/2009/01/17/254a-notes-5-hilbert-spaces/), 2009.     |  |  |
| [TL58]  | Angus Ellis Taylor and David C Lay.<br>Introduction to functional analysis, volume 2.<br>Wiley New York, 1958.                                                              |  |  |
| [Wah90] | Grace Wahba.<br>Spline models for observational data, volume 59.<br>Siam, 1990.                                                                                             |  |  |
|         |                                                                                                                                                                             |  |  |