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Progress...

Week Lectures Content

3 Sep 23,28,30 Approximate inference
4 Oct 5,7 Kernels

• Reading: [RW06, ch. 4-4.2; 4.4]; [Gen02]; [WA13, WGNC14]; [VSKB10]; [JV15]
5 Oct 12,14 Speed and scaling part 1: reduced-rank processes

I HW02 is due this Friday (see courseworks).

I Project brainstorming list available on courseworks.

I Make an appointment with me in the next two weeks.

I Anyone interested in Stan, talk to Daniel.



Comment

I In these lectures we will deal with kernels from an applied perspective, as
that is the level of depth needed to use them in a gp context.

I Prior to discussing kernel statistical tests, we will return to kernels to deeply
understand RKHS, Mercer’s theorem, Moore-Aronsajn, etc., which will only
be needed at that time.
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Kernels, properly

Definition (kernel). Given a non-empty input set X , a function k : X × X → R is
a kernel if there is a Hilbert space H, called the feature space, and a map
φ : X → H, called the feature map, with:

k(x, x′) = 〈φ(x), φ(x′)〉H , ∀x, x′ ∈ X .

I Warning: φ is not unique to k; H is often infinite dimensional.

I We’ll return to Mercer’s theorem, which is a set of necessary and sufficient
conditions for this definition.

I Note this immediately implies kernel matrices are positive semidefinite:

v
>
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n∑
j=1

vik(xi, xj)vj =
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≥ 0 ∀v ∈ Rn.



Recall mechanics

Example kernel (squared exponential or SE):

k(ti, tj) = σ2
f exp

{
− 1

2`2
(ti − tj)2

}

From kernel to covariance matrix

I Choose some hyperparameters: σf = 7 , ` = 100

t =

0700
0800
1029

 K(t, t) = {k(ti, tj)}i,j =

49.0 29.7 00.2
29.7 49.0 03.6
00.2 03.6 49.0





Impact of hyperparameters

I Squared exponential with σf = 10 , ` = 50
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Impact of hyperparameters

I Squared exponential with σf = 4 , ` = 50
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Impact of hyperparameters

I Squared exponential with σf = 4 , ` = 10
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Multidimensional input

I Inputs x ∈ RD (here D = 2, e.g. lat and long)

I f ∼ GP(0, kff ), where kff (x(i), x(j)) = σ2
f exp

{
−∑d

1
2`2d

(x
(i)
d − x

(j)
d )2

}



Squared exponential (exponentiated quadratic)

k(ti, tj) = σ2
f exp

{
− 1

2`2
(ti − tj)2

}
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Rational Quadratic

k(ti, tj) = σ2
f

(
1 +

1

2α`2
(ti − tj)2

)−α
∝ σ2

f

∫
zα−1 exp

(
−αz
β

)
exp

(
−z(ti − tj)

2

2

)
dz
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Why does this look like an unnormalized t distribution?



Periodic

k(ti, tj) = σ2
f exp

{
− 2

`2
sin2

(
π

p
|ti − tj |

)}
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From Stationary to Nonstationary Kernels

I k(ti, tj) = k(ti − tj) = k(τ)

I k(ti, tj) = σ2
f exp

{
− 1

2`2 (ti − tj)2
}
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Brownian Motion

I k(ti, tj) = min(ti, tj)

I Simple nonstationary gp
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Brownian Motion

I k(ti, tj) = min(ti, tj)

I Draws from this gp
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Bayesian Linear Regression

I f(t) = wt with w ∼ N (0, 1)

I k(ti, tj) = E[f(ti)f(tj)] = titj
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Other popular kernels

I Polynomial kernels:

k(xi, xj) =
(
x>i xj + c

)d
I Constraints on c, d?

c ≥ 0 , d ∈ N+1.

I Matérn kernels:

k(r) =
21−ν

Γ(ν)

(√
2νr

`

)ν
Bν

(√
2νr

`

)
I ν, ` > 0, modified Bessel function Bν .
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String kernels

k(x, x′) =
∑

s∈P(A)

wsφs(x)φs(x
′),

I where P(A) denotes the powerset of an alphabet A, and φs(x) is the
number of occurrences of s in x.

I What constraint should their be on ws?
ws ≥ 0

I A standard example (e.g., [RW06, ch. 4.4.1]) is size-biased ws = λ|s| for
λ ∈ (0, 1).

I ws = 0 ∀s : |s| > 1 is bag of characters.

I ws = 0 ∀s : s = \ ∗ \ is bag of words.

I and so on...
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Linearity

I For kernels ka and kb and constants α, β ≥ 0, their sum is also a kernel:

k(x, x′) = αka(x, x′) + βkb(x, x
′).

I Note this implies that kernels form a convex cone.

I This is useful for modeling additive trends, e.g.:

See [RW06, §5.4.3].



Multiplicity

I For kernels ka and kb, their product is also a kernel:

k(x, x′) = ka(x, x′)kb(x, x
′).

I To do this in full generality requires some more machinery (soon).

I For now we can prove the finite case φ : X → Rq, for q <∞.

I Hint: use 〈A,B〉Rqa×qb = tr(A>B).

I Along with linearity, any positive polynomial is also a kernel:

p+ (k(x, x′)) =

K∑
k=1

αkk(x, x′)k ∀αk ≥ 0.

I In particular then, exp (k(x, x′)) is a kernel (Taylor expansion).



More properties

I Integration:

z(t) =

∫
g(u, t)f(u)du ↔

kz(ti, tj) =

∫ ∫
g(u, ti)kf (ti, tj)g(v, tj)dudv.

I Differentiation:

z(t) =
∂

∂t
f(t) ↔

kz(ti, tj) =
∂2

∂ti∂tj
kf (ti, tj).

I Warping:

z(t) = f (h(t)) ↔
kz(ti, tj) = kf (h(ti), h(tj)) .



Variance function trick [Gen02]

I Let h : X → R+ be a positive function with minimum at x = 0.

I Then the following is a kernel:

k(x, x′) =
1

4
(h(x+ x′)− h(x− x′)) .

I This exploits the covariance identity:

cov(w1, w2) =
1

4
(var(w1 + w2)− var(w1 − w2)) .



Bochner’s theorem

I A stationary kernel k(ti, tj) = k(ti − tj) = k(τ) is positive semidefinite iff:

S(ω) = F{k}(ω) ≥ 0 ∀ ω.

I In other words, the power spectral density is nonnegative everywhere.

I Sometimes also handy: k(0) =
∫
S(ω)dω, Parseval’s, and other fourier facts.

I S̄(ω) = 1
k(0)S(ω) is sometimes called spectral probability density.

I This theorem opens the door for easier and more general constructions.
Why?



One of these things is not like the others

I Identify which of the following are kernels:
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Bochner’s theorem for isotropic kernels

I Warning: do not confuse the applicability of Bochner’s theorem when
working with seemingly one-dimensional isotropic kernels:

k(x, x′) = kI(||x− x′||).

I Here Bochner’s theorem must be extended to this larger volume case.
I See details in [Gen02, §2].
I A surprising and quite cool bit of trivia:

kI(||x− x′||)
kI(0)

≥ −1 when x, x′ ∈ R

kI(||x− x′||)
kI(0)

≥ −0.403 when x, x′ ∈ R2

kI(||x− x′||)
kI(0)

≥ −0.218 when x, x′ ∈ R3

kI(||x− x′||)
kI(0)

≥ 0 when x, x′ ∈ R∞

I I don’t know of any great applications of this fact, but it’s still cool.
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Learning kernels

I Recall the exercise of [RW06, §5.4.3]:

I Is there a kernel class generic enough to include this structure?



Starting with Bochner’s theorem

I Approximate any stationary kernel with a mixture of gaussians in the
spectral domain.

I Gaussian mixture components in pairs to preserve spectral symmetry:

Sa(ω) =
αa
2

(
N (ω;µa, σ

2
a) +N (ω;−µa, σ2

a)
)
.

Why is symmetry necessary? Why real?

I We can then take the (inverse) fourier transform to see:

ka(τ) = αa exp
{
−2π2τ2σ2

a

}
cos (2πτµa) .

I Leading to the spectral mixture kernel:

k(τ) =

A∑
a=1

αa exp
{
−2π2τ2σ2

a

}
cos (2πτµa) .

I Caution: more hyperparameters to learn!



Spectral mixture kernels



Spectral mixture kernels



Spectral mixture kernels in multiple dimensions [WGNC14]

(a) Train (b) Test (c) Full (d) Spectral Mixture

(e) SSGP (f) FITC (g) GP-SE (h) GP-MA (i) GP-RQ



Outline

Administrative interlude

Basic kernels

Kernel algebra [Gen02]

Spectral mixture kernels [WA13, WGNC14]

Transition

Graph kernels [VSKB10]

Ranking kernels [JV15]



Kernels on more interesting spaces

I To now we have mostly considered kernels on RD (very often R).

I But we know k : X × X → R for very general sets X .

I We’ll now discuss a few examples of kernels on more interesting spaces:

I (strings)

I (the Grassmann manifold G(Rd, r) [HL08]; [HSJ+14]; [HSH14]; [CG15])

I graphs [VSKB10]

I permutations and rankings [JV15]
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Preliminaries

I Define a graph G = (V,E,Z):
I vertex set V = {v1, ..., vn}
I edge set E = {(vi, vj)}i,j ⊂ V × V
I edge labels Z ∈ Zn×n.
I feature map for labels φ : Z → H

I Note this generalizes some more conventional definitions:
I undirected, unweighted, simple: Z = {0, 1}, Zij = Zji, Zii = 0, φ(Z) = Z.
I undirected, weighted, simple: Z = R+, Zij = Zji, Zii = 0, φ(Z) = Z.

I We then have a feature “matrix” Φ(Z) = {φ(Zij)}i,j .

I Note this is general; e.g., zero edges require only φ(Zij) = 0 [VSKB10, §2.2].

I Important: if nothing else, understand that we have just created a feature
map Φ(Z) for a graph G...



Comparing graphs

I We have a graph G implicitly defined by a feature matrix Φ(Z).
I Recall the usual kernel setup k0(x, x′) = 〈φ(x), φ(x′)〉H.
I To define k(G,G′), first define a Kronecker product of feature matrices:

W× = Φ(Z)⊗ Φ(Z
′
) =

{
〈φ(Zij), φ(Z

′
k`)〉H

}
i,j=1,...,n ; k,`=1,...,n′

=
{
k0(Zij , Z

′
k`)
}
ijk`

I This is a weighted product graph G×G′ with edge weights W
(ik),(j`)
× :

× =



Random walks

I Take a breath:
I Two graphs G,G′ of different size and different label sets Z,Z′ ∈ Z.
I The feature map φ defines a kernel k0(Zij , Z

′
k`) between any two edges.

I Important: W
(ik),(j`)
× is the similarity between edge (i, j) ∈ G and (k, `) ∈ G′.

I Random walk on a graph G:
I Start at a vertex according to p (a p.m.f.).
I Quit at a vertex according to q (a p.m.f.).
I Randomly move vi → vj , accruing Wij .
I If properly normalized, (W r)ij is P( vj at step r | vi at step 0 ).
I Thus q>W rp is the total expected weight of a length r random walk on G.



Graph kernel [VSKB10, §3.2]

I Take simultaneous random walks on G and G′ and see how similar the
experience is (in the total expected weight sense).

I Fact: random walk on G×G′ ↔ simultaneous random walks on G and G′.

I Define the length r simultaneous random walk kernel as:

kr(G,G′) = q>×W
r
×p× , where p× = p⊗ p′,W (ik),(j`)

× = k0(Zi,j , Z
′
k,`)

I Valid kernel! ...positive weighted sum of (nn′)2 elements k0(·, ·).

I Consider all length r walks:

k(G,G′) =

∞∑
r=0

kr(G,G′) =

∞∑
r=0

α(r)q>×W
r
×p×.

α(r)→ k(G,G′) <∞ .... if time, [VSKB10, Lemma 2, Theorem 3].



Making this kernel practical

k(G,G′) =

∞∑
r=0

α(r)q>×W
r
×p×.

I Numerous (not all!) existing graph kernels are special cases of this kernel
(unifying).

I This kernel is, at face value, O
(
(nn′)3

)
(at least) to compute.

I [VSKB10, §4-5] is then efficient computation and demonstration thereof.

I A heavily exploited trick is vec(ABC) = (C> ⊗A)vec(B).
...which is used all over GP, in multiple dimensions particularly.
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Rankings

I Object of interest is a ranking of a set of items {x1, ..., xn}:

xi1 � xi2 � ... � xin ,

I namely a permutation σ : {1, ..., n} → {1, ..., n} (distinctly).
Think of σ(i) = j as “item i is my jth favorite”.

I Call S the set of all permutations.

I We then seek a kernel k : S× S→ R.

I Such a kernel likens individuals based on their polling/voting preferences.



Ranking kernels

I Kendall’s tau distance between σ and σ′ is the number of discordant pairs:

nd(σ, σ
′
) =

n∑
j=1

j−1∑
i=1

(
1(σ(i) < σ(j))1(σ

′
(i) > σ

′
(j)) + 1(σ(i) > σ(j))1(σ

′
(i) < σ

′
(j))

)

I Similarly concordant pairs:

nc(σ, σ
′
) =

n∑
j=1

j−1∑
i=1

(
1(σ(i) < σ(j))1(σ

′
(i) < σ

′
(j)) + 1(σ(i) > σ(j))1(σ

′
(i) > σ

′
(j))

)

I Define the Mallows and Kendal kernels for any λ ≥ 0 as:

kM (σ, σ′) = exp {−λnd(σ, σ′)}

kK(σ, σ′) =
nc(σ, σ

′)− nd(σ, σ′)(
n
2

) .



Working with these kernels

I [JV15, Thm. 1] prove these are kernels via the feature map φ : S→ H:

φ(σ) =

 1√(n
`

) (1(σ(i) > σ(j))− 1(σ(i) < σ(j)))


i=1,...,j−1 ; j=1,...,n

I Again, naively we must spend O(n2) to compute a single k(σ, σ′).

I MergeSort can be used to reduce this cost to O(n log n).

I [JV15] also consider partial rankings:

σ = xi1 � xi2 � ... � xi` , where |σ| = ` < n

or

σ = xi1 � xi2 � ... � xi` � the rest, where |σ| = ` < n

I which they show to be computable in O(` log `+m logm) time.
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