(Some) Solutions for HW Set \# 2

1. Entropy of a sum.
(a) Here's the way most of you did the problem: Since $Z=X+Y, P(Z=z \mid X=x)=$ $P(Y=z-x \mid X=x)$.

$$
\begin{aligned}
H(Z \mid X) & =\sum P(x) H(Z \mid X=x) \\
& =-\sum_{x} P(x) \sum_{z} P(Z=z \mid X=x) \log P(Z=z \mid X=x) \\
& =\sum_{x} P(x) \sum_{y} P(Y=z-x \mid X=x) \log P(Y=z-x \mid X=x) \\
& =\sum_{x} P(x) H(Y \mid X=x) \\
& =H(Y \mid X) .
\end{aligned}
$$

Here's another way, which is more cute. Note that (X, Y) and $(X+Y, X-Y)$ are of course in a 1-1 relationship. Then,

$$
\begin{aligned}
H(X)+H(Y \mid X) & =H(X, Y) \\
& =H(X+Y, X-Y) \\
& =H(X, X+Y, X-Y) \\
& =H(X)+H(X+Y \mid X)+H(X-Y \mid X+Y, X) \\
& =H(X)+H(X+Y \mid X),
\end{aligned}
$$

and the result follows.
(b) If X and Y are independent, then $H(Y \mid X)=H(Y)$. Since conditioning reduces entropy, $H(Z) \geq H(Z \mid X)=H(Y \mid X)=H(Y)$. Similarly we can show that $H(Z) \geq$ $H(X)$.
(c) Consider the following joint distribution for X and Y. Let

$$
X=-Y= \begin{cases}1 & \text { with probability } 1 / 2 \\ 0 & \text { with probability } 1 / 2\end{cases}
$$

Then $H(X)=H(Y)=1$, but $Z=0$ with prob. 1 and hence $H(Z)=0$.
(d) We have

$$
H(Z) \leq H(X, Y) \leq H(X)+H(Y)
$$

because Z is a function of (X, Y) and $H(X, Y)=H(X)+H(Y \mid X) \leq H(X)+H(Y)$. We have equality iff (X, Y) is a function of Z and $H(Y)=H(Y \mid X)$, i.e., X and Y are independent.
2. Inequalities.
(a) Using the chain rule for conditional entropy,

$$
H(X, Y \mid Z)=H(X \mid Z)+H(Y \mid X, Z) \geq H(X \mid Z)
$$

with equality iff $H(Y \mid X, Z)=0$, that is, when Y is a function of X and Z.
(b) Using the chain rule for entropy and the fact that conditioning reduces entropy,

$$
\begin{aligned}
H(X, Y, Z)-H(X, Y) & =H(Z \mid X, Y) \\
& \leq H(Z \mid X) \\
& =H(X, Z)-H(X)
\end{aligned}
$$

with equality iff Y and Z are conditionally independent given X.
3. A compound Poisson approximation bound. Let $X_{1}, X_{2}, \ldots, X_{n}$ be IID $\operatorname{Bern}(\lambda / n)$ random variables, let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be an independent sequence of IID random variables with distribution $Q=(1 / 2,1 / 2)$ on the set $\{1,2\}$, let $Z_{1}, Z_{2}, \ldots, Z_{n}$ are $\operatorname{IID} \operatorname{CPo}(\lambda / n, Q)$, If we write T_{n} for the sum of the Z_{i}, then $P_{T_{n}}$ is the $\operatorname{CPo}(\lambda, Q)$ distribution. Following the same steps as those used for Poisson

$$
\begin{aligned}
D\left(P_{S_{n}} \| \operatorname{CPo}(\lambda, Q)\right) & =D\left(P_{S_{n}} \| P_{T_{n}}\right) \\
& \leq D\left(P_{X_{1} Y_{1}, \ldots, X_{n} Y_{n}} \| P_{Z_{1}, \ldots, Z_{n}}\right) \\
& =n D\left(P_{X_{1} Y_{1}} \| P_{Z_{1}}\right) .
\end{aligned}
$$

Now if $X \sim \operatorname{Bern}(p), Y \sim Q$ and $Z \sim \operatorname{CPo}(p, Q)$ are independent, then it is easy to calculate that,

$$
D\left(P_{X Y} \| P_{Z}\right) \leq p^{2}+(1-p)[p+\log (1-p)]-\frac{p}{2} \log (1+p / 4) \leq p^{2}
$$

and combining the last two bounds, taking $p=\lambda / n$ yields the result.
4. Monotonicity. Note that we can write,

$$
\begin{aligned}
\hat{P}_{n+1}(x) & =\frac{1}{n+1} \sum_{1 \leq i \leq n+1} \mathbb{I}_{\left\{X_{i}=x\right\}} \\
& =\frac{1}{n+1} \sum_{1 \leq j \leq n+1} \frac{1}{n} \sum_{i \neq j} \mathbb{I}_{\left\{X_{i}=x\right\}} \\
& =\frac{1}{n+1} \sum_{1 \leq j \leq n+1} \hat{P}_{n}^{(j)},
\end{aligned}
$$

where $\hat{P}_{n}^{(j)}$ is the empirical distribution induced by $X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{n}$. Then, by the convexity of the relative entropy,

$$
D\left(\hat{P}_{n+1} \| Q\right)=D\left(\frac{1}{n+1} \sum_{1 \leq j \leq n+1} \hat{P}_{n}^{(j)} \| Q\right) \leq \frac{1}{n+1} \sum_{1 \leq j \leq n+1} D\left(\hat{P}_{n}^{(j)} \| Q\right)
$$

and since the $\hat{P}_{n}^{(j)}$ all have the same distribution, taking expectations yields,

$$
E\left[D\left(\hat{P}_{n+1} \| Q\right)\right] \leq E\left[D\left(\hat{P}_{n} \| Q\right)\right]
$$

as claimed.
5. Estimating the entropy. The fact that $E\left[H\left(\hat{P}_{n}\right)\right] \leq H(P)$ follows from the concavity of the entropy (using Jensen's inequality), upon noting that $E\left(\hat{P}_{n}\right)=P$.
6. Size of type-class. This is mostly straightforward computations.
7. Hypothesis testing. Stein Lemma says we should use the decision region,

$$
B_{n}^{*}=B_{n}^{*}(\epsilon)=\left\{x_{1}^{n} \in A^{n}: 2^{D\left(P_{1} \| P_{2}\right)-\epsilon} \leq \frac{P_{1}^{n}\left(x_{1}^{n}\right)}{P_{2}^{n}\left(x_{1}^{n}\right)} \leq 2^{D\left(P_{1} \| P_{2}\right)+\epsilon}\right\} .
$$

Under Q, the likelihood ratio of interest has,

$$
\frac{1}{n} \log \frac{P_{1}^{n}\left(X_{1}^{n}\right)}{P_{2}^{n}\left(X_{1}^{n}\right)} \rightarrow R:=\sum_{x} Q(x) \log \frac{P_{1}(x)}{P_{2}(x)}=D\left(Q \| P_{2}\right)-D\left(Q \| P_{1}\right),
$$

in probability, as $n \rightarrow \infty$.
Now consider three cases: $R<D\left(P_{1} \| P_{2}\right)-\epsilon, D\left(P_{1} \| P_{2}\right)-\epsilon<R<D\left(P_{1} \| P_{2}\right)+\epsilon$, and $R>D\left(P_{1} \| P_{2}\right)+\epsilon$.

