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Handout #5

Solutions to HW Set # 1

1. Coin flips.

(a) The number X of tosses till the first head appears has a geometric distribution with
parameter p = 1/2, where P (X = n) = pqn−1, n ∈ {1, 2, . . .}. Hence the entropy of
X is

H(X) = −
∞∑

n=1

pqn−1 log(pqn−1)

= −

[
∞∑

n=0

pqn log p+
∞∑

n=0

npqn log q

]
=
−p log p

1− q
− pq log q

p2

=
−p log p− q log q

p

= h(p)/p bits.

If p = 1/2, then H(X) = 2 bits.

(b) Intuitively, it seems clear that the best questions are those that have equally likely
chances of receiving a yes or a no answer. Consequently, one possible guess is that
the most “efficient” series of questions is: Is X = 1? If not, is X = 2? If not,
is X = 3? And so on, with a resulting expected number of questions equal to∑∞

n=1 n(1/2n) = 2. This should reinforce the intuition that H(X) is a measure of the
uncertainty of X. Indeed in this case, the entropy is exactly the same as the average
number of questions needed to define X, and in general E(# of questions) ≥ H(X).
This problem has an interpretation as a source coding problem. Let 0 =no, 1 =yes,
X =Source, and Y =Encoded Source. Then the set of questions in the above
procedure can be written as a collection of (X, Y ) pairs: (1, 1), (2, 01), (3, 001), etc.
. In fact, this intuitively derived code is the optimal (Huffman) code minimizing the
expected number of questions.

2. Entropy of functions. Suppose X ∼ P on A, and let y = g(x). Then the probability mass
function of Y satisfies

P (y) =
∑

x: y=g(x)

P (x).

Consider any set of x’s that map onto a single y. For this set,∑
x: y=g(x)

P (x) logP (x) ≤
∑

x: y=g(x)

P (x) logP (y) = P (y) logP (y),



since log is a monotone increasing function and P (x) ≤
∑

x: y=g(x) P (x) = P (y). Extend-

ing this argument to the entire range of X (and Y ), we obtain

H(X) = −
∑

x

P (x) logP (x)

= −
∑

y

∑
x: y=g(x)

P (x) logP (x)

≥ −
∑

y

P (y) logP (y)

= H(Y ),

with equality iff g is one-to-one with probability one.

In the first case, Y = 2X is one-to-one and hence the entropy, which is just a function
of the probabilities (and not the values of a random variable) does not change, i.e.,
H(X) = H(Y ).

In the second case, Y = cos(X) is not necessarily one-to-one. Hence all we can say is that
H(X) ≥ H(Y ), with equality if cosine is one-to-one on the range of X.

For part (ii), we have H(X, g(X)) = H(X) + H(g(X)|X) by the chain rule for entropy.
Then H(g(X)|X) = 0, since, for any particular value of X, g(X) is fixed, and hence
H(g(X)|X) =

∑
x p(x)H(g(X)|X = x) =

∑
x 0 = 0. Similarly, H(X, g(X)) = H(g(X))+

H(X|g(X)) again by the chain rule. And finally, H(X|g(X)) ≥ 0, with equality iff X is
a function of g(X), i.e., g is one-to-one (why?). Hence H(X, g(X)) ≥ H(g(X)).

3. Zero conditional entropy. Assume that there exists an x, say x0 and two different values
of y, say y1 and y2 such that P (x0, y1) > 0 and P (x0, y2) > 0. Then P (x0) ≥ P (x0, y1) +
P (x0, y2) > 0, and P (y1|x0) and P (y2|x0) are not equal to 0 or 1. Thus

H(Y |X) = −
∑

x

P (x)
∑

y

P (y|x) logP (y|x)

≥ P (x0)(−P (y1|x0) logP (y1|x0)− P (y2|x0) logP (y2|x0))

> 0,

since −t log t ≥ 0 for 0 ≤ t ≤ 1, and is strictly positive for t not equal to 0 or 1. Therefore,
the conditional entropy H(Y |X) is 0 only if Y is a function of X. The converse (the “if”
part) is trivial (why?).

4. Entropy of a disjoint mixture. We can do this problem by writing down the definition of
entropy and expanding the various terms. Instead, we will use the algebra of entropies
for a simpler proof.

Since X1 and X2 have disjoint support sets, we can write

X =

{
X1 with probability α
X2 with probability 1− α



Define a function of X,

θ = f(X) =

{
1 when X = X1

2 when X = X2

Then as in problem 1, we have

H(X) = H(X, f(X)) = H(θ) +H(X|θ)
= H(θ) + Pr(θ = 1)H(X|θ = 1) + Pr(θ = 2)H(X|θ = 2)

= h(α) + αH(X1) + (1− α)H(X2)

where h(α) = −α logα− (1− α) log(1− α).

The maximization over α and the resulting inequality is simple calculus. The interesting
point here is the following: From the AEP we know that, instead of considering all |A|n
strings, we can concentrate on the ≈ 2nH = (2H)n typical strings. In other words, we can
pretend we have a “completely random,” or uniform source, with alphabet size 2H < |A|,
so the effective alphabet size of X is not |A, but 2H(X).

The inequality we get here says that the effective alphabet size of the mixture X of the
random variables X1, X2 is no larger than the sum of their effective alphabet sizes.

5. Run length coding. Since the run lengths are a function of Xn
1 , H(R) ≤ H(Xn

1 ). Any Xi

together with the run lengths determine the entire sequence Xn
1 . Hence

H(Xn
1 ) = H(Xi, R)

= H(R) +H(Xi|R)

≤ H(R) +H(Xi)

≤ H(R) + 1.

6. Markov’s inequality for probabilities. We have:

Pr(P (X) < d) log
1

d
=

∑
x:P (x)<d

P (x) log
1

d

≤
∑

x:P (x)<d

P (x) log
1

P (x)

≤
∑

x

P (x) log
1

P (x)

= H(X).

7. The AEP and source coding.

(a) The number of 100-bit binary sequences with three or fewer ones is:(
100

0

)
+

(
100

1

)
+

(
100

2

)
+

(
100

3

)
= 1 + 100 + 4950 + 161700 = 166751 .

The required codeword length is dlog2 166751e = 18. (Note that h(0.005) ≈ 0.0454,
so 18 is quite a bit larger than the optimal 100× h(0.005) ≈ 4.5 bits of entropy.)



(b) The probability that a 100-bit sequence has three or fewer ones is:

3∑
i=0

(
100

i

)
(0.005)i(0.995)100−i ≈ 0.60577 + 0.30441 + 0.7572 + 0.01243 = 0.99833.

Thus, the probability that the sequence that is generated cannot be encoded is
≈ 1− 0.99833 = 0.00167.

(c) If Sn that is the sum ofn IID random variables X1, X2, . . . , Xn, Chebyshev’s inequal-
ity states that,

Pr(|Sn − nµ| ≥ ε) ≤ nσ2

ε2
,

where µ and σ2 are the mean and variance of the Xi. (Therefore nµ and nσ2

are the mean and variance of Sn.) In this problem, n = 100, µ = 0.005, and
σ2 = (0.005)(0.995). Note that S100 ≥ 4 if and only if |S100 − 100(0.005)| ≥ 3.5, so
we should choose ε = 3.5. Then,

Pr(S100 ≥ 4) ≤ 100(0.005)(0.995)

(3.5)2
≈ 0.04061 .

This bound is much larger than the actual probability 0.00167.

8. Since the Xn
1 are IID, so are Q(X1), Q(X2), . . . , Q(Xn), and hence we can apply the (weak

or strong, depending on your preference) law of large numbers to obtain,

lim− 1

n
logQn(Xn

1 ) = lim− 1

n

∑
logQ(Xi)

= E[− logQ(X1)] [in probability, or w.p. 1]

= −
∑

x

P (x) logQ(x)

=
∑

x

P (x) log
P (x)

Q(x)
−
∑

x

P (x) logP (x)

= D(P‖Q) +H(P ).

9. Random box size. The volume Vn =
∏n

i=1Xi is a random variable. Since the Xi are
random variables uniformly distributed on [0, 1], we expect that Vn tends to 0 as n→∞.
However,

loge V
1
n

n =
1

n
loge Vn =

1

n

∑
logeXi → E(loge(X)) in probability,

by the weak law of large numbers, since the RVs loge(Xi) are IID. Now,

E[loge(Xi)] =

∫ 1

0

loge(x) dx = −1.



Hence, since ex is a continuous function,

lim
n→∞

V
1
n

n = elimn→∞
1
n

loge Vn =
1

e
<

1

2
.

Thus the “effective” edge length of this solid is e−1. Note that since the Xi’s are indepen-
dent, E(Vn) =

∏
E(Xi) = (1

2
)n. [Also 1

2
is the arithmetic mean of the random variables,

and 1
e

is their geometric mean.]


