
STAT G8325
Gaussian Processes and Kernel Methods

Lecture Notes §07:
Bayesian Optimization and Active Learning

John P. Cunningham

Department of Statistics
Columbia University

Outline

Administrative interlude

Bayesian optimization

Bayesian active learning

References

Outline

Administrative interlude

Bayesian optimization

Bayesian active learning

References

Progress...

Week Lectures Content

X Oct 26 Special guest lecture by Andrew Gelman
X Oct 28 No lecture (Cunningham unavailable)
X Nov 2 No lecture (University holiday)
7 Nov 4,9 Bayesian optimization and active learning

• [SLA12]; [GSW+15]; [HHGL11]
8 Nov 9, 11 Kernel theory: existence, reproducing kernel Hilbert spaces, etc.

• [Wah90, ch. 1] (intentionally light reading; work on projects)

I HW3 due end of this week.

I Lighter reading going forward.

I Transitioning into kernel methods (non gp).

Outline

Administrative interlude

Bayesian optimization

Bayesian active learning

References

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:

I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].

I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.

I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗

(recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate

→ brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats

→ sloppy science.

Expensive evaluations

I Many core methods have (a few) tunable parameters.

I Example: kernel bandwidth ` and slack γ in a soft-margin kernel SVM:

maximizeα yα(`, γ) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjwiwj (k`(zi, zj) + γI(i = j))

subject to
n∑
i=1

αiwi = 0 , αi ≥ 0.

I Cross-validation to find optimal x = [`, γ]:
I Grid the space X of reasonable parameter values x = [`, γ].
I Train and validate the SVM on each candidate xi, producing yi.
I Choose the point x∗ with largest y∗ (recall this is the dual).

I yi expensive to evaluate → brute-force search is badly inefficient.

I Alternatives to brute-force are the ’art’ of applied stats → sloppy science.

Assumption and idea

I Points yi are noisy observations of an unknown function f to be optimized.

I If f is reasonably behaved (approximately smooth, bounded, etc)...

I Then assume f ∼ GP(0, k)... a surrogate model.

I Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate
model f to make smarter decisions about where to evaluate the true (very
expensive to evaluate) function of interest y.

I Intuitively, the gp (via the smoothness of its kernel) gives insights as to
global properties of the function, notably its extrema.

I Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].

Assumption and idea

I Points yi are noisy observations of an unknown function f to be optimized.

I If f is reasonably behaved (approximately smooth, bounded, etc)...

I Then assume f ∼ GP(0, k)... a surrogate model.

I Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate
model f to make smarter decisions about where to evaluate the true (very
expensive to evaluate) function of interest y.

I Intuitively, the gp (via the smoothness of its kernel) gives insights as to
global properties of the function, notably its extrema.

I Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].

Assumption and idea

I Points yi are noisy observations of an unknown function f to be optimized.

I If f is reasonably behaved (approximately smooth, bounded, etc)...

I Then assume f ∼ GP(0, k)...

a surrogate model.

I Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate
model f to make smarter decisions about where to evaluate the true (very
expensive to evaluate) function of interest y.

I Intuitively, the gp (via the smoothness of its kernel) gives insights as to
global properties of the function, notably its extrema.

I Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].

Assumption and idea

I Points yi are noisy observations of an unknown function f to be optimized.

I If f is reasonably behaved (approximately smooth, bounded, etc)...

I Then assume f ∼ GP(0, k)... a surrogate model.

I Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate
model f to make smarter decisions about where to evaluate the true (very
expensive to evaluate) function of interest y.

I Intuitively, the gp (via the smoothness of its kernel) gives insights as to
global properties of the function, notably its extrema.

I Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].

Assumption and idea

I Points yi are noisy observations of an unknown function f to be optimized.

I If f is reasonably behaved (approximately smooth, bounded, etc)...

I Then assume f ∼ GP(0, k)... a surrogate model.

I Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate
model f to make smarter decisions about where to evaluate the true (very
expensive to evaluate) function of interest y.

I Intuitively, the gp (via the smoothness of its kernel) gives insights as to
global properties of the function, notably its extrema.

I Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].

Assumption and idea

I Points yi are noisy observations of an unknown function f to be optimized.

I If f is reasonably behaved (approximately smooth, bounded, etc)...

I Then assume f ∼ GP(0, k)... a surrogate model.

I Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate
model f to make smarter decisions about where to evaluate the true (very
expensive to evaluate) function of interest y.

I Intuitively, the gp (via the smoothness of its kernel) gives insights as to
global properties of the function, notably its extrema.

I Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].

Assumption and idea

I Points yi are noisy observations of an unknown function f to be optimized.

I If f is reasonably behaved (approximately smooth, bounded, etc)...

I Then assume f ∼ GP(0, k)... a surrogate model.

I Bayesian optimization (BO): Exploit a comparatively cheap gp surrogate
model f to make smarter decisions about where to evaluate the true (very
expensive to evaluate) function of interest y.

I Intuitively, the gp (via the smoothness of its kernel) gives insights as to
global properties of the function, notably its extrema.

I Fairly old idea [MTZ78, Jon01]; more recently [SKKS09, SLA12].

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·)

...(and the kernel hypers θ).

The model

I Loss function: f ∼ GP(0, kθ).

I Observations: yi|xi ∼ N (xi, σ
2
ε).

I Goal: minx y(x).

I Key concept: cheaply (grid) search over p(f |D) to find the next xi+1.

I But how to pick a good candidate from a posterior distribution?

I This search is judged by the acquisition function a : X → R:

xi+1 = arg max
x

a (x|D, θ) .

I Critical: result depends substantially on a(·) ...(and the kernel hypers θ).

Acquisition function: a feature of a distribution

I Minimum mean:

a(x|D, θ) = −E(f(x)|D, θ) = −
∫
f(x)p(f |D, θ)df.

...minimum variance also possible.

I Probability of improvement (below the best so far f(xb)):

a(x|D, θ) = Φ(γ(x)), where γ(x) =
f(xb)− E(f(x)|D, θ)√

V ar(f(x)|D, θ)
.

I Expected improvement:

a(x|D, θ) =
√
V ar(f(x)|D, θ)

(
γ(x)Φ(γ(x)) +N0,1(γ(x))

)
.

I GP lower confidence bound:

a(x|D, θ) = E(f(x)|D, θ)− κ
√
V ar(f(x)|D, θ).

Acquisition function: a feature of a distribution

I Minimum mean:

a(x|D, θ) = −E(f(x)|D, θ)

= −
∫
f(x)p(f |D, θ)df.

...minimum variance also possible.

I Probability of improvement (below the best so far f(xb)):

a(x|D, θ) = Φ(γ(x)), where γ(x) =
f(xb)− E(f(x)|D, θ)√

V ar(f(x)|D, θ)
.

I Expected improvement:

a(x|D, θ) =
√
V ar(f(x)|D, θ)

(
γ(x)Φ(γ(x)) +N0,1(γ(x))

)
.

I GP lower confidence bound:

a(x|D, θ) = E(f(x)|D, θ)− κ
√
V ar(f(x)|D, θ).

Acquisition function: a feature of a distribution

I Minimum mean:

a(x|D, θ) = −E(f(x)|D, θ) = −
∫
f(x)p(f |D, θ)df.

...minimum variance also possible.

I Probability of improvement (below the best so far f(xb)):

a(x|D, θ) = Φ(γ(x)), where γ(x) =
f(xb)− E(f(x)|D, θ)√

V ar(f(x)|D, θ)
.

I Expected improvement:

a(x|D, θ) =
√
V ar(f(x)|D, θ)

(
γ(x)Φ(γ(x)) +N0,1(γ(x))

)
.

I GP lower confidence bound:

a(x|D, θ) = E(f(x)|D, θ)− κ
√
V ar(f(x)|D, θ).

Acquisition function: a feature of a distribution

I Minimum mean:

a(x|D, θ) = −E(f(x)|D, θ) = −
∫
f(x)p(f |D, θ)df.

...minimum variance also possible.

I Probability of improvement (below the best so far f(xb)):

a(x|D, θ) = Φ(γ(x)), where γ(x) =
f(xb)− E(f(x)|D, θ)√

V ar(f(x)|D, θ)
.

I Expected improvement:

a(x|D, θ) =
√
V ar(f(x)|D, θ)

(
γ(x)Φ(γ(x)) +N0,1(γ(x))

)
.

I GP lower confidence bound:

a(x|D, θ) = E(f(x)|D, θ)− κ
√
V ar(f(x)|D, θ).

Acquisition function: a feature of a distribution

I Minimum mean:

a(x|D, θ) = −E(f(x)|D, θ) = −
∫
f(x)p(f |D, θ)df.

...minimum variance also possible.

I Probability of improvement (below the best so far f(xb)):

a(x|D, θ) = Φ(γ(x)), where γ(x) =
f(xb)− E(f(x)|D, θ)√

V ar(f(x)|D, θ)
.

I Expected improvement:

a(x|D, θ) =
√
V ar(f(x)|D, θ)

(
γ(x)Φ(γ(x)) +N0,1(γ(x))

)
.

I GP lower confidence bound:

a(x|D, θ) = E(f(x)|D, θ)− κ
√
V ar(f(x)|D, θ).

Acquisition function: a feature of a distribution

I Minimum mean:

a(x|D, θ) = −E(f(x)|D, θ) = −
∫
f(x)p(f |D, θ)df.

...minimum variance also possible.

I Probability of improvement (below the best so far f(xb)):

a(x|D, θ) = Φ(γ(x)), where γ(x) =
f(xb)− E(f(x)|D, θ)√

V ar(f(x)|D, θ)
.

I Expected improvement:

a(x|D, θ) =
√
V ar(f(x)|D, θ)

(
γ(x)Φ(γ(x)) +N0,1(γ(x))

)
.

I GP lower confidence bound:

a(x|D, θ) = E(f(x)|D, θ)− κ
√
V ar(f(x)|D, θ).

Comparing acquisition functions

I EI and GP-UCB are most popular.

I Generally EI is empirically preferred, UCB theoretically preferred.

I [SKKS09] proved sublinear regret bounds on GP-UCB.

I Comparing acquisition functions:

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only

PI

EI

UCB

(a) Squared exponential

0 10 20 30 400

1

2

3

4

5

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only
PI

EI
UCB

(b) Temperature data

0 100 200 3000

5

10

15

20

25

30

35

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

EI

PI

Var only
Mean only

UCB

(c) Traffic data

I Still others exist (e.g. entropy search [HS12]).

Comparing acquisition functions

I EI and GP-UCB are most popular.

I Generally EI is empirically preferred, UCB theoretically preferred.

I [SKKS09] proved sublinear regret bounds on GP-UCB.

I Comparing acquisition functions:

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only

PI

EI

UCB

(a) Squared exponential

0 10 20 30 400

1

2

3

4

5

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only
PI

EI
UCB

(b) Temperature data

0 100 200 3000

5

10

15

20

25

30

35

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

EI

PI

Var only
Mean only

UCB

(c) Traffic data

I Still others exist (e.g. entropy search [HS12]).

Comparing acquisition functions

I EI and GP-UCB are most popular.

I Generally EI is empirically preferred, UCB theoretically preferred.

I [SKKS09] proved sublinear regret bounds on GP-UCB.

I Comparing acquisition functions:

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only

PI

EI

UCB

(a) Squared exponential

0 10 20 30 400

1

2

3

4

5

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only
PI

EI
UCB

(b) Temperature data

0 100 200 3000

5

10

15

20

25

30

35

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

EI

PI

Var only
Mean only

UCB

(c) Traffic data

I Still others exist (e.g. entropy search [HS12]).

Comparing acquisition functions

I EI and GP-UCB are most popular.

I Generally EI is empirically preferred, UCB theoretically preferred.

I [SKKS09] proved sublinear regret bounds on GP-UCB.

I Comparing acquisition functions:

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only

PI

EI

UCB

(a) Squared exponential

0 10 20 30 400

1

2

3

4

5

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only
PI

EI
UCB

(b) Temperature data

0 100 200 3000

5

10

15

20

25

30

35

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

EI

PI

Var only
Mean only

UCB

(c) Traffic data

I Still others exist (e.g. entropy search [HS12]).

Comparing acquisition functions

I EI and GP-UCB are most popular.

I Generally EI is empirically preferred, UCB theoretically preferred.

I [SKKS09] proved sublinear regret bounds on GP-UCB.

I Comparing acquisition functions:

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only

PI

EI

UCB

(a) Squared exponential

0 10 20 30 400

1

2

3

4

5

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only
PI

EI
UCB

(b) Temperature data

0 100 200 3000

5

10

15

20

25

30

35

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

EI

PI

Var only
Mean only

UCB

(c) Traffic data

I Still others exist (e.g. entropy search [HS12]).

Comparing acquisition functions

I EI and GP-UCB are most popular.

I Generally EI is empirically preferred, UCB theoretically preferred.

I [SKKS09] proved sublinear regret bounds on GP-UCB.

I Comparing acquisition functions:

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only

PI

EI

UCB

(a) Squared exponential

0 10 20 30 400

1

2

3

4

5

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

Var only

Mean only
PI

EI
UCB

(b) Temperature data

0 100 200 3000

5

10

15

20

25

30

35

Iterations

M
ea

n
Av

er
ag

e
R

eg
re

t

EI

PI

Var only
Mean only

UCB

(c) Traffic data

I Still others exist (e.g. entropy search [HS12]).

GP hyperparameters matter

I [SLA12] advocates integrating out
gp hyperparameters:

â(x|D) =

∫
a(x|D, θ)p(θ)dθ.

I Consider the effect that a different
θ can have on EI...

(a) Posterior samples under varying hyperparameters

(b) Expected improvement under varying hyperparameters

(c) Integrated expected improvement

GP hyperparameters matter

I [SLA12] advocates integrating out
gp hyperparameters:

â(x|D) =

∫
a(x|D, θ)p(θ)dθ.

I Consider the effect that a different
θ can have on EI...

(a) Posterior samples under varying hyperparameters

(b) Expected improvement under varying hyperparameters

(c) Integrated expected improvement

GP hyperparameters matter

I [SLA12] advocates integrating out
gp hyperparameters:

â(x|D) =

∫
a(x|D, θ)p(θ)dθ.

I Consider the effect that a different
θ can have on EI...

(a) Posterior samples under varying hyperparameters

(b) Expected improvement under varying hyperparameters

(c) Integrated expected improvement

GP hyperparameters matter

I [SLA12] advocates integrating out
gp hyperparameters:

â(x|D) =

∫
a(x|D, θ)p(θ)dθ.

I Consider the effect that a different
θ can have on EI...

(a) Posterior samples under varying hyperparameters

(b) Expected improvement under varying hyperparameters

(c) Integrated expected improvement

BO on Branin-Hoo and MNIST

I Branin-Hoo (left) is a standard test function with known global optima.

I MNIST (middle, right) is a digit classification set.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

M
in

 F
un

ct
io

n
Va

lu
e

Function evaluations

GP EI Opt
GP EI MCMC
GP−UCB
TPA

0 20 40 60 80 100

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
in

 F
un

ct
io

n
Va

lu
e

Function Evaluations

GP EI MCMC
GP EI Opt
GP EI per Sec
Tree Parzen Algorithm

5 10 15 20 25 30 35 40 45

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
in

 F
un

ct
io

n
Va

lu
e

Minutes

GP EI MCMC
GP EI per Second

BO on Branin-Hoo and MNIST

I Branin-Hoo (left) is a standard test function with known global optima.

I MNIST (middle, right) is a digit classification set.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

M
in

 F
un

ct
io

n
Va

lu
e

Function evaluations

GP EI Opt
GP EI MCMC
GP−UCB
TPA

0 20 40 60 80 100

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
in

 F
un

ct
io

n
Va

lu
e

Function Evaluations

GP EI MCMC
GP EI Opt
GP EI per Sec
Tree Parzen Algorithm

5 10 15 20 25 30 35 40 45

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
in

 F
un

ct
io

n
Va

lu
e

Minutes

GP EI MCMC
GP EI per Second

BO on Branin-Hoo and MNIST

I Branin-Hoo (left) is a standard test function with known global optima.

I MNIST (middle, right) is a digit classification set.

0 10 20 30 40 50
0

5

10

15

20

25

30

35

M
in

 F
un

ct
io

n
Va

lu
e

Function evaluations

GP EI Opt
GP EI MCMC
GP−UCB
TPA

0 20 40 60 80 100

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
in

 F
un

ct
io

n
Va

lu
e

Function Evaluations

GP EI MCMC
GP EI Opt
GP EI per Sec
Tree Parzen Algorithm

5 10 15 20 25 30 35 40 45

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
in

 F
un

ct
io

n
Va

lu
e

Minutes

GP EI MCMC
GP EI per Second

BO on a three layer convnet

I Neural networks are notoriously parameter sensitive...

I ...and costly to train and evaluate.

I This convnet has 9 hyperparameters, which [SLA12] use BO to optimize.
...learning rate, four weight costs, parameters of the response function, and number of epochs (?)

0 10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

M
in

 F
un

ct
io

n
Va

lu
e

Function evaluations

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel
Human Expert

0 10 20 30 40 50 60 70

0.2

0.25

0.3

0.35

0.4

M
in

 fu
nc

tio
n

va
lu

e

Time (Hours)

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel

BO on a three layer convnet

I Neural networks are notoriously parameter sensitive...

I ...and costly to train and evaluate.

I This convnet has 9 hyperparameters, which [SLA12] use BO to optimize.
...learning rate, four weight costs, parameters of the response function, and number of epochs (?)

0 10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

M
in

 F
un

ct
io

n
Va

lu
e

Function evaluations

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel
Human Expert

0 10 20 30 40 50 60 70

0.2

0.25

0.3

0.35

0.4

M
in

 fu
nc

tio
n

va
lu

e

Time (Hours)

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel

BO on a three layer convnet

I Neural networks are notoriously parameter sensitive...

I ...and costly to train and evaluate.

I This convnet has 9 hyperparameters, which [SLA12] use BO to optimize.
...learning rate, four weight costs, parameters of the response function, and number of epochs (?)

0 10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

M
in

 F
un

ct
io

n
Va

lu
e

Function evaluations

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel
Human Expert

0 10 20 30 40 50 60 70

0.2

0.25

0.3

0.35

0.4

M
in

 fu
nc

tio
n

va
lu

e

Time (Hours)

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel

BO on a three layer convnet

I Neural networks are notoriously parameter sensitive...

I ...and costly to train and evaluate.

I This convnet has 9 hyperparameters, which [SLA12] use BO to optimize.

...learning rate, four weight costs, parameters of the response function, and number of epochs (?)

0 10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

M
in

 F
un

ct
io

n
Va

lu
e

Function evaluations

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel
Human Expert

0 10 20 30 40 50 60 70

0.2

0.25

0.3

0.35

0.4

M
in

 fu
nc

tio
n

va
lu

e

Time (Hours)

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel

BO on a three layer convnet

I Neural networks are notoriously parameter sensitive...

I ...and costly to train and evaluate.

I This convnet has 9 hyperparameters, which [SLA12] use BO to optimize.
...learning rate, four weight costs, parameters of the response function, and number of epochs (?)

0 10 20 30 40 50

0.2

0.25

0.3

0.35

0.4

M
in

 F
un

ct
io

n
Va

lu
e

Function evaluations

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel
Human Expert

0 10 20 30 40 50 60 70

0.2

0.25

0.3

0.35

0.4

M
in

 fu
nc

tio
n

va
lu

e

Time (Hours)

GP EI MCMC
GP EI Opt
GP EI per Second
GP EI MCMC 3x Parallel

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.

...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:

I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization

I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization

I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp

I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

BO summary

I Model an expensive-to-evaluate function as a gp.

I Use the gp to make educated guesses where the optimum is.

I Sometimes called surrogate global optimization.

I Note global feature: no gradients, so really not a local search method.
...though this is a bit of cheating, since there is a grid.

I BO works well and has a rapidly growing literature, for things like:
I constrained optimization
I high-dimensional optimization
I using deepnets instead of gp
I etc.

I Some doubts remain... e.g., is BO a toy solution?

Outline

Administrative interlude

Bayesian optimization

Bayesian active learning

References

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.

...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Learning the entire function

I BO uses a gp surrogate to find the optima of an expensive function.

I Bayesian active learning uses a gp surrogate to learn the expensive function.
...active learning is a redundant term for optimal experimental design.

I Standard greedy choice is maximally to reduce posterior entropy of f :

arg max
x

H(f |D)− Ey|D (H(f |y, x,D))

= arg max
x

I(f ; y|x,D)

= arg max
x

I(y; f |x,D)

= arg max
x

H(y|x,D)− Ef |D (H(y|x, f))

= arg max
x

H(Ef |D(y|x, f))− Ef |D (H(y|x, f)) .

I The point x that maximally reduces the uncertainty (entropy) in f (namely
H(f |D), down to Ey (H(f |y, x,D)), the expected result) is the point x has
maximal mutual information between f(x|D) and the noisy observation y.

Active learning in a gp classification setting

I Recall gp classification:

f ∼ GP(0, k), and yi|f(xi) ∼ Bern
(
Φ(f(xi))

)
.

I Our greedy choice then operates on the Bernoulli entropy:

h(p) = −p log p− (1− p) log(1− p).

...resulting in the greedy objective function:

I(f ; y|x,D) = h(Ef |D(Φ(f(x))))− Ef |D(h(Φ(f(x)))),

...which is intractable but only one dimensional, hence quickly solved.

I Maximize this information gain at each step → active learning.

Active learning in a gp classification setting

I Recall gp classification:

f ∼ GP(0, k), and yi|f(xi) ∼ Bern
(
Φ(f(xi))

)
.

I Our greedy choice then operates on the Bernoulli entropy:

h(p) = −p log p− (1− p) log(1− p).

...resulting in the greedy objective function:

I(f ; y|x,D) = h(Ef |D(Φ(f(x))))− Ef |D(h(Φ(f(x)))),

...which is intractable but only one dimensional, hence quickly solved.

I Maximize this information gain at each step → active learning.

Active learning in a gp classification setting

I Recall gp classification:

f ∼ GP(0, k), and yi|f(xi) ∼ Bern
(
Φ(f(xi))

)
.

I Our greedy choice then operates on the Bernoulli entropy:

h(p) = −p log p− (1− p) log(1− p).

...resulting in the greedy objective function:

I(f ; y|x,D) = h(Ef |D(Φ(f(x))))− Ef |D(h(Φ(f(x)))),

...which is intractable but only one dimensional, hence quickly solved.

I Maximize this information gain at each step → active learning.

Active learning in a gp classification setting

I Recall gp classification:

f ∼ GP(0, k), and yi|f(xi) ∼ Bern
(
Φ(f(xi))

)
.

I Our greedy choice then operates on the Bernoulli entropy:

h(p) = −p log p− (1− p) log(1− p).

...resulting in the greedy objective function:

I(f ; y|x,D) = h(Ef |D(Φ(f(x))))− Ef |D(h(Φ(f(x)))),

...which is intractable but only one dimensional, hence quickly solved.

I Maximize this information gain at each step → active learning.

Application: hearing tests [GSW+15]

I The doctor plays tones at different frequencies and amplitudes.

I The patient gives a binary report (heard or not heard).

I The object of interest is the audiogram, a discriminability function.

I Note: [GSW+15] extends to multiple simultaneous tones.

Frequency (Log Hz)

In
te

ns
ity

 (d
B

H
L)

Po
st

er
io

r P
ro

b.
 o

f D
et

ec
tio

n

Standard Audiogram, 114 Samples Multi-tone GP Audiogram, 60 Iterations

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

0.2

0.2
0.2

0.4

0.4
0.4

0.6

0.6
0.6

0.8

0.8
0.8

0

0.2

0.4

0.6

0.8

1

Application: hearing tests [GSW+15]

I The doctor plays tones at different frequencies and amplitudes.

I The patient gives a binary report (heard or not heard).

I The object of interest is the audiogram, a discriminability function.

I Note: [GSW+15] extends to multiple simultaneous tones.

Frequency (Log Hz)

In
te

ns
ity

 (d
B

H
L)

Po
st

er
io

r P
ro

b.
 o

f D
et

ec
tio

n

Standard Audiogram, 114 Samples Multi-tone GP Audiogram, 60 Iterations

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

0.2

0.2
0.2

0.4

0.4
0.4

0.6

0.6
0.6

0.8

0.8
0.8

0

0.2

0.4

0.6

0.8

1

Application: hearing tests [GSW+15]

I The doctor plays tones at different frequencies and amplitudes.

I The patient gives a binary report (heard or not heard).

I The object of interest is the audiogram, a discriminability function.

I Note: [GSW+15] extends to multiple simultaneous tones.

Frequency (Log Hz)

In
te

ns
ity

 (d
B

H
L)

Po
st

er
io

r P
ro

b.
 o

f D
et

ec
tio

n

Standard Audiogram, 114 Samples Multi-tone GP Audiogram, 60 Iterations

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

0.2

0.2
0.2

0.4

0.4
0.4

0.6

0.6
0.6

0.8

0.8
0.8

0

0.2

0.4

0.6

0.8

1

Application: hearing tests [GSW+15]

I The doctor plays tones at different frequencies and amplitudes.

I The patient gives a binary report (heard or not heard).

I The object of interest is the audiogram, a discriminability function.

I Note: [GSW+15] extends to multiple simultaneous tones.

Frequency (Log Hz)

In
te

ns
ity

 (d
B

H
L)

Po
st

er
io

r P
ro

b.
 o

f D
et

ec
tio

n

Standard Audiogram, 114 Samples Multi-tone GP Audiogram, 60 Iterations

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

0.2

0.2
0.2

0.4

0.4
0.4

0.6

0.6
0.6

0.8

0.8
0.8

0

0.2

0.4

0.6

0.8

1

Application: hearing tests [GSW+15]

I The doctor plays tones at different frequencies and amplitudes.

I The patient gives a binary report (heard or not heard).

I The object of interest is the audiogram, a discriminability function.

I Note: [GSW+15] extends to multiple simultaneous tones.

Frequency (Log Hz)

In
te

ns
ity

 (d
B

H
L)

Po
st

er
io

r P
ro

b.
 o

f D
et

ec
tio

n

Standard Audiogram, 114 Samples Multi-tone GP Audiogram, 60 Iterations

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

8 9 10 11 12 13
-10

0
10
20
30
40
50
60
70
80

0.2

0.2
0.2

0.4

0.4
0.4

0.6

0.6
0.6

0.8

0.8
0.8

0

0.2

0.4

0.6

0.8

1

Application: hearing tests [GSW+15]

Frequency (Log Hz)

In
te

ns
ity

 (d
B

H
L)

Po
st

er
io

r P
ro

b.
 o

f D
et

ec
tio

n

8 9 10 11 12 13
-10

-5
0
5

10
15
20
25
30
35

0.
2

0.2

0.2

0.2

0.
4

0.4

0.4

0.4
0.

6

0.6

0.6

0.6

0.
8

0.8

0.8

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

8 9 10 11 12 13
-10

-5
0
5

10
15
20
25
30
35

0.2 0.2

0.2

0.2

0.
4

0.4

0.4

0.4

0.
6 0.6

0.6

0.6

0.
8

0.8

0.8
0.8

8 9 10 11 12 13
-10

-5
0
5

10
15
20
25
30
35

0.
2

0.2

0.2

0.2

0.
4

0.4

0.4

0.4

0.
6

0.6

0.6

0.6

0.
8

0.8

0.8

0.8

8 9 10 11 12 13
-10

-5
0
5

10
15
20
25
30
35

0.2

0.2

0.2

0.2 0.2

0.4

0.4

0.4
0.4

0.6

0.6

0.6
0.6

0.
8

0.8

0.8

0.8

8 9 10 11 12 13
-10

-5
0
5

10
15
20
25
30
35

0.4
0.4 0.4

0.6

0.6 0.6

0.8

30 Iterations 60 Iterations

1 Iteration 15 Iterations

Outline

Administrative interlude

Bayesian optimization

Bayesian active learning

References

References

[GSW+15] Jacob R Gardner, Xinyu Song, Kilian Q Weinberger, Dennis Barbour, and John P Cunningham.
Psychophysical detection testing with bayesian active learning.
UAI, 2015.

[HHGL11] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel.
Bayesian active learning for classification and preference learning.
arXiv preprint arXiv:1112.5745, 2011.

[HS12] Philipp Hennig and Christian J Schuler.
Entropy search for information-efficient global optimization.
The Journal of Machine Learning Research, 13(1):1809–1837, 2012.

[Jon01] Donald R Jones.
A taxonomy of global optimization methods based on response surfaces.
Journal of global optimization, 21(4):345–383, 2001.

[MTZ78] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas.
The application of bayesian methods for seeking the extremum.
Towards Global Optimization, 2(117-129):2, 1978.

[SKKS09] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger.
Gaussian process optimization in the bandit setting: No regret and experimental design.
arXiv preprint arXiv:0912.3995, 2009.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning algorithms.
In Advances in neural information processing systems, pages 2951–2959, 2012.

[Wah90] Grace Wahba.
Spline models for observational data, volume 59.
Siam, 1990.

	 Administrative interlude
	 Bayesian optimization
	 Bayesian active learning
	 References

