John Cunningham

COLUMBIA
UNIVERSITY

PN School — 27 March 2023

> The Promise of Probabilistic Machine Learning

» (Gaussian Process Introduction

» Scaling Gaussian Processes, and Implications

> Approximate Gaussian Process Inference, The Right Way

» iterGP as Probabilistic Numerics

» Broader Implications

Probabilistic Machine Learning

» Fundamental premise: treat all unknown quantities as random variables. Bayes Rule does the rest

belief about the
state of the world p (f)

p(fly)
how data arises from

a state of the world P (y f) upd.ated belief
given data

Probabilistic Machine Learning

» Fundamental premise: treat all unknown quantities as random variables. Bayes Rule does the rest

belief about the
state of the world

p(f(X)]|y)

p(f(X))
how data arises from (‘ f(X)) |
a state of the world Py upd.ated belief
given data

Approximate Inference

> But this is hard! As soon as you learn the magic of Bayes Rule, you learn that we need to
approximately solve it.

belief about the (
state of the world p f)

how data arises from (
a state of the world p y f)

PYRO

§§

—)

updated belief
given data

Approximate Inference

> But this is hard! As soon as you learn the magic of Bayes Rule, you learn that we need to
approximately solve it.

belief about the
state of the world p (f)

~p(fly)
how data arises from

a state of the world P (y f) upd.ated belief
given data

Approximate Inference

> The crystal ball is actually a computing machine, making assumptions and choices of its own,
but we have not accounted for them! All our assumptions, all our unknowns... we were
supposed to reason about them probabillistically.

-

f) updated belief
given data (and
some other stuff?)

belief about the
state of the world p (f)

how data arises from (
a state of the world p y

Approximate Inference

> This statement may seem inherent in the definition of “approximate”, but it is not! The entire
point of this talk is to pay off this claim.

belief about the (
state of the world p f)

[~p(fly)
how data arises from

a state of the world P (y f) upglated belief
given data

today: how to rationalize
approximate computation
probabilistically

Outline

> The Promise of Probabilistic Machine Learning Q

» Gaussian Process Introduction

» Scaling Gaussian Processes, and Implications T 1
O 8

> Approximate Gaussian Process Inference, The Right Way

» iterGP as Probabilistic Numerics c

> Broader Implications

> Setup: f ~ GP(u, k)
» Learn a function h : X — Y

> Training inputs X = (Z1,...,&y) € R7Xxd

> Training outputs y — (yl, . ,yn)T c R"

> Gaussian Process: f ~ GP(u,k) — = Latentfunction ~ @ Data

Posterior mean - Posterior uncertainty

> Mean function 1 : R — R
» Covariance kernel £k : R? x R4 3 R

> Joint Gaussian forall X : f = (f(@x1),..., f(x,))T ~N(u, K)
AT Ky = k(i)
pj = p(z)

> With likelihood: g | £ ~ N/ (f, o2 T)

> And test inputs: X,

» [nduces the posterior:

fo ~ N (1 (Xo), ku(Xo, X))

- where: i+ (-) = pu(-) + k(-, X) K~ (y — p)
k*('a) — k(')) — k('? X)K_lk(X,)

== == | atent function ® Data

Posterior mean - Posterior uncertainty

K = K + 02 € R*x™

1 data point

e
.

== == | atent function ® Data

> With likelihood: g | £ ~ N/ (f, o2 T)

> And test inputs: X,

» [nduces the posterior:

fo ~ N (1 (Xo), ku(Xo, X))

- wheres f1a(7) = () + k(- X) KNy —
k*('a) — k(')) — k('? X)k_lk'(X,)

Posterior mean - Posterior uncertainty

K = K + 02 € R*x™

3 data points

B o 4
v .

f<> ™ N(/‘l’* (X0)7 k* (XO? XO)) == == Latent function ® Data

» where: i« (") = p(-) + k(- X) K~ (y —)
k*('a) — k(')) — k('7 X)k_lk(Xa)

> With likelihood: g | £ ~ N/ (f, o2 T)

> And test inputs: X,

» [nduces the posterior:

K = K + 02 € R*x™

Posterior mean - Posterior uncertainty

5 data points
> With likelihood: g | £ ~ N (f,0T) vw
> And test inputs: X,
» Induces the posterior:

fo ~ N (1 (Xo), ku(Xo, X))

» where: i« (") = p(-) + k(- X) K~ (y —)
k*('?) — k(')) — k('? X)k_lk(Xa)

== == | atent function ® Data

Posterior mean - Posterior uncertainty

K = K + 02 € R*x™

(Gaussian Process Posterior

10 data points

> With likelihood: gy | f ~ N(f, 0%T)

> And test inputs: X

> Induces the posterior:

f, ~ N(,U* (Xo)a Ky (X<>7 Xo))

> where: ,U*() — M() + k(', X) K_l(y — l‘)
k() = k() — k(-, X) K 'k(X,")

== == | atent function ® Data

Posterior mean Posterior uncertainty

K = K + 02] € R*Xn

» We will have considerable work to deal with this linear solve

GP Weight Space View

A

> |_et us also consider the representer weights Vx = K (y — ﬂ)

U %

() = () + k(, X) K~ (y — p)

> View as kernel basis function regression: place a kernel shaped bump at each input, and the
representer weights are the regression coefficients that map that onto the GP posterior mean.

™o

> We are going to spend time
reasoning over these weights

0 (]Zb U.E)O O.;Zb O.IbU 0 I/‘\ '|.I'JU] 113 1.90
> (If we think of linear solves
probabilistically, then a posterior ~— —— _
on our representer weights will | ~_|_— o ;
provide exactly what we need..) 1,00 075 0.50 0.5 0.00 0.5 0.50 075 1.00
Kernel Funct on(s) x Renresenter Weights

[Bosch et al 2022]

For Completeness: Learning GP Hyperparameters

> Of course, a huge part of GP is learning the hyperparams: model selection or training

> There’s a ton of great work on how to do this, and how to scale it too.

[Gardner et al 2018]
(and many others)

1 A 1 .
arg max L(6) = argmax ——(y —)"K' (y — p) — 7 log | K|
“data fit” “model complexity”

-0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5

[Bosch et al 2022]

Outline

> The Promise of Probabilistic Machine Learning Q

» (Gaussian Process Introduction

> Scaling Gaussian Processes, and Implications T 1
0 "

> Approximate Gaussian Process Inference, The Right Way

» iterGP as Probabilistic Numerics c

> Broader Implications

Enter Approximate Inference

> The core GP object (as far as computation is concerned): K = K + 0‘2_[c RXN

> |t appears over and over:

N\

pi(r) = p() + k(- X) K™ (y — p)

k*('a) — k('v) — k(°7X)K_1k(X7)

1

. |
arg max — - (y — p)TK ™ (y —)

log | K
Qog\\

» Generally these computations are all cubic in time (and quadratic in storage)

> Much literature thus to deal with this cubic scaling

> (And note that in cases of special structure, notably d=1,2,3, this cost can be much reduced)

[Karvonen and Sarkka 2016 |IEEE]
[Loper et al 2021 JMLR]
[Greengard et al 2022 arXiv]

Fast Inference 1: Conjugate Gradients

> View linear solves as an optimization:

1 A
min inKa: +xT(y — pu)

£

» Gradient descent is slow, so instead take .
conjugate gradient steps, namely steps in K
norm.

» Guaranteed to converge in n steps, but in
practice converges to high precision much
faster

> As with many (all) other fast linear solvers, it .

N NN

o~

-

operates only with forward multiplies of form Kax

N

==
—‘\\-: §
=

N ?‘\\
O\

NN
DN

'''''''''

\ NSNS
it
\?

-
o

[Andy Jones]

Fast Inference 1: Conjugate Gradients

> View linear solves as an optimization:

1

mln 5 4 b T K 4 b + 4 b T ('y — Il:) Algorithm S3: Preconditioned Conjugate Gradient Method [38]
£

Input: kernel matrix K, labels Y, pPrior mean p, preconditioner P
Output: representer weights v; ~ K~ 1(y — u)

» Gradient descent is slow, so instead take .

2
conjugate gradient steps, namely steps in K 3
norm (via a clever recursion). 4

5
» Guaranteed to converge in n steps, but in 6
practice converges to high precision much 7
faster .

| procedure CG(K Y — L, P)

v < 0

sg+ 0

while |7;|[., > max(dnolﬂyuz, datol) AN 7 < %1, dO
ri-1 < (y — p) — Kvig

- Plr,)T Ks._
S; (_P l'ri—l (ri—1) 8;i—-1

s;r_lei_l Si—1
(p_1’l"'_1)TT'_1
V;, <« V;_1 | SfKSi - S;
return v

> As with many (all) other fast linear solvers, it .
operates only with forward multiplies of form Kax

[Wenger et al 2022 NeurlPS]
[Cutajar et al 2016 ICML]

[Cunningham et al 2007 ICML]

Fast Inference 1: Conjugate Gradients

> (For completeness) CG is well used for log likelihood computation also:

Algorithm 1: log-Marginal Likelihood Algorithm 2: Derivative of the log-Marginal Likelihood
Input: y (labels), K (kernel matrix), P (preconditioner), £ (# of Input: y (labels), K (kernel matrix), P (preconditioner), £ (#
random STE vectors), m (# of CG iterations) of random STE vectors), m (# of CG iterations), %‘;{ / %{:

1 procedure LOGMARGLIKELIHOOD(y, K,P, ¢ ,m) (functions for computing kernel / preconditioner derivatives)

2w+ CG(K,y,P,m) >~ Kty | procedure DERIVATIVE(y, K,2K p 9P 4 m)

3 758 + log det(P) 2 u « CG(K,y, P, m) >~ K™y

4 for: =1,... ¢do 3 1n""’(—tr(P l‘;{:)

5 zi + zi/||Zi||, for rand. vector Z; 4 fori=1,...,4do

6 T + CG(K, z;, P,m) > equiv. to LANCZOS 5 Zi éi/\|£z||2 for rand. vector Z;

7 (W, A| < EIGENDECOMP(T) > T tridiagonal 6 W, — CG(K, 8319{ zi, P, m) ~ K1 %_Igzz

8 w; + (eTJw,)*forj =0,...,m quad. weights 19P

J 1777 7 i P 50 Zi

9 Yi < Z] —0 Y lOg()\) > =~ z;rAlogzi 8 Yi ZT (wz wz) ~ zTAinV(’)zz
10 T8 TRE+ 5 Ez 17V >~ log det(K) 9 T A4 Zz LY > R tr(K ! Cffo{)
11 return —; (y"u + 7.8 + nlog(2r)) >~ L(0) 10 return 7 (u' %—Igu — Vo) > 2 L(6)

[Wenger et al 2022 ICML]

Fast Inference 2: Inducing Point Methods

> Inducing points have been used under many names and variations
> SOR, Nystrom, SVGP, DTC,...
> These methods differ in their training and posterior covariance assumptions
> Detailing all of them is a few lectures in its own right; here | will lay out the essentials

» Choose a set of locations Z € R™*¢

> Posterior then uses the approximation K x x ~ KXZKgé K,
> Well-chosen inducing points make should be a good low rank approximation

> While methods differ in posterior covariance, they share a posterior mean [Wild et al 2023]
—1 —1 2 —1
#() — k(’: Z)KZZKZXKXZ(KZX(KXZKZZKZX T+ 0 I)KXZ) Kyx (y — ﬂ)
> TL;DR: all inversions take place in the inducing point space:

> Meaningful cost savings
> Tendency to be overconfident, especially where inducing points are placed.

[Seeger and Williams 2001 NIPS]

[Wu et al 2022 ICML]
[Wu et al 2021 AISTATS]

Approximate Inference

> The crystal ball is actually a computing machine, making assumptions and choices of its own,
but we have not accounted for them. All our assumptions, all our unknowns ... we were
supposed to reason about them probabillistically!

o)

a state of the world P (y f) updgted belief
given data

belief about the
state of the world p (f)

Mathematical Posterior

= == [atent function ® Data Posterior mean - Posterior uncertainty

Mathematical Posterior CGGP

= == [atent function ® Data Posterior mean - Posterior uncertainty

Mathematical Posterior CGGP

Nystrom (SoR)

== == Latent function ® Data Posterior mean - Posterior uncertainty

Mathematical Posterior CGGP

Nystrom (SoR)

[\
_/

== == Latent function ® Data Posterior mean - Posterior uncertainty

Mathematical Posterior CGGP

Nystrom (SoR) SVGP
== Latent function ® Data Posterior mean - Posterior uncertainty

Mathematical Posterior CGGP

Nystrom (SoR) SVGP
== Latent function ® Data Posterior mean - Posterior uncertainty

Mathematical Posterior CGGP

> The point: the approximation method

IS making strong (and different) ‘ ‘ ' ' ‘

statements about what you know Nystrom (SoR) SVGP

» But this effect is ignored...

== == [atent function ® Data Posterior mean ~ Posterior uncertainty

Outline

> The Promise of Probabilistic Machine Learning Q

» (Gaussian Process Introduction

> Scaling Gaussian Processes, and Implications T 1
0 "

> Approximate Gaussian Process Inference, The Right Way

» iterGP as Probabilistic Numerics c

> Broader Implications

Approximate Inference as Exact Inference

> Apparently approximate inference is exact inference, but under some different model

belief about the
state of the world

how data arises from
a state of the world

p(y

f)

(-3

updated belief
given data

Approximate Inference as Exact Inference

> Apparently approximate inference is exact inference, but under some different model

belief about the
state of the world

how data arises from
a state of the world

o
Ny / cated ol

effective likelihood according to
the computational machine?

Approximate Inference as Exact Inference

> Apparently approximate inference is exact inference, but under some different model

belief about the
state of the world

how data arises from
a state of the world

effective prior according to

4N:omputa’cional machine?
p(f)

p(y

f)

o

updated belief
given data

Approximate Inference as Exact Inference

> Apparently approximate inference is exact inference, but under some different data

belief about the
state of the world

how data arises from
a state of the world

~p(fly)

updated belief
given effective data

effective dataset induced
by the computation

[Wenger et al NeurlPS 2022]

Effective Dataset

> |terative numerical methods (for GP) take linear combinations of data

> Let us define the set of actions taken by a given (approximate) solver as

S, = [s1 83 ... 8;] € R™™

> This should feel plausible; consider the following actions:

Actions s8; Classic Analog
e; (partial) Cholesky
evi(K) (partial) EVD / SVD
s; CGor P71y, (preconditioned) CG
k(X,z;) ~ Nystrom (SoR, DTC), SVGP

> (We will make this rigorous shortly, for now we just establish the connection)

5 data points
> With likelihood: g | £ ~ N (f,0T) vw
> And test inputs: X,
» Induces the posterior:

fo ~ N (1 (Xo), ku(Xo, X))

» where: i« (") = p(-) + k(- X) K~ (y —)
k*('?) — k(')) — k('? X)k_lk(Xa)

== == | atent function ® Data

Posterior mean - Posterior uncertainty

K = K + 02 € R*x™

(Gaussian Process Posterior

S data points

> With likelihood: STy | £ ~ N (STf,0°STS;)

> And test inputs: X

\,"\v/,
> Induces the posterior:
f<> ™~ N(fo, /‘I’Z(XO)? ki(X<>7 XO)) — = Latent function ® Data
Posterior mean Posterior uncertainty

> where: f1;(+) = p(-) + k(-, X)Ci(y — p)
ki(+,)) = k(-,+) — k(-, X)Cik(X,)
Ci=S,(STKS;)"'S]

K = K + 0%I € R**"

Combined Uncertainty

» Combined Uncertainty admits a clean decomposition:

k('a) o k‘(,X)CZk'(X,) — k('a) o k('a X)K_lk(Xa) +k('7 X)Zik(Xa)

combined uncertainty O mathematical uncertainty O computational\uncertainty O

C;=S,(STKS,) 'S8T K =K +¢°1 Computationa
uncertainty turns out
to be exactly the

- uncertainty on the
> Very satisfying outcome; representer weights

» Our combined (effective) uncertainty is a result of both finite data and finite compute
> We call mathematical uncertainty the exact posterior with the given data

» Computational uncertainty is a direct use of Probabilistic Numerics!

Interlude: so is this a PN story or a GP story?

» Both. What | am telling you today builds on huge amounts GP approximate inference work
and a significant amount of PN work, two most notably:

PN: linear solvers can be seen as GP: inference is all linear solves, from
probabilistic inference methods which arises the effective dataset
Prior (Observations Posterior IterGP-PI

|. _ N R ,, \'s ”‘—

E[A] o @ '
- \
E[H] A BB HN% B : — Appo. Posrir e
__________ N L Computational Uncertainty
”’
S Combined Uncertainty

[Wenger and Hennig NeurlPS 2020] [Wenger et al NeurlPS 2022]

> [terGP is the family of methods producing combined GP uncertainty from iterative solvers

Old Way: Approximate Inference in Practice

Mathematical Posterior CGGP

Nystrom (SoR) SVGP

== == Latent function ® Data Posterior mean Posterior uncertainty

New Way: Sequentially Updating Data Points as IterGP

1 1iteration 3 1terations

Variance

5 iterations 10 1terations

Variance

== Latent function Posterior mean Computational uncertainty
® Data Mathematical uncertainty

New Way: lterGP-Cholesky

Method Actions s; Classic Analog
IterGP-Chol e; (partial) Cholesky
Mathematical Posterior
» Recall: 7z
\\ ./’
T T 2 QT ,
Sly|f~N(S'f,0°S]8S;)
:
S
3
IterGP-Chol (z = 4)
-t
\- o — /’
®
5
ks
=
>
= == Latent function
® Data

lterGP-Chol (i = 1)

IterGP-Chol (z = 8)

Mathematical posterior mean
Postcrior mcan

Mathematical uncertainty
Computational unccrtainty

New Way: IterGP-CG

Method Actions s; Classic Analog
IterGP-Chol e; (partial) Cholesky
IterGP-PBR evi(K) (partial) EVD / SVD
IterGP-CG s;““or P 'r; (preconditioned) CG
IterGP-PI k(X,z;) =~ Nystrom (SoR, DTC), SVGP |
Mathematical Posterior [terGP-CG (2 = 1)
> Notice: = N = =
> Computational uncertainty adds to 3
mathematical uncertainty... of course =
: >
it should [terGP-CG (i = 4) [terGP-CG (i = 8)
» Untouched data (eg I=1 at right) has -) = _ =
high combined uncertainty —> prior -
8
§
= = Latent function Posterior mean Computational uncertainty

® Data Mathematical uncertainty

Compare: iterGP-Pseudolnput vs SVGP

» Combined uncertainty reliably overestimates the truth —> this is desirable (and correct)!
» SVGP is overconfident at its inducing points, combined uncertainty corrects this.
> Overconfidence can produce large mean errors (¥)

IterGP-PI

——— - ———— —
- 0‘—

w— Approx. Posterior Mean
% Computational Uncertainty
Combined Uncertainty

== Approx. Posterior Mean
Approx. Posterior Uncertainty

Mean Err.

Var. Err.

® Data — Exact Posterior Mean ----Exact Posterior Uncertainty Inducing Points

Compare: iterGP-Pseudolnput vs SVGP

SVGP IterGP-PI (ours)

» ooking at posterior means is instructive:
» Same as before, but for comparison let

q(,-) =k(-, Z2)Kz,k(Z,")

Mean Err.

Var. Err.

> Then SVGP has posterior mean:
psver(’) = 4(X)Kxz(Kzx(¢(X,X) + o I)Kxz)" Kzx(y — p)
> And IterGP-PI has posterior mean (for actions. k(X z;) , recall C; = S,(STK S,)"18T)
pi(-) = k(- X)Kxz(Kzx (k(X,X) + 0’)Kxz) ' Kzx(y — p)
» Speedup in SVGP comes at cost of overconfidence, since ¢(X, X) <X k(X, X)

» SVGP has too strong belief in representer weights, leading to potentially large errors even
with a good variational fit. Computational uncertainty reduces that confidence.

Compare: iterGP-Pseudolnput vs SVGP

» Combined uncertainty reliably overestimates the truth —> this is desirable (and correct)!
» SVGP is overconfident at its inducing points, combined uncertainty corrects this.
> Overconfidence can produce large mean errors (¥)

IterGP-PI

——— - ———— —
- 0‘—

w— Approx. Posterior Mean
% Computational Uncertainty
Combined Uncertainty

== Approx. Posterior Mean
Approx. Posterior Uncertainty

Mean Err.

Var. Err.

® Data — Exact Posterior Mean ----Exact Posterior Uncertainty Inducing Points

Computational Uncertainty Matters

> lterGP achieves better generalization with a smaller number of inducing points (vs SVGP)

Synthetic Parkinson’s Bike Sharing Protein KEGGundir
(n =1,024,d = 5) (n = 5,287,d = 21) (n = 15,641, d = 16) (n =41,157,d = 9) (n = 57,247, d = 26)
3.5 1.0 I
1.25 - 0.00 - - SVGP
1.20 - 3.0 - IterGP-PI
]
— 1.00 — —0.25
z 1.15 - 2.5 - 0.9
0.75 = —0.50 -
.10 LR LLL BN L L R | 200-' BURRRLY ™ 1 | I LA ELLL BN AL LL
0.8 0.65 0.25 -\ = SVGP
- 0.75 - 4 - IterGP-PI
7P 0.20 -
E 3 - 0.6 - 0.60 -
0.70
- 0.15 -
E— S 0.4 L——rr——rrrry 090 L SE—
102 103 102 103 102 103 102 103 102 103
Ind. Points / Iteration Ind. Points / Iteration Ind. Points / Iteration Ind. Points / Iteration Ind. Points / Iteration

> Note however that this is a statement about use of inducing points, not performance per flop

Approximate Inference as Exact Inference (on Different Data)

> Result: if you update your GP via matrix-vector multiplication, then the combined uncertainty
of the IterGP algorithm is precisely the correct object to capture your belief.

belief about the (
state of the world p f)

ﬂ p(fly)
how data arises from

p(y f) iterGP captures updated belief
a state of the world effective dataset given effective data

due to computation

[Wenger et al NeurlPS 2022]

Outline

> The Promise of Probabilistic Machine Learning Q

» (Gaussian Process Introduction

> Scaling Gaussian Processes, and Implications T 1
0 "

> Approximate Gaussian Process Inference, The Right Way

> iterGP as Probabilistic Numerics c

> Broader Implications

» Let us again consider the representer weights vV« = K ‘1(y — u)

VU «x

pa() = p() +k(, X) Ky — p)

| | | | |
-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

——— " —

| |
-1.00 -0.75 -0.50 -0 25 0.00 0.25 0. 50 0.75 1.00

— Exact GP Mean @® Data —— Kernel Function(s) x Representer Weights
[Bosch et al 2022]

Learning Representer Weights

> Consider the GP latent, conditioned on the representer weights
p(fo ‘ ’U*) — N(/’L(XO) + k(X<>7 X)’U*, k* (XOa XO))

> First: suppose representer weights are known (linear solve is done!), we recover posterior:

f, ~ N(M* (Xo)a K+ (XOJ XO))

U x
| |

~

pa() = () +EGX)K Yy —p) k() =k(-,) — k(, X)K k(X ")

» Second: suppose representer weights are unknown (no solve yet!), we recover prior:

p(vs) = N(v*507f{_1) fp(fo ‘ 'U*)P('U*) dv,

to ~ N(M(Xo): k(Xo: Xo))

> This should already feel promising...

Learning Representer Weights (the details)

> Now the numerical method amounts to iteratively updating belief on representer weights:
> Assume an existing belief: p('v*) — N(’U*; Vi—1, Ei—l)

> The error/residual of that beliefis: 7;_1 = (y — u) — Kv,_4

U x
| |

~

> ...this makes sense; the true representer weights are given by K~ '(y —)

> Return of actions: «; :=871;—1 =8, ((y — p) — IA('vi_l) — .siTIA(('v* — V;_1)

> Conditioning on this projected residual, we result in: p(vy) = N (v, | v;, 2;)
v, = v+ 2 1Ks;(s] KXY, 1KSZ) LsTK (v, —vi1) = Ci(y — p)

=:d; =n; =
2@' — 22’—1 — Ez 1KSZ(TKZZ_lKS) L S;IA{Zi_l — K_l — Cf,,
=d; =T Zd,:

Ci=3_ -d;d] = Si(STKS;)~*8]

Learning Representer Weights (the details)

> NB this all is captured quite cleanly in an iterative (probabilistic) numerical method

» Accompanying theorems in the
paper add considerable strength
to these claims

> Matrix vector multiplies imply a
computational cost of O (n??)

» Storage is linear as the full
covariance matrix needs not be
represented in memory

Algorithm 1: A Class of Computation-Aware Iterative Methods for GP Approximation

Input: prior mean function u, prior covariance function / kernel £, training inputs X, labels y
Output: (combined) GP posterior GP (u;, k;)
1 procedure ITERGP(u. k, X, y)

o

p—
—_—C O 0 1 ON U B W

—

—
W N

—_
r\-

— e e
COo ~] On Lh

(120, ka) < (41, k)
p— p(X)
K+ k(X,X) + oI
while not STOPPINGCRITERION() do
8; + POLICY()
ri14+ (y—pn)— Kwvi 1
Qi — 8]Ti 1
d; + E.,:_lffs.,; = (I — C',ﬁ_lk)s'i,
i sTK3;_1Ks; = sTKd,
C,+—C,_, + 771¢ dzdr
Qi+ Qi1+ - KddlK
V; & Vi1 T ‘:;—:d,
i +— X — Cz‘
p(v.) < N(v.;vi, ;)
ui(:) < p(-) + k(- X)v;
ki('v) — k(v) - k('X)CZk(X')
return GP (ui, k;)

> Initialize mean and covariance function with prior.
~ Prior predictive mean.

> Prior predictive kernel matrix.

> Stopping criterion.

> Select action via policy (see Table 1 for examples).
> Predictive residual.

> Observation via information operator.

> Search direction.

> Normalization constant.

~ Precision matrix approximation C; & K1

~ Kernel matrix approximation ¢}; ~ K.

~ Representer weights estimate.

> Computational representer weights uncertainty.

> Belief about representer weights.

>~ Approximate posterior mean function.
> Combined uncertainty.

Greyed out quantties are nof needed to compulte the combined posterior and are only included for clarity of exposition.

[Wenger et al NeurlPS 2022]

Learning Representer Weights

> Notice what has happened:

> Our belief on representer weights captures all computation p(’U*) — N(’U* | U, 27;)
» We have the conditional on the latent p(fo | v&) = N (u(Xo) 4+ k(Xo, X) vy, ki(Xo, Xo))
> And voila! p(fo) = | p(fo | vi)p(vs) dv, = N (fo; 1i(Xs), ki(Xo, Xo))

pi(-) = p(-) + k(- X)Ci(y — p)

ki('v) — k('a) - k(': X)K_lk(X,) T k('a X)E’ik(Xa) — k('v) — k('v X)Czk(X7)
mathematical uncertainty O computational uncertainty O combined uncertainty O

> This is of course exactly the form we ended up with earlier Sy | f ~ N (S]f, 025';;r S;)

> ...paying off the claim that “Effective Dataset” == “Representer Weight Belief Update”

Learning Representer Weights

k(-,) = k(- X)Cik(X,-) =k(-,-) — k(- X)K k(X ") +k(-, X)Zik(X, ")

I—l I—I
combined uncertainty © mathematical uncertainty O computational uncertainty O
C;=S,(STKS,) 18T K =K + oI p(vs) = N(vs | v, ;)
Combined Uncertainty Mathematical Uncertainty Computational Uncertainty

IterGP-CG IterGP-Chgl
®

8o

Learning Representer Weights

k('v) o k('a X)Czk(Xv) — k(°7) o k('v X)K_lk(Xa) T k('a X)Eik(xv)
| combined uncertainty O | | mathematical uncertainty O | cl)mputational uncertainty IO

C;=S,(STKS,)~ 18T K = K + 021 p(vs) = N(vs | v, %)

> Parting thoughts:
» Combined uncertainty is tractable and tells us exactly what data we actually consumed
» Mathematical uncertainty is revealed to be conceptual (sure it’s there, but only at cubic cost)

» Computational uncertainty then is exactly the uncertainty on the representer weights, which
carry all computational updates.

> Here then “Approximate GP Inference the Right Way” and “PN treatment of representer
weights” are shown to be identical.

Outline

> The Promise of Probabilistic Machine Learning Q

» (Gaussian Process Introduction

> Scaling Gaussian Processes, and Implications T 1
0 "

> Approximate Gaussian Process Inference, The Right Way

» iterGP as Probabilistic Numerics Q

> Broader Implications

Takeaways

> Approximate inference should be taken into account in the Bayesian framework
> iterGP does so for Gaussian Processes
> Absent that, computational uncertainty is untracked, and may dominate

> Data Is as data does:
> In a very concrete sense, iterGP shows that data only “exists” to the extent that it is
ingested by the compute/solver (note: this is next-level PN thinking)
> Note then for example the practical ease then of iterGP online (actions on new data)

> Challenge: What other inference settings admit (tractable) inference of combined
uncertainty?

> Active learning / BO foreshadow: here is a means to precisely trade off the cost of
collecting another data point vs running more compute on existing data.
» Combined uncertainty is exact regardless of how much compute you do (but of
course limited by how much you do)

Thanks

» Questions?

» Special thanks to Jonathan, who has led iterGP
(and who will be leading the tutorial this afternoon)

GLDCOLUI\/\BIA UNIVERSITY S I M O N S

DEPARTMENT OF STAaTIsTICs O UNDATION
COLUMBIA | ZUCKERMAN INSTITUTE

Mortimer B. Zuckerman Mind Brain Behavior Institute ¥

S ALFRED P. SLOAN \z
Nati | Insti :

FOUNDATION 3 m) ational Institutes £ N

THE
KAVLI

| THE MCKNIGHT FOUNDATION

» Jonathan Wenger
> Geoff Pleiss

> . uhuan Wu

» Jacob Gardner

> Marvin Pfortner

> Philipp Hennig

» Dan Biderman

» Andres PotapczynskKi
» Kelly Buchanan

> Taiga Abe

> Others...

