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Handout #8

(Some) Solutions for HW Set # 2

1. Entropy of a sum.

(a) Here’s the way most of you did the problem: Since Z = X + Y , P (Z = z|X = x) =
P (Y = z − x|X = x).

H(Z|X) =
∑

P (x)H(Z|X = x)

= −
∑
x

P (x)
∑
z

P (Z = z|X = x) logP (Z = z|X = x)

=
∑
x

P (x)
∑
y

P (Y = z − x|X = x) logP (Y = z − x|X = x)

=
∑

P (x)H(Y |X = x)

= H(Y |X).

Here’s another way, which is more cute. Note that (X, Y ) and (X + Y,X − Y ) are
of course in a 1-1 relationship. Then,

H(X) +H(Y |X) = H(X, Y )

= H(X + Y,X − Y )

= H(X,X + Y,X − Y )

= H(X) +H(X + Y |X) +H(X − Y |X + Y,X)

= H(X) +H(X + Y |X),

and the result follows.

(b) If X and Y are independent, then H(Y |X) = H(Y ). Since conditioning reduces
entropy, H(Z) ≥ H(Z|X) = H(Y |X) = H(Y ) . Similarly we can show that H(Z) ≥
H(X).

(c) Consider the following joint distribution for X and Y . Let

X = −Y =

{
1 with probability 1/2
0 with probability 1/2

Then H(X) = H(Y ) = 1, but Z = 0 with prob. 1 and hence H(Z) = 0.

(d) We have
H(Z) ≤ H(X, Y ) ≤ H(X) +H(Y )

because Z is a function of (X, Y ) and H(X, Y ) = H(X)+H(Y |X) ≤ H(X)+H(Y ).
We have equality iff (X, Y ) is a function of Z and H(Y ) = H(Y |X), i.e., X and Y
are independent.



2. Inequalities.

(a) Using the chain rule for conditional entropy,

H(X, Y |Z) = H(X|Z) +H(Y |X,Z) ≥ H(X|Z),

with equality iff H(Y |X,Z) = 0, that is, when Y is a function of X and Z.

(b) Using the chain rule for entropy and the fact that conditioning reduces entropy,

H(X, Y, Z)−H(X, Y ) = H(Z|X, Y )

≤ H(Z|X)

= H(X,Z)−H(X) ,

with equality iff Y and Z are conditionally independent given X.

3. A compound Poisson approximation bound. Let X1, X2, . . . , Xn be IID Bern(λ/n) ran-
dom variables, let Y1, Y2, ..., Yn be an independent sequence of IID random variables with
distribution Q = (1/2, 1/2) on the set {1, 2}, let Z1, Z2, . . . , Zn are IID CPo(λ/n,Q), If
we write Tn for the sum of the Zi, then PTn is the CPo(λ,Q) distribution. Following the
same steps as those used for Poisson

D(PSn‖CPo(λ,Q)) = D(PSn‖PTn)

≤ D(PX1Y1,...,XnYn‖PZ1,...,Zn)

= nD(PX1Y1‖PZ1).

Now if X ∼ Bern(p), Y ∼ Q and Z ∼ CPo(p,Q) are independent, then it is easy to
calculate that,

D(PXY ‖PZ) ≤ p2 + (1− p)[p+ log(1− p)]− p

2
log(1 + p/4) ≤ p2,

and combining the last two bounds, taking p = λ/n yields the result.

4. Monotonicity. Note that we can write,

P̂n+1(x) =
1

n+ 1

∑
1≤i≤n+1

I{Xi=x}

=
1

n+ 1

∑
1≤j≤n+1

1

n

∑
i 6=j

I{Xi=x}

=
1

n+ 1

∑
1≤j≤n+1

P̂ (j)
n ,

where P̂
(j)
n is the empirical distribution induced by X1, . . . , Xj−1, Xj+1, . . . , Xn. Then, by

the convexity of the relative entropy,

D(P̂n+1‖Q) = D
( 1

n+ 1

∑
1≤j≤n+1

P̂ (j)
n

∥∥∥Q) ≤ 1

n+ 1

∑
1≤j≤n+1

D(P̂ (j)
n ‖Q),



and since the P̂
(j)
n all have the same distribution, taking expectations yields,

E
[
D(P̂n+1‖Q)

]
≤ E

[
D(P̂n‖Q)

]
,

as claimed.

5. Estimating the entropy. The fact that E[H(P̂n)] ≤ H(P ) follows from the concavity of
the entropy (using Jensen’s inequality), upon noting that E(P̂n) = P .

6. Size of type-class. This is mostly straightforward computations.

7. Hypothesis testing. Stein Lemma says we should use the decision region,

B∗n = B∗n(ε) = {xn1 ∈ An : 2D(P1‖P2)−ε ≤ P n
1 (xn1 )

P n
2 (xn1 )

≤ 2D(P1‖P2)+ε}.

Under Q, the likelihood ratio of interest has,

1

n
log

P n
1 (Xn

1 )

P n
2 (Xn

1 )
→ R :=

∑
x

Q(x) log
P1(x)

P2(x)
= D(Q‖P2)−D(Q‖P1),

in probability, as n→∞.

Now consider three cases: R < D(P1‖P2) − ε, D(P1‖P2) − ε < R < D(P1‖P2) + ε, and
R > D(P1‖P2) + ε.


