Statistics G8243
Thursday, February 12, 2009
Handout \#6

HW Set \# 2

Homework due by Thursday February 19, at $2: 40 \mathrm{pm}$, at the beginning of class.

1. Entropy of a sum. Let X and Y be two (possibly dependent) random variables, with possibly different alphabets. Let $Z=X+Y$.
(a) Show that $H(Z \mid X)=H(Y \mid X)$.
(b) Show that if X, Y are independent, then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus the addition of independent random variables adds uncertainty.
(c) Give an example (of necessarily dependent random variables) in which $H(X)>$ $H(Z)$ and $H(Y)>H(Z)$.
(d) Under what conditions does $H(Z)=H(X)+H(Y)$?
2. Inequalities. Let X, Y and Z be possibly dependent random variables. Prove the following inequalities and find conditions for equality.
(a) $H(X, Y \mid Z) \geq H(X \mid Z)$.
(b) $H(X, Y, Z)-H(X, Y) \leq H(X, Z)-H(X)$.
3. A compound Poisson approximation bound. Let $X_{1}, X_{2}, \ldots, X_{n}$ be IID $\operatorname{Bern}(\lambda / n)$ random variables, and let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be an independent sequence of IID random variables with distribution $Q=(1 / 2,1 / 2)$ on the set $\{1,2\}$. Show that the distribution $P_{S_{n}}$ of the $\operatorname{sum} \sum_{i=1}^{n} X_{i} Y_{i}$ satisfies,

$$
D\left(P_{S_{n}} \| \operatorname{CPo}(\lambda, Q)\right) \leq \frac{(\log e) \lambda^{2}}{n}
$$

for all $n \geq 1$, where the compound Poisson distribution $\operatorname{CPo}(\lambda, Q))$ is the distribution of the sum of Poisson (λ) many IID random variables $Y_{i} \sim Q$ as above. [Hint. Recall the infinite divisibility property of the compound Poisson distribution.]
4. Monotonicity. Let \hat{P}_{n} denote the (random) empirical distribution, or type, of a random string X_{1}^{n} which is generated IID according to some distribution Q on A. Prove that \hat{P}_{n} approaches to Q monotonically in terms of relative entropy, in that,

$$
E\left[D\left(\hat{P}_{n+1} \| Q\right)\right] \leq E\left[D\left(\hat{P}_{n} \| Q\right)\right]
$$

for all n.
5. Estimating the entropy. Let X_{1}, X_{2}, \ldots be IID random variables with distribution P given by $(1 / 8,1 / 8,1 / 4,1 / 2)$ on $A=\{1,2,3,4\}$.
(a) Use your favorite computer program to simulate about 50 such random variables X_{i}, and calculate the empirical distribution, or type \hat{P}_{n} of your samples X_{1}, \ldots, X_{50}.
(b) Pretend you don't know the true distribution, and use the empirical distribution to come up with an estimate \hat{H} for the entropy, by taking

$$
\hat{H}=H\left(\hat{P}_{n}\right)
$$

Compare your estimate with the true value of $H(X)$.
(c) Repeat steps (a) and (b) 10 or 20 times. Comment on the estimates you get. Do you see any systematic trends?
(d) Show that this entropy estimate is biased "downwards," that is, prove that for any distribution P,

$$
E\left[H\left(\hat{P}_{n}\right)\right] \leq H(P)
$$

6. Size of type-class. In class we saw that

$$
\frac{1}{(n+1)^{m}} 2^{n H(P)} \leq|T(P)| \leq 2^{n H(P)} .
$$

Here you will show that $|T(P)|$ is in fact $\approx n^{-\frac{m-1}{2}} 2^{n H(P)}$. More precisely, assuming P is an n-type with all positive probabilities, show that

$$
\log |T(P)|=n H(P)-\frac{m-1}{2} \log (2 \pi n)-\frac{1}{2} \sum_{a \in A} \log P(a)-\frac{\vartheta(n, P)}{12}(\log e)^{2} m
$$

where $0 \leq \vartheta(n, P) \leq 1$.
Hint. Use Robbins' sharpening of Stirling's formula

$$
\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+\frac{1}{12(n+1)}} \leq n!\leq \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+\frac{1}{12 n}}
$$

(see, e.g., Feller, vol. I, p. 54, or the handout given in class), noticing that $P(a) \geq \frac{1}{n}$ whenever $P(a)>0$.
7. Hypothesis testing. Suppose we are in the setting of Stein's Lemma of testing IID data X_{1}, X_{2}, \ldots for having distribution either P_{1} or P_{2}. What would happen if we followed the asymptotically optimal procedure suggested by Stein's Lemma, but instead the data came from a third distribution Q ?
8. OPTIONAL. The Poisson as a maximum entropy distribution. Let $B_{n}(\lambda)$ denote the class of all probability distributions that can be obtained as distributions of sums $\sum_{i=1}^{n} X_{i}$ of independent $\operatorname{Bern}\left(p_{i}\right)$ random variables, such that $p_{1}+p_{2}+\cdots+p_{n}=\lambda$. Also, let $B(\lambda)$ denote the union of all the $B_{n}(\lambda), B(\lambda)=\cup_{n \geq 1} B_{n}(\lambda)$. Here you will show that the Poisson has the following maximum entropy property:

$$
H(\operatorname{Po}(\lambda))=\sup _{P \in B(\lambda)} H(P) .
$$

(a) Suppose a function $f(x, y)$ is defined for x, y such that $x+y=$ a constant c, let $z=x-\frac{c}{2}$, and define a new function $g(z)=f\left(\frac{c}{2}+z, \frac{c}{2}-z\right)$. Show that if $g^{\prime \prime}(z) \leq 0$ then f is jointly concave in (x, y).
(b) Suppose that f is also symmetric in x, y, i.e., $f(x, y)=f(y, x)$. Show that f achieves its maximum at the point $(x, y)=\left(\frac{c}{2}, \frac{c}{2}\right)$.
(c) Take $\lambda>0$ fixed, let $S_{n}=\sum_{i=1}^{n} X_{i}$ where the X_{i} are independent Bernoulli RVs with parameters p_{i} such that $\sum_{i} p_{i}=\lambda$, and let $h\left(p_{1}, p_{2}, \ldots, p_{n}\right)=H\left(S_{n}\right)$. Using part (a), you will prove the following claim: For any two $i \neq j, h$ is a concave function of $\left(p_{i}, p_{j}\right)$ when all the rest of the p 's are kept fixed.
i. Without loss of generality (why?) take $i=1$ and $j=2$, so that $p_{1}+p_{2}$ is equal to the constant $c=\lambda-p_{3}-p_{4}-\cdots-p_{n}$. Let $f\left(p_{1}, p_{2}\right)=h\left(p_{1}, p_{2}, \ldots, p_{n}\right), z=p_{1}-\frac{c}{2}$, and $g(z)=f\left(\frac{c}{2}+z, \frac{c}{2}-z\right)$. Define $u=z^{2}$, and explain why $\frac{d^{2}}{d u^{2}} H\left(S_{n}\right) \leq 0$.
ii. Express $\operatorname{Pr}\left(S_{n}=\ell\right)$ as the product of the symmetric functions s_{ℓ}^{n} (evaluated at suitable arguments) and a simple product involving the $p_{i}^{\prime} s$. Recall that the s_{k}^{n} are defined by

$$
s_{k}^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},
$$

for all positive x_{i}, and that they have the property that

$$
s_{k}^{n} s_{k+2}^{n} \leq\left(s_{k+1}^{n}\right)^{2} .
$$

iii. Expressing $\frac{d}{d u} H\left(S_{n}\right)$ as a telescoping sum show that

$$
\frac{d}{d u} H\left(S_{n}\right)=\sum_{\ell=0}^{n} \log \left(\frac{\operatorname{Pr}\left(S_{n}=\ell\right) \operatorname{Pr}\left(S_{n}=\ell+2\right)}{\operatorname{Pr}\left(S_{n}=\ell+2\right)^{2}}\right) \operatorname{Pr}\left(X_{3}+X_{4}+\cdots+X_{n}=\ell\right)
$$

and use part ii. to show that $\frac{d}{d u} H\left(S_{n}\right) \leq 0$.
iv. Show that we can expand $g^{\prime \prime}(z)$ as

$$
g^{\prime \prime}(z)=\frac{d^{2}}{d z^{2}} H\left(S_{n}\right)=2 \frac{d}{d u} H\left(S_{n}\right)+\left(\frac{d u}{d z}\right)^{2} \frac{d^{2}}{d u^{2}} H\left(S_{n}\right),
$$

and use ii and iii to show that $g^{\prime \prime}(z) \leq 0$. Conclude that the claim in (c) is true.
(d) Show that

$$
H\left(\operatorname{Bin}\left(n, \frac{\lambda}{n}\right)\right)=\max _{P \in B_{n}(\lambda)} H(P)
$$

(e) Take $n \rightarrow \infty$ in (d) and conclude that the Poisson has the stated maximum entropy property.

