
Statistics G8243
Thursday, February 12, 2009

Handout #6

HW Set # 2

Homework due by Thursday February 19, at 2:40pm, at the beginning of class.

1. Entropy of a sum. Let X and Y be two (possibly dependent) random variables, with
possibly different alphabets. Let Z = X + Y.

(a) Show that H(Z|X) = H(Y |X).

(b) Show that if X, Y are independent, then H(Y ) ≤ H(Z) and H(X) ≤ H(Z). Thus
the addition of independent random variables adds uncertainty.

(c) Give an example (of necessarily dependent random variables) in which H(X) >
H(Z) and H(Y ) > H(Z).

(d) Under what conditions does H(Z) = H(X) +H(Y )?

2. Inequalities. LetX, Y and Z be possibly dependent random variables. Prove the following
inequalities and find conditions for equality.

(a) H(X, Y |Z) ≥ H(X|Z).

(b) H(X, Y, Z)−H(X, Y ) ≤ H(X,Z)−H(X).

3. A compound Poisson approximation bound. Let X1, X2, . . . , Xn be IID Bern(λ/n) ran-
dom variables, and let Y1, Y2, ..., Yn be an independent sequence of IID random variables
with distribution Q = (1/2, 1/2) on the set {1, 2}. Show that the distribution PSn of the
sum

∑n
i=1XiYi satisfies,

D(PSn‖CPo(λ,Q)) ≤ (log e)λ2

n
,

for all n ≥ 1, where the compound Poisson distribution CPo(λ,Q)) is the distribution of
the sum of Poisson(λ) many IID random variables Yi ∼ Q as above. [Hint. Recall the
infinite divisibility property of the compound Poisson distribution.]

4. Monotonicity. Let P̂n denote the (random) empirical distribution, or type, of a random
string Xn

1 which is generated IID according to some distribution Q on A. Prove that P̂n
approaches to Q monotonically in terms of relative entropy, in that,

E
[
D(P̂n+1‖Q)

]
≤ E

[
D(P̂n‖Q)

]
,

for all n.

5. Estimating the entropy. Let X1, X2, . . . be IID random variables with distribution P
given by (1/8, 1/8, 1/4, 1/2) on A = {1, 2, 3, 4}.



(a) Use your favorite computer program to simulate about 50 such random variables Xi,
and calculate the empirical distribution, or type P̂n of your samples X1, . . . , X50.

(b) Pretend you don’t know the true distribution, and use the empirical distribution to
come up with an estimate Ĥ for the entropy, by taking

Ĥ = H(P̂n).

Compare your estimate with the true value of H(X).

(c) Repeat steps (a) and (b) 10 or 20 times. Comment on the estimates you get. Do
you see any systematic trends?

(d) Show that this entropy estimate is biased “downwards,” that is, prove that for any
distribution P ,

E[H(P̂n)] ≤ H(P ).

6. Size of type-class. In class we saw that

1

(n+ 1)m
2nH(P ) ≤ |T (P )| ≤ 2nH(P ).

Here you will show that |T (P )| is in fact ≈ n−
m−1

2 2nH(P ). More precisely, assuming P is
an n-type with all positive probabilities, show that

log |T (P )| = nH(P )− m− 1

2
log(2πn)− 1

2

∑
a∈A

logP (a)− ϑ(n, P )

12
(log e)2m

where 0 ≤ ϑ(n, P ) ≤ 1.

Hint. Use Robbins’ sharpening of Stirling’s formula

√
2πnn+ 1

2 e−n+ 1
12(n+1) ≤ n! ≤

√
2πnn+ 1

2 e−n+ 1
12n

(see, e.g., Feller, vol. I, p. 54, or the handout given in class), noticing that P (a) ≥ 1
n

whenever P (a) > 0.

7. Hypothesis testing. Suppose we are in the setting of Stein’s Lemma of testing IID data
X1, X2, . . . for having distribution either P1 or P2. What would happen if we followed
the asymptotically optimal procedure suggested by Stein’s Lemma, but instead the data
came from a third distribution Q?

8. OPTIONAL. The Poisson as a maximum entropy distribution. Let Bn(λ) denote the
class of all probability distributions that can be obtained as distributions of sums

∑n
i=1Xi

of independent Bern(pi) random variables, such that p1 + p2 + · · · + pn = λ. Also, let
B(λ) denote the union of all the Bn(λ), B(λ) = ∪n≥1Bn(λ). Here you will show that the
Poisson has the following maximum entropy property:

H(Po(λ)) = sup
P∈B(λ)

H(P ).



(a) Suppose a function f(x, y) is defined for x, y such that x + y = a constant c, let
z = x− c

2
, and define a new function g(z) = f( c

2
+ z, c

2
− z). Show that if g′′(z) ≤ 0

then f is jointly concave in (x, y).

(b) Suppose that f is also symmetric in x, y, i.e., f(x, y) = f(y, x). Show that f achieves
its maximum at the point (x, y) = ( c

2
, c

2
).

(c) Take λ > 0 fixed, let Sn =
∑n

i=1Xi where the Xi are independent Bernoulli RVs
with parameters pi such that

∑
i pi = λ, and let h(p1, p2, . . . , pn) = H(Sn). Using

part (a), you will prove the following claim: For any two i 6= j, h is a concave
function of (pi, pj) when all the rest of the p’s are kept fixed.

i. Without loss of generality (why?) take i = 1 and j = 2, so that p1+p2 is equal to
the constant c = λ−p3−p4−· · ·−pn. Let f(p1, p2) = h(p1, p2, . . . , pn), z = p1− c

2
,

and g(z) = f( c
2

+ z, c
2
− z). Define u = z2, and explain why d2

du2H(Sn) ≤ 0.

ii. Express Pr(Sn = `) as the product of the symmetric functions sn` (evaluated at
suitable arguments) and a simple product involving the p′is. Recall that the snk
are defined by

snk(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik ,

for all positive xi, and that they have the property that

snk s
n
k+2 ≤ (snk+1)

2.

iii. Expressing d
du
H(Sn) as a telescoping sum show that

d

du
H(Sn) =

n∑
`=0

log

(
Pr(Sn = `)Pr(Sn = `+ 2)

Pr(Sn = `+ 2)2

)
Pr(X3 +X4 + · · ·+Xn = `),

and use part ii. to show that d
du
H(Sn) ≤ 0.

iv. Show that we can expand g′′(z) as

g′′(z) =
d2

dz2
H(Sn) = 2

d

du
H(Sn) +

(du
dz

)2 d2

du2
H(Sn),

and use ii and iii to show that g′′(z) ≤ 0. Conclude that the claim in (c) is true.

(d) Show that

H
(

Bin
(
n,
λ

n

))
= max

P∈Bn(λ)
H(P ).

(e) Take n→∞ in (d) and conclude that the Poisson has the stated maximum entropy
property.


