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Progress...

Week Lectures Content
5 Oct 12,14 Speed and scaling part 1: reduced-rank processes
6 Oct 19, 21 Speed and scaling part 2: special structure
e [GSC15]; [RWO06, ch 4.3.2]
7 Oct 21, 26 Bayesian optimization and active learning

e [SLA12]; [GSWT15]; [HHGL11]
Special GP topics: dynamical systems, quadrature, ode solvers, etc.

» | have met or scheduled with almost everyone.
» If we are not scheduled, email me immediately after class today.

» HWS3 to be posted, but will be outlining your project.
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Fundamental fact about nonparametric techniques

v

v

v

v

The number of parameters grows with the amount of data.

In gp (and mostly in kernel methods):

y*|y NN(Ky*yKy_yl(y — my) 5 K

—17-T
yry* Ky*yKyy Ky*y)

Storing and inverting K, € R"*" costs O(n?) and O(n?).

Practically speaking, these operations become impossible fast:

—— Additive-LA
—FIC
—IVM

SVM
——Full-GP

10°
Input Size (N)

Runtime (s)

—— GP-grid
= = = GP-grid spherical
——Full-GP

Input Size (N)
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Solving linear systems

> GP inference boils down to solving a few linear systems in K, € S, ;:

* 17T
U ly ~ N (K ey Ky s Kyeye = Koy KUK L)

v

There are four ways to solve K ~'y (equivalently, K ~'k(X,z*)):
> invert K and store K~' — O(n?)... almost always the wrong choice.
> directly factorize full K (e.g., cholesky) and solve — O(n?)
> (directly factorize if K sparse and solve — < O(n?))
> iteratively solve if K has special structure — < O(n?).

v

Iterative solutions typically rely on the conjugate gradients method.

v

Essential idea: Note that K~y is the solution to:

1
argmin ¢(z) = §ZTKZ —y'z +w.
z

> with gradient V¢ = Kz —y =0 — z = K~ ly.

v

Gradient steps (z("1) = 2(") —a("'V,¢) involve forward multiplications K 2.



Conjugate gradients

> Gradient descent is very slow.

» Newton's method is fast but requires Hessian inversion.

Why is Newton's nonsensical here?

» Conjugate gradient takes better gradient steps in ¢ by noticing:

62)—0(=") = 2Kz -y i bw— TR 4y
1
= i(z—z*)TK(z—z*)

1 2
= Sl =2l
...second line follows from y = Kz™.
» and thus takes “conjugate” gradient steps in this Mahalanobis distance.

» Further details are rather dense, but what results is a black box...



Conjugate gradients

Algorithm 1 The celebrated conjugate gradients (simplest form)

Input: K > 0,y, initial value z
r=y— Kz
v=r
Snew =T 17
while not converged
q=Kv
z=z+av
r=7r—aq
6old = 5new
Spow =T 17
v=r-+ %v

XN R

o e
N P o

...from [She94].
> Very important: only forward multiplications ¢ = Kwv!



Conjugate gradients

v

Very important: only forward multiplications ¢ = Kv!

v

In theory this converges in n steps for K € R"*™ — O(n?)

Why?
» However, CG often converges in much fewer than n steps:
» condition number of matrix x(K),

> number of distinct eigenvalues (or clustered),
> tolerance of convergence.

v

More important: if K has special structure such that products Kv are fast...

v

Then total cost of K1y can be O(n?),O(nlogn),....

v

CG is one fundamental approach to scaling gp with special structure.
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Common special structures that exist

» Generally, special structure in K can take on many forms:
> sparse ...random sparsity is very uncommon in kernel methods
> banded ...think triangle kernel (not square)
> low rank plus diagonal ....think degenerate kernels
» RBF ...surprisingly enough
> Toeplitz ...think evenly spaced inputs

> Note: these are kernel choices and/or input point choices.

» Then, the actual cost of a forward multiply Kv is:
(sparse: #{(i,j) : Kij # 0})

banded: O(nk)

low rank plus diagonal: O(nm) (cf. inducing points!)
RBF: (complicated, uses multipole methods)
Toeplitz ...let's discuss this very common case

v

vy vy VvVyYy

» CG is general but sometimes overkill.

...e.g. rank one plus diagonal — Woodbury formula is easier.



Toeplitz matrices

» Toeplitz — hugely important and well studied matrices of the form:

k(0)  k(-1) k(=2) k(—(n—1))
k(1) k(0)  k(=1) k(—(n—2))
K=| k@2 k1) kO0)
k(n—1) k(0)

v

Colloquially, Toeplitz matrices are striped (equal along diagonals).

v

What would a gp need to have a Toeplitz K7

> ..a stationary kernel k, and evenly spaced input points z1,...,z, € R.

v

Is this limited? ...yes, but time series with uniform measurements abound.



Exploiting Toeplitz structure

k()  k(=1) k(-2) k(—(n—1))
k(1) k(0)  k(-1) k(—(n —2))
K=| k2 k(1) kO0)
k(n i 1) -' k(0)

» Note K has only O(n) distinct elements — storage < O(n?).

> By symmetry we know K;; = k(i — j) = k(j — i) = K;, so we have a vector
k € R™ such that:

P T A
]fl ]4;0 kl kn—?

K=|k ki ko

kn—l kO

» But what about runtime?



Exploiting Toeplitz structure

ko k1 ke ... kp_q
k'l k'o kl kn—?

K=|k k ko
kn_1 ko
> Notice K above looks almost like a (discrete) convolution:

n
(C*U)j = Z Cj—ivi

1=—n

» But without the wraparound... K; 1 # K;_1 n_1, aka k,,—; # k;.

» Idea: embed K into a circulant matrix C...



Exploiting Toeplitz structure

» Ildea: embed K into a circulant matrix C...

K 0 flip(K)
c=| 0 0 0
flip(K) 0 K

» where C' is determined by the first row:
[k 0 ﬂlp(k’)] = [1{?0 ]{71 kn,1 0 kn,1 kz kl}
» C e RGn=1x2n=1) is a circulant matrix.
» Now we do have a discrete convolution:
Ko . v . ;L /
{(junk)} = C {O} = Cv = (cx?) _z; Cj—4;.
» Thus, Kv = the first n elements of Cv' = F~1 (F(c) - F(v')).
> ...which is O(nlogn) time, by using the fast fourier transform!
> In practice clever zero padding (0 above) can greatly improve the scaling.



Exploiting Toeplitz structure... popping back up the stack

» CG turns K1y into an often small number of products Kv (say m of them).

v

Toeplitz structure reduces the inherent complexity of K to a vector k.

v

Embedding K into a circulant matrix C' makes Kv (part of) a convolution.

v

The fft accomplishes this product in O(nlogn) time.

v

Result:
» Storage complexity: O(n?) — O(n).

» Runtime complexity: O(n®) = O(mnlogn).

v

Note: this method is exact (cf §05)... and widely used [CSSO08].



Outline

Kronecker structures in multiple dimensions [GSC15]



GP in multiple dimensions

» Recall multidimensional gp and their common kernels:

D
k—afexp{ 22 td—td }
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g '//
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> Notice this is a product structure k =[], kq.



Implied Kronecker structure

v

When all points X lie on a grid, product kernels factorize:

k:de o K=K K ®..9Kp <+ K=4K,.
d

v

Say each dimension of the grid has m = nb points.

RIOOX 100

v

Then n = 10 points is only three matrices Ky €

v

So what? (aka some facts about Kronecker matrices):
» K =®4K;".
» K=QAQ" < Q= ®4Qq (and same for A).
> and others...



Implied Kronecker structure

» Most importantly (the “Kronecker trick”):
Kv = (®de) v
= vec (KDV (®dD;11Kd)T)

= vec ([Kl... [AD,l [KDBV]T]T}T> .

L xnP~1D
> Here V € R*” is such that v = vec(V),
...and [KV]" = reshape ((KV)").

Result:

v

v

» Storage complexity: O(n?) — O(Dn2D).

> Runtime complexity: O(n®) = O(mn®T'D).

v

Again this method is exact! (cf §05)



Empirical results

» Reminder: gridded data are not unusual (images, movies...)

» Empirical results of this grid kronecker method:

5 —— GP-grid
10 i
= = =GP-grid spherical
——Full-GP
O
@ o
a
g 10 % 10° —/
= S
= o
« — Addive-LA| L
—FIC et
| — et L L
L7 SVM P PP L
102 —— Full-GP 107 . ---"
3
0
10° Input Size (N)
Inut Size (N)

» Note some additional fun is had for an incomplete grid; see [GSC15].
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Some things we know

» Many of us will have seen discrete time linear dynamical systems:

firi = Afi+& where  f; e R? | & ~ N(0,E).
Ys Cfi+e where gy, € R?T | ¢ ~ N(0,7).

v

fort =1,...,n. To make this feel like a gp, set p=¢q¢=1,C =1.

v

The point: this has simplifying Markov structure.

v

Kalman filter (message passing, etc.) infers p(f|y) in O(n) < O(n?).

v

...but this model is all jointly linear gaussian, so it is (almost) a gp.

» The continous time (one-dimensional) case:

df (t)

dt = Olft + €.

v

This is a gp...



Derivatives of gp

> Differentiation is a linear operator: - (af(t) + bg(t)) = a f(t) + b g(t).

> Thus f/(t) = %f(t) is also gaussian N (0, (ftzk(t t)), leading to:

. d . [(d .\ d _d’
E(ffT):E<dtf<dtf> )zdtht

» Thus f’ is also a gp, and is jointly gaussian with f. Consider SE kernel:

distance

[SMSL*03]



Gauss-markov processes

» Using this joint gaussianity, we return to our Ids:

()

dt = O[ft + €.

» or more generally, the m!" order gauss-markov process:

dm f(t) (1) df( )
T

++ +a0ft—€t

v

Here €, is a white noise gp (i.e. ke = €d(t;,t;)).
Taking the fourier transform:

v

m m

Z k dtk =¢. & Zak(2ﬂiw)kF(w):
k=0

v

Thus, f has with fourier transform:
€

Flw) = oo ok (2miw)k




Gauss-markov processes

» Thus, f has with fourier transform:

€
Yo ak(2miw)k

F(w)

v

Put differently, the draw f(t) is now a filtered white noise draw:

F(t) = e(t) xh(t)  where h<t>=f-1( — (0).

heo Ok (2miw)k )

v

which implies that f ~ GP(0, k), with:
€

k(1) = h(7) x ke(T) x h(—7 Slw) = 2
(M) =h) k) xh(=r) o 80) ==

v

Thus, any kernel with S(w) (above) corresponds to a markov gp!

» So what: we can use message passing to infer p(f|y) in linear time...



Generality of gauss-markov processes

» Remember Matérn kernels:

2217" 2ur : 2ur
o= (75) 2 ()

» v,/ > 0, modified Bessel function B, .

IR — v=1/2

ev=2

o
=3

o

covariance, k(r)
o
>
output, f(x)

o
~

o
)

[0)
0

3 -5

1 . 2 .0 5
input distance, r input, x
» The spectral density of a Matérn kernel:
_aR2yal(v + 3)(2v) 1
S = ""Tnm =Y
(7 +w?) "

» which is a constant times an inverse squared polynomial — a gmp!



Generality of gauss-markov processes

» The spectral density of a Matérn kernel:

0?2\/?F(u+ L) 1

S(w) = .
T'(v)e2v (2 v+i
2y L w2)
2

1
<\/227, +iw)7(u+%) (@ _ iw)*(u"’%)
1

“H(o)H(w)"

= €

> from this for of H(w) one can extract the values ay in the original gmp.

» O(n) approximations result from m" order gmp approximation kernels...

more on this, and a SE example in [Saal2].



Empirical results

» Empirical results of this gmp approximation method:

e I PPGPR-Greedy o PPGPR-Greedy
g 100 [l PPGPR-MCMC 10 PPGPR-MCMC
& s -Addilfve—VB Additive-VB
. — Additive-MCMC
EFULL GP SPGP
o FULL GP
b w
£° 8
; 107 elevators
-5
1. pumadyn8-fm7168
w1 pumadyn8-fm1000
205, pumadyn8-nm
o
P & & & & & &
(\{‘} \é\e \é\\ *@’/(\ \Q:\\o *}Qb( éb{'/ﬁ 2 4 6
B *&/ *&/ @”b Q & 10 10 10
S O & Runtime (s)
Qoé\ Qoé\

> Note some extra steps with backfitting for additive kernels; see [GSC15].
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Model selection

» Note we have exclusively focused on K ~1y:

Yy ~ N (K Kf (y —my) K

—17-T
yry* Ky*yKnyy*y)

What about model selection? Recall:

v

1 -~ 1 n
log (p(y|0)) = =5 (v — m) Ky (y —m) — 5 1og | Ky| — o log(2m).

» We haven't dealt with 1 log|Kj| (nor its gradients).
> Many interesting log determinant approximations. See [GSC15].

> (also an interesting project; see project idea sheet for further references).
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