Statistics G8243 Thursday, February 12, 2009 Handout #6

HW Set # 2

Homework due by Thursday February 19, at 2:40pm, at the beginning of class.

- 1. Entropy of a sum. Let X and Y be two (possibly dependent) random variables, with possibly different alphabets. Let Z = X + Y.
 - (a) Show that H(Z|X) = H(Y|X).
 - (b) Show that if X, Y are independent, then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus the addition of *independent* random variables adds uncertainty.
 - (c) Give an example (of necessarily dependent random variables) in which H(X) > H(Z) and H(Y) > H(Z).
 - (d) Under what conditions does H(Z) = H(X) + H(Y)?
- 2. Inequalities. Let X, Y and Z be possibly dependent random variables. Prove the following inequalities and find conditions for equality.
 - (a) $H(X, Y|Z) \ge H(X|Z)$.
 - (b) $H(X, Y, Z) H(X, Y) \le H(X, Z) H(X)$.
- 3. A compound Poisson approximation bound. Let X_1, X_2, \ldots, X_n be IID Bern (λ/n) random variables, and let Y_1, Y_2, \ldots, Y_n be an independent sequence of IID random variables with distribution Q = (1/2, 1/2) on the set $\{1, 2\}$. Show that the distribution P_{S_n} of the sum $\sum_{i=1}^n X_i Y_i$ satisfies,

$$D(P_{S_n} \| \operatorname{CPo}(\lambda, Q)) \le \frac{(\log e)\lambda^2}{n},$$

for all $n \ge 1$, where the compound Poisson distribution $CPo(\lambda, Q)$ is the distribution of the sum of $Poisson(\lambda)$ many IID random variables $Y_i \sim Q$ as above. [*Hint.* Recall the infinite divisibility property of the compound Poisson distribution.]

4. Monotonicity. Let \hat{P}_n denote the (random) empirical distribution, or type, of a random string X_1^n which is generated IID according to some distribution Q on A. Prove that \hat{P}_n approaches to Q monotonically in terms of relative entropy, in that,

$$E\left[D(\hat{P}_{n+1}||Q)\right] \le E\left[D(\hat{P}_{n}||Q)\right],$$

for all n.

5. Estimating the entropy. Let X_1, X_2, \ldots be IID random variables with distribution P given by (1/8, 1/8, 1/4, 1/2) on $A = \{1, 2, 3, 4\}$.

- (a) Use your favorite computer program to simulate about 50 such random variables X_i , and calculate the empirical distribution, or type \hat{P}_n of your samples X_1, \ldots, X_{50} .
- (b) Pretend you don't know the true distribution, and use the empirical distribution to come up with an estimate \hat{H} for the entropy, by taking

$$\hat{H} = H(\hat{P}_n)$$

Compare your estimate with the true value of H(X).

- (c) Repeat steps (a) and (b) 10 or 20 times. Comment on the estimates you get. Do you see any systematic trends?
- (d) Show that this entropy estimate is biased "downwards," that is, prove that for any distribution P,

$$E[H(P_n)] \le H(P).$$

6. Size of type-class. In class we saw that

$$\frac{1}{(n+1)^m} 2^{nH(P)} \le |T(P)| \le 2^{nH(P)}.$$

Here you will show that |T(P)| is in fact $\approx n^{-\frac{m-1}{2}}2^{nH(P)}$. More precisely, assuming P is an n-type with all positive probabilities, show that

$$\log|T(P)| = nH(P) - \frac{m-1}{2}\log(2\pi n) - \frac{1}{2}\sum_{a \in A}\log P(a) - \frac{\vartheta(n, P)}{12}(\log e)^2 m$$

where $0 \le \vartheta(n, P) \le 1$.

Hint. Use Robbins' sharpening of Stirling's formula

$$\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n+\frac{1}{12(n+1)}} \le n! \le \sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n+\frac{1}{12n}}$$

(see, e.g., Feller, vol. I, p. 54, or the handout given in class), noticing that $P(a) \ge \frac{1}{n}$ whenever P(a) > 0.

- 7. Hypothesis testing. Suppose we are in the setting of Stein's Lemma of testing IID data X_1, X_2, \ldots for having distribution either P_1 or P_2 . What would happen if we followed the asymptotically optimal procedure suggested by Stein's Lemma, but instead the data came from a third distribution Q?
- 8. OPTIONAL. The Poisson as a maximum entropy distribution. Let $B_n(\lambda)$ denote the class of all probability distributions that can be obtained as distributions of sums $\sum_{i=1}^{n} X_i$ of independent $\text{Bern}(p_i)$ random variables, such that $p_1 + p_2 + \cdots + p_n = \lambda$. Also, let $B(\lambda)$ denote the union of all the $B_n(\lambda)$, $B(\lambda) = \bigcup_{n \ge 1} B_n(\lambda)$. Here you will show that the Poisson has the following maximum entropy property:

$$H(\operatorname{Po}(\lambda)) = \sup_{P \in B(\lambda)} H(P).$$

- (a) Suppose a function f(x, y) is defined for x, y such that x + y = a constant c, let $z = x \frac{c}{2}$, and define a new function $g(z) = f(\frac{c}{2} + z, \frac{c}{2} z)$. Show that if $g''(z) \le 0$ then f is jointly concave in (x, y).
- (b) Suppose that f is also symmetric in x, y, i.e., f(x, y) = f(y, x). Show that f achieves its maximum at the point $(x, y) = (\frac{c}{2}, \frac{c}{2})$.
- (c) Take $\lambda > 0$ fixed, let $S_n = \sum_{i=1}^n X_i$ where the X_i are independent Bernoulli RVs with parameters p_i such that $\sum_i p_i = \lambda$, and let $h(p_1, p_2, \ldots, p_n) = H(S_n)$. Using part (a), you will prove the following claim: For any two $i \neq j$, h is a concave function of (p_i, p_j) when all the rest of the p's are kept fixed.
 - i. Without loss of generality (why?) take i = 1 and j = 2, so that $p_1 + p_2$ is equal to the constant $c = \lambda - p_3 - p_4 - \cdots - p_n$. Let $f(p_1, p_2) = h(p_1, p_2, \ldots, p_n), z = p_1 - \frac{c}{2}$, and $g(z) = f(\frac{c}{2} + z, \frac{c}{2} - z)$. Define $u = z^2$, and explain why $\frac{d^2}{du^2} H(S_n) \leq 0$.
 - ii. Express $\Pr(S_n = \ell)$ as the product of the symmetric functions s_{ℓ}^n (evaluated at suitable arguments) and a simple product involving the $p'_i s$. Recall that the s_k^n are defined by

$$s_k^n(x_1, x_2, \dots, x_n) = \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k},$$

for all positive x_i , and that they have the property that

$$s_k^n s_{k+2}^n \le (s_{k+1}^n)^2$$

iii. Expressing $\frac{d}{du}H(S_n)$ as a telescoping sum show that

$$\frac{d}{du}H(S_n) = \sum_{\ell=0}^n \log\left(\frac{\Pr(S_n = \ell)\Pr(S_n = \ell + 2)}{\Pr(S_n = \ell + 2)^2}\right) \Pr(X_3 + X_4 + \dots + X_n = \ell),$$

and use part ii. to show that $\frac{d}{du}H(S_n) \leq 0$. iv. Show that we can expand g''(z) as

$$g''(z) = \frac{d^2}{dz^2}H(S_n) = 2\frac{d}{du}H(S_n) + \left(\frac{du}{dz}\right)^2\frac{d^2}{du^2}H(S_n) + \left(\frac{du}{dz}\right)^2\frac{d^2}{du^2}H(S_n) + \frac{d^2}{du^2}H(S_n) + \frac{d^2}{du^2}H$$

and use ii and iii to show that $g''(z) \leq 0$. Conclude that the claim in (c) is true. (d) Show that

$$H\left(\operatorname{Bin}\left(n,\frac{\lambda}{n}\right)\right) = \max_{P \in B_n(\lambda)} H(P)$$

(e) Take $n \to \infty$ in (d) and conclude that the Poisson has the stated maximum entropy property.