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Stochastic processes: reminder and notational conventions

Definition (stochastic process). A stochastic process is an S-valued function
f : T × Ω→ S where (Ω,B, P ) is a probability space, and for each t ∈ T , f(t, ·)
is measurable on Ω. More informally, we obscure the sample space and the
σ-algebra and say f : T → S is a stochastic process indexed over T such that
each f(t) is an S-valued random variable.

Notes:

I X is often used; here we use f to be consistent with the gp literature.

I t ∈ T is often used (time); we also use x ∈ X , as in f(x) ∼ P .

I We will focus on the “machine learning” of gp: how to use gp, but not its
theory (in the measure theory sense), nor its applications (in the non-stats,
non-CS sense). Takeaway: the informal definition is just fine for us.

I Note: our department has numerous great people in the theory of stochastic
processes (e.g., Jingchen, Richard, Peter, the visitor Gennady
Samorodnitsky,...).



Gaussian Process

Definition (gaussian process). Let:

i. T be any set,

ii. m : T → R be any function, and

iii. k : T × T → R be any function that is symmetric (i.e.,
k(t, t′) = k(t′, t)∀t, t′ ∈ T ) and positive definite (i.e., for any finite G ⊂ T ,
the matrix KG = {k(t, t′)}t,t′∈G is positive definite).

Then there exists a gaussian process f = {ft}t∈T with mean function m and
covariance k. We write f ∼ GP(m, k). Notably, f ∼ GP(m, k) if and only if, for
every finite G ⊂ T , the collection of random variables fG ∼ N (mG,KG).

I Existence and uniqueness are both nontrivial. We briefly mention existence.

I The induced finite marginals are N (mG,KG), with:

mG =

 m(t1)
...

m(t|G|)

 ∈ R|G|, KG = {k(t, t′)}t,t′∈G, ∀G ⊂ T.



Existence

Theorem (Kolmogorov’s Extension Theorem): For any set T and universally
measurable spaces {St,Bt}t∈T , and any consistent family of probability laws
{PG : G finite, G ⊂ T} (with PG on SG), there is a probability measure PT on
ST with PG(·) = PT

(
h−1TG(·)

)
for all finite G ⊂ T . [Dud02, ch. 12]

I An infinite collection of finite random variables defines and is defined by a
single infinite dimensional distribution.

I hTG is the projection of T onto G, so this just says that any PG is a
projection of the measure on the process PT .

I In our context, the space of interest is {R,Bt} (and B is the σ-algebra of
Borel sets in R), which is universally measurable.

I (we are typically only interest in distributions on real functions, and very
often only L2, as we will see particularly when we get to Hilbert spaces).

I A great deal is hidden in “universally measurable”; we’ll skip all that.

I Read [Bog98] to learn about Gaussian measures on all sorts of funky spaces.

I Also something important is hidden in the “consistent family”...



Consistency

I Consistency essentially means that the marginals of any distribution
correspond to the distribution of that lower dimensional object.

I Let G ⊂ T be a finite subset as before, with PG(·) = PT

(
h−1TG(·)

)
.

I Then let G−i ⊂ G be the “one variable integrated out” marginal in the
sense of Pmarg =

∫
PGdP

i.

I Consistency means Pmarg = PG−i = PT

(
h−1TG−i(·)

)
.

I Example: if T = R, G ∈ Rd with gi = g(ti) (so t ∈ Rd), consistency means:

lim
ti→∞

PG(t) = PG−i(t−i).

I GP achieve consistency almost trivially by the marginalization property of
the normal distribution.



Brownian motion (aka wiener process)

I m(t) = 0

I k(t, t′) = min(t, t′)

I The prior f ∼ GP(m, k):
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Brownian motion (aka wiener process)

I m(t) = 0

I k(t, t′) = min(t, t′)

I 4 draws from f ∼ GP(m, k):
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Is Brownian motion a gp?

i. input space: T = R+ (time or some other unidimensional quantity).

ii. mean: m = 0 is a map T → R = 0 (a very common choice).

iii. covariance: k(t, t′) = min(t, t′) is positive definite. To see this, order any
finite subset tq > tq−1 > ... ≥ 0, and note si = ti − ti−1 ≥ 0. Then:

f
>
Kf =

q∑
i=1

q∑
j=1

fifjKij

=

q∑
i=1

q∑
j=1

fifjmin(ti, tj)

=

q∑
i=1

q∑
j=1

fifj

min(i,j)∑
k=1

sk

=

q∑
k=1

sk

q∑
i=k

q∑
j=k

fifj

=

q∑
k=1

sk(

q∑
i=k

fi)
2

≥ 0 ∀f ∈ Rq
.



Whither kernel methods?

I §03 of this course will explore different types of kernels, not the underlying
Hilbert space structure.

I §09 will go into reproducing kernel Hilbert spaces in depth (theory).

I Thus the beauty underlying kernel functions is only implicitly used during the
gp sections.
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Review: multivariate Gaussian

I f ∈ Rn is normally distributed means:

p(f) = (2π)−
n
2 |K|− 1

2 exp

{
−1

2
(f −m)>K−1(f −m)

}
for mean vector m ∈ Rn and covariance matrix K ∈ Rn×n.

I shorthand: f ∼ N (m,K)



Intuitive definition of a gaussian process

I Loosely, a multivariate Gaussian of uncountably infinite length...
really long vector ≈ function

I f is a Gaussian process if f(t) = [f(t1), ..., f(tn)]′ has a multivariate normal
distribution for all t = [t1, ..., tn]′:

f(t) ∼ N (m(t), k(t, t)).

I Let’s evaluate m(t),K(t, t)...



Intuitive definition of a gaussian process

Mean function m(t):

I any function m : R→ R (or m : Rd → R)

I very often m(t) = 0 ∀ t (mean subtract your data)

Kernel (covariance) function:

I any valid Mercer kernel k : Rd × Rd → R
I Mercer’s theorem: every matrix K(t, t) = {k(ti, tj)}i,j=1...n is a positive

semidefinite (covariance) matrix ∀t:

vTK(t, t)v =

n∑
i=1

n∑
j=1

Kijvivj =

n∑
i=1

n∑
j=1

k(ti, tj)vivj ≥ 0.

I (exactly what we used in the BM example a few minutes ago)



Kernel Function

Example kernel (squared exponential or SE):

k(ti, tj) = σ2
f exp

{
− 1

2`2
(ti − tj)2

}

From kernel to covariance matrix

I Choose some hyperparameters: σf = 7 , ` = 100

t =

0700
0800
1029

 K(t, t) = {k(ti, tj)}i,j =

49.0 29.7 00.2
29.7 49.0 03.6
00.2 03.6 49.0





Kernel Function

Example kernel (squared exponential or SE):

k(ti, tj) = σ2
f exp

{
− 1

2`2
(ti − tj)2

}

From kernel to covariance matrix

I Choose some hyperparameters: σf = 7 , ` = 500

t =

0700
0800
1029

 K(t, t) = {k(ti, tj)}i,j =

49.0 48.0 39.5
48.0 49.0 44.1
39.5 44.1 49.0





Kernel Function

Example kernel (squared exponential or SE):

k(ti, tj) = σ2
f exp

{
− 1

2`2
(ti − tj)2

}

From kernel to covariance matrix

I Choose some hyperparameters: σf = 7 , ` = 50

t =

0700
0800
1029

 K(t, t) = {k(ti, tj)}i,j =

49.0 06.6 00.0
06.6 49.0 00.0
00.0 00.0 49.0





Kernel Function

Example kernel (squared exponential or SE):

k(ti, tj) = σ2
f exp

{
− 1

2`2
(ti − tj)2

}

From kernel to covariance matrix

I Choose some hyperparameters: σf = 14 , ` = 50

t =

0700
0800
1029

 K(t, t) = {k(ti, tj)}i,j =

196 26.5 00.0
26.5 196 0.01
00.0 0.01 196
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Important gaussian properties (in this context)

I additivity (forming a joint)

I conditioning (inference)

I expectations (posterior and predictive moments)

I marginalisation (marginal likelihood/model selection)

I ...



Additivity (joint)

I prior (or latent) f ∼ N (mf ,Kff )

I additive iid noise n ∼ N (0, σ2
nI)

I let y = f + n, then:

p(y, f) = p(y|f)p(f) = N
([
f
y

]
;

[
mf

my

]
,

[
Kff Kfy

Kyf Kyy

])

I where (in this case):

Kfy = E[(f −mf )(y −my)T ] = Kff Kyy = Kff + σ2
nI

I latent f and noisy observation y are jointly Gaussian



Where did the GP go?

I prior (or latent) f ∼ N (mf ,Kff )

I additive iid noise n ∼ N (0, σ2
nI)

I let y = f + n, then:

p(y, f) = p(y|f)p(f) = N
([
f
y

]
;

[
mf

my

]
,

[
Kff Kfy

Kyf Kyy

])

I If f and y are indexed by some vector of inputs t ∈ Rn:

mf =

mf (t1)
...

mf (tn)

 Kff = {k(ti, tj)}i,j=1...n ...



Where did the GP go?

I prior (or latent) f ∼ GP(mf , kff )

I additive iid noise n ∼ GP(0, σ2
nδ)

I let y = f + n, then:

p(y(t), f(t)) = p(y|f)p(f) = N
([
f
y

]
;

[
mf

my

]
,

[
Kff Kfy

KT
fy Kyy

])
I If f and y are indexed by some vector of inputs t ∈ Rn:

mf =

mf (t1)
...

mf (tn)

 Kff = {k(ti, tj)}i,j=1...n ...

I warning: overloaded notation - f can be infinite (GP) or finite (MVN)
depending on context.



Conditioning (inference)

I The joint of f and y:

p

([
f
y

])
= N

([
mf

my

]
,

[
Kff Kfy

Kyf Kyy

])
I Massively important fact:

f |y ∼ N
(
mf +KfyK

−1
yy (y −my) , Kff −KfyK

−1
yy Kyf

)
I Inference of latent GP, given data, is simple linear algebra.
I Tedious proof (Schur complement/LDU):

log p(f, y) = log p

([
f
y

])
= logN

([
mf
my

]
,

[
Kff Kfy
Kyf Kyy

])

∝ −
1

2

([
f
y

]
−
[
mf
my

])> [Kff Kfy
Kyf Kyy

]−1 ([
f
y

]
−
[
mf
my

])

=

([
f
y

]
−
[
mf
my

])> [ I 0

−K−1
yy Kyf I

] (Kff −KfyK−1
yy Kyf

)−1
0

0 K−1
yy

 [I −KfyK−1
yy

0 I

] ([
f
y

]
−
[
mf
my

])

=

([
f
y

]
−
[
mf + KfyK−1

yy (y −my)

my

])> (Kff −KfyK−1
yy Kyf

)−1
0

0 K−1
yy

([f
y

]
−
[
mf + KfyK−1

yy (y −my)

my

])

∝ logN
(
my,Kyy

)
+ logN

(
mf + KfyK

−1
yy (y −my) , Kff −KfyK

−1
yy Kyf

)
= log p(y)p(f|y).



Expectation (posterior and predictive moments)

I Conditioning on data gave us:

f |y ∼ N
(
KfyK

−1
yy (y −my) +mf , Kff −KfyK

−1
yy Kyf

)
I then E[f |y] = KfyK

−1
yy (y −my) +mf (MAP, posterior mean, ...)

I Predict data observations y∗ = y(t∗) for some test point t∗:[
y
y∗

]
∼ N

([
my

my∗

]
,

[
Kyy Kyy∗

Ky∗y Ky∗y∗

])

I no different:

y∗|y ∼ N
(
Ky∗yK

−1
yy (y −my) +my∗ , Ky∗y∗ −Ky∗yK

−1
yy Kyy∗

)



Marginalisation (marginal likelihood and model selection)

I Again, if: [
f
y

]
∼ N

([
mf

my

]
,

[
Kff Kfy

Kyf Kyy

])
I we can marginalize out the latent:

p(y) =

∫
p(y|f)p(f)df ↔ y ∼ N (my,Kyy)

I marginal likelihood of the data (or log(p(y)) data log-likelihood)

I In GP context, actually p(y|θ) = p(y|σf , σn, `). This can be the basis of
model selection (§02 of this course).
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Observations

I the GP prior p(f)
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Observations

I Observe a single point at t = 204:
y(204) ∼ N (0, kyy(204, 204)) = N (0, σ2

f + σ2
n)

0 100 200 300 400 500

−30

−20

−10

0

10

20

30

input t

o
u

tp
u

t 
f



Observations

I Use conditioning to update the posterior:

f |y(204) ∼ N
(
KfyK

−1
yy (y(204)−my) , Kff −KfyK

−1
yy K

T
fy

)
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Observations

I Use conditioning to update the posterior:

f |y(204) ∼ N
(
KfyK

−1
yy (y(204)−my) , Kff −KfyK

−1
yy K

T
fy

)
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Observations

I ... and the predictive distribution:

y∗|y(204) ∼ N
(
Ky∗yK

−1
yy (y(204)−my) , Ky∗y∗ −Ky∗yK

−1
yy K

T
y∗y

)
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Observations

I More observations (data vector y):

y∗|y(

[
204
90

]
) ∼ N

(
Ky∗yK

−1
yy

(
y(

[
204
90

]
)−my

)
,Ky∗y∗ −Ky∗yK

−1
yy K

T
y∗y

)
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Observations

I More observations (data vector y):

y∗|y(

[
204
90

]
) ∼ N

(
Ky∗yK

−1
yy

(
y(

[
204
90

]
)−my

)
,Ky∗y∗ −Ky∗yK

−1
yy K

T
y∗y

)
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Observations

I More observations (data vector y):

y∗|y ∼ N
(
Ky∗yK

−1
yy (y −my) , Ky∗y∗ −Ky∗yK

−1
yy K

T
y∗y

)
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Observations

I More observations (data vector y):

y∗|y ∼ N
(
Ky∗yK

−1
yy (y −my) , Ky∗y∗ −Ky∗yK

−1
yy K

T
y∗y

)
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Nonparametric Regression

I GP let the data speak for itself... but all the data must speak.

y∗|y ∼ N
(
Ky∗yK

−1
yy (y −my) , Ky∗y∗ −Ky∗yK

−1
yy K

T
y∗y

)

I “nonparametric models have an infinite number of parameters”



Nonparametric Regression

I GP let the data speak for itself... but all the data must speak.

y∗|y ∼ N
(
Ky∗yK

−1
yy (y −my) , Ky∗y∗ −Ky∗yK

−1
yy K

T
y∗y

)
I “nonparametric models have an infinite number of parameters”

I “nonparametric models have a finite but unbounded number of parameters
that grows with data”



Regression: a few reminders

I denoising/smoothing
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Regression: a few reminders

I denoising/smoothing

I prediction/forecasting
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Regression: a few reminders

I denoising/smoothing

I prediction/forecasting

0600 0700 0800 0900 1000 1100 1200

−20

−10

0

10

20

30

40

Input (t)

O
u

tp
u

t 
(y

)



Regression: a few reminders

I denoising/smoothing

I prediction/forecasting

I dangers of parametric models
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Regression: a few reminders

I denoising/smoothing

I prediction/forecasting

I dangers of parametric models

I dangers of overfitting/underfitting
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Regression: a few reminders

I denoising/smoothing

I prediction/forecasting

I dangers of parametric models

I dangers of overfitting/underfitting
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Useful information

I Always start with the syllabus. Highlights...
I Prerequisites (aka, did today make sense to you):

I Stochastic processes to a basic understanding of gaussian processes
I Machine learning such as W4400
I Probability, statistics, linear algebra, basic convex optimization
I Programming skills

I Grade:
I Homework (10%). Two or three homework sets will be given to ensure

students are keeping pace. Homework will contain both written and
programming/data analysis elements.

I Attendance and Participation (40%). The course will have a seminar
format, and your involvement is critical. This means read in advance, and
demonstrate that knowledge.

I Course Project (50%). The course projects will be the focus of the latter
half of this course. Projects can take a variety of forms, from contributing to
open source machine learning projects, to analyzing data of interest, to
advancing a theoretical topic. We will spend substantial time developing ideas
for projects, tracking and discussing progress, and presenting final work
product. Individual projects are ideal, though projects with groups of two may
also be appropriate.



Progress...

Week Content

1 Introduction to gaussian processes for machine learning
• Reading: [RW06, ch. 1-2]
• HW1 out: https://github.com/cunni/gpkm/blob/master/hw1.ipynb

2 Model selection
• Reading: [RW06, ch. 5.1-5.4]; [MA10]; [GOH14, §3 only]
• HW1 ongoing

3 Approximate inference
• Reading: [KR05]; [RMC09]; [RW06, ch. 3; 5.5]; [HMG15]
• HW1 due at the beginning of Monday lecture
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