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Progress...

Week Lectures Content

1 Sep 9 Introduction to gaussian processes for machine learning
2 Sep 14,16,21,23 Model selection
3 Sep 23,28,30 Approximate inference

• Reading: [KR05]; [RMC09]; [MAM09]; [RW06, ch. 3; 5.5]
4 Oct 5,7 Kernels
5 Oct 12,14 Speed and scaling part 1: reduced-rank processes
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Approximate inference in words

Structured regression models are perhaps the most commonly used class of
models in statistical applications. We consider approximate Bayesian inference in
... latent Gaussian models, where the latent field is Gaussian, controlled by a few
hyperparameters and with non-Gaussian response variables. The posterior
marginals are not available in closed form owing to the non-Gaussian response
variables [RMC09].



Continuous obervations

I Thus far we have considered gaussian observations

I (where continuous regression made sense)

I Our likelihood model was yi|fi ∼ N (fi, σ
2
ε )
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Binary label data

I Now consider the classification setting for yi ∈ {−1,+1}.

I yi|fi ∼ N (fi, σ
2
ε ) is inappropriate.
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Classification with gp

I Probit or Logistic “regression” model on yi ∈ {−1,+1}:

p(yi|fi) = φ(yifi) =
1

1 + exp(−yifi)
or =

∫ yifi

−∞
N (u; 0, 1)du.

I Warps f onto the [0, 1] interval:
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GP Classification

I Probit or Logistic “regression” model on yi ∈ {−1,+1}:

p(yi|fi) = φ(yifi) =
1

1 + exp(−yifi)
or =

∫ yifi

−∞
N (u; 0, 1)du.

I Warps f onto the [0, 1] interval:
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What we want to calculate our usual quantities

I predictive distribution:

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|y)df∗

I predictive posterior:

p(f∗|y) =

∫
p(f∗|f)p(f |y)df

I data posterior:

p(f |y) =

∏
i p(yi|fi)p(f)

p(y)

I None of which is tractable to compute.



Structured approximate inference

I predictive distribution:

p(y∗|y) =

∫
p(y∗|f∗)q(f∗|y)df∗

I predictive posterior:

q(f∗|y) =

∫
p(f∗|f)q(f |y)df

I data posterior:

q(f |y) ≈ p(f |y) =

∏
i p(yi|fi)p(f)

p(y)

I Structured (gaussian) approximations: [KR05]; [RMC09]; [RW06, ch. 3; 5.5].



Approximate inference via sampling

I predictive distribution:

p(y∗|y) =

∫
p(y∗|f∗)q(f∗|y)df∗

I predictive posterior:

q(f∗|y) =

∫
p(f∗|f)q(f |y)df

I data posterior:

q(f |y) = N (ms,Ks), ms =
1

m

m∑
k=1

fk, Ks = ..., fk ∼ p(f |y).

I Sampling approximations: [MAM09].



Approximate inference in a nutshell

I Methods for producing a (typically gaussian) q(f |y) ≈ p(f |y).

I Laplace approximation, expectation propagation, sampling, variational
inference, others (probably in that order, though changing).

I Remember these are technologies within a gp method.

I Subject of much research and often work well.



Using approximate inference

I Allows “regression” on the [0, 1] interval
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Using approximate inference

I Allows “regression” on the [0, 1] interval
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Laplace approximation

I Fit a gaussian q(f) = N (f ; f̂ , A) to the posterior as:

log p(f |D, θ) ∝ Ψ(f) = log p(D|f)− 1

2
log |Kθ| −

1

2
f>K−1

θ f − n

2
log 2π

≈ log q(f̂)− 1

2
(f − f̂)>A−1(f − f̂).

I f̂ = arg maxf Ψ(f) is the posterior mode, and curvature A = −(∇2
f̂
Ψ)−1.

Why negative?

I q is implied by the second order Taylor expansion of the log posterior.

I Depends on θ → workable for model selection (ML-II, etc.).
What changes with θ?

I This approximation is usually easiest, and can be further simplified.



Typical conveniences in Laplace approximations

I Log concavity in p(D|f) → finding f̂ is a convex problem.

I Newton’s method then has simple iterates:

fk+1 = fk − αk(∇2Ψ)−1∇Ψ.

I Conditional independence p(D|f) =
∏n
i=1 p(yi|fi) implies:

∇2
fΨ = K−1

θ +Dθ for diagonal D =

{
d2

df2
i

p(yi|fi)
}
ii

.

I Then use the matrix inversion lemma for efficiency:

A = −(∇2
f̂
Ψ)−1 = (K−1 +D)−1 = K −K(D−1 +K)−1K.



Marginal likelihood in Laplace approximations

I Marginal likelihood:

log p(D|θ) = log

∫
p(D|f)p(f |θ)df = log

∫
exp {Ψ(f)} df

≈ log

∫
exp

{
log q(f̂)− 1

2
(f − f̂)>A−1(f − f̂)

}
df

= log q(f̂) +
1

2
log |A|+ n

2
log 2π.

I Laplace is a local gaussian approximation that enables all desired operations.

I ...but how well?

I The field (and [KR05] in particular) use gp classification as the benchmark.
Discuss the polya-gamma augmentation trick next week?



Visualizing a Laplace approximation [KR05, fig. 1]
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(ignore EP for now...)



Expectation propagation

I Warning: EP is often empirically better, theoretically (far) less pleasing.

I Again a gaussian approximation (though it can be more general):

p(f |D) =
p(f)

∏n
i=1 p(yi|fi)
p(D)

≈
p(f)

∏n
i=1 t(yi|fi)
q(D)

, q(f |D),

I where t(yi|fi) = ZiN (fi;µi, σ
2
i ) and q(f |D) = N (f ;m,A).

I Note θ has been suppressed, but model selection again available via q(D).

I Here as in many places we assume wlog that the gp p(f) has zero mean.

I Letting Σ = diag
(
σ2

1 , ..., σ
2
n

)
, the posterior q then has

m = AΣ−1

µ1

...
µn

 , A =
(
K−1 + Σ−1

)−1
.

I We now must choose Zi, µi, and σ2
i ...



EP key idea: cavity and tilted distributions

I Finding a global approximation q(f) is hard → iterate locally.

I For i← 1 to n

I Cavity: remove site approximation t(fi) from q(f) to form q\i(f).

I Tilt: add true site to form tilted q\i(f)p(yi|fi).

I Approximate: argmin DKL

(
q\i(f)p(yi|fi)||q\i(f)t(fi)

)
.

minimize over what?

what form is the cavity?

I Repeat above loop until convergence.

I Closure of exponential family under division/multiplication →
subtraction/addition of natural parameters.

I Minimizing DKL (p||q) for normal q is moment matching.
everyone comfortable with that claim?



What EP is doing [RW06, fig. 3.4]
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Moment matching in EP

I arg min DKL

(
q\i(f)p(yi|fi)||q\i(f)ti(fi)

)
.

I To match moments, choose ti(fi) = ZiN (fi;µi, σ
2
i ) with:

σ
2
i ←

((
m2 −m2

1

)−1
− σ−2
\i

)−1

µi ← σ
2
i

(
m1(σ

−2
\i + σ

−2
i )−

µ\i

σ2
\i

)

Zi ← m0

√
2π(σ2

\i + σ2
i ) exp

{
(µi − µ\i)2

2(σ2
\i + σ2

i )

}
.

I where m0,m1,m2 are the moments of q\i(f)p(yi|fi).

I Choose site approximation to match moments of the tilted distribution.
I Subsequent approximation of the normalizer:

log p(D) ≈ log q(D) = log

∫
q(f)

n∏
i=1

t(fi)

=

n∑
i=1

logZi −
1

2
log |K + Σ| −

1

2
µ
>

(K + Σ)
−1
µ−

n

2
log 2π.



Visualizing the EP approximation [KR05, fig. 1]
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Visualizing EP and Laplace [KR05, fig. 3]
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I Note: same as [RW06, fig. 3.6] (as much of this paper is).



Visualizing EP and Laplace [KR05, fig. 7]
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I MCMC here is MH variant (HMC).

I AIS used when comparing normalizing constant approximations (see paper).



Quantifying EP and Laplace [KR05, table 1]

Laplace EP SVM

Data Set n d E I m E I m E I

Ionosphere 351 34 8.84 0.591 49.96 7.99 0.661 124.94 5.69 0.681

Wisconsin 683 9 3.21 0.804 62.62 3.21 0.805 84.95 3.21 0.795

Pima Indians 768 8 22.77 0.252 29.05 22.63 0.253 47.49 23.01 0.232

Crabs 200 7 2.0 0.682 112.34 2.0 0.908 2552.97 2.0 0.047

Sonar 208 60 15.36 0.439 26.86 13.85 0.537 15678.55 11.14 0.567

USPS 3 vs 5 1540 256 2.27 0.849 163.05 2.21 0.902 22011.70 2.01 0.918

I Let’s question the worth of bayesian approaches here...



Takeaways

I Using gp in non-conjugate settings is common.

I Approximate inference machinery is required and is nontrivial.

I Laplace and EP seem to carry the usual performance/complexity tradeoff.

I Classification with gp has become a standard test benchmark.

I Note: numerous computational tricks are available; see [KR05, RW06].
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What we want to calculate our usual quantities

I predictive distribution:

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|y)df∗

I predictive posterior:

p(f∗|y) =

∫
p(f∗|f)p(f |y)df

I data posterior:

p(f |y) =

∏
i p(yi|fi)p(f)

p(y)

I None of which is tractable to compute.



Approximate inference via sampling

I predictive distribution:

p(y∗|y) =

∫
p(y∗|f∗)q(f∗|y)df∗

I predictive posterior:

q(f∗|y) =

∫
p(f∗|f)q(f |y)df

I data posterior:

q(f |y) = N (ms,Ks), ms =
1

m

m∑
k=1

fk, Ks = ..., fk ∼ p(f |y).

I Sampling approximations: [MAM09].



Elliptical slice sampling

I Bespoke slice sampler for latent Gaussian models

I The go-to tool for sampling gp with complicated non-conjugate likelihoods

I No free parameters enables out-of-the-box use

I Simple code in matlab (not in gpy)
excellent project... see gpy/inference/mcmc

I Still a sampler... possibly quite slow.



Starting point: MH from [Nea98]

I General non-conjugate posterior form:

p(f |D) =
1

p(D)
p(D|f)p(f) ,

1

Z
L(f)N (f ; 0,K)

I Implement standard Metropolis Hastings MCMC with proposal:

q(f ′|f) =
√

1− ε2f + εν, ν ∼ N (0,K)

rather out of the blue in [Nea98]

I which will accept with probability defined by the MH rejection kernel:

A(f ′|f) = min

{
1,
L(f ′)

L(f)

}
= min

{
1,
q(f |f ′)L(f ′)N (f ′; 0,K)

q(f ′|f)L(f)N (f ; 0,K)

}
.

I Unfortunately choosing ε well is hard and costly.



Elliptical sampling idea

I Reparameterize the proposal:

q(f ′|f) =
√

1− ε2f + εν, ν ∼ N (0,K)

= ν sin θ + f cos θ, ν ∼ N (0,K)

I Idea then is to sample over this ellipse, i.e. θ ∼ Uniform[0, 2π].

I To make a valid MC (correct invariant distribution), rewrite as:

ν0 ∼ N (0,K)

ν1 ∼ N (0,K)

θ ∼ Uniform[0, 2π]

f = ν0 sin θ + ν1 cos θ.

You should be able to prove that f ∼ N (0, K).



Elliptical sampling idea

I Accordingly we can sample from:

p(ν0, ν1, θ|D, f = ν0 sin θ + ν1 cos θ) ∝ L(f = ν0 sin θ + ν1 cos θ)N (ν0; 0,K)N (ν1; 0,K)

I via:

θ ∼ Uniform[0, 2π]

ν ∼ N (0,K)

ν0 ← f sin θ + ν cos θ

ν1 ← f cos θ − ν sin θ.

You should be able to derive those steps.

I That sampled θ, ν0, ν1 according to f .

I Now slice sample θ′, which steps to a new f ′ = ν0 sin θ′ + ν1 cos θ′.

I This produces a valid algorithm [MAM09, Alg. 1].



Elliptical slice sampling: [MAM09, Alg. 2]

Algorithm 1 Slice sampling θ → θ′

1: Choose ellipse: ν ∼ N (0, K)
2: Likelihood threshold (tolerance):

u ∼ Uniform[0, 1]

log y ← logL(f) + log u

3: Draw proposal θ ∼ Uniform[0, 2π]
4: Define slice bracket [θl, θu]← [θ − 2π, θ]
5: f ′ ← f cos θ + ν sin θ
6: if logL(f ′) > log y, then return f ′

7: else change slice interval θl ← θ or θu ← θ
8: Redraw θ ∼ Uniform[θl, θu]

9: Repeat from 5.

I log-likelihood threshold is a tolerance.

I No tuning/extra parameters.

I “Stepping-in” procedure for slice.

(a) (b)

(c) (d)

(e)



Elliptical slice sampling: [MAM09, Alg. 2]

I Producing the results (refer back to §02 and [MA10]):



Outline

Administrative interlude

Non-conjugate gp models

Basic approaches: Laplace and EP [KR05]

Elliptical slice sampling [MAM09]

Integrated nested Laplace approximations [RMC09]



Problems of interest in [RMC09]

I Posterior marginals:

p(fi|D) =

∫
p(fi|θ,D)p(θ|D)dθ

p(θj |D) =

∫
p(θ|D)dθ−j

I [RMC09] uses nested approximations of the form:

q(fi|D) =

∫
q(fi|θ,D)q(θ|D)dθ

q(θj |D) =

∫
q(θ|D)dθ−j

using our notation q,D, f , not π̃, y, x [RMC09, Eq. 2]

I Let’s start with q(θ|D)...



Finding the hyperparameter posterior: [RMC09, Eq. 3]

I Let’s start with q(θ|D)... a Laplace approximation:

q(θ|D) ∝ p(f̂ , θ,D)

qN (f̂ |θ,D)

I Why:

p(f̂ , θ,D)

qN (f̂ |θ,D)
=

p(f̂ |θ,D)p(θ|D)p(D)

qN (f̂ |θ,D)

∝ p(f̂ |θ,D)p(θ|D)

qN (f̂ |θ,D)

≈ p(θ|D).

I Warning! Not the same Laplace approximation.

I qN (f |θ,D) is the previous (and usual) Laplace approximation.

I Previous work suggests q(θ|D) is particularly accurate...



Editorial interlude: controversial or outdated claims

I On the other hand, Gaussian approximations are intuitively appealing for
latent Gaussian models. For most real problems and data sets, the
conditional posterior of f is typically well behaved, and looks ’almost’
Gaussian.

I The second potential problem is that the iterative process of the basic VB
algorithm is tractable for conjugate exponential models only. This implies
that p(θ) must be conjugate with respect to the complete likelihood
p(f,D|θ) and the complete likelihood must belong to an exponential family.

I Generally [RMC09, §1.6].

I Rue and Martino (2007) used q(θ|D) to approximate posterior marginals for
θ for various latent Gaussian models. Their conclusion was that q(θ|D) is
particularly accurate: even long MCMC runs could not detect any error in it.

(project opportunity)

I Others?



Finding the latent marginal posterior: [RMC09, Eq. 5]

I Now we seek q(fi|D), the marginal (integrated) posterior of the latent:

p(fi|D) =

∫
p(fi|θ,D)p(θ|D)dθ

≈
∫
qN (fi|θ,D)q(θ|D)

≈
K∑
k=1

qN (fi|θk, D)q(θk|D),

I where qN is the marginal of the previous (usual) Laplace approximation,

I and where samples θk are drawn according to [RMC09, §3.1].

I Hence, integrated nested Laplace approximations.

I This doesn’t work particularly well without further attention to the marginals.



Finding the latent marginal posterior: [RMC09, Eq. 12]

I Instead focus the Laplace approximation directly on the marginal itself:

qLA(fi|θ,D) ∝ p(f̂ , θ,D)

qN (f̂−i|fi, θ,D)
,

I with the same logic as with q(θ|D) [RMC09, Eq. 3].

I And thus the latent marginal posterior:

p(fi|D) =

∫
p(fi|θ,D)p(θ|D)dθ

≈
∫
qLA(fi|θ,D)q(θ|D)

≈
K∑
k=1

qLA(fi|θk, D)q(θk|D),

I Works well but is very computationally inefficient. Why?

I Thereafter some mechanics to create “simplified” Laplace approximation.



hw2: comment on [RMC09]

I [RMC09] was a read paper at JRSSB.

I Approximately twenty thorough commentaries are written by world experts.

I Option 1: write your own commentary about the pros and cons of this work.

I Option 2: summarize the opinions of one commentator (or a group of
commentators), and then give your own meta-commentary on those opinions.

I Option 2 is probably easier and more rewarding.

I To do: write ∼ 1 page, due next Friday 9 October at noon (on courseworks).
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