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The fundamental question in

neuroscience

The neural code: what is P (response | stimulus)?

Main question: how to estimate P (r|s) from (sparse)

experimental data?



Curse of dimensionality

Both stimulus and response can be very high-dimensional.

Stimuli:

• images

• sounds

• time-varying behavior

Responses:

• observations from single or multiple simultaneously-recorded

point processes (neural activity)



Avoiding the curse of insufficient data

1: Estimate some functional f(p) instead of full joint

distribution p(r, s)

— information-theoretic functionals

2: Improved nonparametric estimators

— minimax theory for discrete distributions under KL loss

3: Select stimuli more efficiently

— optimal experimental design

(4: Parametric approaches)



Part 1: Estimation of information

Many central questions in neuroscience are inherently

information-theoretic:

• What inputs are most reliably encoded by a given neuron?

• Are sensory neurons optimized to transmit information

about the world to the brain?

• Do noisy synapses limit the rate of information flow from

neuron to neuron?

Quantification of “information” is fundamental problem.

(...interest in neuroscience but also physics, telecommunications,

genomics, etc.)



Shannon mutual information

I(X; Y ) =

∫

X×Y

dp(x, y) log
dp(x, y)

dp(x) × p(y)

Information-theoretic justifications:

• invariance

• “uncertainty” axioms

• data processing inequality

• channel and source coding theorems

But obvious open experimental question:

• is this computable for real data?



How to estimate information

I very hard to estimate in general...

... but lower bounds are easier.

Data processing inequality:

I(X; Y ) ≥ I(S(X); T (Y ))

Suggests a sieves-like approach.



Discretization approach

Discretize X,Y → Xdisc, Ydisc, estimate

Idiscrete(X; Y ) = I(Xdisc; Ydisc)

• Data processing inequality =⇒ Idiscrete ≤ I

• Idiscrete ր I as partition is refined

Strategy: refine partition as samples N increases; if number of

bins m doesn’t grow too fast, Î → Idiscrete ր I

Completely nonparametric, but obvious concerns:

• Want N >> m(N) samples, to “fill in” histograms p(x, y)

• How large is bias, variance for fixed m?



Bias is major problem

ÎMLE(X; Y ) =
mx
∑

x=1

my
∑

y=1

p̂MLE(x, y) log
p̂MLE(x, y)

p̂MLE(x)p̂MLE(y)

p̂MLE(x) = pN(x) =
n(x)

N
(empirical measure)

Fix p(x, y),mx,my and let sample size N → ∞. Then:

• Bias(ÎMLE) : ∼ −(mx − my + mxmy − 1)/2N .

• Variance(ÎMLE) : ∼ (log m)2/N ; dominated by bias if

m = mxmy large.

• No unbiased estimator exists.

(Miller, 1955; Paninski, 2003)



Convergence of common information

estimators

Result 1: If N/m → ∞, ÎMLE and related estimators

universally almost surely consistent.

Converse: if N/m → c < ∞, ÎMLE and related estimators

typically converge to wrong answer almost surely. (Asymptotic

bias can often be computed explicitly.)

Implication: if N/m small, large bias although errorbars vanish,

even if “bias-corrected” estimators are used! (Paninski, 2003)



Estimating information on m bins with

fewer than m samples

Result 2: A new estimator that is uniformly consistent as

N → ∞ even if N/m → 0 (albeit sufficiently slowly)

Error bounds good for all underlying distributions: estimator

works well even in worst case

Interpretation: information is strictly easier to estimate than p!

(Paninski, 2004)



Derivation of new estimator

Suffices to develop good estimator of discrete entropy:

Idiscrete(X; Y ) = H(Xdisc) + H(Ydisc) − H(Xdisc, Ydisc)

H(X) = −

mx
∑

x=1

p(x) log p(x)



Derivation of new estimator

Variational idea: choose estimator that minimizes upper bound

on error over

H = {Ĥ : Ĥ(pN) =
∑

i

g(pN(i))} (pN = empirical measure)

Approximation-theoretic (binomial) bias bound

max
p

Biasp(Ĥ) ≤ B∗(Ĥ) ≡ m · max
0≤p≤1

|−p log p−

N
∑

j=0

g(
j

N
)BN,j(p)|

McDiarmid-Steele bound on variance

max
p

V arp(Ĥ) ≤ V ∗(Ĥ) ≡ N max
j
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Entropy bias bound

Biasp(Ĥ) = Ep(Ĥ) − H(p)

=
m
∑

i=1

(

p(i) log p(i) +
N
∑

j=0

g(
j

N
)BN,j(p(i))

)

≤ m · max
0≤p≤1

| − p log p −
N
∑

j=0

g(
j

N
)BN,j(p)|

• BN,j(p) =
(

N
j

)

pj(1 − p)N−j: polynomial in p

• If
∑

j g(j)BN,j(p) close to −p log p for all p, bias will be small

=⇒ standard uniform polynomial approximation theory



Entropy variance bound

“Method of bounded differences” (McDiarmid, 1989): let F (x1, x2, ..., xN )

be a function of N i.i.d. r.v.’s.

If any single xi has small effect on F , i.e,

sup |F (..., x, ...) − F (..., y, ...)| < c,

then

V ar(F ) <
N

4
c2

(inequalities due to Azuma-Hoeffding, Efron-Stein, Steele, etc.).

Our case:

Ĥ =
∑

i

g(
n(i)

N
)

max
j
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Derivation of new estimator

Choose estimator to minimize (convex) error bound over

(convex) space H:

ĤBUB = argminĤ∈H [B∗(Ĥ)2 + V ∗(Ĥ)].

Optimization of convex functions on convex parameter spaces is

computationally tractable by simple descent methods

Consistency proof involves Stone-Weierstrass theorem, penalized

polynomial approximation theory in Poisson limit N/m → c.



Error comparisons: upper and lower bounds
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Undersampling example
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ÎMLE = 2.42 bits

“bias-corrected” ÎMLE = −0.47 bits

ÎBUB = 0.74 bits; conservative (worst-case RMS upper bound) error: ±0.2 bits

true I(X; Y ) = 0.76 bits



Shannon (−p log p) is special

Obvious conjecture:
∑

i p
α
i , 0 < α < 1 (Renyi entropy) should

behave similarly.
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Result 3: Surprisingly, not true: no estimator can uniformly

estimate
∑

i p
α
i , α ≤ 1/2, if N ∼ m (Paninski, 2004).

In fact, need N > m(1−α)/α: smaller α =⇒ more data needed!

(Proof via Bayesian lower bounds on minimax error.)



Sketch of lower bound

Idea: find two sequences of distributions pN
0 and pN

1 such that:

• |F (pN
0 ) − F (pN

1 )| > ǫ > 0

• pN
0 and pN

1 remain “statistically indistinguishable” (i.e.,

simple hypothesis test error remains bounded away from

zero)

Here, p0 places all of its mass on bin 1; p1 places most of its mass

on bin 1, but spreads some fraction uniformly on all other bins.



Directions

• 1/2 < α < 1? Other functionals?

• continuous (unbinned) entropy estimators: similar result

holds for kernel density estimates

(Paninski and Yajima, 2008)

• sparse hypothesis testing: much easier than estimation

(Paninski, 2008)



Part 2: Estimating discrete distributions
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• Want an estimator which works well even in worst case

(“minimax” approach)

• Assume no knowledge of “topology” (smoothness); e.g.

p(word) in large dictionary

Of interest: sparse data case: N/m small (N = samples, m =

number of bins).



Connections to entropy estimation

Information-theoretic error measure: Kullback-Leibler (relative

entropy coding) loss DKL(p; p̂) =
∑

i pi log(pi/p̂i)

What to do with unoccupied bins?

Sparse data case more interesting mathematically.

Methods turn out to be similar:

• Optimal approximation (Paninski, 2003)

• Dirichlet priors (Nemenman et al., 2002)



Upper bound idea

1. Derive upper bound on worst-case expected loss

2. Minimize upper bound over tractable class of estimators

3. Use estimator with best upper bound on worst-case loss

— want upper bound to be tight but tractable

Tractability:

1. Find bounds which are convex in the estimator

2. Allow estimators to range over a large convex space

=⇒ no non-global local minima exist: descent methods work



Class of estimators

p̂i =
g(ni)

∑m
i=1 g(ni)

,

ni number of samples observed in bin i

Example: “add-constant” estimators, gj ≡ g(j) = j+α
N+mα

, α > 0
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Basic upper bound

E~p (DKL(~p, p̂))

= E~p

(

m
∑

i=1

pi log
pi

p̂i

)

=
∑

i



−H(pi) +
N
∑

j=0

(− log gj)piBN,j(pi)



+ E~p

(

log
m
∑

k=1

g(nk)

)

≤
∑

i



−H(pi) +
∑

j

(− log gj)piBN,j(pi)



+ E~p

(

−1 +
∑

k

g(nk)

)

=
∑

i

f(pi) =
∑

i

−H(pi) − pi +
∑

j

(gj − pi log gj)BN,j(pi).

log p ≤ p − 1; H(p) = −p log p; BN,j(p) =

(

N

j

)

pj(1 − p)N−j

Equality iff
∑

k g(nk) constant (e.g., add-constant estimator).



Two upper bounds

m
∑

i=1

f(pi) ≤ m max
0≤p≤1

f(p) :

tight in heavily-sampled limit.

∑

i

f(pi) ≤

(

m max
0≤p≤1/m

f(p)

)

+

(

max
1/m≤p≤1

f(p)

p

)

:

tight in sparse-data limit.

Minimizing bounds = polynomial approximation problem, as in

entropy estimation case (Paninski, 2003; Paninski, 2004).

Note: bounds are convex in gj =⇒ easy to minimize!



Lower bounds

Compare upper bounds to some well-defined optimum: lower

bound on worst-case error of any estimator.

Derive family of bounds indexed by some parameter α, then

optimize over α.

Key idea: average (Bayesian) loss ≤ maximum (worst-case) loss.



Dirichlet lower bounds

Dirichlet priors are convenient (Cover, 1972; Krichevsky, 1998;

Nemenman et al., 2002):

P (p) =
1

Z(~α)

∏

i

pαi−1
i

1. Compute the average error under any Dirichlet distribution;

can be done analytically for any N,m, ~α.

2. Maximize over the possible Dirichlet parameters α (i.e., find

“least favorable” Dirichlet prior) to obtain tightest bound

3. Simplification: restrict ~α to be constant, ~α = (α, α, . . . , α)

(1-D maximization)

4. Bound achieved by add-α estimator.



Asymptotic analysis

Proposition 1. Any add-α estimator, α > 0, is uniformly

KL-consistent if N/m → ∞.

Note: N/m is allowed to tend to infinity arbitarily slowly.

Proposition 2 (Converse). No estimator is uniformly

KL-consistent if lim sup N/m < ∞.

— Contrast with entropy estimation, where consistent

estimators do exist in this regime (conjectured by

(Nemenman et al., 2002; Paninski, 2003); proven in

(Paninski, 2004)).

=⇒ entropy of p is strictly easier to estimate than p!



Main result

In data-sparse regime c ≡ N/m → 0, add-α estimator with

α = −c log c is optimal.

Proposition 3. The least-favorable Dirichlet parameter is given

by H(c) as c → 0; the corresponding add-H(c) estimator also

asymptotically minimizes the upper bound. The maximal and

average error behave as − log(c)(1 + o(1)) for c → 0.



Illustration of bounds
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— asymptotically tight as c → 0, c → ∞

— always tight within a factor of 2



Summary

• New upper and lower bounds on discrete estimation error

• Useful applications of (convex) variational idea

• Proved asymptotic tightness of bounds

• Numerically, bounds turn out to be fairly tight

• Optimal sparse estimator: add-|c log c|

• See (Paninski, 2005) for details.
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