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Statistics of the two star ERGM
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In this paper, we explore the two star Exponential Random Graph Model, which is a two parameter exponential
family on the space of simple labeled graphs. We introduce auxiliary variables to express the two star model as a
mixture of the β model on networks. Using this representation, we study asymptotic distribution of the number of
edges, and the sampling variance of the degrees. In particular, the limiting distribution for the number of edges has
similar phase transition behavior to that of the magnetization in the Curie-Weiss Ising model of Statistical Physics.
Using this, we show existence of consistent estimates for both parameters. Finally, we prove that the centered
partial sum of degrees converges as a process to a Brownian bridge in all parameter domains, irrespective of the
phase transition.
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1. Introduction

Inference on graphs/networks is a topic of considerable recent interest in Statistics and Machine Learn-
ing. Both parametric and non-parametric models have been introduced to study graphs. In the para-
metric setting, perhaps the simplest model is the celebrated Erdős-Rényi model, where all the edges
are independent, and there is only one parameter in the model. However, this model is too simplistic
to be able to capture real life networks. Note that an Erdős-Rényi model can be expressed as an ex-
ponential family, with the number of edges as a sufficient statistic. As a first step towards modeling
dependence between edges, it is natural to consider parametric models where there are more than one
sufficient statistic. This motivation led to the introduction and study of exponential families on the
space of graphs with finitely many sufficient statistics. Typical sufficient statistics of interest include
higher order subgraph counts, such as number of stars, number of cycles, number of cliques, and so on.
We will refer to exponential families on the space of graphs as Exponential Random Graph Models. For
the sake of convenience the abbreviation ERGM will henceforth be used to refer to Exponential Ran-
dom Graph Models. ERGMs first appeared in Social Sciences (c.f. [2,13,18,27,34,35] and references
there-in), and since then have received a lot of attention in Probability (c.f. [14,16,25] and references
there-in), Statistics (c.f. [5,30,31] and references there-in) and Statistical Physics ([10,23,24] and ref-
erences there-in). One of the main attractions behind studying ERGMs is that they can incorporate
non-trivial dependence between the edges, as opposed to the Erdős-Rényi model, where the edges are
assumed to be independent.

One of the main difficulties of analyzing ERGMs is that the normalizing constant is not available in
closed form. Explicit computation of the normalizing constant is computationally prohibitive. One way
out is to resort to MCMC, but mixing rates for ERGMs depend crucially on the parameter values as
shown in [3, Theorem 5,6], and can take time which is exponential in the number of vertices to mix. In
[5] the authors study ERGMs using a large deviation approach. In particular they show that ERGMs are
“close” to mixtures of Erdős-Rényi random graphs (c.f. [5, Theorem 6.4] for a formal statement). Since
an Erdős-Rényi random graph has a single parameter, this suggests that consistent estimation of both
the parameters (as the size of the graph grows) is not possible in the two star ERGM. To investigate this
issue, in this paper we study a particular two parameter ERGM, namely the two star model, which is
perhaps the simplest ERGM outside an Erdős-Rényi model. The two star model was first studied in [23]
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using non rigorous methods. This ERGM has exactly two sufficient statistics, the number of edges, and
the number of two stars. We demonstrate that in this model consistent estimation of both the parameters
is indeed possible, though there is a loss in efficiency for estimating two parameters instead of one (see
Corollary 1.9). In the course of our analysis, we derive asymptotic distribution for the number of edges
E(G), which shows interesting phase transitions (see Theorem 1.4). In particular, throughout “most” of
the 2D parameter space, E(G) has an asymptotic normal distribution. This regime is termed as Θ1, and
is often referred to as the uniqueness regime. On the other hand, along a one dimensional curve in the
2D parameter space, the distribution of E(G) is bimodal, and is a mixture of two normal distributions.
This regime is termed as Θ2, and is often referred to as the non-uniqueness regime. Finally, there
is a single parameter configuration, termed Θ3 and often referred to as the critical point, which is
sandwiched between Θ1 and Θ2. In this regime E(G) has an asymptotic distribution which is unimodal
but not Gaussian. Similar limiting distributions were observed while studying the magnetization in the
Curie-Weiss of Statistical Physics ([12]), and more recently in Ising model on “dense” regular graphs
([9]). In some sense, these phase transitions can be viewed as an explanation for the phenomenon
of degeneracy observed in ERGMs, observed in [17,20,29,32]. One of the most common features of
degeneracy is that repeated samples from the model do not produce similar samples. This is particularly
evident in the regime Θ2, where the number of edges E(G) in two independent samples can be very
different with probability 1

2 . Even if the true parameter is inΘ1 but is close to the boundary, one expects
to see similar behavior.

We also derive asymptotic distribution for the sampling variance of the degrees (1.6), which has
a limiting Gaussian behavior in all the three regimes Θ1 ∪ Θ2 ∪ Θ3. Thus this statistic does not see
the effect of the phase transition to the same extent, as does E(G). Using our techniques, we are also
able to analyze general linear statistics of edges (and not just E(G), the total number of edges). To
demonstrate the flexibility of our tools, we show that the partial sums of the centered degrees converge
to a Brownian bridge (Theorem 1.11). Again this limiting behavior is universal, and does not depend
on the three regimes. The understanding from these results is that statistics which depend on contrasts
(linear statistics whose coefficients add up to 0) do not feel the effect of the phase transitions/different
regimes, whereas non contrast statistics (such as the total number of edges) do. During the course of
our proofs, we develop a natural algorithm for simulating from the two star ERGM, which is based
on auxiliary variables. As indicated above, simulating from general ERGMs is a hard problem, so the
presence of an auxiliary variable algorithm does help us to simulate “efficiently” from the two star
model.

A natural question is to what extent does one expect the results of this paper to carry over to more
general ERGMs. The main technique used in this paper is to utilize the quadratic nature of the two star
model and visualize it as an Ising model on the line graph of the complete graph, and then introduce
auxiliary variables to convert the discrete problem to a continuous one. Similar techniques were used
to analyze the Curie-Weiss model ([8,19]). In fact, the techniques of this paper can be used to analyze
a more general version of the two star model, where each node has a parameter of its own, and the
quadratic term is the same as our two star model. For more general ERGMs beyond quadratic inter-
actions, it is unclear whether one can construct auxiliary variables in a manner similar to this paper.
Nevertheless, we expect some of the high level features of the two star ERGM to carry over to more
general ERGMs. For example, it seems that estimation of multiple parameters consistently should be
possible, but with a loss of efficiency. Also, for “most” of the parameter regime barring special config-
urations, one expects that the number of edges will have an asymptotic normal distribution. Some very
preliminary results in this direction can be found in [14,28].
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1.1. Formal set up

By a two star, we mean a path of length 2, which has 3 vertices and 2 edges. We begin by introducing
the two star ERGM.

Definition 1.1. For a positive integer n, let Gn denote the space of all simple graphs with vertices
labeled [n] := {1,2, . . . ,n}. Since a simple graph is uniquely identified by its adjacency matrix, without
loss of generality we can take Gn to also denote the set of all symmetric n × n matrices, with 0 on the
diagonal elements and {0,1} on the off-diagonal elements. By slightly abusing the notation, we use G
to denote both a graph and its n × n adjacency matrix (Gi j )1≤i, j≤n, defined by

Gi j =

{
1 If an edge is present between vertices i and j in G
0 Otherwise

Set Gii = 0 by convention. Let E(G) :=
∑

i< j Gi j denote the number of edges in G, and let

T(G) :=
n∑
i=1

∑
j<k

Gi jGik

denote the number of two stars in G. A simple calculation shows that the number of two stars can be
written as

T(G) =
n∑
i=1

(
di(G)

2

)
,

where (d1(G), . . . ,dn(G)) is the labeled degree sequence of the graph G, defined by di(G) :=
∑n

j=1 Gi j .

Indeed, this is because given any vertex i of degree di(G), there are
(
di(G)

2

)
two stars with i as their

central vertex.
Given parameters ω1 > 0 and ω2 ∈ R, the two star ERGM is defined by the following probability

mass function on Gn:

Pn(G = g) :=
1

Zn(ω1,ω2)
exp

{ (
ω2 +

ω1

n − 1

)
E(g) + ω1

n − 1
T(g)

}
, (1)

where Zn(ω1,ω2) is the normalizing constant.

Note that if ω1 = 0, the model reduces to an Erdős-Rényi model with parameter eω2
1+eω2 . The regime

ω1 > 0 corresponds to the so called “Ferromagnetic regime” of Statistical Physics, which encourages
more two stars in the sampled graph than an Erdős-Rényi graph with parameter eω2

1+eω2 . For the analysis
of the two star ERGM, we transform the edge variables from {0,1} to {−1,1}, which converts the two
star model into an Ising model (c.f. section 1.3). For the sake of mathematical convenience, throughout
the paper we work in a slightly different parametrization, given by

θ :=
ω1

4
> 0, β :=

ω1 +ω2

2
∈ R. (2)

This makes the subsequent analysis and presentation of results cleaner, and so throughout the rest of
the paper we will work with the above re-parametrization. As frequently happens for such models, the
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two star model undergoes a phase transition, and its behavior is qualitatively different in different parts
of the parameter regime. The following lemma introduces the different parameter domains arising out
of our analysis. The proof of this lemma follows from straightforward calculus, and is deferred to the
supplementary material [21] appendix A.

Lemma 1.2. Setting

q(x) = θx2 − log cosh(2θx + β), (3)

the following hold:

(a) If either θ > 0, β � 0 or θ ∈ (0,1/2), β = 0, the function q(.) has a unique global minimizer at t,
where t is the unique root of the equation x = tanh(2θx + β) which has the same sign as that of β.
Further we have q′′(t) = 2θ[1 − 2θ(1 − t2)] > 0.

(b) If θ > 1/2, β = 0, the function q(.) has two global minimizers at ±t, where t is the unique positive
root of the equation x = tanh(2θx). Further, we have q′′(±t) = 2θ[1 − 2θ(1 − t2)] > 0.

(c) If θ = 1/2, β = 0, the function q(.) has a unique global minimizer at t = 0, and q′′(0) = 0.

Definition 1.3. Let t be as defined in Lemma 1.2, and note that t depends on (θ, β), which we suppress
for ease of notation. Also let

Θ11 := {θ ∈ (0,1/2), β = 0}, Θ12 := {θ > 0, β � 0}

Θ2 := {θ > 1/2, β = 0}, Θ3 := {θ = 1/2, β = 0},

and set Θ1 := Θ11 ∪ Θ12. We will refer to the three regimes Θ1,Θ2,Θ3 as uniqueness regime, non
uniqueness regime, and critical regime respectively, the reason for this nomenclature follows from
Lemma 1.2.

1.2. Main results

Our first main result now gives the asymptotic distribution for the number of edges in all the three
domains {Θ1,Θ2,Θ3}.

Theorem 1.4. Suppose G is a random graph from the two star model in (1).

(a) If (θ, β) ∈ Θ1, we have

n
( 2E(G)

n2 − p
)

D−→ N
(
− μ,σ2

)
, (4)

where p = 1+t
2 , μ := θt(1−t2)

[1−θ(1−t2)][1−2θ(1−t2)] , and σ2 := 1−t2

2−4θ(1−t2) .
(b) If (θ, β) ∈ Θ2, then we have

Pn

(
E(G) > n2

4

)
= Pn

(
E(G) < n2

4

)
→ 1

2
.
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Further, (
n
( 2E(G)

n2 − p
) ���E(G) > n2

4

)
D−→ N(−μ,σ2),(

n
( 2E(G)

n2 − (1 − p)
) ���E(G) < n2

4

)
D−→ N(μ,σ2).

(5)

in which p, μ,σ2 have the same formulas as above.
(c) If (θ, β) ∈ Θ3, then we have

2
√

n
( 2E(G)

n2 − 1
2

)
D−→ ζ, (6)

where ζ is a random variable on R with density proportional to e−ζ
2/2−ζ4/24.

Remark 1.5. Theorem 1.4 demonstrates that out of the parameter regime {θ > 0, β ∈ R}, throughout
Θ1 (which is almost the whole parameter space, in sense of Lebesgue measure), E(G) has a Gaussian
distribution. Only in a one dimensional set Θ2, E(G) has a bimodal distribution and is asymptotically
a mixture of two Gaussian distributions. Finally, at single point Θ3, E(G) has a non Gaussian limiting
distribution. Prior to our work, limiting distribution for E(G) was not understood for any ERGM. See
however the recent works of [14,28], which makes some progress in this direction in high temperature
regime (i.e. θ small). Also related to our work is the asymptotics of the magnetization/sum of spins in
Ising models on dense regular graphs. As explained below in section 1.3, the two star ERGM can be

thought of as an Ising model on a dN regular graph with N :=
(
n
2

)
vertices and degree dN = 2(n−2) (so

that dN ∝
√

N). Further, the number of edges is a linear function of the magnetization. Very recently in
[9] it was shown that the magnetization/sum of spins in a Ising model on a regular graphs with degree
dN 	

√
N is universal, and is the same as obtained for the Curie-Weiss model (dN = N − 1) in [12]. As

our results demonstrate, universality breaks at the threshold dN ∝
√

N , as the distribution above does
not match that of the Curie-Weiss model in the domains Θ12 ∪ Θ2 ∪ Θ3. Only in the domain Θ11 the
limiting distribution of the magnetization in the two star model matches that of the Curie-Weiss model.
The techniques employed in this draft are very different from the techniques of both [14] and [9].

Note that the parameters (t, μ,σ2) in Theorem 1.4 are implicit function of (θ, β). To help better
understand how these parameters depend on (θ, β), in figures 1, 2 and 3 we plot (t, μ,σ2) versus θ/β
respectively, keeping the other one fixed at various values, to capture the effect of the different domains.

We now briefly explain the main features of these three figures 1, 2, and 3. In all the three figures,
if β = ±1 is fixed (sub-plots I and II), then we stay inside the uniqueness regime for all values of
θ. Consequently, in all the three figures we have a smooth function everywhere. Similar behavior is
observed in all the three figures if θ = .25 is fixed (sub-plot IV), as again we are always in the uniqueness
regime for all values of β. If θ is fixed at .75 while studying β versus t (figure 1 sub-plot V), then as
β approaches 0 from the two sides, the parameter t approaches two different roots of the equation
x = tanh(2θx). Consequently the function β 
→ t is discontinuous at 0. A similar argument applies
to the corresponding plot of μ as well (figure 2 sub-plot V), which shows a similar discontinuity. The
corresponding plot of β 
→ σ2 (figure 3 sub-plot V) does not show any discontinuity, as σ2 is a function
of t2, and β 
→ t2 is a continuous map (as opposed to β 
→ t which is discontinuous). However β 
→ σ2

is not differentiable, as β 
→ t2 is not differentiable. Finally, if we fix β = 0 or θ = 1
2 (sub-plots III
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Figure 1. The above figure shows a plot of t versus θ, when β is fixed at −1,+1, 0 in sub-plots I, II, III respectively, and a plot
of t versus β when θ is fixed at .25, .5, .75 in sub-plots IV, V, VI respectively. Plots I, II and IV are in the uniqueness regime
throughout. Plot V corresponds to the non-uniqueness regime as β→ 0. Plots III and IV demonstrate the effect of the critical
point (θ, β) = (.5, 0).

and VI in each figure), we pass through the critical point
(

1
2 ,0

)
. In figure 1 sub-plots III and VI, the

function t is continuous but not differentiable at the critical point. In figure 2 sub-plots III and VI,
there is a discontinuity at the critical point, as μ asymptotes to +∞ in one/both directions in sub-plots
III/VI respectively. Finally, in figure 3 sub-plots III and VI, we see that the function σ2 is continuous
everywhere, but blows up as the parameters approach the critical point. This illustrates the fact that the
asymptotic variance at criticality is of a larger magnitude.

Our second result studies the fluctuations of the empirical variance of the degrees.

Theorem 1.6. Suppose G is a random graph from the two star model in (1). For all θ > 0, β ∈ R we
have

√
n

[
4
n2

n∑
i=1

(di(G) − d̄(G))2 − τ
]

D−→ N(0,2τ2) (7)

where d̄(G) :=
∑n

i=1 di (G)
n and τ := 1−t2

1−θ(1−t2) .

Remark 1.7. Note that unlike the total number of edges E(G), the asymptotic distribution of∑n
i=1(di(G) − d̄(G))2 is always Gaussian, and does not change with different regimes Θ1,Θ2,Θ3. The

only effect of the phase transition is through the parameter τ, which is continuous but not differentiable
at θ = 1/2, when β = 0 is kept fixed. Consequently, if β = 0, the statistic 4

n2

∑n
i=1(di(G) − d̄(G))2 con-

verge in probability to τ, which is not a smooth function of θ. This phenomenon was first observed in
[23, Fig 2].
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Figure 2. The above figure shows a plot of μ versus θ, when β is fixed at −1,+1, 0 in sub-plots I, II, III respectively, and a plot
of μ versus β when θ is fixed at .25, .5, .75 in sub-plots IV, V, VI respectively. Plots I, II and IV are in the uniqueness regime
throughout. Plot V corresponds to the non-uniqueness regime as β→ 0. Plots III and IV demonstrate the effect of the critical
point (θ, β) = (.5, 0).

As an application of the two theorems above, we provide consistent estimators of the parameters
(θ, β). Stating the estimators require the following definition.

Definition 1.8. Let

t̂ :=
2E(Y )

n2 , τ̂ :=
1
n2

n∑
i=1

(
ki(Y ) − k̄(Y )

) 2
.

Corollary 1.9. Suppose G is a random graph from the two star model in (1), with (θ, β) ∈ Θ := {(θ, β) :
θ > 0, β ∈ R}.

(a) Suppose(θ, β) are both unknown. Let

θ̂ :=
1

1 − t2
− 1
τ̂
, β̂ := arctanh(t̂) − 2θ̂ t̂.

Then (θ̂, β̂) is jointly
√

n-consistent estimator for (θ, β), i.e.
√

n(θ̂ − θ, β̂ − β) =OP(1).
(b) Suppose θ is known and β is unknown. Let β̃ := arctanh(t̂) − 2θ t̂. Then β̃ is an n consistent

estimator for β, i.e. n(β̃ − β) =OP(1).

Remark 1.10. The above corollary shows that there is a loss of efficiency when we are trying to
estimate both parameters, as opposed to estimating just one parameter. Joint estimation of parameters
in general Ising models has been studied in [15], where the authors give a general upper bound on the
rate of consistency of pseudo-likelihood (see [15, Theorem 1.2]). Using their result for a dN regular
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Figure 3. The above figure shows a plot of σ2 versus θ, when β is fixed at −1,+1, 0 in sub-plots I, II, III respectively, and a
plot of σ2 versus β when θ is fixed at .25, .5, .75 in sub-plots IV, V, VI respectively. Plots I, II and IV are in the uniqueness
regime throughout. Plot V corresponds to the non-uniqueness regime as β→ 0. Plots III and IV demonstrate the effect of the
critical point (θ, β) = (.5, 0).

graph on N vertices, one concludes that (an upper bound to) the rate of estimation error the pseudo-
likelihood estimator is dN√

N
. Thus one can consistently estimate (θ, β) on an Ising model on a sequence

of dN regular graph, if dN �
√

N . However, in this case we have dN ∝
√

N , and so consistency of
the bivariate pseudo-likelihood estimator does not follow from [15]. It is unclear whether the bivariate
pseudo-likelihood estimator is consistent in this case. On the other hand, the above corollary gives
explicit consistent estimator for both parameters, with rates of consistency.

Our final result shows that the partial sums of the (centered) degree distribution converges as a
process in C[0,1] to a Brownian bridge under proper scaling, in all the three parameter domains.

Theorem 1.11. Suppose G is a random graph from the two star model in (1). Let Wn(.) ∈ C[0,1] be

the linear interpolation of the points {( in ,
Si (d)
n−1 ),i ∈ [n]}, where Si(d) :=

i∑
j=1

(dj (G) − d̄(G)). Then

Wn(.)
D−→

√
τ{W(.)},

where W(.) ∈ C[0,1] is a Brownian bridge.

This demonstrates that irrespective of the phase transitions, there is significant Gaussian behavior in
the model, which is captured in terms of contrasts. Similar Gaussian fluctuations were obtained in [22]
for the Curie-Weiss model at criticality. Note that this behavior is universal across all regimes, similar
to Theorem 1.6. This is because, as will be clear from the proofs, the distribution of contrasts (linear
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functions of edges whose coefficients add up to 0) are universal across regimes, which govern the finite
dimensional distributions of Theorem 1.11.

1.3. Auxiliary variables

The main technique for proving the results of this paper is a representation of the two star model as
a mixture of β models by introducing auxiliary variables, introduced below. We note that introducing
auxiliary variables have been proved to be successful in rigorously analyzing the Curie-Weiss model
([8,19]), and have also been used in [23] to study (non-rigorously) the two star model. Before introduc-
ing the auxiliary variable, we first transform the edge variables to {−1,1} instead of {0,1}, and show
that the transformed variables is a sample from an Ising model on an appropriate graph.

Transform the edge variables from {0,1} to {−1,1} by setting Yi j := 2Gi j −1 for i � j, and set Yii := 0
as convention. Via this transformation, the Hamiltonian for the matrix Y := (Yi j)1≤i, j≤n (up to additive
constants) is given by

ω1

4(n − 1)T(Y ) +
ω1 +ω2

2
E(Y ) = θ

n − 1
T(Y ) + βE(Y ),

in which θ = 1
4ω1, and β = 1

2 (ω1 +ω2) ∈ R as in Lemma 1.2, and

T(Y ) :=
n∑
i=1

∑
j<k

Yi jYik, E(Y ) =
∑
i< j

Yi j .

Thus the model Pn defined in (1) is an Ising model in the transformed variable Y on the graph G̃n

which is the line graph of the complete graph Kn. More precisely, G̃n has E := {(i, j)|1 ≤ i < j ≤ n} as
its vertex set, and two distinct vertices e = (i, j) and f = (k, l) are connected iff {i, j}

⋂
{k, l} �∅, i.e.

i = k or i = l or j = k or j = l. Thus G̃n is a regular graph on
(
n
2

)
vertices, with degree 2(n− 2). Setting

ki(Y ) :=
n∑
j=1

Yi j = 2di(G) − (n − 1), (8)

the p.m.f. of Y can be written as

Pn(Y = y) = 1

Z̃n(θ, β)
exp

{
θ

2(n − 1)

n∑
i=1

ki(y)2 +
β

2

n∑
i=1

ki(y)
}

(9)

Let φ = (φ1, . . . , φn) be a random vector in Rn defined by

φi =
ki(Y )
n − 1

+
Wi√

(n − 1)θ
, (10)

where (W1, . . . ,Wn) i.i.d.∼ N(0,1) are independent of the Y . The following proposition computes the
distribution of (Y |φ), and the marginal density of φ. The proof of this Proposition is deferred to the
supplementary material [21] appendix A.

Proposition 1.12. Suppose Y is an observation from the p.m.f. in (1).
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(a) Given φ, the random variables {Yi j }1≤i< j≤n are mutually independent, with

Pn(Yi j = 1|φ) = eθ(φi+φ j )+β

eθ(φi+φ j )+β + e−θ(φi+φ j )−β
(11)

(b) The marginal density of φ has a density on Rn which is proportional to fn(φ), where
− log fn(φ) :=

∑
i< j p(φi, φ j ) with

p(x, y) = θ
2

(
x2 + y2

)
− log cosh

[
θ(x + y) + β

]
=
θ

4
(x − y)2 + q

( x + y

2

)
, (12)

where q(x) = θx2 − log cosh(2θx + β) as in Lemma 1.2.

Remark 1.13. MCMC using auxiliary random variables is a common technique in simulations ([1,11,
33]). Using Proposition 1.12, it follows that the conditional distribution of the graph G given the vector
φ is the β-model, which has received considerable attention in Statistics [4,6,7,26] and references there-
in). Thus the two star model (1) can be expressed as a mixture of β-models with random weights. Since
both the conditional distributions (Y |φ) and (φ|Y ) are easy to simulate, one can use a Gibbs sampler to
simulate from the two star model, by iteratively simulating from the conditional distributions till the
Markov Chain converges.

1.4. Simulation results

In this section we validate Theorem 1.4 and Theorem 1.11 using numerical simulations. For simulating
from the two star ERGM we use the Gibbs sampling algorithm of Proposition 1.12. For verifying
Theorem 1.4, we work with n = 500 vertices on the two star ERGM with parameters (θ, β) equal to
(1/4,0), (1/2,0), and (3/4,0), which belong to the uniqueness regime, the critical point, and the non-
uniqueness regime respectively. For each of these three parameter configurations, we simulate 5000
independent samples from the two star ERGM, by running the Gibbs sampling algorithm with a burn
in period of 1000 for each sample. For each sample, we observe the centered and scaled sum of degrees

1
n

n∑
i=1

ki(Y ) =
2
n

[
n∑
i=1

di(G) − n(n − 1)
2

]
=

4
n

[
E(G) − n(n − 1)

4

]
.

The QQ plot of these values for the three regimes are given in figure 4.
As is seen in figure 4, in the uniqueness regime (first picture), the limiting distribution is clearly

Gaussian, as there is a strong agreement with normal quantiles. At the critical point, the limiting distri-
bution is no longer Gaussian, as is shown by deviation from the normal quantiles. In the non uniqueness
regime, the data is strongly bimodal, and hence cannot be globally Gaussian. This is exactly the be-
havior predicted by Theorem 1.4. Theorem 1.4 suggests that if we zoom into each of the two modes,
we will again see Gaussian fluctuations. To confirm this, we do a QQ plot for the positive and negative
values separately. This is given below in figure 5.

For verifying Theorem 1.11, we obtained one sample from the two star ERGM on n = 1000 vertices
at criticality ((θ, β) = (1/2,0)), after running the chain for 1000 iterations. Having obtained the graph
G, we computed the partial sums

1
n − 1

i∑
j=1

(
k j(Y ) − k̄(Y )

)
=

2
n − 1

i∑
j=1

(
dj(G) − d̄(G)

)
,
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Figure 4. The QQ plot for the centered and scaled sum of degrees is given for 5000 independent samples from the two star
ERGM on n = 500 vertices, for the three parameter configurations (θ, β) = (1/4, 0), (1/2, 0), and (3/4, 0) respectively. In the
uniqueness regime (first picture), the limiting distribution is Gaussian. At the critical point, the limiting distribution is no longer
Gaussian. In the non uniqueness regime, the data is strongly bimodal.

and plotted the partial sums versus i for 1 ≤ i ≤ n in figure 6.
As predicted, the plot looks like a Brownian curve starting and ending at 0. Similar pictures were

obtained in all parameter regimes.
The rest of the paper is as follows: Sections 2 proves Theorem 1.4, Theorem 1.6, Corollary 1.9,

and Theorem 1.11. The lemmas necessary for proving the main results are proved in section 3 for
the uniqueness and non-uniqueness domains (i.e. (θ, β) ∈ Θ1 ∪ Θ2), and in section 4 for the critical
domain (i.e. (θ, β) ∈ Θ3). The supplementary material [21] collects the proofs of supporting lemmas
and propositions.

2. Proof of main results (Theorems 1.4, 1.6, 1.11 and Corollary 1.9)

For proving our main results we need the following lemmas, the proof of which is deferred to sections
3 and 4 for (θ, β) ∈ Θ1 ∪Θ2 and (θ, β) ∈ Θ3 respectively.

Figure 5. Starting from 5000 independent samples from the two star ERGM on n = 500 vertices with parameter (θ, β) =
(3/4, 0), the QQ plot for the positive and negative values are given separately. Both the individual plots show agreement with
Gaussian quantiles, which shows conditional Gaussian behavior near each of the two models.
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Figure 6. From one sample from the two star ERGM on n = 1000 vertices with parameter (θ, β) = (1/2, 0), the centered and
partial sums of the degrees upto vertex i is plotted against i, for 1 ≤ i ≤ 1000. The figure roughly resembles a Brownian curve
starting and ending at the origin.

Lemma 2.1.

(a) For (θ, β) ∈ Θ1, we have

n(φ̄ − t) D→ N
(
− 2θt(1 − t2)
[1 − θ(1 − t2)][1 − 2θ(1 − t2)]

,
1

θ − 2θ2(1 − t2)

)
.

(b) For (θ, β) ∈ Θ2, we have

Pn(φ̄ > 0) = Pn(φ̄ < 0) = 1
2
,

and further [
n(φ̄ − t)

���φ̄ > 0
]

D→ N
(
− 2θt(1 − t2)
[1 − θ(1 − t2)][1 − 2θ(1 − t2)]

,
1

θ − 2θ2(1 − t2)

)
,[

n(φ̄ + t)
���φ̄ < 0

]
D→ N

(
2θt(1 − t2)

[1 − θ(1 − t2)][1 − 2θ(1 − t2)]
,

1
θ − 2θ2(1 − t2)

)
.

(c) For (θ, β) ∈ Θ3, we have
√

nφ̄
D→ ζ , where ζ is a random variable on R with density proportional

to e−
ζ2
2 − ζ4

24 .

Lemma 2.2. Setting

a1 := θ − θ2(1 − t2), (13)

for all (θ, β) ∈ Θ we have the following conclusions:

(a)
√

n
[ n∑
i=1

(φi − φ̄)2 − a−1
1

]
D−→ N(0,2a−2

1 ).
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(b) For any triangular array of real numbers (cn(i),cn(2), . . . ,cn(n)) such that
n∑
i=1

cn(i) = 0 and

n−1
n∑
i=1

cn(i)2 → 1, we have
n∑
i=1

cn(i)φi
D−→ N(0,a−1

1 ).

(c) Setting Si(φ) :=
∑i

j=1(φ j − φ̄), for every ε > 0 we have

lim sup
δ→0

lim sup
n→∞

Pn( max
i, j∈[n]: |i−j | ≤nδ

|Si(φ) − Sj(φ)| > ε) = 0.

2.1. Asymptotic notation

Throughout the rest of the paper we will use the following notations. Let {rn}n≥1 and {sn}n≥1 be two
sequences of positive real numbers. Then we will say

• rn = o(sn) if limn→∞
rn
sn
= 0,

• rn =O(sn) or rn � sn if lim supn→∞
rn
sn
<∞,

• rn =Ω(sn) if lim infn→∞
rn
sn
> 0.

If {Rn}n≥1 and {Sn}n≥1 are sequences of random variables, we will say

• Rn = oP(Sn) if Rn
Sn

P→ 0.

• Rn =OP(Sn), if Rn
Sn

is tight.

2.2. Proof of Theorem 1.4

(a) (θ, β) ∈ Θ1.
To begin, using (10) we have

n(φ̄ − t) = n
n − 1

[
k̄(Y ) − (n − 1)t

]
+

nW̄√
(n − 1)θ

.

Using this along with part (a) of Lemma 2.1 and the observation nW̄√
(n−1)θ

D→ N(0, 1
θ ) gives

k̄(Y ) − (n − 1)t D−→ N
(
− 2θt(1 − t2)
[1 − θ(1 − t2)][1 − 2θ(1 − t2)]

,
2(1 − t2)

1 − 2θ(1 − t2)

)
Finally use (8) to note that k̄(Y ) = 2d̄(G) − (n − 1), and so

d̄(G) − (n − 1)p D−→ N
(
− θt(1 − t2)
[1 − θ(1 − t2)][1 − 2θ(1 − t2)]

,
1 − t2

2[1 − 2θ(1 − t2)]

)
,

which verifies Theorem 1.4 for (θ, β) ∈ Θ1.
(b) The conclusion Pn(φ̄ > 0) = Pn(φ̄ < 0) = 1

2 follows from symmetry. On the set φ̄ > 0 (φ̄ < 0) we

have φ̄
P→ t (φ̄

P→−t) respectively, by invoking Lemma 2.1 part (b). On the set φ̄ > 0, using (10)
it follows that

1
n

k̄(Y ) P→ t ⇒ 2E(G)
n2

P→ 1 + t
2
= p >

1
2
.
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A similar argument gives that on the set φ̄ < 0 we have

2E(G)
n2

P→ 1 − t
2
= 1 − p <

1
2
.

Thus Pn({φ̄ > 0}Δ{E(G) > n2

4 }) → 0 (here Δ represents symmetric difference between the two

sets), and so without loss of generality we can replace the conditioning set E(G) > n2

4 by φ̄ > 0.
From then, using part (b) of Lemma 2.1 and mimicking the proof of part (a) above gives the
desired conclusion. A similar proof works when we condition on the set E(G) < n2

4 .
(c) Again using (10) we have

√
nφ̄ =

√
nk̄(Y )
n − 1

+

√
nW̄√

(n − 1)θ
.

Since W̄
P→ 0, it follows from part (c) of Lemma 2.1 that k̄(Y)√

n

D→ ζ . The desired result then follows
from on noting that

k̄(Y )
√

n
=
√

n
[ 2d̄(G) − (n − 1)

n

]
= 2

√
n
[ d̄(G)

n
− 1

2

]
+O

( 1
√

n

)
.

2.3. Proof of Theorem 1.6

Using (10) we can write

n∑
i=1

(φi − φ̄)2 − a−1
1 = An + Bn +Cn, (14)

where

An :=
[ 1
(n − 1)θ

n∑
i=1

(
Wi − W̄

) 2 − 1
θ

]
, Bn :=

2√
(n − 1)3θ

n∑
i=1

(
ki(Y ) − k̄(Y )

) (
Wi − W̄

)
,

Cn :=
[ 1
(n − 1)2

n∑
i=1

(
ki(Y ) − k̄(Y )

) 2 − τ
]
.

Here we have used the fact that

a−1
1 = τ + θ

−1, (15)

where a1 is as in (13). We now claim that given the graph G, the random variables
√

nAn and
√

nBn are
asymptotically independent, i.e. for any s ∈ R we have���E(eis√n(An+Bn) |G) − E(eis

√
nAn |G)E(eis

√
nBn |G)

��� P→ 0. (16)

Given (16), we have

Eeis
√
n(An+Bn+Cn) = E[E(eis

√
nAn |G)E(eis

√
nBn |G)eis

√
nCn ] + oP(1). (17)
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Also, note that

An
P→ 0, Var(Bn |G) = 4

(n − 1)3θ

n∑
i=1

(
ki(Y ) − k̄(Y )

) 2 P→ 0,

where the second convergence uses the observation
∑n

i=1(ki− k̄)2 =OP(n2). This, along with (14) gives

1
n2

n∑
i=1

(
ki(Y ) − k̄(Y )

) 2 P→ τ.

Consequently, given G the random variable
√

nBn has a Normal distribution with mean 0, and variance
Dn, where

Dn :=
4n

(n − 1)3θ

n∑
i=1

(
ki(Y ) − k̄(Y )

) 2 P→ 4τ
θ
=: σ2

2 . (18)

Finally, it is straightforward to check that

√
nAn

D→ N(0,σ2
1 ), where σ2

1 := 2θ−2 (19)

Combining (17) along with (18) and (19) gives

Eeis
√
n(An+Bn+Cn) = e−

s2
2 (σ2

1+σ
2
2 )E[eis

√
nCn ] + oP(1).

Since
√

n(An + Bn +Cn)
D→ N

(
0,2a−2

1
)

by Lemma 2.2 part (a), it follows hat
√

nCn
D→ N(0,σ2

3 ), where

2a−2
1 = σ

2
1 + σ

2
2 + σ

2
3 = 2θ−2 + 4τθ−1 + σ2

3 .

Using (15) it follows that σ2
3 = 2τ2, as desired.

To complete the proof, it suffices to verify (16). To this effect, given the graph G construct an orthog-
onal matrix On whose first row is proportional to the constant vector 1, and second row is proportional
to the vector (k1 − k̄, . . . , kn − k̄). Then with U :=OnW ∼ N(0,In) we have

n∑
i=2

U2
i =

n∑
i=1

(
Wi − W̄

) 2
, U2 =

1√
n∑
i=1

(
ki − k̄

) 2

n∑
i=1

(
ki − k̄

)
Wi,

and so

√
n(An,Bn) =

{√
n
[ 1
(n − 1)θ

n∑
i=2

U2
i −

1
θ

]
,U2

√
Dn

}
=

{√
n
[ 1
(n − 1)θ

n∑
i=3

U2
i −

1
θ

]
,U2

√
Dn

}
+ oP(1),

and so (16) follows.
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2.4. Proof of Corollary 1.9

(a) Using Theorem 1.4 and Theorem 1.6, it follows that for all (θ, β) ∈ Θ we have n(t̂2 − t2) =OP(1),
and

√
n(τ̂ − τ) =OP(1). This gives

|θ̂ − θ | ≤
��� 1
1 − t̂2 − 1

1 − t2

��� + ���1
τ
− 1
τ̂

���
=|t̂2 − t2 | 1

(1 − t2)(1 − t̂2)
+
τ − τ̂
ττ̂
=OP(|t̂2 − t2 |) +OP(|τ̂ − τ |) =OP(n−1/2).

Similarly,

| β̂ − β| ≤|arctanh(t̂) − arctanh(t)| + 2θ̂ |t̂ − t | + 2|t |(|θ̂ − θ |)

=OP(|t̂ − t |) +OP(|θ̂ − θ |) =OP(n−1/2),

as desired.
(b) With β̃ as defined, we have

| β̃ − β| ≤ |arctanh(t̂) − arctanh(t)| + 2θ |t̂ − t | =OP(|t̂ − t |) =OP(n−1),

as desired.

2.5. Proof of Theorem 1.11

Proof. We first check the convergence of finite dimensional distributions. For the sake of simplicity
we check it for 2 dimensional distributions. Fixing 0 < s1 < s2 < 1, it suffices to show that for any
(r1,r2) ∈ R2,

r1Wn(s1) + r2Wn(s2)
D→ N(0, τψ), where ψ := r2

1 s1(1 − s1) + r2
2 s2(1 − s2) + 2r1r2s1(1 − s2).

With

bn(i) :=
(r1 + r2)√

n
1{1≤i<ns1 } +

r2√
n

1{ns1<i≤ns2 } and cn(i) := bn(i) − b̄n,

in which b̄n := 1
n

n∑
i=1

bn(i). We have

r1Wn(s1) + r2Wn(s2) =
(r1 + r2)

n
√

n

∑
1≤i≤ns1

(
ki(Y ) − k̄(Y )

)
+

r2
n
√

n

∑
ns1<i≤ns2

(
ki(Y ) − k̄(Y )

)
+O

(
1
√

n

)
=

1
n

n∑
i=1

bn(i)
(
ki(Y ) − k̄(Y )

)
+O

(
1
√

n

)
=

1
n

n∑
i=1

cn(i)ki +O
(

1
√

n

)
.

(20)

Since
n∑
i=1

cn(i) = 0 and

n∑
i=1

cn(i)2 =
n∑
i=1

bn(i)2 − nb̄2
n → (r1 + r2)2s1 + r2

2 (s2 − s1) − (r1s1 + r2s2)2 = ψ,
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by part (c) of Lemma 2.2 we have
√

n
n∑
i=1

cn(i)φi
D→ N

(
0, ψa1

)
. This, along with (10), gives

1
n

n∑
i=1

cn(i)ki
D→ N(0, τψ). This, along with (20) verifies convergence of finite dimensional distributions.

It thus suffices to show tightness, for which using Arzela-Ascoli Theorem it suffices to verify that
for every ε > 0 we have

lim sup
δ→0

lim sup
n→∞

Pn

(
max

i, j∈[n]: |i−j | ≤nδ
|Si(d) − Sj(d)| > (n − 1)ε

)
= 0. (21)

To verify (21), first use (10) to note that

1
n − 1

max
i, j∈[n]: |i−j | ≤nδ

|Si(d) − Sj(d)|

≤1
2

[
max

i, j∈[n]: |i−j | ≤nδ
|Si(φ) − Sj(φ)| +

1√
(n − 1)θ

max
i, j∈[n]: |i−j | ≤nδ

|Si(W) − Sj(W)|
]
,

where W = (W1, . . . ,Wn) is a sequence of i.i.d. N(0,1) random variables, and S(W) =
∑i

j=1 Wj . This in
turn gives the following bound to the RHS of (21):

Pn

(
max

i, j∈[n]: |i−j | ≤nδ
|Si(d) − Sj(d)| > ε(n − 1)

)
≤Pn

(
max

i, j∈[n]: |i−j | ≤nδ
|Si(φ) − Sj(φ)| >

ε

4

)
+Pn

(
1√

(n − 1)θ
max

i, j∈[n]: |i−j | ≤nδ
|Si(W) − Sj(W)| >

ε
√
(n − 1)θ

4

)
.

The first term in the RHS above converges to 0 as n →∞ followed by δ→ 0 using part (c) of Lemma
2.2, and the second term converges to 0 under the same double limit by tightness of sample paths for
partial sums of i.i.d. random variables. Thus we have verified (21), and hence the proof of the theorem
is complete.

3. Proof of Lemma 2.1 and Lemma 2.2 for (θ, β) ∈Θ1 ∪Θ2

We first state a general approximation result, which will be used to analyze the marginal distribution of
(φ1, . . . , φn) by approximating the un-normalized density fn(.) of Proposition (1.12) by something more
tractable. The approximating measure will change across the three parameter regimes Θ1 ∪Θ2 ∪Θ3.

Lemma 3.1. For an interval U ⊆ R, let hn(.),gn(.) : Un 
→ R be non negative and integrable. Define
the probability measures Gn and Hn on Un by setting

dGn

dλ⊗n
:=

gn∫
Un gndλ⊗n

,
dHn

dλ⊗n
:=

hn∫
Un hndλ⊗n

,

where λ⊗n is Lebesgue measure on Rn. Setting Ln(.) = log gn
hn

, suppose that Ln is OP(1) under both
measures Gn,Hn.
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(a) Then the sequence of probability measures Gn and Hn are mutually contiguous.

(b) If (Xn,Ln)
d,Gn−→ N(μ1, μ2,σ

2
1 ,σ

2
2 ,σ12) then Xn

d,Hn−→ N(μ1 + σ12,σ
2
1 ).

(c) If Ln
d,Gn→ c where c is a constant, then ‖Gn −Hn‖TV → 0.

Our plan is use Lemma 3.1 to approximate the distribution of φ by a multivariate Gaussian distribu-
tion. The following lemma summarizes some estimates under the approximating Gaussian distribution.

Lemma 3.2. Let G1n be a multivariate Gaussian distribution on Rn, with density proportional to g1n,
where

− logg1n(φ) =
n(n − 1)

2
p(t, t) + a1n

2

n∑
i=1

(φi − t)2 − a2n2

2
(φ̄ − t)2,

with a1 = θ − θ2(1− t2) as in (13), and a2 := θ2(1− t2). Then the following conclusions hold under G1n.
(a) EG1n |φi − t |	 �	 n−	/2.

(b)
∑

1≤i< j≤n

(
φi + φ j − 2t

) 4 P→ 6
a2

1
,

(c) Suppose c = (cn(1), . . . ,cn(n)) be a vector such that
∑n

i=1 cn(i) = 0, and 1
n

∑n
i=1 cn(i)2 → 1. Then we

have [
n(φ̄ − t),

√
n
( n∑
i=1

(φi − φ̄)2 − a−1
1

)
,n

n∑
i=1

(φi − t)3,
n∑
i=1

cn(i)φi

]
D→ N(0,Σ)

where

Σ :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a1−a2

0 3
a1(a1−a2) 0

0 2
a2

1
0 0

3
a1(a1−a2) 0 15a1−6a2

a3
1(a1−a2)

0

0 0 0 1
a1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(d) For every ε > 0, setting Si(φ) =
∑i

j=1(φ j − φ̄) as before, we have

lim sup
δ→0

lim sup
n→∞

PG1,n ( max
i, j∈[n]: |i−j | ≤nδ

|Si(φ) − Sj(φ)| > ε) = 0.

The final result we need for proving Lemma 2.1 in the regime (θ, β) ∈ Θ1 ∪Θ2 is the following:

Lemma 3.3. Let U = R if (θ, β) ∈ Θ1, and U = (0,∞) if (θ, β) ∈ Θ2.

(a) Then exists positive constants λ1 ≥ λ2 such that for all (x, y) ∈ U2 we have

λ2

2
[(x − t)2 + (y − t)2] ≤ p(x, y) − p(t, t) ≤ λ1

2
[(x − t)2 + (y − t)2],

(b) There exists M large enough such that

logPn,U (
n∑
i=1

(φi − t)2 > M)� −n.

where Pn,U denotes the conditional law of φ under Pn given φ ∈ Un.



42 S. Mukherjee and Y. Xu

(c) For any l ∈ N we have En,U |φi − t |l �l n−	/2,

(d) En,U
[ n∑
i=1

(φi − t)
] 2 � 1.

The proof of the three Lemmas 3.1, 3.2 and 3.3 are deferred to the supplementary material [21]
appendix B.

3.1. Proof of Lemma 2.1 and Lemma 2.2 for (θ, β) ∈Θ1

Let Fn denote the marginal distribution of φ on Rn under Pn, i.e. Fn is induced by the unnormalized
density fn(.) defined in Proposition 1.12. We begin by showing the following proposition:

Proposition 3.4. If (θ, β) ∈ Θ1, the probability measures Fn and G1n are mutually contiguous, where
G1n is the multivariate Gaussian distribution introduced in Lemma 3.2.

Proof. To this effect, with q(.) as in Lemma 1.2, use a Taylor’s series expansion to get

q
( x + y

2

)
= q(t) + q′′(t)

2

( x + y

2
− t

) 2
+

q′′′(t)
3!

( x + y

2
− t

) 3
+

q′′′′(t)
4!

( x + y

2
− t

) 4
+ R(x, y),

where |R(x, y)| � |x − t |5 + |y − t |5. Recalling that p(x, y) = q
(
x+y

2

)
+ θ

4 (x − y)2 then gives

p(x, y) = θ
4
(x − y)2 + q(t) + q′′(t)

2

( x + y

2
− t

) 2
+

q′′′(t)
3!

( x + y

2
− t

) 3

+
q′′′′(t)

4!

( x + y

2
− t

) 4
+ R(x, y)

=p(t, t) + 1
2

[
a1(x − t)2 + a1(y − t)2 − 2a2(x − t)(y − t)

]
+

a3

3!
(x + y − 2t)3

+
a4

4!
(x + y − 2t)4 + R(x, y),

where a1 = θ−θ2(1− t2),a2 = θ
2(1− t2) as in Lemma 3.2, and a3 := q′′′(t)

8 ,a4 := q′′′′(t)
16 . Adding p(φi, φ j )

over i < j, this gives

− log fn(φ) =
4∑
	=1

R	, fn +
∑
i< j

R(φi, φ j ),
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where

R1, fn :=
∑
i< j

a1

2
[(φi − t)2 + (φ j − t)2] = a1(n − 1)

2

n∑
i=1

(φi − t)2

R2, fn := − a2

∑
i< j

(φi − t)(φ j − t) = −a2n2

2
(φ̄ − t)2 + a2

2

n∑
i=1

(φi − t)2

R3, fn :=
a3

6

∑
i< j

(φi + φ j − 2t)3 = a3

12

⎡⎢⎢⎢⎢⎣
n∑

i, j=1

(φi + φ j − 2t)3 − 8
n∑
i=1

(φi − t)3
⎤⎥⎥⎥⎥⎦

=
(n − 4)a3

6

n∑
i=1

(φi − t)3 + 3na3

6
(φ̄ − t)

n∑
i=1

(φi − t)2,

R4, fn :=
a4

4!

∑
1≤i< j≤n

(φi + φ j − 2t)4.

(22)

Consequently we have �����− log fn(φ) −
a1n
2

n∑
i=1

(φi − t)2 − a3n
6

n∑
i=1

(φi − t)3
�����

�n2(φ̄ − t)2 + n(φ̄ − t)
n∑
i=1

(φi − t)2 +
5∑
	=2

n∑
i=1

|φi − t |	
(23)

Fixing b4 > a2
3/3a1, define the function h1n(φ) by

− log h1n(φ) :=
n(n − 1)

2
p(t, t) + a1n

2

n∑
i=1

(φi − t)2 + a3n
3!

n∑
i=1

(φi − t)3 + b4n
4!

n∑
i=1

(φi − t)4

=
n(n − 1)

2
p(t, t) + n

n∑
i=1

η(φi − t), η(x) :=
a1

2!
x2 +

a3

3!
x3 +

b4

4!
x4,

(24)

and note that (φ1 − t, . . . , φn − t) are i.i.d. under H1n with density proportional to e−n
∑
η(.), where H1n

denotes the probability measure induced by h1n. It follows from straightforward calculus that��� ∫
R

x	e−nη(x)dx
����	

1

n
�+1

2

if � is even,

�	
1

n
�+3

2

if � is odd,

and so

EH1n (φi − t)	 � 1

n
�
2

if � is even,

�	
1

n
�
2 +1

if � is odd.
(25)
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Also, comparing (23) and (24) we have

| log fn(φ) − log h1n(φ)|

� n2(φ̄ − t)2 +
���n(φ̄ − t)

n∑
i=1

(φi − t)2
��� + 5∑

	=2

n∑
i=1

|φi − t |	 + n
n∑
i=1

(φi − t)4.
(26)

Using parts (c) and (d) of Lemma 3.3 it follows that log fn(φ) − log h1n(φ) is OP(1) under Fn. To show
the same conclusion under H1n, it suffices to note that

EH1n

[ n∑
i=1

(φi − t)
] 2

� 1, EH1n |φi − t |	 � n−	/2, (27)

both of which follow from (25). It thus follows from Lemma 3.1 that Fn and H1n are mutually contigu-
ous. To complete the proof, it suffices to show that G1n and H1n are mutually contiguous. Proceeding
to verify this, note that����log

g1n(φ)
h1n(φ)

�����n(φ̄ − t)2 +
���n(φ̄ − t)

n∑
i=1

(φi − t)2
���

+n
��� n∑
i=1

(φi − t)3
��� + 5∑

	=2

n∑
i=1

|φi − t |	 + n
n∑
i=1

(φi − t)4.

(28)

We need to show that the RHS of (28) is OP(1) under both H1n and G1n. Again the desired conclusion
for H1n follows (27), and using (25) to note that

nEH1n

[ n∑
i=1

(φi − t)3
] 2

� 1. (29)

To complete the proof, it suffices to verify (27) and (29) under G1n. But this follows from parts (a) and
(c) of Lemma 3.2. This shows that Fn and G1n are mutually continuous, and so we have verified the
proposition.

Proof of Lemma 2.1 for (θ, β) ∈ Θ1. Use (22) to note that

− log
fn
g1n
=

a2 − a1

2

n∑
i=1

(φi − t)2 + R3, fn + R4, fn +
∑

1≤i< j≤n
R(φi, φ j ).

Invoking parts (a) and (b) of Lemma 3.2, under G1n we have

'()
n∑
i=1

(φi − t)2,R4, fn ,
∑

1≤i< j≤n
R(φi, φ j )

*+, P−→
( 1

a1
,

a4

4a2
1

,0
)
. (30)

Also, using (22), a direct expansion gives

R3, fn =
(n − 4)a3

6

n∑
i=1

(φi − t)3 + 3a3

6
n(φ̄ − t)

n∑
i=1

(φi − t)2
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=
na3

6

n∑
i=1

(φi − t)3 + a3

2a1
n(φ̄ − t) + op(1), (31)

where the last equality again uses (30). Combining (30) and (31) along with (22) gives that under G1n,

− log
fn
g1n
=

a2 − a1

2a1
+

a4

4a2
1

+
na3

6

n∑
i=1

(φi − t)3 + a3

2a1
n(φ̄ − t) + op(1). (32)

Using part (c) of Lemma 3.2, it follows that log fn
g1n

is Op(1) under G1n. Since Fn and G1n are mutually

contiguous by Proposition 3.4, it follows that log fn
g1n

is Op(1) under Fn as well. Thus to find out the
limiting distribution of n(φ̄ − t) under Fn, invoking Lemma 3.1 part (b) and (32) it suffices to find out
the joint limiting distribution of

[
n(φ̄ − t),n

∑
i=1(φi − t)3

]
under G1n.

To this effect, using part (c) of Lemma 3.2, under G1n we have[
n(φ̄ − t),n

∑
i=1

(φi − t)3
]

D→ N

(
0,

[ 1
a1−a2

3
a1(a1−a2)

3
a1(a1−a2)

15a1−6a2
a3

1(a1−a2)

] )
.

By the mutual contiguity of Fn and G1n (Proposition 3.4) and part (b) of Lemma 3.1, it follows that

under Fn we have n(φ̄ − t) D→ N(−μ, 1
a1−a2

), where

μ =
a3

2a1
× 1

a1 − a2
+

a3

6
× 3

a1(a1 − a2)
=

a3

a1(a1 − a2)
=

2θt(1 − t2)
[1 − θ(1 − t2)][1 − 2θ(1 − t2)]

as desired.

Proof of Lemma 2.2 for (θ, β) ∈ Θ1.

(a) Using part (c) of Lemma 3.2 along with (32) it follows that the random variables
√

n[
∑n

i=1(φi −
t)2 − 1

a1
] and log fn

logg1n
are asymptotically mutually independent and Gaussian under G1n. The de-

sired result then follows from part (c) of Lemma 3.2 along with part (b) of Lemma 3.1.
(b) The proof of part (b) follows on similar lines as the proof of part (a), and is not repeated here.
(c) By Proposition 3.4 the two distributions Fn and G1n are mutually contiguous, and so it suffices

to verify the result under G1n. But this is precisely part (d) of Lemma 3.2, and so the proof is
complete.

3.2. Proof of Lemma 2.1 and Lemma 2.2 for (θ, β) ∈Θ2

We begin by stating the following proposition, the proof of which is deferred to the supplementary
material [21] appendix C.

Proposition 3.5. For (θ, β) ∈ Θ2, we have����12 − Pn(φi ≥ 0,1 ≤ i ≤ n)
���� ≤ e−Ω(n).
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Proof of Lemma 2.1 and Lemma 2.2 for (θ, β) ∈ Θ2. By symmetry, we have Pn(φ̄ > 0) = 1
2 , which

along with Proposition 3.5 gives that conditioned on φ̄ > 0 we have

Pn(φi ≤ 0 for some i,1 ≤ i ≤ n|φ̄ > 0) ≤ e−Ω(n).

Thus at an exponentially vanishing cost we can replace the event φ̄ > 0 by the event {φi > 0,1 ≤ i ≤
n}. Consequently, invoking Lemma 3.3 with U = (0,∞) and proceeding exactly as in the uniqueness
domain we get the following conclusions:

[n(φ̄ − t)|φ̄ > 0] D→ N
(
− 2θt(1 − t2)
[1 − θ(1 − t2)][1 − 2θ(1 − t2)]

,
1

θ − 2θ2(1 − t2)

)
,(

√
n
[ n∑
i=1

(φi − φ̄)2 − a−1
1

] ���φ̄ > 0

)
D→ N(0,2a−2

1 ),(
√

n
n∑
i=1

cn(i)(φi − φ̄)|φ̄ > 0

)
D→ N(0,a−1

1 ),

lim sup
δ→0

lim sup
n→∞

Pn( max
i, j∈[n]: |i−j | ≤nδ

|Si(φ) − Sj(φ)| > ε |φ̄ > 0) = 0.

Here the last line above holds for any ε > 0. Since φ and −φ have the same distribution, we get using
symmetry that

[n(φ̄ + t)|φ̄ < 0] D→ N
(

2θt(1 − t2)
[1 − θ(1 − t2)][1 − 2θ(1 − t2)]

,
1

θ − 2θ2(1 − t2)

)
,(

√
n
[ n∑
i=1

(φi − φ̄)2 − a−1
1

] ���φ̄ < 0

)
D→ N(0,2a−2

1 ),(
√

n
n∑
i=1

cn(i)(φi − φ̄)|φ̄ < 0

)
D→ N(0,a−1

1 ),

lim sup
δ→0

lim sup
n→∞

Pn( max
i, j∈[n]: |i−j | ≤nδ

|Si(φ) − Sj(φ)| > ε |φ̄ < 0) = 0.

This readily proves Lemma 2.1. Lemma 2.2 follows on noting that the conditional distribution in the
second, third and fourth lines in the above display is the same for φ̄ > 0 and φ̄ < 0.

4. Proof of Lemmas 2.1 and 2.2 for (θ, β) ∈Θ3

We first state two lemmas which we will use to prove Lemma 2.1 and Lemma 2.2 for (θ, β) ∈ Θ3. The
first lemma is the analogue of Lemma 3.3 parts (c) and (d), and the second lemma is the analogue of
Lemma 3.2. The proof of the two lemmas are deferred to the supplementary material [21] appendix D.

Lemma 4.1. Suppose (θ, β) ∈ Θ3.

(a) For any positive integer � we have

E|φi − φ̄|l �	
1

nl/2
.
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(b) lim supn→∞ n2
Eφ̄4 <∞.

Lemma 4.2. Suppose

− logg3n(φ) :=
(n − 1)θ

4

n∑
i=1

(φi − φ̄)2 −
1
2

nφ̄2 − 1
24

n2φ̄4,

and letG3n denote the corresponding probability measure on Rn. Then the following conclusions under
G3n:

(a)

nEG3n φ̄
2 � 1, nEG3n (φi − φ̄)

2 � 1. (33)

(b)

n∑
i=1

(φi − φ̄)2
P→ 4, (34)

n−1/2
∑

1≤i< j≤n
(φi + φ j − 2φ̄)3 P→ 0, (35)

∑
1≤i< j≤n

(φi + φ j − 2φ̄)4 P→ 96. (36)

(c)
√

nφ̄
D→ ζ , where ζ is a continuous random variable on R with density proportional to e−

ζ2
2 − ζ4

24

with respect to Lebesgue measure.
(d)

√
n
[ n∑
i=1

(φi − φ̄)2 −
1
a1

]
D→ N

(
0,

2
a2

1

)
.

(e) For any triangular array (cn(1), . . . ,cn(n)) with
∑n

i=1 cn(i) = 0, 1
n

∑n
i=1 cn(i)2 → 1 we have

n∑
i=1

cn(i)φi
D→ N

(
0,

1
a1

)
.

(f) For every ε > 0 we have

lim sup
δ→0

lim sup
n→∞

Pn( max
i, j∈[n]: |i−j | ≤nδ

|Si(φ) − Sj(φ)| > ε) = 0.

Proceeding to verify Lemma 2.1 and Lemma 2.2, we begin by showing the following proposition,
which is the analogue of Proposition 3.4 for (θ, β) ∈ Θ3.

Proposition 4.3. WithG3n as defined in Lemma 4.2 above, if (θ, β) ∈ Θ3 then we have ‖Fn−G3n‖TV →
0.
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Proof. Expanding q(x) = x2

2 − log cosh(x) by a Taylor’s series around 0 we get

q(x) = 2x4

4!
+ R(x), where |R(x)| � |x |6.

Since θ = 1
2 , using (12) and summing over 1 ≤ i < j ≤ n we get

− log fn(φ) =
n
8

n∑
i=1

(φi − φ̄)2 +
∑
i< j

(φi + φ j )4

234!
+

∑
i< j

R(φi + φ j ). (37)

With N = n(n−1)
2 as before, expanding the second term in (37) we get∑

i< j

(φi + φ j )4 =16N φ̄4 + 24
∑
i< j

(φi + φ j − 2φ̄)2φ̄2

+8
∑
i< j

(φi + φ j − 2φ̄)3φ̄ +
∑
i< j

(φi + φ j − 2φ̄)4,

which along with (37) and the identity
∑

i< j(φi + φ j − 2φ̄)2 = (n − 2)
∑n

i=1(φi − φ̄)
2 gives

− log
fn
g3n
= − n

24
φ̄4 +

1
8
φ̄2

[
(n − 2)

n∑
i=1

(φi − φ̄)2 − 4n
]

+
1

234!

∑
1≤i< j≤n

[
8φ̄(φi + φ j − 2φ̄)3 + (φi + φ j − 2φ̄)4 + R(φi + φ j )

]
(38)

To bound each term on the RHS of (38) separately, use Lemma 4.1 to get that under Fn,

nφ̄4 P→ 0,
∑
i< j

R(φi + φ j )� n
n∑
i=1

(φi − φ̄)6 + n2φ̄6 P→ 0, (39)

���(n − 2)φ̄2
n∑
i=1

(φi − φ̄)2 − 4nφ̄2
���� nφ̄2

[
1 +

n∑
i=1

(φi − φ̄)2
]
=OP(1),

��� ∑
1≤i< j≤n

(φi + φ j − 2φ̄)3(2φ̄)
���� ���√nφ̄

���√n
n∑
i=1

|φi − φ̄|3 =OP(1)

∑
1≤i< j≤n

(φi + φ j − 2φ̄)4 � n
n∑
i=1

(φi − φ̄)4 =OP(1).

It thus follows that log fn
g3n

is OP(1) under Fn. To show the same conclusion under G3n, it suffices to
show that the estimates of Lemma 4.1 hold under G3n as well, which follows from part (a) of Lemma
4.2. Thus, using Lemma 3.1 we have that Fn and G3n are mutually contiguous.

Finally to show that Fn andG3n are close in total variation, invoking part (c) of Lemma 3.1 it suffices
to show that log( fn/g3n) converges in probability to a constant under G3n. Invoking (38) and (39), it
suffices to show the following conclusions under G3n:

n∑
i=1

(φi − φ̄)2
P→ 4, (40)
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n−1/2
∑

1≤i< j≤n
(φi + φ j − 2φ̄)3 P→ 0, (41)

∑
1≤i< j≤n

(φi + φ j − 2φ̄)4 P→ 96. (42)

But this follows from part (b) of Lemma 4.2. Thus we have verified Proposition 4.3.

Proof of Lemma 2.1 and Lemma 2.2 for (θ, β) ∈ Θ3. By Proposition 4.3 the two probability mea-
sures Fn and G3n are close in total variation, and so it suffices to work with G3n. But under G3n
the desired conclusions are immediate from parts (c), (d), (e) and (f) of Lemma 4.2.
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References

[1] Andersen, H.C. and Diaconis, P. (2007). Hit and run as a unifying device. J. Soc. Fr. Stat. & Rev. Stat. Appl.
148 5–28. MR2502361

[2] Anderson, C.J., Wasserman, S. and Crouch, B. (1999). A p* primer: Logit models for social networks. Soc.
Netw. 21 37–66.

[3] Bhamidi, S., Bresler, G. and Sly, A. (2008). Mixing time of exponential random graphs. In 2008 49th Annual
IEEE Symposium on Foundations of Computer Science 803–812. IEEE.

[4] Blitzstein, J. and Diaconis, P. (2010). A sequential importance sampling algorithm for generating random
graphs with prescribed degrees. Internet Math. 6 489–522. MR2809836 https://doi.org/10.1080/15427951.
2010.557277

[5] Chatterjee, S. and Diaconis, P. (2013). Estimating and understanding exponential random graph models. Ann.
Statist. 41 2428–2461. MR3127871 https://doi.org/10.1214/13-AOS1155

[6] Chatterjee, S., Diaconis, P. and Sly, A. (2011). Random graphs with a given degree sequence. Ann. Appl.
Probab. 21 1400–1435. MR2857452 https://doi.org/10.1214/10-AAP728

[7] Chatterjee, S. and Mukherjee, S. (2019). Estimation in tournaments and graphs under monotonicity con-
straints. IEEE Trans. Inf. Theory 65 3525–3539. MR3959003 https://doi.org/10.1109/TIT.2019.2893911

https://doi.org/10.3150/21-BEJ1448SUPP
https://www.ams.org/mathscinet-getitem?mr=2502361
https://www.ams.org/mathscinet-getitem?mr=2809836
https://doi.org/10.1080/15427951.2010.557277
https://doi.org/10.1080/15427951.2010.557277
https://www.ams.org/mathscinet-getitem?mr=3127871
https://doi.org/10.1214/13-AOS1155
https://www.ams.org/mathscinet-getitem?mr=2857452
https://doi.org/10.1214/10-AAP728
https://www.ams.org/mathscinet-getitem?mr=3959003
https://doi.org/10.1109/TIT.2019.2893911


50 S. Mukherjee and Y. Xu

[8] Comets, F. and Gidas, B. (1991). Asymptotics of maximum likelihood estimators for the Curie-Weiss model.
Ann. Statist. 19 557–578. MR1105836 https://doi.org/10.1214/aos/1176348111

[9] Deb, N. and Mukherjee, S. (2020). Fluctuations in Mean-Field Ising models. ArXiv Preprint. Available at
arXiv:2005.00710.

[10] DeMuse, R., Larcomb, D. and Yin, M. (2018). Phase transitions in edge-weighted exponential random
graphs: Near-degeneracy and universality. J. Stat. Phys. 171 127–144. MR3773854 https://doi.org/10.1007/
s10955-018-1991-3

[11] Edwards, R.G. and Sokal, A.D. (1988). Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representa-
tion and Monte Carlo algorithm. Phys. Rev. D 38 2009–2012. MR0965465 https://doi.org/10.1103/PhysRevD.
38.2009

[12] Ellis, R.S. and Newman, C.M. (1978). The statistics of Curie-Weiss models. J. Stat. Phys. 19 149–161.
MR0503332 https://doi.org/10.1007/BF01012508

[13] Frank, O. and Strauss, D. (1986). Markov graphs. J. Amer. Statist. Assoc. 81 832–842. MR0860518
[14] Ganguly, S. and Nam, K. (2019). Sub-critical Exponential random graphs: Concentration of measure and

some applications. ArXiv Preprint. Available at arXiv:1909.11080.
[15] Ghosal, P. and Mukherjee, S. (2020). Joint estimation of parameters in Ising model. Ann. Statist. 48 785–810.

MR4102676 https://doi.org/10.1214/19-AOS1822
[16] Götze, F., Sambale, H. and Sinulis, A. (2021). Concentration inequalities for polynomials in α-sub-

exponential random variables. Electron. J. Probab. 26 Paper No. 48. MR4247973 https://doi.org/10.1214/
21-ejp606

[17] Handcock, M.S., Robins, G., Snijders, T., Moody, J. and Besag, J. (2003). Assessing degeneracy in statistical
models of social networks. Technical Report, Working paper.

[18] Holland, P.W. and Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs.
J. Amer. Statist. Assoc. 76 33–65. MR0608176

[19] Mukherjee, R., Mukherjee, S. and Yuan, M. (2018). Global testing against sparse alternatives under Ising
models. Ann. Statist. 46 2062–2093. MR3845011 https://doi.org/10.1214/17-AOS1612

[20] Mukherjee, S. (2020). Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics.
Bernoulli 26 1016–1043. MR4058359 https://doi.org/10.3150/19-BEJ1135

[21] Mukherjee, S. Xu, Y. (2023). Supplement to “Statistics of the two star ERGM.” https://doi.org/10.3150/21-
BEJ1448SUPP

[22] Papangelou, F. (1989). On the Gaussian fluctuations of the critical Curie-Weiss model in statistical mechan-
ics. Probab. Theory Related Fields 83 265–278. MR1012501 https://doi.org/10.1007/BF00333150

[23] Park, J. and Newman, M.E.J. (2004). Solution of the two-star model of a network. Phys. Rev. E (3) 70 066146.
MR2133810 https://doi.org/10.1103/PhysRevE.70.066146

[24] Park, J. and Newman, M.E.J. (2004). Statistical mechanics of networks. Phys. Rev. E (3) 70 066117.
MR2133807 https://doi.org/10.1103/PhysRevE.70.066117

[25] Radin, C. and Yin, M. (2013). Phase transitions in exponential random graphs. Ann. Appl. Probab. 23
2458–2471. MR3127941 https://doi.org/10.1214/12-AAP907

[26] Rinaldo, A., Petrović, S. and Fienberg, S.E. (2013). Maximum likelihood estimation in the β-model. Ann.
Statist. 41 1085–1110. MR3113804 https://doi.org/10.1214/12-AOS1078

[27] Robins, G., Pattison, P., Kalish, Y. and Lusher, D. (2007). An introduction to exponential random graph (p*)
models for social networks. Soc. Netw. 29 173–191.

[28] Sambale, H. and Sinulis, A. (2020). Logarithmic Sobolev inequalities for finite spin systems and applications.
Bernoulli 26 1863–1890. MR4091094 https://doi.org/10.3150/19-BEJ1172

[29] Schweinberger, M. (2011). Instability, sensitivity, and degeneracy of discrete exponential families. J. Amer.
Statist. Assoc. 106 1361–1370. MR2896841 https://doi.org/10.1198/jasa.2011.tm10747

[30] Schweinberger, M. and Stewart, J. (2020). Concentration and consistency results for canonical and curved
exponential-family models of random graphs. Ann. Statist. 48 374–396. MR4065166 https://doi.org/10.1214/
19-AOS1810

[31] Shalizi, C.R. and Rinaldo, A. (2013). Consistency under sampling of exponential random graph models. Ann.
Statist. 41 508–535. MR3099112 https://doi.org/10.1214/12-AOS1044

[32] Snijders, T.A., Pattison, P.E., Robins, G.L. and Handcock, M.S. (2006). New specifications for exponential
random graph models. Sociol. Method. 36 99–153.

https://www.ams.org/mathscinet-getitem?mr=1105836
https://doi.org/10.1214/aos/1176348111
https://arxiv.org/abs/arXiv:2005.00710
https://www.ams.org/mathscinet-getitem?mr=3773854
https://doi.org/10.1007/s10955-018-1991-3
https://doi.org/10.1007/s10955-018-1991-3
https://www.ams.org/mathscinet-getitem?mr=0965465
https://doi.org/10.1103/PhysRevD.38.2009
https://doi.org/10.1103/PhysRevD.38.2009
https://www.ams.org/mathscinet-getitem?mr=0503332
https://doi.org/10.1007/BF01012508
https://www.ams.org/mathscinet-getitem?mr=0860518
https://arxiv.org/abs/arXiv:1909.11080
https://www.ams.org/mathscinet-getitem?mr=4102676
https://doi.org/10.1214/19-AOS1822
https://www.ams.org/mathscinet-getitem?mr=4247973
https://doi.org/10.1214/21-ejp606
https://doi.org/10.1214/21-ejp606
https://www.ams.org/mathscinet-getitem?mr=0608176
https://www.ams.org/mathscinet-getitem?mr=3845011
https://doi.org/10.1214/17-AOS1612
https://www.ams.org/mathscinet-getitem?mr=4058359
https://doi.org/10.3150/19-BEJ1135
https://doi.org/10.3150/21-BEJ1448SUPP
https://doi.org/10.3150/21-BEJ1448SUPP
https://www.ams.org/mathscinet-getitem?mr=1012501
https://doi.org/10.1007/BF00333150
https://www.ams.org/mathscinet-getitem?mr=2133810
https://doi.org/10.1103/PhysRevE.70.066146
https://www.ams.org/mathscinet-getitem?mr=2133807
https://doi.org/10.1103/PhysRevE.70.066117
https://www.ams.org/mathscinet-getitem?mr=3127941
https://doi.org/10.1214/12-AAP907
https://www.ams.org/mathscinet-getitem?mr=3113804
https://doi.org/10.1214/12-AOS1078
https://www.ams.org/mathscinet-getitem?mr=4091094
https://doi.org/10.3150/19-BEJ1172
https://www.ams.org/mathscinet-getitem?mr=2896841
https://doi.org/10.1198/jasa.2011.tm10747
https://www.ams.org/mathscinet-getitem?mr=4065166
https://doi.org/10.1214/19-AOS1810
https://doi.org/10.1214/19-AOS1810
https://www.ams.org/mathscinet-getitem?mr=3099112
https://doi.org/10.1214/12-AOS1044


Statistics of the two star ERGM 51

[33] Swendsen, R.H. and Wang, J.-S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Phys.
Rev. Lett. 58 86.

[34] Wasserman, S. and Faust, K. (1994). Social Network Analysis: Methods and Applications 8. Cambridge:
Cambridge University Press.

[35] Wasserman, S. and Pattison, P. (1996). Logit models and logistic regressions for social networks. I. An
introduction to Markov graphs and p. Psychometrika 61 401–425. MR1424909 https://doi.org/10.1007/
BF02294547

Received February 2021 and revised November 2021

https://www.ams.org/mathscinet-getitem?mr=1424909
https://doi.org/10.1007/BF02294547
https://doi.org/10.1007/BF02294547

	Introduction
	Formal set up
	Main results
	Auxiliary variables
	Simulation results

	Proof of main results (Theorems 1.4, 1.6, 1.11 and Corollary 1.9)
	Asymptotic notation
	Proof of Theorem 1.4
	Proof of Theorem 1.6
	Proof of Corollary 1.9
	Proof of Theorem 1.11

	Proof of Lemma 2.1 and Lemma 2.2 for (theta,beta)inTheta1cupTheta2
	Proof of Lemma 2.1 and Lemma 2.2 for (theta,beta)inTheta1
	Proof of Lemma 2.1 and Lemma 2.2 for (theta,beta)inTheta2

	Proof of Lemmas 2.1 and 2.2 for (theta,beta)inTheta3
	Acknowledgements
	Funding
	Supplementary Material
	References

