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Gaussian process

Definition (gaussian process). Let:

i. T be any set,

ii. m : T → R be any function, and

iii. k : T × T → R be any function that is symmetric (i.e.,
k(t, t′) = k(t′, t)∀t, t′ ∈ T ) and positive definite (i.e., for any finite G ⊂ T ,
the matrix KG = {k(t, t′)}t,t′∈G is positive definite).

Then there exists a gaussian process f = {ft}t∈T with mean function m and
covariance k. We write f ∼ GP(m, k). Notably, f ∼ GP(m, k) if and only if, for
every finite G ⊂ T , the consistent collection of random variables
fG ∼ N (mG,KG).

I The induced finite marginals are N (mG,KG), with:

mG =

 m(t1)
...

m(t|G|)

 ∈ R|G|, KG = {k(t, t′)}t,t′∈G, ∀G ⊂ T.



Review: multivariate gaussian

I f ∈ Rn is normally distributed means:

p(f) = (2π)−
n
2 |K|− 1

2 exp

{
−1

2
(f −m)>K−1(f −m)

}
for mean vector m ∈ Rn and covariance matrix K ∈ Rn×n.

I shorthand: f ∼ N (m,K)

I Again, f ∼ GP(m, k) is a Gaussian process if f(t) = [f(t1), ..., f(tn)]′ has a
consistent multivariate normal distribution for all choices of n ∈ N and
t = [t1, ..., tn]′:

f(t) ∼ N (m(t), k(t, t)).



GP regression basics

I n input points t ∈ Rn (reminder: implied input domain R)

I prior (or latent) f ∼ GP(mf , kff )

I additive iid noise ε ∼ GP(0, σ2
ε δ)

I let y = f + ε, then (using additivity of GP):

p(y(t), f(t)) = p(y|f)p(f) = N
([
f
y

]
;

[
mf

my

]
,

[
Kff Kfy

KT
fy Kyy

])
I Regression/inference/conditioning:

f |y ∼ N
(
mf +KfyK

−1
yy (y −my) , Kff −KfyK

−1
yy Kyf

)
I Prediction at y∗ = y(t∗):

y∗|y ∼ N
(
my∗ +Ky∗yK

−1
yy (y −my) , Ky∗y∗ −Ky∗yK

−1
yy Kyy∗

)



Marginalization (marginal likelihood and model selection)

I Again, if: [
f
y

]
∼ N

([
mf

my

]
,

[
Kff Kfy

Kyf Kyy

])

I we can marginalize out the latent:

p(y) =

∫
p(y|f)p(f)df ↔ y ∼ N (my,Kyy)

I log(p(y)) is the data log-likelihood of the data (aka marginal likelihood)

I GP have hyperparameters θ which influence log(p(y))

I Dealing with that fact is the subject of model selection...
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Useful information

I Always start with the syllabus. Highlights...
I Prerequisites (aka, did §01 make sense to you):

I Stochastic processes to a basic understanding of gaussian processes
I Machine learning such as W4400
I Probability, statistics, linear algebra, basic convex optimization
I Programming skills

I Grade:
I Homework (10%). Two or three homework sets will be given to ensure

students are keeping pace. Homework will contain both written and
programming/data analysis elements.

I Attendance and Participation (40%). The course will have a seminar
format, and your involvement is critical. This means read in advance, and
demonstrate that knowledge.

I Course Project (50%). The course projects will be the focus of the latter
half of this course. Projects can take a variety of forms, from contributing to
open source machine learning projects, to analyzing data of interest, to
advancing a theoretical topic. We will spend substantial time developing ideas
for projects, tracking and discussing progress, and presenting final work
product. Individual projects are ideal, though projects with groups of two may
also be appropriate.



Progress...

Week Content

1 Introduction to gaussian processes for machine learning
• Reading: [RW06, ch. 1-2]
• HW1 out: https://github.com/cunni/gpkm/blob/master/hw1.ipynb

2 Model selection
• Reading: [RW06, ch. 5.1-5.4]; [MA10]; [GOH14, §3 only]
• HW1 ongoing

3 Approximate inference
• Reading: [KR05]; [RMC09]; [RW06, ch. 3; 5.5]; [HMG15]
• HW1 due at the beginning of Monday lecture

I Note: §02 could take a day or two weeks... let’s discuss.
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Model selection / hyperparameter learning

I f ∼ GP(0, kff ), where kff (ti, tj) = σ2
f exp

{
− 1

2`2 (ti − tj)2
}

I ε ∼ GP(0, σ2
ε δ), where δ(ti, tj) = I(ti = tj).

I y = f + ε is observed data:

` = 50: just right
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Occam’s razor in probabilistic machine learning

I Recall a model H = {Pθ : θ ∈ Θ}: a family of probability distributions
indexed over some parameter space Θ.

I Example:

H1 =

{
GP(0, kθ) : kθ = σ

2
f exp

{
− 1

2`2
(ti − tj)2

}
is squared exponential with θ = {σf , `}

}
H2 = {GP(0, kθ) : kθ = θmin(ti, tj) is scaled brownian motion} .

I With p(H1) = p(H2) and data D, we want to select a model by comparing:

p(Hi|D) ∝ P (D|Hi) =

∫
Θ

P (D|θ,Hi)P (θ|Hi)dθ ∀ i ∈ {1, 2}.

I Note model selection is often used in the sense of selecting a particular Pθ
from a model H. We will also sometimes use this (improper?) convention.



Occam’s razor in probabilistic machine learning

I “Plurality should not be assumed without necessity”

I Example: data is a single point D = θ + ε, for iid noise ε and parameter θ.

σ

σ |D

P ( | H3)

P ( |D,H3)
P ( | H2)

P ( |D,H2) P ( | H1)

P ( |D,H1)

P (D | H1)

P (D | H2)

P (D | H3)

D

D

θ

θ

θ

θ

θ

θ

θ

θ

θθθ

I Probabilistic ML can balance complexity and avoid overfitting naturally.

I See [Mac03, ch. 28] for more (or [RW06, ch. 5]).



Occam’s razor in gp

I y ∼ GP (m, kθ) with kθ = σ2
f exp

{
− 1

2`2 (ti − tj)2
}

+ σ2
ε δ(ti − tj):

log (p(y|θ)) = −1

2
(y −m)>K−1

θ (y −m)− 1

2
log |Kθ| −

n

2
log(2π).

I Read this as: data fit term + complexity penalty + constant.

I First get comfortable with the tradeoff in σε and σf .

I Next consider `:

I − 1
2

log |Kθ| increases in `
...determinant as volume of Kθ ; or σε = 0, `→∞⇒ λn(Kθ)→ 0

I − 1
2
(y −m)>K−1

θ (y −m) decreases in `
...less flexibility to be distant from the mean

I GP complexity increases with decreasing ` and increasing σf , σε.



Model likelihood

I y ∼ GP (m, kθ) with kθ = σ2
f exp

{
− 1

2`2 (ti − tj)2
}

+ σ2
ε δ(ti − tj):

log (p(y|θ)) = −1

2
(y −m)>K−1

θ (y −m)− 1

2
log |Kθ| −

n

2
log(2π).

I Our desired quantity is then the likelihood of the data under the model:

p(H|D) ∝ P (D|H) =

∫
Θ

P (D|θ,H)P (θ|H)dθ.

I How can we deal with this intractable integral?
I ≈ point estimate (“ML-II optimization”; [RW06, ch. 5.1-5.4])
I ≈ sum of samples (sampling methods, MCMC; [MA10])
I ≈ simpler integral (laplace-type integral; [GOH14, §3])
I ≈ a different simpler integral (variational inference; later in the course)
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Model selection (1): marginal likelihood

I We approximate:

p(H|D) ∝ P (D|H) =

∫
Θ

P (D|θ,H)P (θ|H)dθ

≈ P (D|θMAP , H)P (θMAP |H)

or

≈ P (D|θML, H).

I where θMAP and θML are the corresponding maxima.

I P (D|θML, H) is most common and is colloquially called ML type II.

I most tractable, but ignores randomness in θ (perils such as [vdVvZ09]).



ML-II in pictures (hw1)

I We approximate:

p(H|D) ≈ P (D|θML, H).

I Before:



ML-II in pictures (hw1)

I We approximate:

p(H|D) ≈ P (D|θML, H).

I After:



ML-II in equations

I We approximate:

arg max
θ
P (D|θ,H) =

arg max
θ

log (p(y|θ)) = − 1

2
y
>
K
−1
θ y − 1

2
log |Kθ| −

n

2
log(2π).

I Run your favorite non-convex optimization on ∇θ log (p(y|θ)), with:

∂

∂θi
log (p(y|θ)) =

1

2
y
>
K
−1
θ

∂Kθ

∂θi
K
−1
θ y − 1

2
tr

(
K
−1 ∂Kθ

∂θi

)
=

1

2

((
αα
> −K−1

) ∂Kθ
∂θi

)
, with α = K

−1
θ y.

I central to all GP implementations (optimize() in model.py, minimize.m
in gpml, ...).
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Model selection (2): cross validation

I Can also consider leave-one-out predictive likelihood to penalize overfitting:

LLOOCV (θ) =

n∑
i=1

log p(yi|y−i, θ)

∝ −1

2
log σ2

i −
1

2σ2
i

(yi − µi)2.

I Fiddling with the Schur trick again, we get:

µi = yi −
{
K−1y

}
i

{K−1}ii
, σ2

i =
1

{K−1}ii
.

I Convince yourself µi is independent of yi.

I Some further tricks make this not terribly burdensome, but still a factor of
|θ| larger than ML-II. See [VTMW14] for new directions in this topic.
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Model selection (3): sampling

I We might try vanilla Monte Carlo:

p(H|D) ∝ P (D|H) =

∫
Θ

P (D|θ,H)P (θ|H)dθ

≈ 1

m

m∑
j=1

P (D|θj , H) where θj ∼ P (θ|H)

I However, if Θ is even reasonably big:

kθ = σ2
f exp

{
−

D∑
d=1

1

2`2d
(tdi − tdj )2

}
+ σ2

ε δ(ti − tj) i.e. Θ = RD+1

I (pause for a moment to think through the ARD properties of this kernel)...

I Then this estimator has huge variance → bad estimate of P (D|H)
why? impossible to meaningfully cover Θ



Importance sampling as motivation for MCMC

I Next we might try importance sampling:

Z , P (D) =

∫
Θ

P (D|θ)P (θ)

Q(θ)
Q(θ)dθ ≈

1

m

m∑
j=1

P (D|θj)P (θj)

Q(θj)
where θj ∼ Q(θ).

I Also terrible: estimator will be dominated by a few samples.

I But notice that won’t be the case if Q(θ) is close to ∝ P (D|θ)P (θ).
offhand this comment seems vacuous... why?

I Great trick: calculate instead a ratio of normalizers of “close” distributions:

Zαk
Zαk−1

=

∫
P (D|θ)αkP (θ)

P (D|θ)αk−1P (θ)

(
1

Zαk−1

P (D|θ)αk−1P (θ)

)
dθ

≈
1

m

m∑
j=1

P (D|θj)αkP (θj)

P (D|θj)αk−1P (θj)
.

proof of ratio? 1 =
∫
p =

∫ p
q q...

I This importance sampler will work brilliantly if αk is close to αk−1...



Annealed importance sampling

I If we can get:

Zαk
Zαk−1

≈
1

m

m∑
j=1

P (D|θj)αkP (θj)

P (D|θj)αk−1P (θj)
.

I Make a schedule α0 = 0 < ... < αK = 1. Then:

ZαK
Zα0

=
ZαK
ZαK−1

·
ZαK−1

ZαK−2

· ... ·
Zαk
Zαk−1

· ... ·
Zα1

Zα0

=
P (D)

Z0
.

I Since Z0 is the known normalizer of the prior P (θ), we have Z1 = P (D)!

I AIS is the gold-standard method for calculating normalizing constants.

I What is missing?
How do we sample from Qk−1(θ) ∝ P (D|θ)αk−1P (θ)?



Core idea of MCMC

I Idea: wander around Θ, biasing ourselves to higher P (θ|D) regions.
cf. lack of memory in importance/prior/rejection sampling.

I Recall: Markov chain
I A sufficiently nice Markov chain has an invariant distribution πinv.

sufficiently nice? aperiodic and irreducible

I At convergence, each sample θi from the chain has marginal πinv.

I Definition (Markov chain Monte Carlo). With a goal to sample from p,
define a MC with πinv ≡ p. Sample θ1, θ2, . . . from the chain. Once the chain
has converged, θi ∼ p.

I Note: θi+1 typically depends on θi in a Markov chain, so MCMC
”remembers” and remains in regions of high probability.



Continuous markov chains

I Typical Markov chains have a finite state space. For MCMC, state space
must be the domain of P (θ|D) → often continuous.

I Continuous Markov chain: initial distribution πinit and conditional probability
t(θ′|θ), the transition probability or transition kernel.

Discrete case: t(θ′ = i|θ = j) is the entry Tij of the transition matrix T .

I Example Markov chain on R2:
I Define a (very) simple Markov chain by sampling

θi+1 ∼ N ( . |θi, σ2)

I In other words, the transition distribution is

t(θi+1|θi) := N (θi+1|θi, σ2) .

θi

Gaussian (gray contours) is

placed around the current point

θi to sample θi+1.



Invariant distribution

I Recall: Finite case
I πinv is a distribution on the finite state space Θ.
I ”Invariant” means that, if θi ∼ πinv, and θi+1 ∼ t( . |θi) of the chain, then
θi+1 ∼ πinv.

I In terms of the transition matrix T , write Tπinv = πinv.

I Continuous case
I Θ is now uncountable (e.g. Θ = RD+1 as in the ARD kernel).
I The transition matrix T → the conditional probability t.
I A density πinv is invariant if∫

Θ

t(θ′|θ)πinv(θ)dθ = πinv(θ
′).

I which should feel like the continuous analog of
∑
i Tij(πinv)i = (πinv)j .



Markov chain sampling

We run the Markov chain n for
steps. Each step moves from the

current location θi to a new
θi+1.

We ”forget” the order and
regard the locations θ1:n as a

random set of points.

If p (red contours) is both the
invariant and initial distribution,
each θi is distributed as θi ∼ p.

I Required considerations:

1. We have to construct a MC with invariant distribution p.
2. We cannot actually start sampling with θ1 ∼ p; if we knew how to sample

from p, all of this would be pointless.
3. Each point θi is marginally distributed as θi ∼ p, but the points are not i.i.d.



Consideration 1: Constructing the markov chain

I Reminder: we can evaluate p(θ) (or ∝), but we can’t sample...

I Metropolis-Hastings (MH) kernel

1. We start by defining a conditional probability q(θ′|θ) on Θ.
q has nothing to do with p. We could e.g. choose q(θ′|θ) = N (θ′|θ, σ2).

2. We define the rejection kernel

A(θi+1|θi) := min
{

1,
q(θi|θi+1)p(θi+1)

q(θi+1|θi)p(θi)

}
Why is knowing ∝ p enough here?

3. Chain transition probability:

t(θi+1|θi) := q(θi+1|θi)A(θi+1|θi)+δθi (θi+1)c(θi) where c(θi) :=

∫
q(θ
′|θi)(1−A(θ

′|θi))dθ′

c(θi) is total probability that a proposal is rejected.

I Sampling from the MH chain: At each step i+ 1, generate a proposal
θ∗ ∼ q( . |θi) and Ui ∼ Uniform[0, 1].

I If Ui ≤ A(θ∗|θi), accept proposal: Set θi+1 := θ∗.
I If Ui > A(θ∗|θi), reject proposal: Set θi+1 := θi.



Consideration 2: initial distribution

I Recall: Fundamental theorem on Markov chains Suppose we sample
θ1 ∼ πinit and θi+1 ∼ t( . |θi). This defines a distribution Pi of θi, which can
change from step to step. If the MC is nice (irreducible and aperiodic), then

Pi → πinv for i→∞ .

I Implication:
I If we can show that πinv ≡ p, we do not have to know how to sample from p.
I Instead, we can start with any πinit, and will get arbitrarily close to p for

sufficiently large i.



Burn-in and mixing time

I The number m of steps required until Pm ≈ πinv ≡ p is called the mixing
time of the Markov chain. (In probability theory, there is a range of
definitions for what exactly Pm ≈ πinv means.)

I In MC samplers, the first m samples are also called the burn-in phase. The
first m samples of each run of the sampler are discarded:

θ1, . . . , θm−1, θm, θm+1, . . .

Burn-in;
discard.

Samples from
(approximately) p;

keep.

I In practice, we do not know how large m is. There are a number of methods
for assessing whether the sampler has mixed. Such heuristics are often
referred to as convergence diagnostics.



Consideration 3: sequential dependence

I Even after burn-in, the samples from a MC are not iid

I Strategy:
I Estimate empirically how many steps L are needed for θi and θi+L to be

approximately independent. The number L is called the lag.
I After burn-in, keep only every Lth sample; discard samples in between.

I The most common method to estimate lag uses the
autocorrelation function:

ρ(θi, θj) :=
E[θi − µi] · E[θj − µj ]

σiσj

I We compute ρ(θi, θi+L) empirically from the sample
for different values of L, and find the smallest L for
which the autocorrelation is close to zero.

Autocorrelation Plots

We can get autocorrelation plots using the autocorr.plot()
function.

> autocorr.plot(mh.draws)
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Convergence diagnostics

I Gelman-Rubin criterion (popular, not exhaustive)

I Start several chains at random. For each chain k,
sample θki has a marginal distribution P ki .

I The distributions of P ki will differ between chains
in early stages.

I Once the chains have converged, all Pi = πinv are
identical.

I Criterion: Use a hypothesis test to compare P ki for
different k (e.g. compare P 2

i against null
hypothesis P 1

i ). Once the test does not reject
anymore, assume that the chains are past burn-in.



MH as stochastic ascent

I The Metropolis-Hastings rejection kernel was defined as:

A(θn+1|θn) = min
{

1,
q(θi|θi+1)p(θi+1)

q(θi+1|θi)p(θi)
}
.

I Hence, we certainly accept if the second term is larger than 1, i.e. if

q(θi|θi+1)p(θi+1) > q(θi+1|θi)p(θi) .

I That means:
I We always accept the proposal θi+1 if it increases the probability under p.
I If it decreases the probability, we still accept with a probability which depends

on the difference to the current probability.

I Interpretation as ascent:
I MH resembles an ascent algorithm on p, which tends to move in the direction

of increasing probability p.
I However:

I The actual steps are chosen at random.
I The sampler can move ”downhill” with a certain probability.
I When it reaches a local maximum, it does not get stuck there.



Summary: MCMC with MH

I MCMC samplers construct a MC with invariant distribution p.

I The MH kernel is one generic way to construct such a chain from p and a
proposal distribution q.

I Formally, q does not depend on p (but arbitrary choice of q usually means
bad performance).

I We have to discard an initial number m of samples as burn-in to obtain
samples (approximately) distributed according to p.

I After burn-in, we keep only every Lth sample (where L = lag) to make sure
the θi are (approximately) independent.

θ1, . . . , θm−1, θm, θm+1, . . . , θm+L−1, θm+L, θm+L+1, . . . θm+2L−1, θm+2L, . . .

Burn-in;
discard.

Samples correlated
with θj ; discard.

Samples correlated
with θj+L; discard.

Keep. Keep. Keep.



MCMC for gp model selection

I Remember, MCMC works well (often slowly) for integrals like:

E(h(θ)) =

∫
Θ

h(θ)
P (D|θ)P (θ)

P (D)
dθ.

I It does not work directly for the seemingly similar integral:

P (D) =

∫
Θ

P (D|θ)P (θ)dθ.

I That was why we introduced AIS in the first place.

I Resulting algorithm for calculating P (D) with AIS and MCMC...



AIS with MCMC

Algorithm 1 Model evidence P (D) with AIS and MH

1: Input: schedule α0 = 0 < ... < αK = 1
2: for r ← 1, ..., R do
3: θ0 ∼ p(θ)
4: for k ← 1, ...,K do
5: θk ∼ p(D|θ)αkp(θ) using MH

6: log
(

Zαk
Zαk−1

)
≈ (αk − αk−1) log p(D|θk)

7: end for
8: Zr =

∑
k log

(
Zαk
Zαk−1

)
9: end for

10: return logZ = log
(

1
R

∑
r Zr

)
.

I Note single MH sample at each αk.

I Any MCMC should work here (HMC is popular).

I R runs for variance reduction.



Editorial remarks

I MCMC is a heavily used tool in probabilistic machine learning.

I None of this section is GP specific... but very GP relevant.

I Calculating normalizing constants is also a hugely important topic.

I AIS with MCMC is approximately the gold standard.

I Sampling will come up again and again, so it’s good to have it in hand.



Outline

Recap of §01

Administrative interlude

The problem of model selection

Hyperparameter optimization for gp model selection

Cross-validation for gp model selection

Sampling for gp model selection (with review)

Slice sampling for gp model selection [MA10]

Approximate integration for gp model selection [GOH14, §3]



Sampling hyperparameters in GP: [MA10]

I We wish to sample from: P (θ, f |D) = 1
ZP (D|f)P (f |θ)P (θ).

intractable integral over latents → sample those latents... see AIS

I This is a GP, so P (f |θ) = N (f ; 0,Kθ).

I P (D|f) is not assumed to be gaussian (much more in §03).
...what do we do if it were gaussian?

I For a fixed f , we can use MCMC out of the box [MA10, Alg. 1].

I That MCMC rejection kernel is:

A(θ′|θ) := min

{
1,
q(θ|θ′)P (θ′)N (f ; 0,Kθ′)

q(θ′|θ)P (θ)N (f ; 0,Kθ)

}
what again is q here?

whither P (D|f)?

I However...



Sampling hyperparameters in GP: [MA10]

I One is then tempted to alternate:
I For a fixed f , we can use MCMC out of the box [MA10, Alg. 1].
I For a fixed θ, sample a new f .

I This alternate sampling scheme will converge very poorly.
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I This issue arises from the strong coupling between f and θ.



Sampling hyperparameters in GP: [MA10]

I The previous issue is caused by strong coupling between f and θ.

I The (usual) reparameterization trick with f = Lθν for Kθ = LθL
>
θ :

P (f |θ)P (θ) = N (f ; 0,Kθ)P (θ) = N (ν; 0, I)
1

|Lθ|
P (θ).

I Now, importantly, for a fixed ν, MCMC on θ draws a new θ′ and f ′ = Lθ′ν.

I That MCMC rejection kernel is [MA10, Alg. 2]

A(θ′|θ) := min

{
1,
q(θ|θ′)P (θ′)P (D|f ′ = Lθ′ν)

q(θ′|θ)P (θ)P (D|f = Lθν)

}
.

I Working through details of [MA10, Eq. 6] will clarify that kernel.



Sampling hyperparameters in GP: [MA10]

I Better, but still not quite enough. Problem:
I (fundamental reminder – data reduces uncertainty about latents f)
I [MA10, Alg. 1] (Alg. 2) is optimal in the strong (weak) data limit.
I Compare (part of) Alg. 1 rejection kernel...

p(θ′|f,D)

p(θ|f,D)
=

P (D|f)N (f ; 0,Kθ′)P (θ′)

P (D|f)N (f ; 0,Kθ)P (θ)
=
N (f ; 0,Kθ′)P (θ′)

N (f ; 0,Kθ)P (θ)

I ...with Alg. 2 rejection kernel:

p(θ′|ν,D)

p(θ|ν,D)
=

P (D|f = Lθ′ν)N (ν; 0, I)P (θ′)

P (D|f = Lθν)N (ν; 0, I)P (θ)
=
P (D|f = Lθ′ν)P (θ′)

P (D|f = Lθν)P (θ)
.

I f fixed by likelihood → Alg. 1 explores posterior (on θ) well.
I weak data → the GP prior is influential, so fixed ν works well.

I Compromise: θ-dependent surrogate observation g ∼ N (g; f, Sθ).

I Defines approximate posterior on f → correctly gauge strength of data.



Sampling hyperparameters in GP: [MA10]

I [MA10, §03] introduces that surrogate g ∼ N (g; f, Sθ).

I Results in the MCMC rejection kernel is [MA10, Alg. 3]:

A(θ′|θ) := min

{
1,
q(θ|θ′)P (θ′)P (D|f = Lθ′ν)N (g; 0,Kθ′ + Sθ′)

q(θ′|θ)P (θ)P (D|f = Lθν)N (g; 0,Kθ + Sθ)

}
.

I Notice we being hopeful about the proposal q.

I Solution: use slice sampling [MA10, Alg. 4]...



Slice sampling: an MCMC-like idea

I Recall the idea of MCMC: wander Θ, biasing towards higher P (θ|D).

I Slice sampling tries to draw uniformly from (θ, P (θ|D)). Good idea?
I Uniform draws over that volume are draws θ ∼ P (θ|D).
I The desired high-density bias will necessarily exist.

I Original is [Nea03]; I prefer [Mac03, ch. 29]; important for GP: [MAM09].



Slice sampling: an MCMC-like idea

Algorithm 2 Slice sampling θ → θ′

1: Evaluate P (θ|D)
2: Draw vertical φ ∼ Unif(0, P (θ|D))
3: Place slice [θl, θu] around θ
4: while do
5: θ′ ∼ Unif(θl, θu)
6: if P (θ′|D) > φ, then break
7: else change slice interval [θl, θu]
8: end while
9: return sample θ′ ∼ P (θ|D).

I Should feel like rejection sampling.

I No proposal distribution required!

I Still a markov chain operator.

I Some detail hidden in line 7...
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Sampling hyperparameters in GP: [MA10]

I Using slice sampling allows us to avoid a proposal distribution q.

I Compare [MA10, Alg. 3] to [MA10, Alg. 4].

I Hopefully less tuning required (in practice, that is indeed often the case).

I Producing the results (and ignoring the taylor parts):

ionosphere synthetic mining redwoods
0

1

2

3

4
Effective samples per likelihood evaluation

ionosphere synthetic mining redwoods
0

1

2

3

4
Effective samples per covariance construction

fixed prior−white surr−site post−site surr−taylor post−taylor

ionosphere synthetic mining redwoods
0

1

2

3

4
Effective samples per second

x1.6e−04   x3.3e−04   x4.3e−05   x4.8e−04   x2.9e−04   x1.1e−03   x7.4e−04   x3.7e−03   x7.7e−03   x5.4e−02   x1.2e−01   x1.5e−02   

I key:
I fixed: a single fixed latent f ... coupling matters.
I surr-site: diagonal Sθ from P (Di|fi)N (fi; 0, {Kθ}ii).
I post-site: diagonal Sθ from P (θ|ν).



Takeaways

I Model selection in GP is a research-grade problem.

I Coupling between f and θ causes problems.

I MCMC is essential.

I Reparamerization trick couples MCMC steps.

I Surrogate variance trick gauges likelihood influence.

I Slice sampling makes the implementation less bespoke.
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Approximate integrals over hyperparameters: [GOH14, §3]
I Compare ML-II hyperparameter optimization to our true belief:

p(f |D) =

∫
Θ

p(f |D, θ)p(θ|D)dθ

≈ p(f |D, θML)

I Posterior uncertainty is underestimated by ML-II.

I Even if p(f |D, θ) is gaussian, p(f |D) is not. Approximation (univariate f !):

p(f |D) =

∫
Θ

p(f |D, θ)p(θ|D)dθ

≈
∫

Θ

N (f ; a>θ + b, ν2)N (θ; θ̂,Σ)dθ

I where a, b, ν are chosen to match first and second moments of p(f |D, θ).

I Leads to a final induced posterior approximation p(f |D) ≈ N (f ; m̃, Ṽ ).



Approximate integrals over hyperparameters: [GOH14, §3]

I [GOH14, Eq. 9-19] → posterior approx. p(f |D) ≈ N (f ; m̃, Ṽ ).

I Essential takeaway: p(θ|D) imparts additional randomness onto p(f |D).

I Consequences:

utility and maximum (true)
utility and maximum (MGP )
utility and maximum (BBQ )
±2 SD (MGP )
±2 SD (MAP )
±2 SD (true)
mean (true)
mean (MAP /MGP )
data

y

x

I Note added uncertainty (red) in the posterior

I Absent that, desired inference can be be quite wrong (pink vs. black, red)

I Still an open problem...
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