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Handout #5

Solutions to HW Set # 1
1. Coin flips.

(a) The number X of tosses till the first head appears has a geometric distribution with
parameter p = 1/2, where P(X =n) = pg"', n € {1,2,...}. Hence the entropy of
X is

H(X) = =Y pg" 'log(pg"™")
n=1

= — qu“long— anqnlogq
n=0 n=0
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l1—gq p?
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p
= h(p)/p bits.

If p=1/2, then H(X) = 2 bits.

(b) Intuitively, it seems clear that the best questions are those that have equally likely
chances of receiving a yes or a no answer. Consequently, one possible guess is that
the most “efficient” series of questions is: Is X = 17 If not, is X = 27 If not,
is X = 37 And so on, with a resulting expected number of questions equal to
> > n(1/2™) = 2. This should reinforce the intuition that H(X) is a measure of the
uncertainty of X. Indeed in this case, the entropy is exactly the same as the average
number of questions needed to define X, and in general F(# of questions) > H(X).
This problem has an interpretation as a source coding problem. Let 0 =no, 1 =yes,
X =Source, and Y =Encoded Source. Then the set of questions in the above
procedure can be written as a collection of (X,Y) pairs: (1,1), (2,01), (3,001), etc.
. In fact, this intuitively derived code is the optimal (Huffman) code minimizing the
expected number of questions.

2. Entropy of functions. Suppose X ~ P on A, and let y = g(z). Then the probability mass
function of Y satisfies

z:y=g(z)

Consider any set of x’s that map onto a single y. For this set,

> P(x)logP(x) < Y P(x)log P(y) = P(y)log P(y),

z:y=g(x) z:y=g(z)



since log is a monotone increasing function and P(z) <37, _ . P(z) = P(y). Extend-
ing this argument to the entire range of X (and Y'), we obtain

H(X) = —ZP )log P(x

= —Z Z x)log P(x)

Yy zy=g(z)

> —ZP )log P(y
= H(Y),

with equality iff g is one-to-one with probability one.

In the first case, Y = 2% is one-to-one and hence the entropy, which is just a function
of the probabilities (and not the values of a random variable) does not change, i.e.,

H(X)=H(Y).
In the second case, Y = cos(X) is not necessarily one-to-one. Hence all we can say is that

H(X) > H(Y), with equality if cosine is one-to-one on the range of X.

For part (i7), we have H(X, g(X)) = H(X) + H(g(X)|X) by the chain rule for entropy.
Then H(g(X)|X) = 0, since, for any particular value of X, g(X) is fixed, and hence

H(g(X)[X) =3, p(e)H(g(X)|X = z) = >, 0=0. Similarly, H(X, g(X)) = H(g(X))+
H(X|g(X)) again by the chain rule. And finally, H(X|g(X)) > 0, with equality iff X is
a function of g(X), i.e., g is one-to-one (why?). Hence H (X, g(X)) > H(g(X)).

. Zero conditional entropy. Assume that there exists an x, say xg and two different values
of y, say y; and y, such that P(xo,y1) > 0 and P(xg,y2) > 0. Then P(zq) > P(zo,y1) +
P(xg,y2) > 0, and P(y;|xo) and P(ys|zg) are not equal to 0 or 1. Thus

H(Y|X) = —ZP ZP ylz)log P(yl)

> P(ﬂl?o)(— (y1\5€0)10gp(y1|170) — P(y2|z0) log P(ya2|z0))
> 0,

since —tlogt > 0 for 0 <t < 1, and is strictly positive for ¢t not equal to 0 or 1. Therefore,
the conditional entropy H(Y|X) is 0 only if Y is a function of X. The converse (the “if”
part) is trivial (why?).

. Entropy of a disjoint mixture. We can do this problem by writing down the definition of
entropy and expanding the various terms. Instead, we will use the algebra of entropies
for a simpler proof.

Since X; and X, have disjoint support sets, we can write

Y X, with probability  «
| X, with probability 1— «



Define a function of X,

1 when X =X
92f(X>:{2 WhenX:X;
Then as in problem 1, we have
H(X) = H(X, f(X))=H(0)+ H(X|0)
= H@)+Pr(0=1)H(X|0=1)+Pr(0 =2)H(X|0 =2)

h(a) +aH(X;) + (1

where h(a)

The maximization over a and the resulting

— a)H(X3)

—aloga — (1 —a)log(l — a).

inequality is simple calculus. The interesting

point here is the following: From the AEP we know that, instead of considering all |A|"

strings, we can concentrate on the ~ 2" =
pretend we have a “completely random,” or

so the effective alphabet size of X is not |A,

(28)™ typical strings. In other words, we can
uniform source, with alphabet size 25 < |A],
but 27(X).

The inequality we get here says that the effective alphabet size of the mixture X of the
random variables X7, X5 is no larger than the sum of their effective alphabet sizes.

. Run length coding. Since the run lengths are a function of X7', H(R) < H(X7). Any X;

together with the run lengths determine the entire sequence X{'. Hence

H(XP) =

VANVAN

6. Markov’s inequality for probabilities. We have:

Pr(P(X) < d) logé

IN

IN

7. The AEP and source coding.

(a) The number of 100-bit binary sequences with three or fewer ones is:

(o)« () () (4

The required codeword length is [log,

100
1

100
2

) =1+ 100 + 4950 + 161700 = 166751 .

166751] = 18. (Note that 7(0.005) ~ 0.0454,

so 18 is quite a bit larger than the optimal 100 x h(0.005) ~ 4.5 bits of entropy.)



(b) The probability that a 100-bit sequence has three or fewer ones is:

3
100 . .
> ( _ )(0.005)’(0.995)100—z ~ 0.60577 4 0.30441 + 0.7572 + 0.01243 = 0.99833.
1

=0

Thus, the probability that the sequence that is generated cannot be encoded is
~ 1—0.99833 = 0.00167.

(c) If S, that is the sum ofn IID random variables X7, X5, ..., X,,, Chebyshev’s inequal-

ity states that,
2
Pr(|S, —nu| >¢€) < %,
€

where ;1 and ¢? are the mean and variance of the X;. (Therefore nu and no?

are the mean and variance of S,.) In this problem, n = 100, p = 0.005, and
o? = (0.005)(0.995). Note that Sjgp > 4 if and only if |S190 — 100(0.005)| > 3.5, so
we should choose € = 3.5. Then,

100(0.005)(0.995)
(3.5)?

This bound is much larger than the actual probability 0.00167.
8. Since the X] are IID, so are Q(X1), Q(X2), ..., Q(X,), and hence we can apply the (weak

or strong, depending on your preference) law of large numbers to obtain,

1 1
lim ——1 "(X7) = lim—— ) 1 X
im ——log Q" (X7) im—— log Q(X;)
= E[-logQ(X))] [in probability, or w.p. 1]

= —ZP )log Q(x

= Z P(x)log ggg — Z P(z)log P(x)

= D(P|Q)+ H(P).

T

9. Random box size. The volume V, = H?:l X, is a random variable. Since the X, are
random variables uniformly distributed on [0, 1], we expect that V;, tends to 0 as n — oo.
However,

1
log, Vi = loge ZlogeX — E(log. (X)) in probability,

by the weak law of large numbers, since the RVs log,(X;) are IID. Now,

Ellog.(X;)] = /01 log, (x) dz = —1.



Hence, since e* is a continuous function,

1 .
1111’1 Vnﬁ = ehmn_m)o %loge Vn fry

n—oo

<

Q|
N —

Thus the “effective” edge length of this solid is e~!. Note that since the X;’s are indepen-
dent, E(V,) = [[ E(X;) = (3)". [Also 1 is the arithmetic mean of the random variables,
and % is their geometric mean.|



