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Progress...

Week Lectures Content

X Oct 26 Special guest lecture by Andrew Gelman
X Oct 28 No lecture (Cunningham unavailable)
X Nov 2 No lecture (University holiday)
7 Nov 4,9 Bayesian optimization and active learning

• [SLA12]; [GSW+15]; [HHGL11]
8 Nov 9, 11 Kernel theory: existence, reproducing kernel Hilbert spaces, etc.

• [Wah90, ch. 1] (intentionally light reading; work on projects)

I HW3 due end of this week.

I Lighter reading going forward.

I Transitioning into kernel methods (non gp).
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Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.
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Assumption and idea

I Points yi are noisy observations of an unknown function f to be optimized.

I If f is reasonably behaved (approximately smooth, bounded, etc)...

I Then assume f ∼ GP(0, k)... a surrogate model.

I Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate
model f to make smarter decisions about where to evaluate the true (very
expensive to evaluate) function of interest y.

I Intuitively, the gp (via the smoothness of its kernel) gives insights as to
global properties of the function, notably its extrema.

I Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].
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The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε ).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).
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Acquisition function: a feature of a distribution

I Minimum mean:

a(x|D, θ) = −E(f(x)|D, θ) = −
∫
f(x)p(f |D, θ)df.

...minimum variance also possible.

I Probability of improvement (below the best so far f(xb)):

a(x|D, θ) = Φ(γ(x)), where γ(x) =
f(xb)− E(f(x)|D, θ)√

V ar(f(x)|D, θ)
.

I Expected improvement:

a(x|D, θ) =
√
V ar(f(x)|D, θ)

(
γ(x)Φ(γ(x)) +N0,1(γ(x))

)
.

I GP lower confidence bound:

a(x|D, θ) = E(f(x)|D, θ)− κ
√
V ar(f(x)|D, θ).
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Comparing acquisition functions

I EI and GP-UCB are most popular.

I Generally EI is empirically preferred, UCB theoretically preferred.

I [SKKS09] proved sublinear regret bounds on GP-UCB.

I Comparing acquisition functions:
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I Still others exist (e.g. entropy search [HS12]).
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GP hyperparameters matter

I [SLA12] advocates integrating out
gp hyperparameters:

â(x|D) =

∫
a(x|D, θ)p(θ)dθ.

I Consider the effect that a different
θ can have on EI...

(a) Posterior samples under varying hyperparameters

(b) Expected improvement under varying hyperparameters

(c) Integrated expected improvement
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BO on Branin-Hoo and MNIST

I Branin-Hoo (left) is a standard test function with known global optima.

I MNIST (middle, right) is a digit classification set.
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BO on a three layer convnet

I Neural networks are notoriously parameter sensitive...

I ...and costly to train and evaluate.

I This convnet has 9 hyperparameters, which [SLA12] use BO to optimize.
...learning rate, four weight costs, parameters of the response function, and number of epochs (?)
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BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?
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Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.
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Active learning in a gp classification setting

I Recall gp classification:

f ∼ GP(0, k), and yi|f(xi) ∼ Bern
(
Φ(f(xi))

)
.

I Our greedy choice then operates on the Bernoulli entropy:

h(p) = −p log p− (1− p) log(1− p).

...resulting in the greedy objective function:

I(f ; y|x,D) = h(Ef |D(Φ(f(x))))− Ef |D(h(Φ(f(x)))),

...which is intractable but only one dimensional, hence quickly solved.

I Maximize this information gain at each step → active learning.
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Application: hearing tests [GSW+15]

I The doctor plays tones at different frequencies and amplitudes.

I The patient gives a binary report (heard or not heard).

I The object of interest is the audiogram, a discriminability function.

I Note: [GSW+15] extends to multiple simultaneous tones.
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