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Progress...

Week Lectures Content
3 Sep 23,28,30 Approximate inference
4 Oct 5,7 Kernels
e Reading: [RWO06, ch. 4-4.2; 4.4]; [Gen02]; [WA13, WGNC14]; [VSKB10]; [JV15]
5 Oct 12,14 Speed and scaling part 1: reduced-rank processes

HWO2 is due this Friday (see courseworks).

v

Project brainstorming list available on courseworks.

v

» Make an appointment with me in the next two weeks.

» Anyone interested in Stan, talk to Daniel.



Comment

> In these lectures we will deal with kernels from an applied perspective, as
that is the level of depth needed to use them in a gp context.

» Prior to discussing kernel statistical tests, we will return to kernels to deeply
understand RKHS, Mercer's theorem, Moore-Aronsajn, etc., which will only
be needed at that time.
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Kernels, properly

Definition (kernel). Given a non-empty input set X, a functionk : X x X — R is
a kernel if there is a Hilbert space H, called the feature space, and a map
¢ : X — H, called the feature map, with:

k(z,2) = (d(x),¢(¢))y, »  Vz,2 € X

» Warning: ¢ is not unique to k; H is often infinite dimensional.

» We'll return to Mercer's theorem, which is a set of necessary and sufficient
conditions for this definition.

» Note this immediately implies kernel matrices are positive semidefinite:

vTEe = 3 S wik(ag. )y = S5 v <¢<xl>,¢(1j)>ﬂ j
i=1j=1 i=1j=1
- Z Z <1/i¢(mi),1)j¢(mj)>H = <Z vib(x;), Z 1/j<75(.7:j)>
i=1j=1 i=1 j=1 H
n 2
= S vid(=;) > 0 Vv eR™.
i=1 H




Recall mechanics

Example kernel (squared exponential or SE):
k(ti,t;) = 0% ex —i(t»—t»)2
1y by f P 242 7 7

From kernel to covariance matrix
> Choose some hyperparameters: oy =7 , £ =100

0700 49.0 29.7 00.2
t = (0800 K(t,t) = {k(ti t;)}i; = [29.7 49.0 03.6
1029 00.2 03.6 49.0



Impact of hyperparameters

» Squared exponential with oy =10, £ =50
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Impact of hyperparameters

> Squared exponential with 0y =4, £ =50
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Impact of hyperparameters

> Squared exponential with oy =4, £ =10
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Multidimensional input

» Inputs 2 € RP (here D = 2, e.g. lat and long)
» f~GP(0,kysy), where kff(x(i),x(j)) = UJ% exp {— > ﬁdg(xff) - x((ij))Q}
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Squared exponential (exponentiated quadratic)

1
k(ti,t;) = J]% exp {—W(ti — tj)Q}
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Rational Quadratic

1 —
bltnty) = o (14 gt~ 0

2 a—1 _az _Z(ti —t;)?
x O’f/Z exp( ﬁ>exp( 5 dz
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Why does this look like an unnormalized ¢ distribution?



Periodic

2 T
_ 2 . 2
k(ti, t;) —Ufexp{—psm <p|ti—tj|>}
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From Stationary to Nonstationary Kernels

> k(ti,tj) = k(tl — tj) = k’(’r)
> k(t;,tj) = O'ch exp{—ﬁ(t,» — tj)Q}
30t
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Brownian Motion

> k(ti,tj) = min(ti,tj)
» Simple nonstationary gp
30r
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Brownian Motion

> k(ti,tj) = min(ti,tj)
» Draws from this gp
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Bayesian Linear Regression

> f(t) = wt with w ~ N(0,1)
> k(ti t;) = BLf () f(t;)] = tit;

output f

input t



Other popular kernels
» Polynomial kernels:
k(zi,z;) = (x;rx] + c)d

» Constraints on ¢, d?

c>0,deNy;.
» Matérn kernels:

output, f(x)

1 2 0
input distance, r input, x



String kernels

k(x,2') = Z wsds(2)¢s (),

seP(A)

» where P(A) denotes the powerset of an alphabet A, and ¢,(x) is the
number of occurrences of s in x.

» What constraint should their be on wg?
ws > 0

> A standard example (e.g., [RWO06, ch. 4.4.1]) is size-biased w, = Al*I for
A€ (0,1).

> wy =0 Vs:|s| >1is bag of characters.
> wy =0 Vs:s=\_x.\is bag of words.

» and so on...
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Linearity

» For kernels k, and k; and constants «, 8 > 0, their sum is also a kernel:

k(z,2") = aky(x,2") + Bky(z, ).

» Note this implies that kernels form a convex cone.

» This is useful for modeling additive trends, e.g.:

420 — T

B
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year
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See [RWO06, §5.4.3].



Multiplicity

» For kernels k, and ky, their product is also a kernel:

k(l’,l‘/) = k‘a(l’,l’/)kb(l’,l‘/).

v

To do this in full generality requires some more machinery (soon).

> For now we can prove the finite case ¢ : X — RY, for ¢ < oc.

v

Hint: use (A, B)gaaxa, = tr(AT B).

v

Along with linearity, any positive polynomial is also a kernel:

K
py (k(z,2")) = Zakk(:v,m’)k Vay > 0.
k=1

> In particular then, exp (k(x,z)) is a kernel (Taylor expansion).



More properties
> Integration:
) = [otuniwde o
//Q(U,ti)kf(ti,tj)g(v,tj)dudv.

ol
w
—~

~+
R

~~
<.

N
I

0
2(t) = af(t) ©
2
ko(ti ) = mkf(ti,tj)-

» Warping:

2(t) = f(h(t) <
k.(tit;) = kg (h(t:),h(t))).



Variance function trick [Gen02]

> Let h: X — R, be a positive function with minimum at z = 0.

> Then the following is a kernel:

k(z,2") = - (h(z + 2') — h(xz — 2)).

| =

» This exploits the covariance identity:

1
cov(wy, wy) = 1 (var(wy + we) — var(w; — ws)) .



Bochner's theorem

> A stationary kernel k(t;,t;) = k(t; —t;) = k(7) is positive semidefinite iff:

S(w) =F{k}w) >0 V w.

v

In other words, the power spectral density is nonnegative everywhere.
» Sometimes also handy: k(0) = [ S(w)dw, Parseval’s, and other fourier facts.

> S(w) = ggyS(w) is sometimes called spectral probability density.

v

This theorem opens the door for easier and more general constructions.
Why?



One of these things is not like the others

> Identify which of the following are kernels:

-20 -10 10 20




Bochner's theorem for isotropic kernels

» Warning: do not confuse the applicability of Bochner's theorem when
working with seemingly one-dimensional isotropic kernels:

k(x, o) = ki ([J — 2']).

> Here Bochner’s theorem must be extended to this larger volume case.
> See details in [Gen02, §2].
» A surprising and quite cool bit of trivia:

Er(|lz — 2][) > —1 when 2,2’ €R
k1(0) = ’

kr((lz = 2'|) >  —0.403 when z,z’ € R?
51(0) = ’

krllz = 2D 5 0218 when o4’ € R?
0 = ’

Er(llz —2']l) > 0 when z,2’ € R®
kr(0) - ’

» | don't know of any great applications of this fact, but it's still cool.



Outline

Spectral mixture kernels [WA13, WGNC14]



Learning kernels

> Recall the exercise of [RW06, §5.4.3]:

420 — T

400

CO, concentration, ppm

[/ i 1 L L 1 1 L
1960 1970 1980 1990 2000 2010 2020
year

» |s there a kernel class generic enough to include this structure?



Starting with Bochner's theorem

» Approximate any stationary kernel with a mixture of gaussians in the
spectral domain.

» Gaussian mixture components in pairs to preserve spectral symmetry:

Salw) = T (N (@ tar 02) + N (@5 —p1a; 72) -

Why is symmetry necessary? Why real?

> We can then take the (inverse) fourier transform to see:

ko(T) = g exp {—2m°7%02 } cos (2T ) -

» Leading to the spectral mixture kernel:
A
k() = Z g exp { —27%7202} cos (2mTH,) -
a=1

» Caution: more hyperparameters to learn!



Spectral mixture kernels
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Spectral mixture kernels in multiple dimensions [WGNC14]

- (e) SSGP » (f) FITC (g) GP-SE (h) GP-MA (i) GP-RQ
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Kernels on more interesting spaces
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» To now we have mostly considered kernels on R” (very often R).

» But we know k : X x X — R for very general sets X.

» We'll now discuss a few examples of kernels on more interesting spaces:

> (strings)
> (the Grassmann manifold G(R?,r) [HLO8]; [HSJT14]; [HSH14]; [CG15])

» graphs [VSKB10]

> permutations and rankings [JV15]
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Preliminaries

» Define a graph G = (V, E, Z):
> vertex set V = {v1,...,un}
> edge set F = {(v;,v)}i; CV XV
> edge labels Z € Z*™.
» feature map for labels ¢ : Z — H

» Note this generalizes some more conventional definitions:
> undirected, unweighted, simple: Z ={0,1},Z;; = Z;;,Z:s = 0,06(Z) = Z.
> undirected, weighted, simple: Z =Ry, Z;; = Z;;,Zis = 0,9(Z) = Z.

> We then have a feature “matrix” ®(2) = {$(Z;;)}, ;.

> Note this is general; e.g., zero edges require only ¢(Z,;) = 0 [VSKB10, §2.2].

» Important: if nothing else, understand that we have just created a feature
map ®(Z) for a graph G...



Comparing graphs

v

We have a graph G implicitly defined by a feature matrix ®(Z).
Recall the usual kernel setup ko(z,z") = {(¢p(x), p(z')) 3.
To define k(G, G"), first define a Kronecker product of feature matrices:

vy

Wi = @(2) 8 2(2) = {(6(Z;,), o(Zr)m }, , = {k(Z 20},

seesm 5 kl=1,...,m

» This is a weighted product graph G x G’ with edge weights Wiik)’(ﬂ):




Random walks

» Take a breath:
» Two graphs G, G’ of different size and different label sets Z, Z' € Z.
> The feature map ¢ defines a kernel ko(Z,;, Z,) between any two edges.
> Important: Wiik)’(ﬂ) is the similarity between edge (i, j) € G and (k,£) € G'.

» Random walk on a graph G:

> Start at a vertex according to p (a p.m.f.).

Quit at a vertex according to ¢ (a p.m.f.).

Randomly move v; — v;, accruing Wi;.

If properly normalized, (W™");; is P(v; at step r | v; at step 0 ).

Thus ¢ W"p is the total expected weight of a length r random walk on G.

vvy vy



Graph kernel [VSKB10, §3.2]

>

v

v

v

v

Take simultaneous random walks on G and G’ and see how similar the
experience is (in the total expected weight sense).

Fact: random walk on G x G’ < simultaneous random walks on G and G".

Define the length r simultaneous random walk kernel as:

k), (54
K (G.G') = g Wip, , wherep, =p@p W = k(2,2 ,)

Valid kernel! ...positive weighted sum of (nn’)? elements k(- -).

Consider all length r walks:
kG, G = Zk’“ (G,G") =) a(r)giWip,.
=0

a(r) = k(G,G’) < oo .... if time, [VSKB10, Lemma 2, Theorem 3].



Making this kernel practical

k(G,G") :ia
r=0

» Numerous (not all!) existing graph kernels are special cases of this kernel
(unifying).

v

This kernel is, at face value, O ((nn’)?) (at least) to compute.

v

[VSKB10, §4-5] is then efficient computation and demonstration thereof.

v

A heavily exploited trick is vec(ABC) = (C'T ® A)vec(B).

...which is used all over GP, in multiple dimensions particularly.
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Rankings

> Object of interest is a ranking of a set of items {x1,..., 2, }:
Tijy > Tjy > oo = Ty
> namely a permutation o : {1,...,n} — {1,...,n} (distinctly).
Think of o(i) = j as “item ¢ is my jth favorite”.
» Call S the set of all permutations.
» We then seek a kernel k: S xS — R.
» Such a kernel likens individuals based on their polling/voting preferences.



Ranking kernels

» Kendall's tau distance between o and ¢’ is the number of discordant pairs:
n j—1

na(o,0’) = > (L(e(i) < o())1(o’ (1) > o’ () + Lo (i) > a(1))L(e”(§) < (7))

j=1i=1

» Similarly concordant pairs:

n j—1
ne(o,a’) =3 > (o) < o())L(0’ () < o’ () + L(o(i) > o (1))L(c" () > o’ (4)))
j=1i=1

> Define the Mallows and Kendal kernels for any A > 0 as:

kry(o,0') = exp{—Ang(o,0')}

n o /
hie(0,0') = ne(o, o) nd(mU).

(5)




Working with these kernels

> [JV15, Thm. 1] prove these are kernels via the feature map ¢ : S — H:

(1(a (@) > o(5)) — 1(e(4) < U(j))))

1
¢(0) =
( %ol

» Again, naively we must spend O(n?) to compute a single k(o,0").

v

MergeSort can be used to reduce this cost to O(nlogn).

v

[JV15] also consider partial rankings:

O = Ty > Tiy . > Ty, where [o] = <n

0 = & > Tiy > .. > T;, > the rest, where [o] =4 < n

v

which they show to be computable in O(¢log ¢ 4+ mlogm) time.
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