Solutions to HW Set \# 1

1. Coin flips.
(a) The number X of tosses till the first head appears has a geometric distribution with parameter $p=1 / 2$, where $P(X=n)=p q^{n-1}, n \in\{1,2, \ldots\}$. Hence the entropy of X is

$$
\begin{aligned}
H(X) & =-\sum_{n=1}^{\infty} p q^{n-1} \log \left(p q^{n-1}\right) \\
& =-\left[\sum_{n=0}^{\infty} p q^{n} \log p+\sum_{n=0}^{\infty} n p q^{n} \log q\right] \\
& =\frac{-p \log p}{1-q}-\frac{p q \log q}{p^{2}} \\
& =\frac{-p \log p-q \log q}{p} \\
& =h(p) / p \text { bits. }
\end{aligned}
$$

If $p=1 / 2$, then $H(X)=2$ bits.
(b) Intuitively, it seems clear that the best questions are those that have equally likely chances of receiving a yes or a no answer. Consequently, one possible guess is that the most "efficient" series of questions is: Is $X=1$? If not, is $X=2$? If not, is $X=3$? And so on, with a resulting expected number of questions equal to $\sum_{n=1}^{\infty} n\left(1 / 2^{n}\right)=2$. This should reinforce the intuition that $H(X)$ is a measure of the uncertainty of X. Indeed in this case, the entropy is exactly the same as the average number of questions needed to define X, and in general E (\# of questions) $\geq H(X)$. This problem has an interpretation as a source coding problem. Let $0=$ no, $1=$ yes, $X=$ Source, and $Y=$ Encoded Source. Then the set of questions in the above procedure can be written as a collection of (X, Y) pairs: $(1,1),(2,01),(3,001)$, etc. . In fact, this intuitively derived code is the optimal (Huffman) code minimizing the expected number of questions.
2. Entropy of functions. Suppose $X \sim P$ on A, and let $y=g(x)$. Then the probability mass function of Y satisfies

$$
P(y)=\sum_{x: y=g(x)} P(x)
$$

Consider any set of x 's that map onto a single y. For this set,

$$
\sum_{x: y=g(x)} P(x) \log P(x) \leq \sum_{x: y=g(x)} P(x) \log P(y)=P(y) \log P(y)
$$

since \log is a monotone increasing function and $P(x) \leq \sum_{x: y=g(x)} P(x)=P(y)$. Extending this argument to the entire range of X (and Y), we obtain

$$
\begin{aligned}
H(X) & =-\sum_{x} P(x) \log P(x) \\
& =-\sum_{y} \sum_{x: y=g(x)} P(x) \log P(x) \\
& \geq-\sum_{y} P(y) \log P(y) \\
& =H(Y),
\end{aligned}
$$

with equality iff g is one-to-one with probability one.
In the first case, $Y=2^{X}$ is one-to-one and hence the entropy, which is just a function of the probabilities (and not the values of a random variable) does not change, i.e., $H(X)=H(Y)$.
In the second case, $Y=\cos (X)$ is not necessarily one-to-one. Hence all we can say is that $H(X) \geq H(Y)$, with equality if cosine is one-to-one on the range of X.
For part (ii), we have $H(X, g(X))=H(X)+H(g(X) \mid X)$ by the chain rule for entropy. Then $H(g(X) \mid X)=0$, since, for any particular value of $\mathrm{X}, \mathrm{g}(\mathrm{X})$ is fixed, and hence $H(g(X) \mid X)=\sum_{x} p(x) H(g(X) \mid X=x)=\sum_{x} 0=0$. Similarly, $H(X, g(X))=H(g(X))+$ $H(X \mid g(X))$ again by the chain rule. And finally, $H(X \mid g(X)) \geq 0$, with equality iff X is a function of $g(X)$, i.e., g is one-to-one (why?). Hence $H(X, g(X)) \geq H(g(X))$.
3. Zero conditional entropy. Assume that there exists an x, say x_{0} and two different values of y, say y_{1} and y_{2} such that $P\left(x_{0}, y_{1}\right)>0$ and $P\left(x_{0}, y_{2}\right)>0$. Then $P\left(x_{0}\right) \geq P\left(x_{0}, y_{1}\right)+$ $P\left(x_{0}, y_{2}\right)>0$, and $P\left(y_{1} \mid x_{0}\right)$ and $P\left(y_{2} \mid x_{0}\right)$ are not equal to 0 or 1 . Thus

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{x} P(x) \sum_{y} P(y \mid x) \log P(y \mid x) \\
& \geq P\left(x_{0}\right)\left(-P\left(y_{1} \mid x_{0}\right) \log P\left(y_{1} \mid x_{0}\right)-P\left(y_{2} \mid x_{0}\right) \log P\left(y_{2} \mid x_{0}\right)\right) \\
& >0
\end{aligned}
$$

since $-t \log t \geq 0$ for $0 \leq t \leq 1$, and is strictly positive for t not equal to 0 or 1 . Therefore, the conditional entropy $H(Y \mid X)$ is 0 only if Y is a function of X. The converse (the "if" part) is trivial (why?).
4. Entropy of a disjoint mixture. We can do this problem by writing down the definition of entropy and expanding the various terms. Instead, we will use the algebra of entropies for a simpler proof.
Since X_{1} and X_{2} have disjoint support sets, we can write

$$
X=\left\{\begin{array}{llc}
X_{1} & \text { with probability } & \alpha \\
X_{2} & \text { with probability } & 1-\alpha
\end{array}\right.
$$

Define a function of X,

$$
\theta=f(X)= \begin{cases}1 & \text { when } X=X_{1} \\ 2 & \text { when } X=X_{2}\end{cases}
$$

Then as in problem 1, we have

$$
\begin{aligned}
H(X) & =H(X, f(X))=H(\theta)+H(X \mid \theta) \\
& =H(\theta)+\operatorname{Pr}(\theta=1) H(X \mid \theta=1)+\operatorname{Pr}(\theta=2) H(X \mid \theta=2) \\
& =h(\alpha)+\alpha H\left(X_{1}\right)+(1-\alpha) H\left(X_{2}\right)
\end{aligned}
$$

where $h(\alpha)=-\alpha \log \alpha-(1-\alpha) \log (1-\alpha)$.
The maximization over α and the resulting inequality is simple calculus. The interesting point here is the following: From the AEP we know that, instead of considering all $|A|^{n}$ strings, we can concentrate on the $\approx 2^{n H}=\left(2^{H}\right)^{n}$ typical strings. In other words, we can pretend we have a "completely random," or uniform source, with alphabet size $2^{H}<|A|$, so the effective alphabet size of X is not $\mid A$, but $2^{H(X)}$.
The inequality we get here says that the effective alphabet size of the mixture X of the random variables X_{1}, X_{2} is no larger than the sum of their effective alphabet sizes.
5. Run length coding. Since the run lengths are a function of $X_{1}^{n}, H(R) \leq H\left(X_{1}^{n}\right)$. Any X_{i} together with the run lengths determine the entire sequence X_{1}^{n}. Hence

$$
\begin{aligned}
H\left(X_{1}^{n}\right) & =H\left(X_{i}, R\right) \\
& =H(R)+H\left(X_{i} \mid R\right) \\
& \leq H(R)+H\left(X_{i}\right) \\
& \leq H(R)+1
\end{aligned}
$$

6. Markov's inequality for probabilities. We have:

$$
\begin{aligned}
\operatorname{Pr}(P(X)<d) \log \frac{1}{d} & =\sum_{x: P(x)<d} P(x) \log \frac{1}{d} \\
& \leq \sum_{x: P(x)<d} P(x) \log \frac{1}{P(x)} \\
& \leq \sum_{x} P(x) \log \frac{1}{P(x)} \\
& =H(X)
\end{aligned}
$$

7. The AEP and source coding.
(a) The number of 100 -bit binary sequences with three or fewer ones is:

$$
\binom{100}{0}+\binom{100}{1}+\binom{100}{2}+\binom{100}{3}=1+100+4950+161700=166751
$$

The required codeword length is $\left\lceil\log _{2} 166751\right\rceil=18$. (Note that $h(0.005) \approx 0.0454$, so 18 is quite a bit larger than the optimal $100 \times h(0.005) \approx 4.5$ bits of entropy.)
(b) The probability that a 100 -bit sequence has three or fewer ones is:

$$
\sum_{i=0}^{3}\binom{100}{i}(0.005)^{i}(0.995)^{100-i} \approx 0.60577+0.30441+0.7572+0.01243=0.99833
$$

Thus, the probability that the sequence that is generated cannot be encoded is $\approx 1-0.99833=0.00167$.
(c) If S_{n} that is the sum of n IID random variables $X_{1}, X_{2}, \ldots, X_{n}$, Chebyshev's inequality states that,

$$
\operatorname{Pr}\left(\left|S_{n}-n \mu\right| \geq \epsilon\right) \leq \frac{n \sigma^{2}}{\epsilon^{2}}
$$

where μ and σ^{2} are the mean and variance of the X_{i}. (Therefore $n \mu$ and $n \sigma^{2}$ are the mean and variance of S_{n}.) In this problem, $n=100, \mu=0.005$, and $\sigma^{2}=(0.005)(0.995)$. Note that $S_{100} \geq 4$ if and only if $\left|S_{100}-100(0.005)\right| \geq 3.5$, so we should choose $\epsilon=3.5$. Then,

$$
\operatorname{Pr}\left(S_{100} \geq 4\right) \leq \frac{100(0.005)(0.995)}{(3.5)^{2}} \approx 0.04061
$$

This bound is much larger than the actual probability 0.00167 .
8. Since the X_{1}^{n} are IID, so are $Q\left(X_{1}\right), Q\left(X_{2}\right), \ldots, Q\left(X_{n}\right)$, and hence we can apply the (weak or strong, depending on your preference) law of large numbers to obtain,

$$
\begin{aligned}
\lim -\frac{1}{n} \log Q^{n}\left(X_{1}^{n}\right) & =\lim -\frac{1}{n} \sum \log Q\left(X_{i}\right) \\
& =E\left[-\log Q\left(X_{1}\right)\right] \quad \text { [in probability, or w.p. 1] } \\
& =-\sum_{x} P(x) \log Q(x) \\
& =\sum_{x} P(x) \log \frac{P(x)}{Q(x)}-\sum_{x} P(x) \log P(x) \\
& =D(P \| Q)+H(P) .
\end{aligned}
$$

9. Random box size. The volume $V_{n}=\prod_{i=1}^{n} X_{i}$ is a random variable. Since the X_{i} are random variables uniformly distributed on $[0,1]$, we expect that V_{n} tends to 0 as $n \rightarrow \infty$. However,

$$
\log _{e} V_{n}^{\frac{1}{n}}=\frac{1}{n} \log _{e} V_{n}=\frac{1}{n} \sum \log _{e} X_{i} \rightarrow E\left(\log _{e}(X)\right) \quad \text { in probability, }
$$

by the weak law of large numbers, since the RVs $\log _{e}\left(X_{i}\right)$ are IID. Now,

$$
E\left[\log _{e}\left(X_{i}\right)\right]=\int_{0}^{1} \log _{e}(x) d x=-1
$$

Hence, since e^{x} is a continuous function,

$$
\lim _{n \rightarrow \infty} V_{n}^{\frac{1}{n}}=e^{\lim _{n \rightarrow \infty} \frac{1}{n} \log _{e} V_{n}}=\frac{1}{e}<\frac{1}{2}
$$

Thus the "effective" edge length of this solid is e^{-1}. Note that since the X_{i} 's are independent, $E\left(V_{n}\right)=\prod E\left(X_{i}\right)=\left(\frac{1}{2}\right)^{n}$. [Also $\frac{1}{2}$ is the arithmetic mean of the random variables, and $\frac{1}{e}$ is their geometric mean.]

