STAT G8325

Gaussian Processes and Kernel Methods Lecture Notes §04: Kernels

John P. Cunningham

Department of Statistics
Columbia University

Outline

Administrative interlude

Basic kernels

Kernel algebra [Gen02]
Spectral mixture kernels [WA13, WGNC14]

Transition

Graph kernels [VSKB10]
Ranking kernels [JV15]

Outline

Administrative interlude

Basic kernels

Kernel algebra [Gen02]
Spectral mixture kernels [WA13, WGNC14]

Transition

Graph kernels [VSKB10]

Ranking kernels [JV15]

Progress...

Week	Lectures	Content
3	Sep 23,28,30	Approximate inference
4	Oct 5,7	Kernels 5
Oct 12,14 Reading: [RW06, ch. 4-4.2; 4.4]; [Gen02]; [WA13, WGNC14]; [VSKB10]; [JV15]	Speed and scaling part 1: reduced-rank processes	

- HW02 is due this Friday (see courseworks).
- Project brainstorming list available on courseworks.
- Make an appointment with me in the next two weeks.
- Anyone interested in Stan, talk to Daniel.

Comment

- In these lectures we will deal with kernels from an applied perspective, as that is the level of depth needed to use them in a gp context.
- Prior to discussing kernel statistical tests, we will return to kernels to deeply understand RKHS, Mercer's theorem, Moore-Aronsajn, etc., which will only be needed at that time.

Outline

Administrative interlude
Basic kernels
Kernel algebra [Gen02]
Spectral mixture kernels [WA13, WGNC14]
Transition
Graph kernels [VSKB10]
Ranking kernels [JV15]

Kernels, properly

Definition (kernel). Given a non-empty input set \mathcal{X}, a function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is a kernel if there is a Hilbert space \mathcal{H}, called the feature space, and a map $\phi: \mathcal{X} \rightarrow \mathcal{H}$, called the feature map, with:

$$
k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}, \quad \forall x, x^{\prime} \in \mathcal{X}
$$

- Warning: ϕ is not unique to $k ; \mathcal{H}$ is often infinite dimensional.
- We'll return to Mercer's theorem, which is a set of necessary and sufficient conditions for this definition.
- Note this immediately implies kernel matrices are positive semidefinite:

$$
\left.\begin{array}{rl}
v^{\top} K v & =\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i} k\left(x_{i}, x_{j}\right) v_{j}
\end{array} \quad \sum_{i=1}^{n} \sum_{j=1}^{n} v_{i}\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle_{\mathcal{H}} v_{j}\right)
$$

Recall mechanics

Example kernel (squared exponential or SE):

$$
k\left(t_{i}, t_{j}\right)=\sigma_{f}^{2} \exp \left\{-\frac{1}{2 \ell^{2}}\left(t_{i}-t_{j}\right)^{2}\right\}
$$

From kernel to covariance matrix

- Choose some hyperparameters: $\sigma_{f}=7, \ell=100$

$$
t=\left[\begin{array}{c}
0700 \\
0800 \\
1029
\end{array}\right] \quad K(t, t)=\left\{k\left(t_{i}, t_{j}\right)\right\}_{i, j}=\left[\begin{array}{ccc}
49.0 & 29.7 & 00.2 \\
29.7 & 49.0 & 03.6 \\
00.2 & 03.6 & 49.0
\end{array}\right]
$$

Impact of hyperparameters

- Squared exponential with $\sigma_{f}=10, \ell=50$

Impact of hyperparameters

- Squared exponential with $\sigma_{f}=4, \ell=50$

Impact of hyperparameters

- Squared exponential with $\sigma_{f}=4, \ell=10$

Multidimensional input

- Inputs $x \in \mathbb{R}^{D}$ (here $D=2$, e.g. lat and long)
- $f \sim \mathcal{G P}\left(0, k_{f f}\right)$, where $k_{f f}\left(x^{(i)}, x^{(j)}\right)=\sigma_{f}^{2} \exp \left\{-\sum_{d} \frac{1}{2 \ell_{d}^{2}}\left(x_{d}^{(i)}-x_{d}^{(j)}\right)^{2}\right\}$

Squared exponential (exponentiated quadratic)

$$
k\left(t_{i}, t_{j}\right)=\sigma_{f}^{2} \exp \left\{-\frac{1}{2 \ell^{2}}\left(t_{i}-t_{j}\right)^{2}\right\}
$$

Rational Quadratic

$$
\left.k\left(t_{i}, t_{j}\right)=\sigma_{f}^{2}\left(1+\frac{1}{2 \alpha \ell^{2}}\left(t_{i}-t_{j}\right)^{2}\right)^{-\alpha}\right) d z
$$

Why does this look like an unnormalized t distribution?

Periodic

$$
k\left(t_{i}, t_{j}\right)=\sigma_{f}^{2} \exp \left\{-\frac{2}{\ell^{2}} \sin ^{2}\left(\frac{\pi}{p}\left|t_{i}-t_{j}\right|\right)\right\}
$$

From Stationary to Nonstationary Kernels

- $k\left(t_{i}, t_{j}\right)=k\left(t_{i}-t_{j}\right)=k(\tau)$
- $k\left(t_{i}, t_{j}\right)=\sigma_{f}^{2} \exp \left\{-\frac{1}{2 \ell^{2}}\left(t_{i}-t_{j}\right)^{2}\right\}$

Brownian Motion

- $k\left(t_{i}, t_{j}\right)=\min \left(t_{i}, t_{j}\right)$
- Simple nonstationary gp

Brownian Motion

- $k\left(t_{i}, t_{j}\right)=\min \left(t_{i}, t_{j}\right)$
- Draws from this gp

Bayesian Linear Regression

- $f(t)=w t$ with $w \sim \mathcal{N}(0,1)$
- $k\left(t_{i}, t_{j}\right)=E\left[f\left(t_{i}\right) f\left(t_{j}\right)\right]=t_{i} t_{j}$

Other popular kernels

- Polynomial kernels:

$$
k\left(x_{i}, x_{j}\right)=\left(x_{i}^{\top} x_{j}+c\right)^{d}
$$

- Constraints on c, d ?

$$
c \geq 0, d \in \mathbb{N}_{+1} .
$$

- Matérn kernels:

$$
k(r)=\frac{2^{1-\nu}}{\Gamma(\nu)}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)^{\nu} B_{\nu}\left(\frac{\sqrt{2 \nu} r}{\ell}\right)
$$

- $\nu, \ell>0$, modified Bessel function B_{ν}.

String kernels

$$
k\left(x, x^{\prime}\right)=\sum_{s \in \mathcal{P}(\mathcal{A})} w_{s} \phi_{s}(x) \phi_{s}\left(x^{\prime}\right),
$$

- where $\mathcal{P}(\mathcal{A})$ denotes the powerset of an alphabet \mathcal{A}, and $\phi_{s}(x)$ is the number of occurrences of s in x.
- What constraint should their be on w_{s} ?

$$
w_{s} \geq 0
$$

- A standard example (e.g., [RW06, ch. 4.4.1]) is size-biased $w_{s}=\lambda^{|s|}$ for $\lambda \in(0,1)$.
- $w_{s}=0 \quad \forall s:|s|>1$ is bag of characters.
- $w_{s}=0 \quad \forall s: s=\backslash \smile * \hookrightarrow$ is bag of words.
- and so on...

Outline

```
Administrative interlude
Basic kernels
Kernel algebra [Gen02]
Spectral mixture kernels [WA13, WGNC14]
Transition
Graph kernels [VSKB10]
Ranking kernels [JV15]
```


Linearity

- For kernels k_{a} and k_{b} and constants $\alpha, \beta \geq 0$, their sum is also a kernel:

$$
k\left(x, x^{\prime}\right)=\alpha k_{a}\left(x, x^{\prime}\right)+\beta k_{b}\left(x, x^{\prime}\right) .
$$

- Note this implies that kernels form a convex cone.
- This is useful for modeling additive trends, e.g.:

Multiplicity

- For kernels k_{a} and k_{b}, their product is also a kernel:

$$
k\left(x, x^{\prime}\right)=k_{a}\left(x, x^{\prime}\right) k_{b}\left(x, x^{\prime}\right)
$$

- To do this in full generality requires some more machinery (soon).
- For now we can prove the finite case $\phi: \mathcal{X} \rightarrow \mathbb{R}^{q}$, for $q<\infty$.
- Hint: use $\langle A, B\rangle_{\mathbb{R}^{q_{a} \times q_{b}}}=\operatorname{tr}\left(A^{\top} B\right)$.
- Along with linearity, any positive polynomial is also a kernel:

$$
p_{+}\left(k\left(x, x^{\prime}\right)\right)=\sum_{k=1}^{K} \alpha_{k} k\left(x, x^{\prime}\right)^{k} \quad \forall \alpha_{k} \geq 0 .
$$

- In particular then, $\exp \left(k\left(x, x^{\prime}\right)\right)$ is a kernel (Taylor expansion).

More properties

- Integration:

$$
\begin{aligned}
z(t) & =\int g(u, t) f(u) d u \leftrightarrow \\
k_{z}\left(t_{i}, t_{j}\right) & =\iint g\left(u, t_{i}\right) k_{f}\left(t_{i}, t_{j}\right) g\left(v, t_{j}\right) d u d v .
\end{aligned}
$$

- Differentiation:

$$
\begin{aligned}
z(t) & =\frac{\partial}{\partial t} f(t) \leftrightarrow \\
k_{z}\left(t_{i}, t_{j}\right) & =\frac{\partial^{2}}{\partial t_{i} \partial t_{j}} k_{f}\left(t_{i}, t_{j}\right) .
\end{aligned}
$$

- Warping:

$$
\begin{aligned}
z(t) & =f(h(t)) \leftrightarrow \\
k_{z}\left(t_{i}, t_{j}\right) & =k_{f}\left(h\left(t_{i}\right), h\left(t_{j}\right)\right) .
\end{aligned}
$$

Variance function trick [Gen02]

- Let $h: \mathcal{X} \rightarrow \mathbb{R}_{+}$be a positive function with minimum at $x=0$.
- Then the following is a kernel:

$$
k\left(x, x^{\prime}\right)=\frac{1}{4}\left(h\left(x+x^{\prime}\right)-h\left(x-x^{\prime}\right)\right) .
$$

- This exploits the covariance identity:

$$
\operatorname{cov}\left(w_{1}, w_{2}\right)=\frac{1}{4}\left(\operatorname{var}\left(w_{1}+w_{2}\right)-\operatorname{var}\left(w_{1}-w_{2}\right)\right) .
$$

Bochner's theorem

- A stationary kernel $k\left(t_{i}, t_{j}\right)=k\left(t_{i}-t_{j}\right)=k(\tau)$ is positive semidefinite iff:

$$
S(\omega)=\mathcal{F}\{k\}(\omega) \geq 0 \quad \forall \omega .
$$

- In other words, the power spectral density is nonnegative everywhere.
- Sometimes also handy: $k(0)=\int S(\omega) d \omega$, Parseval's, and other fourier facts.
- $\bar{S}(\omega)=\frac{1}{k(0)} S(\omega)$ is sometimes called spectral probability density.
- This theorem opens the door for easier and more general constructions.

One of these things is not like the others

- Identify which of the following are kernels:

Bochner's theorem for isotropic kernels

- Warning: do not confuse the applicability of Bochner's theorem when working with seemingly one-dimensional isotropic kernels:

$$
k\left(x, x^{\prime}\right)=k_{I}\left(\left\|x-x^{\prime}\right\|\right) .
$$

- Here Bochner's theorem must be extended to this larger volume case.
- See details in [Gen02, §2].
- A surprising and quite cool bit of trivia:

$$
\begin{aligned}
& \frac{k_{I}\left(\left\|x-x^{\prime}\right\|\right)}{k_{I}(0)} \geq-1 \text { when } x, x^{\prime} \in \mathbb{R} \\
& \frac{k_{I}\left(\left\|x-x^{\prime}\right\|\right)}{k_{I}(0)} \geq-0.403 \text { when } x, x^{\prime} \in \mathbb{R}^{2} \\
& \frac{k_{I}\left(\left\|x-x^{\prime}\right\|\right)}{k_{I}(0)} \geq-0.218 \text { when } x, x^{\prime} \in \mathbb{R}^{3} \\
& \frac{k_{I}\left(\left\|x-x^{\prime}\right\|\right)}{k_{I}(0)} \geq 0 \text { when } x, x^{\prime} \in \mathbb{R}^{\infty}
\end{aligned}
$$

- I don't know of any great applications of this fact, but it's still cool.

Outline

Administrative interlude
Basic kernels
Kernel algebra [Gen02]
Spectral mixture kernels [WA13, WGNC14]
Transition
Graph kernels [VSKB10]
Ranking kernels [JV15]

Learning kernels

- Recall the exercise of [RW06, §5.4.3]:

- Is there a kernel class generic enough to include this structure?

Starting with Bochner's theorem

- Approximate any stationary kernel with a mixture of gaussians in the spectral domain.
- Gaussian mixture components in pairs to preserve spectral symmetry:

$$
S_{a}(\omega)=\frac{\alpha_{a}}{2}\left(\mathcal{N}\left(\omega ; \mu_{a}, \sigma_{a}^{2}\right)+\mathcal{N}\left(\omega ;-\mu_{a}, \sigma_{a}^{2}\right)\right) .
$$

Why is symmetry necessary? Why real?

- We can then take the (inverse) fourier transform to see:

$$
k_{a}(\tau)=\alpha_{a} \exp \left\{-2 \pi^{2} \tau^{2} \sigma_{a}^{2}\right\} \cos \left(2 \pi \tau \mu_{a}\right) .
$$

- Leading to the spectral mixture kernel:

$$
k(\tau)=\sum_{a=1}^{A} \alpha_{a} \exp \left\{-2 \pi^{2} \tau^{2} \sigma_{a}^{2}\right\} \cos \left(2 \pi \tau \mu_{a}\right) .
$$

- Caution: more hyperparameters to learn!

Spectral mixture kernels

Spectral mixture kernels

a)

b)

Spectral mixture kernels in multiple dimensions [WGNC14]

(a) Train

(b) Test

(c) Full

(d) Spectral Mixture

(e) SSGP

(f) FITC

(g) GP-SE

(h) GP-MA

(i) GP-RQ

Outline

```
Administrative interlude
Basic kernels
Kernel algebra [Gen02]
Spectral mixture kernels [WA13, WGNC14]
```


Transition

Graph kernels [VSKB10]
Ranking kernels [JV15]

Kernels on more interesting spaces

- To now we have mostly considered kernels on \mathbb{R}^{D} (very often \mathbb{R}).
- But we know $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ for very general sets \mathcal{X}.
- We'll now discuss a few examples of kernels on more interesting spaces:
- (strings)
- (the Grassmann manifold $\mathcal{G}\left(\mathbb{R}^{d}, r\right)$ [HL08]; [HSJ+ 14]; [HSH14]; [CG15])
- graphs [VSKB10]
- permutations and rankings [JV15]

Outline

```
Administrative interlude
Basic kernels
Kernel algebra [Gen02]
Spectral mixture kernels [WA13, WGNC14]
Transition
```

Graph kernels [VSKB10]

Ranking kernels [JV15]

Preliminaries

- Define a graph $G=(V, E, Z)$:
- vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- edge set $E=\left\{\left(v_{i}, v_{j}\right)\right\}_{i, j} \subset V \times V$
- edge labels $Z \in \mathcal{Z}^{n \times n}$.
- feature map for labels $\phi: \mathcal{Z} \rightarrow \mathcal{H}$
- Note this generalizes some more conventional definitions:
- undirected, unweighted, simple: $\mathcal{Z}=\{0,1\}, Z_{i j}=Z_{j i}, Z_{i i}=0, \phi(Z)=Z$.
- undirected, weighted, simple: $\mathcal{Z}=\mathbb{R}_{+}, Z_{i j}=Z_{j i}, Z_{i i}=0, \phi(Z)=Z$.
- We then have a feature "matrix" $\Phi(Z)=\left\{\phi\left(Z_{i j}\right)\right\}_{i, j}$.
- Note this is general; e.g., zero edges require only $\phi\left(Z_{i j}\right)=0$ [VSKB10, §2.2].
- Important: if nothing else, understand that we have just created a feature map $\Phi(Z)$ for a graph G...

Comparing graphs

- We have a graph G implicitly defined by a feature matrix $\Phi(Z)$.
- Recall the usual kernel setup $k_{0}\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$.
- To define $k\left(G, G^{\prime}\right)$, first define a Kronecker product of feature matrices:

$$
W_{\times}=\Phi(Z) \otimes \Phi\left(Z^{\prime}\right)=\left\{\left\langle\phi\left(Z_{i j}\right), \phi\left(Z_{k \ell}^{\prime}\right)\right\rangle \mathcal{H}\right\}_{i, j=1, \ldots, n ; k, \ell=1, \ldots, n^{\prime}}=\left\{k_{0}\left(Z_{i j}, Z_{k \ell}^{\prime}\right)\right\}_{i j k \ell}
$$

- This is a weighted product graph $G \times G^{\prime}$ with edge weights $W_{\times}^{(i k),(j \ell)}$:

Random walks

- Take a breath:
- Two graphs G, G^{\prime} of different size and different label sets $Z, Z^{\prime} \in \mathcal{Z}$.
- The feature map ϕ defines a kernel $k_{0}\left(Z_{i j}, Z_{k \ell}^{\prime}\right)$ between any two edges.
- Important: $W_{\times}^{(i k),(j \ell)}$ is the similarity between edge $(i, j) \in G$ and $(k, \ell) \in G^{\prime}$.
- Random walk on a graph G :
- Start at a vertex according to p (a p.m.f.).
- Quit at a vertex according to q (a p.m.f.).
- Randomly move $v_{i} \rightarrow v_{j}$, accruing $W_{i j}$.
- If properly normalized, $\left(W^{r}\right)_{i j}$ is $\mathbb{P}\left(v_{j}\right.$ at step $\mathrm{r} \mid v_{i}$ at step 0$)$.
- Thus $q^{\top} W^{r} p$ is the total expected weight of a length r random walk on G.

Graph kernel [VSKB10, §3.2]

- Take simultaneous random walks on G and G^{\prime} and see how similar the experience is (in the total expected weight sense).
- Fact: random walk on $G \times G^{\prime} \leftrightarrow$ simultaneous random walks on G and G^{\prime}.
- Define the length r simultaneous random walk kernel as:

$$
k^{r}\left(G, G^{\prime}\right)=q_{\times}^{\top} W_{\times}^{r} p_{\times} \quad, \quad \text { where } p_{\times}=p \otimes p^{\prime}, W_{\times}^{(i k),(j \ell)}=k_{0}\left(Z_{i, j}, Z_{k, \ell}^{\prime}\right)
$$

- Valid kernel! ...positive weighted sum of $\left(n n^{\prime}\right)^{2}$ elements $k_{0}(\cdot, \cdot)$.
- Consider all length r walks:

$$
\begin{aligned}
k\left(G, G^{\prime}\right) & =\sum_{r=0}^{\infty} k^{r}\left(G, G^{\prime}\right)=\sum_{r=0}^{\infty} \alpha(r) q_{\times}^{\top} W_{\times}^{r} p_{\times} \\
& \alpha(r) \rightarrow k\left(G, G^{\prime}\right)<\infty \ldots . \text { if time, [VSKB10, Lemma 2, Theorem 3]. }
\end{aligned}
$$

Making this kernel practical

$$
k\left(G, G^{\prime}\right)=\sum_{r=0}^{\infty} \alpha(r) q_{\times}^{\top} W_{\times}^{r} p_{\times} .
$$

- Numerous (not all!) existing graph kernels are special cases of this kernel (unifying).
- This kernel is, at face value, $\mathcal{O}\left(\left(n n^{\prime}\right)^{3}\right)$ (at least) to compute.
- [VSKB10, $\S 4-5]$ is then efficient computation and demonstration thereof.
- A heavily exploited trick is $\operatorname{vec}(A B C)=\left(C^{\top} \otimes A\right) \operatorname{vec}(B)$.
...which is used all over GP, in multiple dimensions particularly.

Outline

Administrative interlude
Basic kernels
Kernel algebra [Gen02]
Spectral mixture kernels [WA13, WGNC14]
Transition
Graph kernels [VSKB10]
Ranking kernels [JV15]

Rankings

- Object of interest is a ranking of a set of items $\left\{x_{1}, \ldots, x_{n}\right\}$:

$$
x_{i_{1}} \succ x_{i_{2}} \succ \ldots \succ x_{i_{n}}
$$

- namely a permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ (distinctly). Think of $\sigma(i)=j$ as "item i is my j th favorite".
- Call \mathbb{S} the set of all permutations.
- We then seek a kernel $k: \mathbb{S} \times \mathbb{S} \rightarrow \mathbb{R}$.
- Such a kernel likens individuals based on their polling/voting preferences.

Ranking kernels

- Kendall's tau distance between σ and σ^{\prime} is the number of discordant pairs:

$$
n_{d}\left(\sigma, \sigma^{\prime}\right)=\sum_{j=1}^{n} \sum_{i=1}^{j-1}\left(\mathbb{1}(\sigma(i)<\sigma(j)) \mathbb{1}\left(\sigma^{\prime}(i)>\sigma^{\prime}(j)\right)+\mathbb{1}(\sigma(i)>\sigma(j)) \mathbb{1}\left(\sigma^{\prime}(i)<\sigma^{\prime}(j)\right)\right)
$$

- Similarly concordant pairs:

$$
n_{c}\left(\sigma, \sigma^{\prime}\right)=\sum_{j=1}^{n} \sum_{i=1}^{j-1}\left(\mathbb{1}(\sigma(i)<\sigma(j)) \mathbb{1}\left(\sigma^{\prime}(i)<\sigma^{\prime}(j)\right)+\mathbb{1}(\sigma(i)>\sigma(j)) \mathbb{1}\left(\sigma^{\prime}(i)>\sigma^{\prime}(j)\right)\right)
$$

- Define the Mallows and Kendal kernels for any $\lambda \geq 0$ as:

$$
\begin{aligned}
k_{M}\left(\sigma, \sigma^{\prime}\right) & =\exp \left\{-\lambda n_{d}\left(\sigma, \sigma^{\prime}\right)\right\} \\
k_{K}\left(\sigma, \sigma^{\prime}\right) & =\frac{n_{c}\left(\sigma, \sigma^{\prime}\right)-n_{d}\left(\sigma, \sigma^{\prime}\right)}{\binom{n}{2}}
\end{aligned}
$$

Working with these kernels

- [JV15, Thm. 1] prove these are kernels via the feature map $\phi: \mathbb{S} \rightarrow \mathcal{H}$:

$$
\phi(\sigma)=\left(\frac{1}{\sqrt{\binom{n}{\ell}}}(\mathbb{1}(\sigma(i)>\sigma(j))-\mathbb{1}(\sigma(i)<\sigma(j)))\right)_{i=1, \ldots, j-1 ; j=1, \ldots, n}
$$

- Again, naively we must spend $\mathcal{O}\left(n^{2}\right)$ to compute a single $k\left(\sigma, \sigma^{\prime}\right)$.
- MergeSort can be used to reduce this cost to $\mathcal{O}(n \log n)$.
- [JV15] also consider partial rankings:

$$
\begin{aligned}
\sigma & =x_{i_{1}} \succ x_{i_{2}} \succ \ldots \succ x_{i_{\ell}}, \quad \text { where }|\sigma|=\ell<n \\
& \text { or } \\
\sigma & =x_{i_{1}} \succ x_{i_{2}} \succ \ldots \succ x_{i_{\ell}} \succ \text { the rest, } \quad \text { where }|\sigma|=\ell<n
\end{aligned}
$$

- which they show to be computable in $\mathcal{O}(\ell \log \ell+m \log m)$ time.

References

[CG15]	John P Cunningham and Zoubin Ghahramani. Linear dimensionality reduction: Survey, insights, and generalizations. Journal of Machine Learning Research, 2015.
[Gen02]	Marc G Genton. Classes of kernels for machine learning: a statistics perspective. The Journal of Machine Learning Research, 2:299-312, 2002.
[HL08]	Jihun Hamm and Daniel D Lee. Grassmann discriminant analysis: a unifying view on subspace-based learning. In Proceedings of the 25th international conference on Machine learning, pages 376-383. ACM, 2008.
[HSH14]	Mehrtash T Harandi, Mathieu Salzmann, and Richard Hartley. From manifold to manifold: Geometry-aware dimensionality reduction for spd matrices. In Computer Vision-ECCV 2014, pages 17-32. Springer, 2014.
$[\mathrm{HSJ}+14]$	Mehrtash T Harandi, Mathieu Salzmann, Sadeep Jayasumana, Richard Hartley, and Hongdong Li. Expanding the family of grassmannian kernels: An embedding perspective. In Computer Vision-ECCV 2014, pages 408-423. Springer, 2014.
[JV15]	Yunlong Jiao and Jean-Philippe Vert. The kendall and mallows kernels for permutations. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1935-1944, 2015.
[RW06]	C. E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, 2006.
[VSKB10]	S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels. The Journal of Machine Learning Research, 11:1201-1242, 2010.
[WA13]	Andrew Wilson and Ryan Adams. Gaussian process kernels for pattern discovery and extrapolation. In Proceedings of The 30th International Conference on Machine Learning, pages 1067-1075, 2013.
[WGNC14]	Andrew Wilson, Elad Gilboa, Arye Nehorai, and John P Cunningham. Fast kernel learning for multidimensional pattern extrapolation. In Advances in Neural Information Processing Systems, pages 3626-3634, 2014.

