STAT G8325 Gaussian Processes and Kernel Methods Lecture Notes §07: Bayesian Optimization and Active Learning

John P. Cunningham

Department of Statistics Columbia University Administrative interlude

Bayesian optimization

Bayesian active learning

References

Outline

Administrative interlude

Bayesian optimization

Bayesian active learning

References

Week	Lectures	Content
Х	Oct 26	Special guest lecture by Andrew Gelman
Х	Oct 28	No lecture (Cunningham unavailable)
Х	Nov 2	No lecture (University holiday)
7	Nov 4,9	Bayesian optimization and active learning
8	Nov 9, 11	 [SLA12]; [GSW⁺15]; [HHGL11] Kernel theory: existence, reproducing kernel Hilbert spaces, etc. [Wah90, ch. 1] (intentionally light reading; work on projects)

- ▶ HW3 due end of this week.
- Lighter reading going forward.
- Transitioning into kernel methods (non gp).

Administrative interlude

Bayesian optimization

Bayesian active learning

References

Many core methods have (a few) tunable parameters.

- Many core methods have (a few) tunable parameters.
- \blacktriangleright Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

$$\begin{split} & \text{maximize}_{\alpha} \qquad y_{\alpha}(\ell,\gamma) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} w_{i} w_{j} \left(k_{\ell}(z_{i},z_{j}) + \gamma \mathbb{I}(i=j) \right) \\ & \text{subject to} \qquad \sum_{i=1}^{n} \alpha_{i} w_{i} = 0 \quad , \quad \alpha_{i} \geq 0. \end{split}$$

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

• Cross-validation to find optimal $x = [\ell, \gamma]$:

• Grid the space \mathcal{X} of reasonable parameter values $x = [\ell, \gamma]$.

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

$$\begin{split} & \text{maximize}_{\alpha} \qquad y_{\alpha}(\ell,\gamma) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} w_{i} w_{j} \left(k_{\ell}(z_{i},z_{j}) + \gamma \mathbb{I}(i=j) \right) \\ & \text{subject to} \qquad \sum_{i=1}^{n} \alpha_{i} w_{i} = 0 \quad , \quad \alpha_{i} \geq 0. \end{split}$$

- Grid the space \mathcal{X} of reasonable parameter values $x = [\ell, \gamma]$.
- ▶ Train and validate the SVM on each candidate *x_i*, producing *y_i*.

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

$$\begin{split} & \text{maximize}_{\alpha} \qquad y_{\alpha}(\ell,\gamma) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} w_{i} w_{j} \left(k_{\ell}(z_{i},z_{j}) + \gamma \mathbb{I}(i=j) \right) \\ & \text{subject to} \qquad \sum_{i=1}^{n} \alpha_{i} w_{i} = 0 \quad , \quad \alpha_{i} \geq 0. \end{split}$$

- Grid the space \mathcal{X} of reasonable parameter values $x = [\ell, \gamma]$.
- Train and validate the SVM on each candidate x_i, producing y_i.
- Choose the point x* with largest y*

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

$$\begin{split} & \text{maximize}_{\alpha} \qquad y_{\alpha}(\ell,\gamma) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} w_{i} w_{j} \left(k_{\ell}(z_{i},z_{j}) + \gamma \mathbb{I}(i=j) \right) \\ & \text{subject to} \qquad \sum_{i=1}^{n} \alpha_{i} w_{i} = 0 \quad , \quad \alpha_{i} \geq 0. \end{split}$$

- Grid the space \mathcal{X} of reasonable parameter values $x = [\ell, \gamma]$.
- Train and validate the SVM on each candidate x_i, producing y_i.
- Choose the point x^* with largest y^* (recall this is the dual).

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

$$\begin{split} & \text{maximize}_{\alpha} \qquad y_{\alpha}(\ell,\gamma) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} w_{i} w_{j} \left(k_{\ell}(z_{i},z_{j}) + \gamma \mathbb{I}(i=j) \right) \\ & \text{subject to} \qquad \sum_{i=1}^{n} \alpha_{i} w_{i} = 0 \quad , \quad \alpha_{i} \geq 0. \end{split}$$

- Grid the space \mathcal{X} of reasonable parameter values $x = [\ell, \gamma]$.
- Train and validate the SVM on each candidate x_i, producing y_i.
- Choose the point x^* with largest y^* (recall this is the dual).
- ▶ y_i expensive to evaluate

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

$$\begin{split} & \text{maximize}_{\alpha} \qquad y_{\alpha}(\ell,\gamma) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} w_{i} w_{j} \left(k_{\ell}(z_{i},z_{j}) + \gamma \mathbb{I}(i=j) \right) \\ & \text{subject to} \qquad \sum_{i=1}^{n} \alpha_{i} w_{i} = 0 \quad , \quad \alpha_{i} \geq 0. \end{split}$$

- Grid the space \mathcal{X} of reasonable parameter values $x = [\ell, \gamma]$.
- Train and validate the SVM on each candidate x_i, producing y_i.
- Choose the point x^* with largest y^* (recall this is the dual).
- ▶ y_i expensive to evaluate \rightarrow brute-force search is badly inefficient.

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

$$\begin{split} & \text{maximize}_{\alpha} \qquad y_{\alpha}(\ell,\gamma) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} w_{i} w_{j} \left(k_{\ell}(z_{i},z_{j}) + \gamma \mathbb{I}(i=j) \right) \\ & \text{subject to} \qquad \sum_{i=1}^{n} \alpha_{i} w_{i} = 0 \quad , \quad \alpha_{i} \geq 0. \end{split}$$

- Grid the space \mathcal{X} of reasonable parameter values $x = [\ell, \gamma]$.
- Train and validate the SVM on each candidate x_i, producing y_i.
- Choose the point x^* with largest y^* (recall this is the dual).
- ▶ y_i expensive to evaluate \rightarrow brute-force search is badly inefficient.
- Alternatives to brute-force are the 'art' of applied stats

- Many core methods have (a few) tunable parameters.
- Example: kernel bandwidth ℓ and slack γ in a soft-margin kernel SVM:

$$\begin{split} & \text{maximize}_{\alpha} \qquad y_{\alpha}(\ell,\gamma) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} w_{i} w_{j} \left(k_{\ell}(z_{i},z_{j}) + \gamma \mathbb{I}(i=j) \right) \\ & \text{subject to} \qquad \sum_{i=1}^{n} \alpha_{i} w_{i} = 0 \quad , \quad \alpha_{i} \geq 0. \end{split}$$

- ► Grid the space X of reasonable parameter values x = [ℓ, γ].
- Train and validate the SVM on each candidate x_i, producing y_i.
- Choose the point x^* with largest y^* (recall this is the dual).
- ▶ y_i expensive to evaluate \rightarrow brute-force search is badly inefficient.
- Alternatives to brute-force are the 'art' of applied stats \rightarrow sloppy science.

> Points y_i are noisy observations of an unknown function f to be optimized.

- Points y_i are noisy observations of an unknown function f to be optimized.
- ▶ If *f* is reasonably behaved (approximately smooth, bounded, etc)...

- Points y_i are noisy observations of an unknown function f to be optimized.
- ▶ If *f* is reasonably behaved (approximately smooth, bounded, etc)...
- Then assume $f \sim \mathcal{GP}(0,k)...$

- Points y_i are noisy observations of an unknown function f to be optimized.
- ▶ If *f* is reasonably behaved (approximately smooth, bounded, etc)...
- Then assume $f \sim \mathcal{GP}(0, k)$... a surrogate model.

- Points y_i are noisy observations of an unknown function f to be optimized.
- ▶ If *f* is reasonably behaved (approximately smooth, bounded, etc)...
- Then assume $f \sim \mathcal{GP}(0, k)...$ a surrogate model.
- Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate model f to make smarter decisions about where to evaluate the true (very expensive to evaluate) function of interest y.

- Points y_i are noisy observations of an unknown function f to be optimized.
- ▶ If *f* is reasonably behaved (approximately smooth, bounded, etc)...
- Then assume $f \sim \mathcal{GP}(0, k)...$ a surrogate model.
- Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate model f to make smarter decisions about where to evaluate the true (very expensive to evaluate) function of interest y.
- Intuitively, the gp (via the smoothness of its kernel) gives insights as to global properties of the function, notably its extrema.

- Points y_i are noisy observations of an unknown function f to be optimized.
- ▶ If *f* is reasonably behaved (approximately smooth, bounded, etc)...
- Then assume $f \sim \mathcal{GP}(0, k)...$ a surrogate model.
- Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate model f to make smarter decisions about where to evaluate the true (very expensive to evaluate) function of interest y.
- Intuitively, the gp (via the smoothness of its kernel) gives insights as to global properties of the function, notably its extrema.
- ► Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].

• Loss function: $f \sim \mathcal{GP}(0, k_{\theta})$.

- Loss function: $f \sim \mathcal{GP}(0, k_{\theta})$.
- Observations: $y_i | x_i \sim \mathcal{N}(x_i, \sigma_{\epsilon}^2)$.

- Loss function: $f \sim \mathcal{GP}(0, k_{\theta})$.
- Observations: $y_i | x_i \sim \mathcal{N}(x_i, \sigma_{\epsilon}^2)$.
- Goal: $\min_x y(x)$.

- Loss function: $f \sim \mathcal{GP}(0, k_{\theta})$.
- Observations: $y_i | x_i \sim \mathcal{N}(x_i, \sigma_{\epsilon}^2)$.
- Goal: $\min_x y(x)$.
- Key concept: cheaply (grid) search over p(f|D) to find the next x_{i+1} .

- Loss function: $f \sim \mathcal{GP}(0, k_{\theta})$.
- Observations: $y_i | x_i \sim \mathcal{N}(x_i, \sigma_{\epsilon}^2)$.
- Goal: $\min_x y(x)$.
- Key concept: cheaply (grid) search over p(f|D) to find the next x_{i+1} .
- But how to pick a good candidate from a posterior distribution?

- Loss function: $f \sim \mathcal{GP}(0, k_{\theta})$.
- Observations: $y_i | x_i \sim \mathcal{N}(x_i, \sigma_{\epsilon}^2)$.
- Goal: $\min_x y(x)$.
- Key concept: cheaply (grid) search over p(f|D) to find the next x_{i+1} .
- But how to pick a good candidate from a posterior distribution?
- This search is judged by the *acquisition function* $a : \mathcal{X} \to \mathbb{R}$:

$$x_{i+1} = \arg \max_{x} a(x|D,\theta).$$

- Loss function: $f \sim \mathcal{GP}(0, k_{\theta})$.
- Observations: $y_i | x_i \sim \mathcal{N}(x_i, \sigma_{\epsilon}^2)$.
- Goal: $\min_x y(x)$.
- Key concept: cheaply (grid) search over p(f|D) to find the next x_{i+1} .
- But how to pick a good candidate from a posterior distribution?
- This search is judged by the *acquisition function* $a : \mathcal{X} \to \mathbb{R}$:

$$x_{i+1} = \arg \max_{x} a(x|D,\theta).$$

• Critical: result depends substantially on $a(\cdot)$

- Loss function: $f \sim \mathcal{GP}(0, k_{\theta})$.
- Observations: $y_i | x_i \sim \mathcal{N}(x_i, \sigma_{\epsilon}^2)$.
- Goal: $\min_x y(x)$.
- Key concept: cheaply (grid) search over p(f|D) to find the next x_{i+1} .
- But how to pick a good candidate from a posterior distribution?
- This search is judged by the *acquisition function* $a : \mathcal{X} \to \mathbb{R}$:

$$x_{i+1} = \arg \max_{x} a(x|D,\theta).$$

• Critical: result depends substantially on $a(\cdot)$...(and the kernel hypers θ).

Minimum mean:

 $a(x|D,\theta) = -E(f(x)|D,\theta)$

Minimum mean:

$$a(x|D,\theta) = -E(f(x)|D,\theta) = -\int f(x)p(f|D,\theta)df.$$

...minimum variance also possible.

Minimum mean:

$$a(x|D,\theta) = -E(f(x)|D,\theta) = -\int f(x)p(f|D,\theta)df.$$

...minimum variance also possible.

• **Probability of improvement** (below the best so far $f(x_b)$):

$$a(x|D, \theta) = \Phi(\gamma(x)),$$
 where $\gamma(x) = \frac{f(x_b) - E(f(x)|D, \theta)}{\sqrt{Var(f(x)|D, \theta)}}$

Acquisition function: a feature of a distribution

Minimum mean:

$$a(x|D,\theta) = -E(f(x)|D,\theta) = -\int f(x)p(f|D,\theta)df.$$

...minimum variance also possible.

• **Probability of improvement** (below the best so far $f(x_b)$):

$$a(x|D,\theta) = \Phi(\gamma(x)), \qquad \text{ where } \qquad \gamma(x) = \frac{f(x_b) - E(f(x)|D,\theta)}{\sqrt{Var(f(x)|D,\theta)}}$$

Expected improvement:

$$a(x|D,\theta) = \sqrt{Var(f(x)|D,\theta)} \Big(\gamma(x)\Phi(\gamma(x)) + \mathcal{N}_{0,1}(\gamma(x))\Big).$$

Acquisition function: a feature of a distribution

Minimum mean:

$$a(x|D,\theta) = -E(f(x)|D,\theta) = -\int f(x)p(f|D,\theta)df.$$

...minimum variance also possible.

• **Probability of improvement** (below the best so far $f(x_b)$):

$$a(x|D,\theta) = \Phi(\gamma(x)), \qquad \text{ where } \qquad \gamma(x) = \frac{f(x_b) - E(f(x)|D,\theta)}{\sqrt{Var(f(x)|D,\theta)}}.$$

Expected improvement:

$$a(x|D,\theta) = \sqrt{Var(f(x)|D,\theta)} \Big(\gamma(x)\Phi(\gamma(x)) + \mathcal{N}_{0,1}(\gamma(x))\Big).$$

GP lower confidence bound:

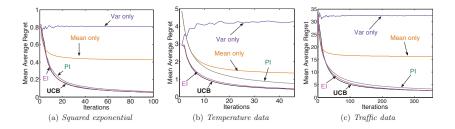
$$a(x|D,\theta) = E(f(x)|D,\theta) - \kappa \sqrt{Var(f(x)|D,\theta)}$$

▶ EI and GP-UCB are most popular.

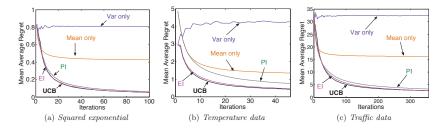
- ► EI and GP-UCB are most popular.
- ► Generally EI is empirically preferred, UCB theoretically preferred.

- ► EI and GP-UCB are most popular.
- Generally El is empirically preferred, UCB theoretically preferred.
- ► [SKKS09] proved sublinear regret bounds on GP-UCB.

- ► EI and GP-UCB are most popular.
- ► Generally El is empirically preferred, UCB theoretically preferred.
- ▶ [SKKS09] proved sublinear regret bounds on GP-UCB.
- Comparing acquisition functions:



- ► EI and GP-UCB are most popular.
- ► Generally El is empirically preferred, UCB theoretically preferred.
- ► [SKKS09] proved sublinear regret bounds on GP-UCB.
- Comparing acquisition functions:



Still others exist (e.g. entropy search [HS12]).

GP hyperparameters matter

 [SLA12] advocates integrating out gp hyperparameters:

$$\hat{a}(x|D) = \int a(x|D,\theta)p(\theta)d\theta.$$

 [SLA12] advocates integrating out gp hyperparameters:

$$\hat{a}(x|D) = \int a(x|D,\theta)p(\theta)d\theta.$$

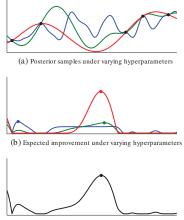
Consider the effect that a different θ can have on El...

GP hyperparameters matter

 [SLA12] advocates integrating out gp hyperparameters:

$$\hat{a}(x|D) = \int a(x|D,\theta)p(\theta)d\theta.$$

Consider the effect that a different θ can have on El...



⁽c) Integrated expected improvement

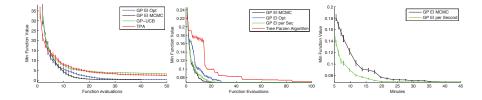
BO on Branin-Hoo and MNIST

BO on Branin-Hoo and MNIST

Branin-Hoo (left) is a standard test function with known global optima.

BO on Branin-Hoo and MNIST

- Branin-Hoo (left) is a standard test function with known global optima.
- MNIST (middle, right) is a digit classification set.



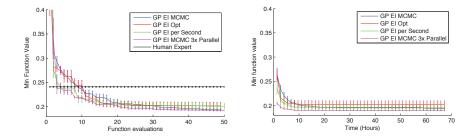
Neural networks are notoriously parameter sensitive...

- Neural networks are notoriously parameter sensitive...
- ...and costly to train and evaluate.

- Neural networks are notoriously parameter sensitive...
- …and costly to train and evaluate.
- ► This convnet has 9 hyperparameters, which [SLA12] use BO to optimize.

- Neural networks are notoriously parameter sensitive...
- ...and costly to train and evaluate.
- ▶ This convnet has 9 hyperparameters, which [SLA12] use BO to optimize.

...learning rate, four weight costs, parameters of the response function, and number of epochs (?)



Model an expensive-to-evaluate function as a gp.

- Model an expensive-to-evaluate function as a gp.
- ▶ Use the gp to make educated guesses where the optimum is.

- Model an expensive-to-evaluate function as a gp.
- Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.

- Model an expensive-to-evaluate function as a gp.
- Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.
- ▶ Note global feature: no gradients, so really not a local search method.

- Model an expensive-to-evaluate function as a gp.
- ▶ Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.
- Note global feature: no gradients, so really not a local search method. ...though this is a bit of cheating, since there is a grid.

- Model an expensive-to-evaluate function as a gp.
- ▶ Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.
- Note global feature: no gradients, so really not a local search method. ...though this is a bit of cheating, since there is a grid.
- ▶ BO works well and has a rapidly growing literature, for things like:

- Model an expensive-to-evaluate function as a gp.
- ▶ Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.
- Note global feature: no gradients, so really not a local search method. ...though this is a bit of cheating, since there is a grid.
- ▶ BO works well and has a rapidly growing literature, for things like:
 - constrained optimization

- Model an expensive-to-evaluate function as a gp.
- Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.
- Note global feature: no gradients, so really not a local search method. ...though this is a bit of cheating, since there is a grid.
- ▶ BO works well and has a rapidly growing literature, for things like:
 - constrained optimization
 - high-dimensional optimization

- Model an expensive-to-evaluate function as a gp.
- ▶ Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.
- Note global feature: no gradients, so really not a local search method. ...though this is a bit of cheating, since there is a grid.
- ▶ BO works well and has a rapidly growing literature, for things like:
 - constrained optimization
 - high-dimensional optimization
 - using deepnets instead of gp

- Model an expensive-to-evaluate function as a gp.
- ▶ Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.
- Note global feature: no gradients, so really not a local search method. ...though this is a bit of cheating, since there is a grid.
- ▶ BO works well and has a rapidly growing literature, for things like:
 - constrained optimization
 - high-dimensional optimization
 - using deepnets instead of gp
 - etc.

- Model an expensive-to-evaluate function as a gp.
- ▶ Use the gp to make educated guesses where the optimum is.
- Sometimes called *surrogate global optimization*.
- Note global feature: no gradients, so really not a local search method. ...though this is a bit of cheating, since there is a grid.
- ▶ BO works well and has a rapidly growing literature, for things like:
 - constrained optimization
 - high-dimensional optimization
 - using deepnets instead of gp
 - etc.

Some doubts remain... e.g., is BO a toy solution?

Administrative interlude

Bayesian optimization

Bayesian active learning

References

Learning the entire function

Learning the entire function

▶ BO uses a gp surrogate to find the optima of an expensive function.

Learning the entire function

- ▶ BO uses a gp surrogate to find the optima of an expensive function.
- ▶ Bayesian active learning uses a gp surrogate to learn the expensive function.

- ▶ BO uses a gp surrogate to find the optima of an expensive function.
- Bayesian active learning uses a gp surrogate to learn the expensive function. ...active learning is a redundant term for optimal experimental design.

- ▶ BO uses a gp surrogate to find the optima of an expensive function.
- Bayesian active learning uses a gp surrogate to learn the expensive function. ...active learning is a redundant term for optimal experimental design.
- ▶ Standard greedy choice is maximally to reduce posterior entropy of *f*:

$$\arg\max_{x} H(f|D) - E_{y|D} \left(H(f|y, x, D) \right)$$

- ▶ BO uses a gp surrogate to find the optima of an expensive function.
- Bayesian active learning uses a gp surrogate to learn the expensive function. ...active learning is a redundant term for optimal experimental design.
- ▶ Standard greedy choice is maximally to reduce posterior entropy of *f*:

$$\arg \max_{x} H(f|D) - E_{y|D} \left(H(f|y, x, D) \right)$$
$$= \arg \max_{x} I(f; y|x, D)$$

- ▶ BO uses a gp surrogate to find the optima of an expensive function.
- Bayesian active learning uses a gp surrogate to learn the expensive function. ...active learning is a redundant term for optimal experimental design.
- ▶ Standard greedy choice is maximally to reduce posterior entropy of *f*:

$$\arg \max_{x} H(f|D) - E_{y|D} (H(f|y, x, D))$$

=
$$\arg \max_{x} I(f; y|x, D)$$

=
$$\arg \max_{x} I(y; f|x, D)$$

- ▶ BO uses a gp surrogate to find the optima of an expensive function.
- Bayesian active learning uses a gp surrogate to learn the expensive function. ...active learning is a redundant term for optimal experimental design.
- ▶ Standard greedy choice is maximally to reduce posterior entropy of *f*:

$$\begin{aligned} \arg\max_{x} H(f|D) - E_{y|D} \left(H(f|y,x,D) \right) \\ = & \arg\max_{x} I(f;y|x,D) \\ = & \arg\max_{x} I(y;f|x,D) \\ = & \arg\max_{x} H(y|x,D) - E_{f|D} \left(H(y|x,f) \right) \end{aligned}$$

- ▶ BO uses a gp surrogate to find the optima of an expensive function.
- Bayesian active learning uses a gp surrogate to learn the expensive function. ...active learning is a redundant term for optimal experimental design.
- ▶ Standard greedy choice is maximally to reduce posterior entropy of *f*:

$$\begin{split} & \arg \max_{x} H(f|D) - E_{y|D} \left(H(f|y,x,D) \right) \\ & = & \arg \max_{x} I(f;y|x,D) \\ & = & \arg \max_{x} I(y;f|x,D) \\ & = & \arg \max_{x} H(y|x,D) - E_{f|D} \left(H(y|x,f) \right) \\ & = & \arg \max_{x} H(E_{f|D}(y|x,f)) - E_{f|D} \left(H(y|x,f) \right). \end{split}$$

- ▶ BO uses a gp surrogate to find the optima of an expensive function.
- Bayesian active learning uses a gp surrogate to learn the expensive function. ...active learning is a redundant term for optimal experimental design.
- ▶ Standard greedy choice is maximally to reduce posterior entropy of *f*:

$$\begin{aligned} \arg \max_{x} H(f|D) &- E_{y|D} \left(H(f|y, x, D) \right) \\ &= \arg \max_{x} I(f; y|x, D) \\ &= \arg \max_{x} I(y; f|x, D) \\ &= \arg \max_{x} H(y|x, D) - E_{f|D} \left(H(y|x, f) \right) \\ &= \arg \max_{x} H(E_{f|D}(y|x, f)) - E_{f|D} \left(H(y|x, f) \right). \end{aligned}$$

▶ The point x that maximally reduces the uncertainty (entropy) in f (namely H(f|D), down to $E_y(H(f|y, x, D))$, the expected result) is the point x has maximal mutual information between f(x|D) and the noisy observation y.

Recall gp classification:

 $f \sim \mathcal{GP}(0,k),$ and $y_i | f(x_i) \sim Bern(\Phi(f(x_i))).$

Recall gp classification:

 $f \sim \mathcal{GP}(0,k),$ and $y_i | f(x_i) \sim Bern(\Phi(f(x_i))).$

Our greedy choice then operates on the Bernoulli entropy:

$$h(p) = -p \log p - (1-p) \log(1-p).$$

...resulting in the greedy objective function:

$$I(f; y|x, D) = h(E_{f|D}(\Phi(f(x)))) - E_{f|D}(h(\Phi(f(x)))),$$

...which is intractable but only one dimensional, hence quickly solved.

Recall gp classification:

 $f \sim \mathcal{GP}(0,k),$ and $y_i | f(x_i) \sim Bern(\Phi(f(x_i))).$

• Our greedy choice then operates on the Bernoulli entropy:

$$h(p) = -p \log p - (1-p) \log(1-p).$$

...resulting in the greedy objective function:

$$I(f; y|x, D) = h(E_{f|D}(\Phi(f(x)))) - E_{f|D}(h(\Phi(f(x)))),$$

...which is intractable but only one dimensional, hence quickly solved.

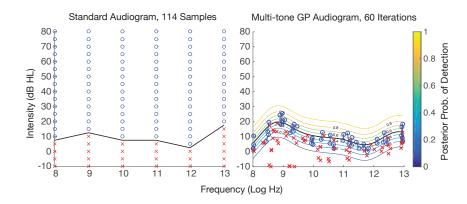
• Maximize this information gain at each step \rightarrow active learning.

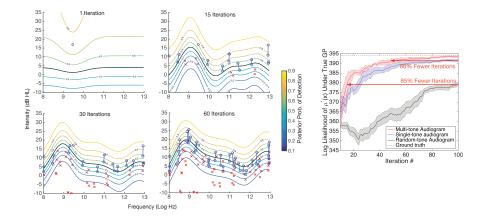
The doctor plays tones at different frequencies and amplitudes.

- The doctor plays tones at different frequencies and amplitudes.
- The patient gives a binary report (heard or not heard).

- The doctor plays tones at different frequencies and amplitudes.
- The patient gives a binary report (heard or not heard).
- ► The object of interest is the *audiogram*, a discriminability function.

- The doctor plays tones at different frequencies and amplitudes.
- The patient gives a binary report (heard or not heard).
- ▶ The object of interest is the *audiogram*, a discriminability function.
- ▶ Note: [GSW⁺15] extends to multiple simultaneous tones.





Administrative interlude

Bayesian optimization

Bayesian active learning

References

References

[GSW+15]	Jacob R Gardner, Xinyu Song, Kilian Q Weinberger, Dennis Barbour, and John P Cunningham. Psychophysical detection testing with bayesian active learning. UAI, 2015.
[HHGL11]	Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.
[HS12]	Philipp Hennig and Christian J Schuler. Entropy search for information-efficient global optimization. The Journal of Machine Learning Research, 13(1):1809–1837, 2012.
[Jon01]	Donald R Jones. A taxonomy of global optimization methods based on response surfaces. Journal of global optimization, 21(4):345-383, 2001.
[MTZ78]	Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian methods for seeking the extremum. <i>Towards Global Optimization</i> , 2(117-129):2, 1978.
[SKKS09]	Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995, 2009.
[SLA12]	Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems, pages 2951–2959, 2012.
[Wah90]	Grace Wahba. Spline models for observational data, volume 59. Siam 1990