STAT G8325

Gaussian Processes and Kernel Methods Lecture Notes §06: Speed and Scaling Part 2

John P. Cunningham

Department of Statistics
Columbia University

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

Outline

Administrative interlude

```
Practical realities of kernel methods
Reminder: conjugate gradients
Generic special structures
Kronecker structures in multiple dimensions [GSC15]
Markov structured gp and SDEs
Model selection for structured gp
```


Progress...

Week	Lectures	Content
5	Oct 12,14	Speed and scaling part 1: reduced-rank processes
6	Oct 19, 21	Speed and scaling part 2: special structure - [GSC15]; [RW06, ch 4.3.2]
7	Oct 21, 26	Bayesian optimization and active learning - [SLA12]; [GSW ${ }^{+}$15]; [HHGL11]
8		Special GP topics: dynamical systems, quadrature, ode solvers, etc.

- I have met or scheduled with almost everyone.
- If we are not scheduled, email me immediately after class today.
- HW3 to be posted, but will be outlining your project.

Outline

```
Administrative interlude
Practical realities of kernel methods
Reminder: conjugate gradients
Generic special structures
Kronecker structures in multiple dimensions [GSC15]
Markov structured gp and SDEs
Model selection for structured gp
```


Fundamental fact about nonparametric techniques

- The number of parameters grows with the amount of data.
- In gp (and mostly in kernel methods):

$$
y^{*} \mid y \sim \mathcal{N}\left(K_{y^{*} y} K_{y y}^{-1}\left(y-m_{y}\right), \quad K_{y^{*} y^{*}}-K_{y^{*} y} K_{y y}^{-1} K_{y^{*} y}^{\top}\right)
$$

- Storing and inverting $K_{y y} \in \mathbb{R}^{n \times n}$ costs $\mathcal{O}\left(n^{2}\right)$ and $\mathcal{O}\left(n^{3}\right)$.
- Practically speaking, these operations become impossible fast:

Outline

```
Administrative interlude
Practical realities of kernel methods
Reminder: conjugate gradients
Generic special structures
Kronecker structures in multiple dimensions [GSC15]
Markov structured gp and SDEs
Model selection for structured gp
```


Solving linear systems

- GP inference boils down to solving a few linear systems in $K_{y y} \in \mathbb{S}_{++}$:

$$
y^{*} \mid y \sim \mathcal{N}\left(K_{y^{*} y} K_{y y}^{-1} y \quad, \quad K_{y^{*} y^{*}}-K_{y^{*} y} K_{y y}^{-1} K_{y^{*} y}^{\top}\right)
$$

- There are four ways to solve $K^{-1} y$ (equivalently, $K^{-1} k\left(X, x^{*}\right)$):
- invert K and store $K^{-1} \rightarrow \mathcal{O}\left(n^{3}\right)$... almost always the wrong choice.
- directly factorize full K (e.g., cholesky) and solve $\rightarrow \mathcal{O}\left(n^{3}\right)$
- (directly factorize if K sparse and solve $\rightarrow \quad<\mathcal{O}\left(n^{3}\right)$)
- iteratively solve if K has special structure $\rightarrow \ll \mathcal{O}\left(n^{3}\right)$.
- Iterative solutions typically rely on the conjugate gradients method.
- Essential idea: Note that $K^{-1} y$ is the solution to:

$$
\arg \min _{z} \phi(z)=\frac{1}{2} z^{\top} K z-y^{\top} z+w
$$

- with gradient $\nabla_{z} \phi=K z-y=0 \rightarrow z=K^{-1} y$.
- Gradient steps $\left(z^{(r+1)}=z^{(r)}-\alpha^{(r)} \nabla_{z} \phi\right)$ involve forward multiplications $K z$.

Conjugate gradients

- Gradient descent is very slow.
- Newton's method is fast but requires Hessian inversion.

Why is Newton's nonsensical here?

- Conjugate gradient takes better gradient steps in ϕ by noticing:

$$
\begin{aligned}
\phi(z)-\phi\left(z^{*}\right) & =\frac{1}{2} z^{\top} K z-y^{\top} z+w-\frac{1}{2} z^{* \top} K z^{*}+y^{\top} z^{*}-w \\
& =\frac{1}{2}\left(z-z^{*}\right)^{\top} K\left(z-z^{*}\right) \\
& =\frac{1}{2}\left\|z-z^{*}\right\|_{K}^{2}
\end{aligned}
$$

...second line follows from $y=K z^{*}$.

- and thus takes "conjugate" gradient steps in this Mahalanobis distance.
- Further details are rather dense, but what results is a black box...

Conjugate gradients

Algorithm 1 The celebrated conjugate gradients (simplest form)

```
    1: Input: \(K \succ 0, y\), initial value \(z\)
    2: \(r=y-K z\)
    \(v=r\)
    \(\delta_{\text {new }}=r^{\top} r\)
    : while not converged
    6: \(q=K v\)
    \(\alpha=\frac{\delta_{n e w}}{v^{\top} q}\)
    \(z=z+\alpha v\)
        \(r=r-\alpha q\)
        \(\delta_{o l d}=\delta_{\text {new }}\)
        \(\delta_{\text {new }}=r^{\top} r\)
        \(v=r+\frac{\delta_{\text {new }}}{\delta_{\text {old }}} v\)
```

- Very important: only forward multiplications $q=K v$!

Conjugate gradients

- Very important: only forward multiplications $q=K v$!
- In theory this converges in n steps for $K \in \mathbb{R}^{n \times n} \rightarrow \mathcal{O}\left(n^{3}\right)$
- However, CG often converges in much fewer than n steps:
- condition number of matrix $\kappa(K)$,
- number of distinct eigenvalues (or clustered),
- tolerance of convergence.
- More important: if K has special structure such that products $K v$ are fast...
- Then total cost of $K^{-1} y$ can be $\mathcal{O}\left(n^{2}\right), \mathcal{O}(n \log n), \ldots$.
- CG is one fundamental approach to scaling gp with special structure.

Outline

```
Administrative interlude
Practical realities of kernel methods
Reminder: conjugate gradients
Generic special structures
Kronecker structures in multiple dimensions [GSC15]
Markov structured gp and SDEs
Model selection for structured gp
```


Common special structures that exist

- Generally, special structure in K can take on many forms:
- sparse ...random sparsity is very uncommon in kernel methods
- banded ...think triangle kernel (not square)
- low rank plus diagonalthink degenerate kernels
- RBF ...surprisingly enough
- Toeplitz ...think evenly spaced inputs
- Note: these are kernel choices and/or input point choices.
- Then, the actual cost of a forward multiply $K v$ is:
- (sparse: $\left.\#\left\{(i, j): K_{i j} \neq 0\right\}\right)$
- banded: $\mathcal{O}(n k)$
- low rank plus diagonal: $\mathcal{O}(n m)$ (cf. inducing points!)
- RBF: (complicated, uses multipole methods)
- Toeplitz ...let's discuss this very common case
- CG is general but sometimes overkill.
...e.g. rank one plus diagonal \rightarrow Woodbury formula is easier.

Toeplitz matrices

- Toeplitz \rightarrow hugely important and well studied matrices of the form:

$$
K=\left[\begin{array}{ccccc}
k(0) & k(-1) & k(-2) & \ldots & k(-(n-1)) \\
k(1) & k(0) & k(-1) & & k(-(n-2)) \\
k(2) & k(1) & k(0) & & \vdots \\
\vdots & & & \ddots & \\
k(n-1) & & & & k(0)
\end{array}\right]
$$

- Colloquially, Toeplitz matrices are striped (equal along diagonals).
- What would a gp need to have a Toeplitz K ?
- ...a stationary kernel k, and evenly spaced input points $x_{1}, \ldots, x_{n} \in \mathbb{R}$.
- Is this limited? ...yes, but time series with uniform measurements abound.

Exploiting Toeplitz structure

$$
K=\left[\begin{array}{ccccc}
k(0) & k(-1) & k(-2) & \ldots & k(-(n-1)) \\
k(1) & k(0) & k(-1) & & k(-(n-2)) \\
k(2) & k(1) & k(0) & & \vdots \\
\vdots & & & \ddots & \\
k(n-1) & & & & k(0)
\end{array}\right]
$$

- Note K has only $\mathcal{O}(n)$ distinct elements \rightarrow storage $\ll \mathcal{O}\left(n^{2}\right)$.
- By symmetry we know $K_{i j}=k(i-j)=k(j-i)=K_{j i}$, so we have a vector $k \in \mathbb{R}^{n}$ such that:

$$
K=\left[\begin{array}{ccccc}
k_{0} & k_{1} & k_{2} & \ldots & k_{n-1} \\
k_{1} & k_{0} & k_{1} & & k_{n-2} \\
k_{2} & k_{1} & k_{0} & & \vdots \\
\vdots & & & \ddots & \\
k_{n-1} & & & & k_{0}
\end{array}\right]
$$

- But what about runtime?

Exploiting Toeplitz structure

$$
K=\left[\begin{array}{ccccc}
k_{0} & k_{1} & k_{2} & \ldots & k_{n-1} \\
k_{1} & k_{0} & k_{1} & & k_{n-2} \\
k_{2} & k_{1} & k_{0} & & \vdots \\
\vdots & & & \ddots & \\
k_{n-1} & & & & k_{0}
\end{array}\right]
$$

- Notice K above looks almost like a (discrete) convolution:

$$
(c * v)_{j}=\sum_{i=-n}^{n} c_{j-i} v_{i}
$$

- But without the wraparound... $K_{i, 1} \neq K_{i-1, n-1}$, aka $k_{n-i} \neq k_{i}$.
- Idea: embed K into a circulant matrix $C \ldots$

Exploiting Toeplitz structure

- Idea: embed K into a circulant matrix $C \ldots$

$$
C=\left[\begin{array}{ccc}
K & 0 & \mathrm{flip}(K) \\
0 & 0 & 0 \\
\mathrm{flip}(K) & 0 & K
\end{array}\right],
$$

- where C is determined by the first row:

$$
\left[\begin{array}{lll}
k & 0 & \mathrm{flip}(k)
\end{array}\right]=\left[\begin{array}{llllllllll}
k_{0} & k_{1} & \ldots & k_{n-1} & \ldots & \ldots & k_{n-1} & \ldots & k_{2} & k_{1}
\end{array}\right]
$$

- $C \in \mathbb{R}^{(2 n-1) \times(2 n-1)}$ is a circulant matrix.
- Now we do have a discrete convolution:

$$
\left[\begin{array}{c}
K v \\
\text { (junk })
\end{array}\right]=C\left[\begin{array}{l}
v \\
0
\end{array}\right]=C v^{\prime}=\left(c * v^{\prime}\right)_{j}=\sum_{i=-n}^{n} c_{j-i} v_{i}^{\prime} .
$$

- Thus, $K v=$ the first n elements of $C v^{\prime}=\mathcal{F}^{-1}\left(\mathcal{F}(c) \cdot \mathcal{F}\left(v^{\prime}\right)\right)$.
- ...which is $\mathcal{O}(n \log n)$ time, by using the fast fourier transform!
- In practice clever zero padding (0 above) can greatly improve the scaling.

Exploiting Toeplitz structure... popping back up the stack

- CG turns $K^{-1} y$ into an often small number of products $K v$ (say m of them).
- Toeplitz structure reduces the inherent complexity of K to a vector k.
- Embedding K into a circulant matrix C makes $K v$ (part of) a convolution.
- The fft accomplishes this product in $\mathcal{O}(n \log n)$ time.
- Result:
- Storage complexity: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}(n)$.
- Runtime complexity: $\mathcal{O}\left(n^{3}\right) \rightarrow \mathcal{O}(m n \log n)$.
- Note: this method is exact (cf $\S 05$)... and widely used [CSS08].

Outline

```
Administrative interlude
Practical realities of kernel methods
Reminder: conjugate gradients
Generic special structures
Kronecker structures in multiple dimensions [GSC15]
Markov structured gp and SDEs
Model selection for structured gp
```


GP in multiple dimensions

- Recall multidimensional gp and their common kernels:

$$
k=\sigma_{f}^{2} \exp \left\{-\sum_{d=1}^{D} \frac{1}{2 \ell_{d}^{2}}\left(t_{i}^{d}-t_{j}^{d}\right)^{2}\right\}
$$

- Notice this is a product structure $k=\prod_{d} k_{d}$.

Implied Kronecker structure

- When all points X lie on a grid, product kernels factorize:

$$
k=\prod_{d} k_{d} \quad \leftrightarrow \quad K=K_{1} \otimes K_{2} \otimes \ldots \otimes K_{D} \quad \leftrightarrow \quad K=\otimes_{d} K_{d}
$$

- Say each dimension of the grid has $m=n^{\frac{1}{D}}$ points.
- Then $n=10^{6}$ points is only three matrices $K_{d} \in \mathbb{R}^{100 \times 100}$.
- So what? (aka some facts about Kronecker matrices):
- $K^{-1}=\otimes_{d} K_{d}^{-1}$.
- $K=Q \Lambda Q^{\top} \leftrightarrow \quad Q=\otimes_{d} Q_{d}$ (and same for Λ).
- and others...

Implied Kronecker structure

- Most importantly (the "Kronecker trick"):

$$
\begin{aligned}
K v & =\left(\otimes_{d} K_{d}\right) v \\
& =\operatorname{vec}\left(K_{D} V\left(\otimes_{d=1}^{D-1} K_{d}\right)^{\top}\right) \\
& =\operatorname{vec}\left(\left[K_{1} \ldots\left[A_{D-1}\left[K_{D} B V\right]^{\top}\right]^{\top}\right]^{\top}\right) .
\end{aligned}
$$

- Here $V \in \mathbb{R}^{n^{\frac{1}{D} \times n^{D-1} D}}$ is such that $v=\operatorname{vec}(V)$,
- ...and $[K V]^{\top}=$ reshape $\left((K V)^{\top}\right)$.
- Result:
- Storage complexity: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}\left(D n^{2} D\right)$.
- Runtime complexity: $\mathcal{O}\left(n^{3}\right) \rightarrow \mathcal{O}\left(m n^{D+1} D\right)$.
- Again this method is exact! (cf $\S 05$)

Empirical results

- Reminder: gridded data are not unusual (images, movies...)
- Empirical results of this grid kronecker method:

- Note some additional fun is had for an incomplete grid; see [GSC15].

Outline

```
Administrative interlude
Practical realities of kernel methods
Reminder: conjugate gradients
Generic special structures
Kronecker structures in multiple dimensions [GSC15]
```

Markov structured gp and SDEs

Model selection for structured gp

Some things we know

- Many of us will have seen discrete time linear dynamical systems:

$$
\begin{aligned}
f_{t+1} & =A f_{t}+\xi_{t} \quad \text { where } \quad f_{t} \in \mathbb{R}^{p} \quad, \quad \xi_{t} \sim \mathcal{N}(0, \Xi) . \\
y_{t} & =C f_{t}+\epsilon_{t} \quad \text { where } \quad y_{t} \in \mathbb{R}^{q}, \quad \epsilon_{t} \sim \mathcal{N}(0, \Psi) .
\end{aligned}
$$

- for $t=1, \ldots, n$. To make this feel like a gp, set $p=q=1, C=I$.
- The point: this has simplifying Markov structure.
- Kalman filter (message passing, etc.) infers $p(f \mid y)$ in $\mathcal{O}(n) \ll \mathcal{O}\left(n^{3}\right)$.
- ...but this model is all jointly linear gaussian, so it is (almost) a gp.
- The continous time (one-dimensional) case:

$$
\frac{d f(t)}{d t}=\alpha f_{t}+\epsilon_{t}
$$

- This is a gp...

Derivatives of gp

- Differentiation is a linear operator: $\frac{d}{d t}(a f(t)+b g(t))=a \frac{d}{d t} f(t)+b \frac{d}{d t} g(t)$.
- Thus $f^{\prime}(t)=\frac{d}{d t} f(t)$ is also gaussian $\mathcal{N}\left(0, \frac{d^{2}}{d t^{2}} k(t, t)\right)$, leading to:

$$
E\left(f^{\prime} f^{\prime \top}\right)=E\left(\frac{d}{d t} f\left(\frac{d}{d t} f\right)^{\top}\right)=\frac{d}{d t} K \frac{d}{d t}^{\top}
$$

- Thus f^{\prime} is also a gp, and is jointly gaussian with f. Consider SE kernel:

Gauss-markov processes

- Using this joint gaussianity, we return to our Ids:

$$
\frac{d f(t)}{d t}=\alpha f_{t}+\epsilon_{t} .
$$

- or more generally, the $m^{\text {th }}$ order gauss-markov process:

$$
\frac{d^{m} f(t)}{d t^{m}}+\alpha_{m-1} \frac{d^{m-1} f(t)}{d t^{m-1}}+\ldots+\alpha_{1} \frac{d f(t)}{d t}+\alpha_{0} f_{t}=\epsilon_{t} .
$$

- Here ϵ_{t} is a white noise gp (i.e. $k_{\epsilon}=\epsilon \delta\left(t_{i}, t_{j}\right)$).
- Taking the fourier transform:

$$
\sum_{k=0}^{m} \alpha_{k} \frac{d^{k} f(t)}{d t^{k}}=\epsilon_{t} . \quad \Leftrightarrow \quad \sum_{k=0}^{m} \alpha_{k}(2 \pi i \omega)^{k} F(\omega)=\epsilon
$$

- Thus, f has with fourier transform:

$$
F(\omega)=\frac{\epsilon}{\sum_{k=0}^{m} \alpha_{k}(2 \pi i \omega)^{k}}
$$

Gauss-markov processes

- Thus, f has with fourier transform:

$$
F(\omega)=\frac{\epsilon}{\sum_{k=0}^{m} \alpha_{k}(2 \pi i \omega)^{k}}
$$

- Put differently, the draw $f(t)$ is now a filtered white noise draw:

$$
f(t)=\epsilon(t) * h(t) \quad \text { where } \quad h(t)=\mathcal{F}^{-1}\left(\frac{1}{\sum_{k=0}^{m} \alpha_{k}(2 \pi i \omega)^{k}}\right)(t)
$$

- which implies that $f \sim \mathcal{G P}(0, k)$, with:

$$
k(\tau)=h(\tau) * k_{\epsilon}(\tau) * h(-\tau) \quad \Leftrightarrow \quad S(\omega)=\frac{\epsilon}{\left|\sum_{k=0}^{m} \alpha_{k}(2 \pi i \omega)^{k}\right|^{2}}
$$

- Thus, any kernel with $S(\omega)$ (above) corresponds to a markov gp!
- So what: we can use message passing to infer $p(f \mid y)$ in linear time...

Generality of gauss-markov processes

- Remember Matérn kernels:

$$
k(r)=\sigma_{f}^{2} \frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} B_{\nu}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)
$$

- $\nu, \ell>0$, modified Bessel function B_{ν}.

- The spectral density of a Matérn kernel:

$$
S(\omega)=\frac{\sigma_{f}^{2} 2 \sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)(2 \nu)^{\nu}}{\Gamma(\nu) \ell^{2 \nu}} \frac{1}{\left(\frac{2 \nu}{\ell^{2}}+\omega^{2}\right)^{\nu+\frac{1}{2}}} .
$$

- which is a constant times an inverse squared polynomial \rightarrow a gmp!

Generality of gauss-markov processes

- The spectral density of a Matérn kernel:

$$
\begin{aligned}
S(\omega) & =\frac{\sigma_{f}^{2} 2 \sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)(2 \nu)^{\nu}}{\Gamma(\nu) \ell^{2 \nu}} \frac{1}{\left(\frac{2 \nu}{\ell^{2}}+\omega^{2}\right)^{\nu+\frac{1}{2}}} \\
& =\epsilon \frac{1}{\left(\frac{\sqrt{2 \nu}}{\ell}+i \omega\right)^{-\left(\nu+\frac{1}{2}\right)}\left(\frac{\sqrt{2 \nu}}{\ell}-i \omega\right)^{-\left(\nu+\frac{1}{2}\right)}} \\
& =\epsilon \frac{1}{H(\omega) H(\omega)^{*}}
\end{aligned}
$$

- from this for of $H(\omega)$ one can extract the values α_{k} in the original gmp.
- $\mathcal{O}(n)$ approximations result from $m^{\text {th }}$ order gmp approximation kernels... more on this, and a SE example in [Saa12].

Empirical results

- Empirical results of this gmp approximation method:

- Note some extra steps with backfitting for additive kernels; see [GSC15].

Outline

```
Administrative interlude
Practical realities of kernel methods
Reminder: conjugate gradients
Generic special structures
Kronecker structures in multiple dimensions [GSC15]
Markov structured gp and SDEs
```

Model selection for structured gp

Model selection

- Note we have exclusively focused on $K^{-1} y$:

$$
y^{*} \mid y \sim \mathcal{N}\left(K_{y^{*} y} K_{y y}^{-1}\left(y-m_{y}\right) \quad, \quad K_{y^{*} y^{*}}-K_{y^{*} y} K_{y y}^{-1} K_{y^{*} y}^{\top}\right)
$$

- What about model selection? Recall:

$$
\log (p(y \mid \theta))=-\frac{1}{2}(y-m)^{\top} K_{\theta}^{-1}(y-m)-\frac{1}{2} \log \left|K_{\theta}\right|-\frac{n}{2} \log (2 \pi) .
$$

- We haven't dealt with $\frac{1}{2} \log \left|K_{\theta}\right|$ (nor its gradients).
- Many interesting log determinant approximations. See [GSC15].
- (also an interesting project; see project idea sheet for further references).

References

[CSS08]	John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast gaussian process methods for point process intensity estimation. In Proceedings of the 25th international conference on Machine learning, pages 192-199. ACM, 2008.
[GSC15]	Elad Gilboa, Yunus Saatçi, and John P Cunningham. Scaling multidimensional inference for structured gaussian processes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(2):424-436, 2015.
$\left[\mathrm{GSW}^{+}{ }^{\text {15 }}\right.$]	Jacob R Gardner, Xinyu Song, Kilian Q Weinberger, Dennis Barbour, and John P Cunningham. Psychophysical detection testing with bayesian active learning. UAI, 2015.
[HHGL11]	Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.
[RW06]	C. E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, 2006.
[Saa12]	Yunus Saatçi. Scalable inference for structured Gaussian process models. PhD thesis, University of Cambridge, 2012.
[She94]	Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without the agonizing pain, 1994.
[SLA12]	Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems, pages 2951-2959, 2012.
$[\mathrm{SMSL}+03]$	Ercan Solak, Roderick Murray-Smith, William E Leithead, Douglas J Leith, and Carl Edward Rasmussen. Derivative observations in gaussian process models of dynamic systems. 2003.

