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Outline of solutions for HW Set # 3

1. —

2. Strong converse in data compression. This should be 80% identical to the proof of the
converse part of the “error exponents” theorem from class.

3. Counting. We wish to count the number of sequences satisfying a certain property.
Instead of directly counting the sequences, we will calculate the probability of the set
under the uniform distribution. Since the uniform distribution puts a probability of 1

mn

on every sequence of length n, we can count the sequences by multiplying the probability
of the set by mn.

The probability of the set can be calculated easily from Sanov’s theorem. Let Q be the
uniform distribution, and let E be the set of sequences of length n satisfying 1

n

∑
g(xi) ≥

α. Then by Sanov’s theorem, we have

Qn(E) ≈ 2−nD(P ∗‖Q),

where P ∗ is the distribution on A hat is closest to Q. Since Q is the uniform distribution,
D(P‖Q) = logm−H(P ), and therefore P ∗ is the distribution that has maximum entropy.
Therefore, if we let,

H∗ = max
P :

∑m
i=1 P (i)g(i)≥α

H(P ),

we have
Qn(E) ≈ 2−n(logm−H∗).

Multiplying this by mn to find the number of sequences in this set, we obtain,

|E| ≈ 2−n logm2nH
∗
mn = 2nH

∗
,

where, as usual, the approximation is accurate to first order in the exponent.

4. Large deviations. Suppose X1, X2, . . . are IID random variables with distribution Q(k) =
pk−1(1− p), for k = 1, 2, . . .. Although the results we proved in class only apply to finite-
valued random variables, we will ignore this issue here. Note, also, that the geometic
distribution is defined in terms of the failure probability p here, so its in terms of (1− p)
in the more common notation. Also, we’ll assume that α is larger than 1/(1 − p), the
mean of Q, so that the event we’re looking at is indeed a large deviations event.

(a) Pr{ 1
n

∑n
i=1Xi ≥ α} can be evaluated, to first order in the exponent, by Sanov’s

theorem. If we let E be the set of distributions P on A such that EP (X) ≥ α, then
Sanov’s theorem says that, to first order in the exponent,

Pr
{ 1

n

n∑
i=1

Xi ≥ α
}

= Qn{P̂Xn
1
∈ E} ≈ 2−nD(P ∗‖Q),



where, D(P ∗‖Q) = infP∈E D(P‖Q). From the “Gibbs’ distributions” proposition we
saw in class, it is easy to see that P ∗ will also be geometric here. Moreover, in order to
satisfy the constraint EP ∗(X) ≥ α with equality, we obtain that P ∗(k) = rk−1(1−r),
with r = 1− 1/α. Direct evaluation gives,

D(P ∗‖Q) = − log(α(1− p)) + (α− 1) log
(α− 1

αp

)
.

(b) As in the previous part, using the conditional limit theorem, we get that the required
conditional probability is ≈ P ∗(k), with P ∗ as above.

(c) In this case, r = 3/4 and D(P ∗‖Q) = 3 log(3/2)− 1 ≈ 0.7549.

5. The running problem.
Let Q be the distribution of Xi − Yi, so that Q(z) =

∑
xQ1(x)Q2(x− z). Then just use

Sanov’s theorem as in the previous problem.

6. Bent coins. Let {Xi} be IID ∼ Q where Q is the Binomial(m, q) distribution. This is
very similar to problem 4. From the conditional limit theorem, as n→∞,

Pr

{
X1 = k

∣∣∣∣∣ 1

n

n∑
i=1

Xi ≥ α

}
= Qn(P̂Xn

1
∈ E)→ P ∗(k),

where E = {P ∈ P : EP (X) ≥ α}, and P ∗ achives, minP∈E D(P‖Q). From the “Gibbs’
distributions” proposition we saw in class, it is easy to see that P ∗ will also be a binomial
of the form Bin(m,λ). And in order to satisfy the constraint EP ∗(X) = mλ ≥ α with
equality, we obtain that P ∗ is Bin(m,α/m).

Note that, as in problem 4, this computation is only valid (and interesting) if α is strictly
greater than the mean mq of Q.

7. Large deviations below the mean. Let {Xn} be IID random variables with distribution Q
on a finite alphabet A. For min{A} < c < EQ[X], the upper bound of Cramèr’s theorem
here states that,

Pr

{
1

n

n∑
i=1

Xi ≤ c

}
≤ exp{−nΛ∗(c)},

where Λ∗(c) = supλ≤0[λc − Λ(λ)], and the log-moment generating function Λ(λ) is the
same as before. The corresponding lower bound says that,

lim inf
n→∞

1

n
ln Pr

{
1

n

n∑
i=1

Xi ≤ c

}
= −Λ∗(c).

The relevant properties of Λ(λ) are that Λ′(0) = EQ(X), limλ→−∞ Λ′(λ) = min(A),
Λ′′(λ) ≥ 0 for all λ ≤ 0, and for each c in the given range, there exists a λ∗ s.t. Λ′(λ∗) = c
and Λ∗(c) = λ∗c− Λ(λ∗).



8. Simulating rare events. This is very much like problems 4 and 6; use the conditional
limit theorem with Q being the uniform distribution on {1, 2, . . . , 6} and n = 10, 000.
We’re interested in the event that 1

n

∑
Xi ≥ 1/4, and, conditional on this event, by the

conditional limit theorem the rolls will look like they were produced from P ∗, where,
P ∗(k) will be proportional to βk for some β > 0, which is chosen so that EP ∗(X) = 1/4.

(a) The analytical answer is the one given above.

(b) If you want to simulate, simulate IID from P ∗.

9. —


