
STAT G8325
Gaussian Processes and Kernel Methods

Lecture Notes §06: Speed and Scaling Part 2

John P. Cunningham

Department of Statistics
Columbia University

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

Progress...

Week Lectures Content

5 Oct 12,14 Speed and scaling part 1: reduced-rank processes
6 Oct 19, 21 Speed and scaling part 2: special structure

• [GSC15]; [RW06, ch 4.3.2]
7 Oct 21, 26 Bayesian optimization and active learning

• [SLA12]; [GSW+15]; [HHGL11]
8 Special GP topics: dynamical systems, quadrature, ode solvers, etc.

I I have met or scheduled with almost everyone.

I If we are not scheduled, email me immediately after class today.

I HW3 to be posted, but will be outlining your project.

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

Fundamental fact about nonparametric techniques

I The number of parameters grows with the amount of data.

I In gp (and mostly in kernel methods):

y∗|y ∼ N
(
Ky∗yK

−1
yy (y −my) , Ky∗y∗ −Ky∗yK

−1
yy K

>
y∗y

)
I Storing and inverting Kyy ∈ Rn×n costs O(n2) and O(n3).

I Practically speaking, these operations become impossible fast:

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

Solving linear systems

I GP inference boils down to solving a few linear systems in Kyy ∈ S++:

y∗|y ∼ N
(
Ky∗yK

−1
yy y , Ky∗y∗ −Ky∗yK

−1
yy K

>
y∗y

)
I There are four ways to solve K−1y (equivalently, K−1k(X,x∗)):

I invert K and store K−1 → O(n3)... almost always the wrong choice.
I directly factorize full K (e.g., cholesky) and solve → O(n3)
I (directly factorize if K sparse and solve → < O(n3))
I iteratively solve if K has special structure → � O(n3).

I Iterative solutions typically rely on the conjugate gradients method.

I Essential idea: Note that K−1y is the solution to:

arg min
z
φ(z) =

1

2
z>Kz − y>z + w.

I with gradient ∇zφ = Kz − y = 0→ z = K−1y.

I Gradient steps (z(r+1) = z(r)−α(r)∇zφ) involve forward multiplications Kz.

Conjugate gradients

I Gradient descent is very slow.

I Newton’s method is fast but requires Hessian inversion.
Why is Newton’s nonsensical here?

I Conjugate gradient takes better gradient steps in φ by noticing:

φ(z)− φ(z∗) =
1

2
z>Kz − y>z + w − 1

2
z∗>Kz∗ + y>z∗ − w

=
1

2
(z − z∗)>K(z − z∗)

=
1

2
||z − z∗||2K ,

...second line follows from y = Kz∗.

I and thus takes “conjugate” gradient steps in this Mahalanobis distance.

I Further details are rather dense, but what results is a black box...

Conjugate gradients

Algorithm 1 The celebrated conjugate gradients (simplest form)

1: Input: K � 0, y, initial value z
2: r = y −Kz
3: v = r
4: δnew = r>r
5: while not converged
6: q = Kv
7: α = δnew

v>q
8: z = z + αv
9: r = r − αq

10: δold = δnew
11: δnew = r>r
12: v = r + δnew

δold
v

...from [She94].

I Very important: only forward multiplications q = Kv!

Conjugate gradients

I Very important: only forward multiplications q = Kv!

I In theory this converges in n steps for K ∈ Rn×n → O(n3)
Why?

I However, CG often converges in much fewer than n steps:
I condition number of matrix κ(K),
I number of distinct eigenvalues (or clustered),
I tolerance of convergence.

I More important: if K has special structure such that products Kv are fast...

I Then total cost of K−1y can be O(n2),O(n log n),

I CG is one fundamental approach to scaling gp with special structure.

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

Common special structures that exist

I Generally, special structure in K can take on many forms:
I sparse ...random sparsity is very uncommon in kernel methods
I banded ...think triangle kernel (not square)
I low rank plus diagonalthink degenerate kernels
I RBF ...surprisingly enough
I Toeplitz ...think evenly spaced inputs

I Note: these are kernel choices and/or input point choices.

I Then, the actual cost of a forward multiply Kv is:
I (sparse: #{(i, j) : Kij 6= 0})
I banded: O(nk)
I low rank plus diagonal: O(nm) (cf. inducing points!)
I RBF: (complicated, uses multipole methods)
I Toeplitz ...let’s discuss this very common case

I CG is general but sometimes overkill.
...e.g. rank one plus diagonal → Woodbury formula is easier.

Toeplitz matrices

I Toeplitz → hugely important and well studied matrices of the form:

K =


k(0) k(−1) k(−2) . . . k(−(n− 1))
k(1) k(0) k(−1) k(−(n− 2))

k(2) k(1) k(0)
...

...
. . .

k(n− 1) k(0)


I Colloquially, Toeplitz matrices are striped (equal along diagonals).

I What would a gp need to have a Toeplitz K?

I ...a stationary kernel k, and evenly spaced input points x1, ..., xn ∈ R.

I Is this limited? ...yes, but time series with uniform measurements abound.

Exploiting Toeplitz structure

K =


k(0) k(−1) k(−2) . . . k(−(n− 1))
k(1) k(0) k(−1) k(−(n− 2))

k(2) k(1) k(0)
...

...
. . .

k(n− 1) k(0)


I Note K has only O(n) distinct elements → storage � O(n2).

I By symmetry we know Kij = k(i− j) = k(j − i) = Kji, so we have a vector
k ∈ Rn such that:

K =


k0 k1 k2 . . . kn−1

k1 k0 k1 kn−2

k2 k1 k0

...
...

. . .

kn−1 k0


I But what about runtime?

Exploiting Toeplitz structure

K =


k0 k1 k2 . . . kn−1

k1 k0 k1 kn−2

k2 k1 k0

...
...

. . .

kn−1 k0


I Notice K above looks almost like a (discrete) convolution:

(c ∗ v)j =

n∑
i=−n

cj−ivi

I But without the wraparound... Ki,1 6= Ki−1,n−1, aka kn−i 6= ki.

I Idea: embed K into a circulant matrix C...

Exploiting Toeplitz structure

I Idea: embed K into a circulant matrix C...

C =

 K 0 flip(K)
0 0 0

flip(K) 0 K

 ,
I where C is determined by the first row:[

k 0 flip(k)
]

=
[
k0 k1 . . . kn−1 . . . 0 . . . kn−1 . . . k2 k1

]
I C ∈ R(2n−1)×(2n−1) is a circulant matrix.

I Now we do have a discrete convolution:[
Kv

(junk)

]
= C

[
v
0

]
= Cv′ = (c ∗ v′)j =

n∑
i=−n

cj−iv
′
i.

I Thus, Kv = the first n elements of Cv′ = F−1 (F(c) · F(v′)).

I ...which is O(n log n) time, by using the fast fourier transform!

I In practice clever zero padding (0 above) can greatly improve the scaling.

Exploiting Toeplitz structure... popping back up the stack

I CG turns K−1y into an often small number of products Kv (say m of them).

I Toeplitz structure reduces the inherent complexity of K to a vector k.

I Embedding K into a circulant matrix C makes Kv (part of) a convolution.

I The fft accomplishes this product in O(n log n) time.

I Result:

I Storage complexity: O(n2)→ O(n).

I Runtime complexity: O(n3)→ O(mn logn).

I Note: this method is exact (cf §05)... and widely used [CSS08].

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

GP in multiple dimensions

I Recall multidimensional gp and their common kernels:

k = σ2
f exp

{
−

D∑
d=1

1

2`2d
(tdi − tdj)2

}

I Notice this is a product structure k =
∏
d kd.

Implied Kronecker structure

I When all points X lie on a grid, product kernels factorize:

k =
∏
d

kd ↔ K = K1 ⊗K2 ⊗ ...⊗KD ↔ K = ⊗dKd.

I Say each dimension of the grid has m = n
1
D points.

I Then n = 106 points is only three matrices Kd ∈ R100×100.

I So what? (aka some facts about Kronecker matrices):
I K−1 = ⊗dK

−1
d .

I K = QΛQ> ↔ Q = ⊗dQd (and same for Λ).
I and others...

Implied Kronecker structure

I Most importantly (the “Kronecker trick”):

Kv = (⊗dKd) v

= vec
(
KDV

(
⊗D−1
d=1 Kd

)>)
= vec

([
K1...

[
AD−1 [KDBV]

>
]>]>)

.

I Here V ∈ Rn
1
D
×nD−1D

is such that v = vec(V),

I ...and [KV]> = reshape
(
(KV)>

)
.

I Result:

I Storage complexity: O(n2)→ O(Dn2D).

I Runtime complexity: O(n3)→ O(mnD+1D).

I Again this method is exact! (cf §05)

Empirical results

I Reminder: gridded data are not unusual (images, movies...)

I Empirical results of this grid kronecker method:

I Note some additional fun is had for an incomplete grid; see [GSC15].

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

Some things we know

I Many of us will have seen discrete time linear dynamical systems:

ft+1 = Aft + ξt where ft ∈ Rp , ξt ∼ N (0,Ξ).

yt = Cft + εt where yt ∈ Rq , εt ∼ N (0,Ψ).

I for t = 1, ..., n. To make this feel like a gp, set p = q = 1, C = I.

I The point: this has simplifying Markov structure.

I Kalman filter (message passing, etc.) infers p(f |y) in O(n)� O(n3).

I ...but this model is all jointly linear gaussian, so it is (almost) a gp.

I The continous time (one-dimensional) case:

df(t)

dt
= αft + εt.

I This is a gp...

Derivatives of gp

I Differentiation is a linear operator: ddt (af(t) + bg(t)) = a ddtf(t) + b ddtg(t).

I Thus f ′(t) = d
dtf(t) is also gaussian N (0, d

2

dt2 k(t, t)), leading to:

E
(
f ′f ′>

)
= E

(
d

dt
f

(
d

dt
f

)>)
=

d

dt
K
d

dt

>

I Thus f ′ is also a gp, and is jointly gaussian with f . Consider SE kernel:

−3 −2 −1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

distance

co
va

ria
nc

e

cov(y,y)
cov(ω,y)
cov(ω,ω)

[SMSL+03]

Gauss-markov processes

I Using this joint gaussianity, we return to our lds:

df(t)

dt
= αft + εt.

I or more generally, the mth order gauss-markov process:

dmf(t)

dtm
+ αm−1

dm−1f(t)

dtm−1
+ . . .+ α1

df(t)

dt
+ α0ft = εt.

I Here εt is a white noise gp (i.e. kε = εδ(ti, tj)).
I Taking the fourier transform:

m∑
k=0

αk
dkf(t)

dtk
= εt. ⇔

m∑
k=0

αk(2πiω)kF (ω) = ε

I Thus, f has with fourier transform:

F (ω) =
ε∑m

k=0 αk(2πiω)k

Gauss-markov processes

I Thus, f has with fourier transform:

F (ω) =
ε∑m

k=0 αk(2πiω)k

I Put differently, the draw f(t) is now a filtered white noise draw:

f(t) = ε(t) ∗ h(t) where h(t) = F−1

(
1∑m

k=0 αk(2πiω)k

)
(t),

I which implies that f ∼ GP(0, k), with:

k(τ) = h(τ) ∗ kε(τ) ∗ h(−τ) ⇔ S(ω) =
ε

|
∑m
k=0 αk(2πiω)k|2

I Thus, any kernel with S(ω) (above) corresponds to a markov gp!

I So what: we can use message passing to infer p(f |y) in linear time...

Generality of gauss-markov processes

I Remember Matérn kernels:

k(r) = σ2
f

21−ν

Γ(ν)

(√
2νr

`

)ν
Bν

(√
2νr

`

)

I ν, ` > 0, modified Bessel function Bν .

0 1 2 30

0.2

0.4

0.6

0.8

1

input distance, r

co
va

ria
nc

e,
 k

(r)

=1/2
=2

5 0 5

2

0

2

input, x

ou
tp

ut
, f

(x
)

I The spectral density of a Matérn kernel:

S(ω) =
σ2
f2
√
πΓ(ν + 1

2)(2ν)ν

Γ(ν)`2ν
1(

2ν
`2 + ω2

)ν+ 1
2

.

I which is a constant times an inverse squared polynomial → a gmp!

Generality of gauss-markov processes

I The spectral density of a Matérn kernel:

S(ω) =
σ2
f2
√
πΓ(ν + 1

2)(2ν)ν

Γ(ν)`2ν
1(

2ν
`2

+ ω2
)ν+1

2

.

= ε
1(√

2ν
` + iω

)−(ν+1
2
) (√

2ν
` − iω

)−(ν+1
2
)

= ε
1

H(ω)H(ω)∗

I from this for of H(ω) one can extract the values αk in the original gmp.

I O(n) approximations result from mth order gmp approximation kernels...
more on this, and a SE example in [Saa12].

Empirical results

I Empirical results of this gmp approximation method:

I Note some extra steps with backfitting for additive kernels; see [GSC15].

Outline

Administrative interlude

Practical realities of kernel methods

Reminder: conjugate gradients

Generic special structures

Kronecker structures in multiple dimensions [GSC15]

Markov structured gp and SDEs

Model selection for structured gp

Model selection

I Note we have exclusively focused on K−1y:

y∗|y ∼ N
(
Ky∗yK

−1
yy (y −my) , Ky∗y∗ −Ky∗yK

−1
yy K

>
y∗y

)
I What about model selection? Recall:

log (p(y|θ)) = −1

2
(y −m)>K−1

θ (y −m)− 1

2
log |Kθ| −

n

2
log(2π).

I We haven’t dealt with 1
2 log |Kθ| (nor its gradients).

I Many interesting log determinant approximations. See [GSC15].

I (also an interesting project; see project idea sheet for further references).

References

[CSS08] John P Cunningham, Krishna V Shenoy, and Maneesh Sahani.
Fast gaussian process methods for point process intensity estimation.
In Proceedings of the 25th international conference on Machine learning, pages 192–199. ACM, 2008.

[GSC15] Elad Gilboa, Yunus Saatçi, and John P Cunningham.
Scaling multidimensional inference for structured gaussian processes.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(2):424–436, 2015.

[GSW+15] Jacob R Gardner, Xinyu Song, Kilian Q Weinberger, Dennis Barbour, and John P Cunningham.
Psychophysical detection testing with bayesian active learning.
UAI, 2015.

[HHGL11] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel.
Bayesian active learning for classification and preference learning.
arXiv preprint arXiv:1112.5745, 2011.

[RW06] C. E. Rasmussen and C.K.I. Williams.
Gaussian Processes for Machine Learning.
MIT Press, Cambridge, 2006.

[Saa12] Yunus Saatçi.
Scalable inference for structured Gaussian process models.
PhD thesis, University of Cambridge, 2012.

[She94] Jonathan Richard Shewchuk.
An introduction to the conjugate gradient method without the agonizing pain, 1994.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning algorithms.
In Advances in neural information processing systems, pages 2951–2959, 2012.

[SMSL+03] Ercan Solak, Roderick Murray-Smith, William E Leithead, Douglas J Leith, and Carl Edward Rasmussen.
Derivative observations in gaussian process models of dynamic systems.
2003.

	 Administrative interlude
	 Practical realities of kernel methods
	 Reminder: conjugate gradients
	 Generic special structures
	 Kronecker structures in multiple dimensions gilboa2015scaling
	 Markov structured gp and SDEs
	 Model selection for structured gp

