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APPENDIX A: PROOF OF BINOMIAL LEMMA

Proof. (a)
(i) The upper and lower bounds follow from (Bollobás, 2001, Theorem

1.2) and (Bollobás, 2001, Theorem 1.5) respectively.
(ii) The upper bound follows from (Bollobás, 2001, Theorem 1.3). The

lower bound follows from part (Bollobás, 2001, Theorem 1.6) if nmin(pn, 1−
pn)� log3 n, and from Part (a, i) otherwise.

(b)
(i) For the upper bound, fixing δ > 0 and setting

t′n: = δ
√
npn(1− pn) log n, tn: = npn + Cn

√
npn(1− pn) log n

we have

P(Xn + Yn = tn)

≤P(Yn > t′n) +
t′n

max
r=0

P(Xn = tn − r)
t′n∑
r=0

P(Yn = r)

≤P(Yn > t′n) +
t′n

max
r=0

P(Xn = tn − r).

For bounding the first term above, note that limn→∞(t′n− bnp′n) =∞,
and so t′n ≥ 2bnp

′
n for all n large. This observation, along with an

application of Bernstein’s inequality gives

P(Yn > t′n) ≤ exp
{
−

1
2(t′n − bnp′n)2

bnp′n(1− p′n) + t′n−bnp′n
3

}
≤ e−

3
24
t′n .
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But then t′n � log n, and so we have

1

log n
logP(Yn > t′n) = −∞.(A.1)

Thus it suffices to control the second term. Since

tn − t′n = npn + (Cn − δ)
√
npn(1− pn) log n,

the bound then follows to note that

max
0≤r≤t′n

P(Xn = tn − r) = P(Xn = tn − t′n)

where we have used the fact that tn−t′n−npn →∞ and the observation
that the binomial distribution is unimodal. Finally, using part (e) gives

P(Xn = tn − t′n) =
1
√
npn

n−
(C−δ)2

2
+o(1),

from which the result follows since δ > 0 is arbitrary.

Turning towards the lower bound, note that

P(Xn + Yn = tn) ≥
t′n∑
r=0

P(Xn = tn − r)P(Yn = r)

≥ P(Xn = tn)P(Yn ≤ t′n),

as min
t′n
r=0 P(Xn = tn − r) = P(Xn = tn). Since P(Yn ≤ t′n) converges

to 1 (from (A.1)), the result then follows on using part (e).
(ii) For the upper bound, we have

P(Xn + Yn ≥ tn) ≤P(Xn ≥ tn − t′n) + P(Yn ≥ t′n),

from which one can ignore P(Yn ≥ t′n) using (A.1). Using part (a, ii)
gives

P(Xn ≥ tn − t′n) ≤ n−
(C−δ)2

2
+o(1),

from which the result follows since δ > 0 is arbitrary.
Also in this case the lower bound follows trivially, on noting that

P(Xn + Yn ≥ tn) ≥ P(Xn ≥ tn)

and using part (a).
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APPENDIX B: TECHNICAL LEMMAS FOR LOWER BOUND

B.1. Proof of Lemma 6.6. We recall from the proof of Theorem 3.2i.,
the definitions of f(x) = ex

1+ex and

h(x) = 4µf(c1x)f(c2x) +
(1− 2µf(c1x))(1− 2µf(c2x))

1− µ
,

where 0 ≤ µ ≤ 1 and c1, c2 > 0. Then note that Υ =
5∏
j=1

Υi, where

Υ1 =
(
4f(2A)2

)Σ(S1∩S2)

(
1− λ

nf(2A)

1− λ
2n

)2((Z2)−Σ(S1∩S2))

,

Υ2 = (4f(A)f(2A))Σ(S1∩S2,S1∆S2)

×

(
1− λ

nf(2A)

1− λ
2n

·
1− λ

nf(A)

1− λ
2n

)2Z(s−Z)−Σ(S1∩S2,S1∆S2)

,

Υ3 =
(
4f(A)2

)Σ(S1∩Sc2,Sc1∩S2)

(
1− λ

nf(A)

1− λ
2n

)2((s−Z)2−Σ(S1∩Sc2,Sc1∩S2))

,

Υ4 = (4f(2A)f(0))Σ(S1∩Sc2)+Σ(Sc1∩S2)

×

(
1− λ

nf(2A)

1− λ
2n

)2(s−Z2 )−(Σ(S1∩Sc2)+Σ(Sc1∩S2))

,

Υ5 = (4f(A)f(0))Σ(S1∆S2,(S1∪S2)c)

×

(
1− λ

nf(A)

1− λ
2n

)2(s−Z)(n−2s+Z)−Σ(S1∆S2,(S1∪S2)c)

.

As in the proof of Theorem 3.2i., we have that for each realization of S1 and
S2, Eβ=0,λ(Υi) is exactly of the form h, with µ = λ/2n and appropriate c1, c2.
We note that the Υi’s are independent of each other and Eβ=0,λ[Υ5] = 1.
It follows, by arguments exactly similar to those leading to (6.9), that there
exists universal constants C1, C2 > 0 such that

Eβ=0,λ(Υ) ≤
(

1 + C1
λA2

n

)C2s2

≤ exp
(
C1C2

s2λA2

n

)
= exp(C1C2C

∗n1−2α log n) = 1 + o(1), since α >
1

2
.
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B.2. Proof of Lemma 6.7. The proof of the lemma follows from sim-
ple algebra along with the facts that λ ≤ n, s�

√
n, and 1−λ/2n

1−θ = 1+o(1).

APPENDIX C: PROOF OF PROPOSITION 6.5

C.1. Proof of (6.12). We set

a(t) = Pβ=0,λ (D1 > t)

and
b(t) = Pβ=0,λ (D1 > t,D2 > t)

to get

Varβ=0,λ(HC(t)) = na(t)(1− a(t)) + n(n− 1)(b(t)− a2(t)).

D1 and D2 have some dependence through the common edge Y12. We
decompose the probabilities according to the value attained by Y12 and use
the independence of the edges to get

b(t) = Pβ=0,λ

 d1 − λ
2n(n− 1)√

(n− 1) λ2n
(
1− λ

2n

) > t,
d2 − λ

2n(n− 1)√
(n− 1) λ2n

(
1− λ

2n

) > t


=

λ

2n
(a′(t))2 +

(
1− λ

2n

)
(a′′(t))2, (C.1)

a′(t) = Pβ=0,λ

∑j 6=2 Y1,j − λ
2n(n− 2)√

(n− 2) λ2n
(
1− λ

2n

) > t

√
n− 1

n− 2
−

√
1− λ

2n

(n− 2) λ2n

 , (C.2)

a′′(t) = Pβ=0,λ

∑j 6=2 Y1,j − λ
2n(n− 2)√

(n− 2) λ2n
(
1− λ

2n

) > t

√
n− 1

n− 2
+

√
λ
2n

(n− 2)(1− λ
2n)

 .

(C.3)

Similarly, we condition on the value of Y12 and use the independence of
edges to get

a(t) =
λ

2n
a′(t) +

(
1− λ

2n

)
a′′(t). (C.4)

Therefore, we have, using (C.1) and (C.4),

n(n− 1)(b(t)− a2(t)) = n(n− 1)
λ

2n

(
1− λ

2n

)
(a′(t)− a′′(t))2. (C.5)
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Now, using (C.2) and (C.3), we have,

a′(t)− a′′(t) = Pβ=0,λ

∑
j 6=2

Y1,j =

⌈
(n− 1)

λ

2n
+ t

√
(n− 1)

λ

2n

(
1− λ

2n

)⌉
− 1


=
n−r+o(1)

√
λ

,

where the last line uses Part (a, i) of Lemma 6.2, along with the fact that∑
j 6=2 Y1,j ∼ Bin(n− 2, p) with p = λ/2n.
Therefore, we have, using (C.5),

n(n− 1)(b(t)− a2(t)) ≤ n(n− 1)
λ

2n

(
1− λ

2n

)
n−2r+o(1)

λ
= O(n1−2r+o(1)).

(C.6)

Also by Lemma 6.2 Part (a, ii),

a(t) = Pβ=0,λ(D1 > t) = n−(r+o(1)). (C.7)

Therefore, combining (C.6) and (C.7) we get

Varβ=0,λ(HC(t)) = na(t)(1− a(t)) + n(n− 1)(b(t)− a2(t))

= n1−r+o(1). (C.8)

This completes the proof of (6.12).

C.2. Proof of (6.14). Recall that the alternative distribution Pβ,λ is

such that βi = A for i ∈ S and βi = 0 otherwise, where A =
√
C∗ logn

λ with

16(1 − θ) ≥ C∗ > Csparse(α), θ = lim λ
2n , |S| = s = n1−α, α ∈ (1/2, 1). We

begin with the following set of notation.

a(s)(t) = Pβ,λ(Di > t), i ∈ S,
a(n−s)(t) = Pβ,λ(Di > t), i ∈ Sc,
b(s)(t) = Pβ,λ(Di > t,Dj > t), (i, j) ∈ S × S,

b(n−s)(t) = Pβ,λ(Di > t,Dj > t), (i, j) ∈ Sc × Sc,
b(s,n−s)(t) = Pβ,λ(Di > t,Dj > t), (i, j) ∈ S × Sc, (C.9)

The variance of HC(t) under any Pβ,λ considered above can be decomposed
as follows.

Varβ,λ (HC(t)) : =

5∑
i=1

Ti, (C.10)
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T1 = sa(s)(t)(1− a(s)(t)),

T2 = (n− s)a(n−s)(t)(1− a(n−s)(t)),

T3 = s(s− 1)(b(s)(t)− (a(s)(t))2),

T4 = (n− s)(n− s− 1)(b(n−s)(t)− (a(n−s)(t))2),

T5 = 2s(n− s)(b(s,n−s)(t)− a(s)(t)a(n−s)(t)).

The basic idea of the proof is that the diagonal terms T1, T2 dominate over
the covariance terms T3, T4 and T5. The next Lemma collects the necessary
details.

Lemma C.1. Fix θ = lim
n→∞

λ

2n
. For t = b

√
2r log nc with r > C∗

16(1−θ) , we

have,

lim
n→∞

log T1

log n
= 1− α− 1

2

(
√

2r −

√
C∗

8(1− θ)

)2

, lim
n→∞

log T2

log n
= 1− r,

lim
n→∞

log T3

log n
≤ 1− 2α−

(
√

2r −

√
C∗

8(1− θ)

)2

, lim
n→∞

log T4

log n
≤ 1− 2r,

lim
n→∞

log T5

log n
≤ 1− α− 1

2

(
√

2r −

√
C∗

8(1− θ)

)2

− r.

Lemma C.1 along with (C.10) immediately implies (6.14). We outline the
proof of Lemma C.1 in the rest of the section.

Proof of Lemma C.1. We begin by proving the bound on T3 which is
the most involved and captures the idea behind the asymptotic behavior of
the other terms as well. Throughout this proof, we set f(x) = ex/(1 + ex).
Using a conditioning argument as in (C.1), we have, for a pair (i, j) ∈ S×S,

b(s)(t) =
λ

n
f(2A)(a(s)′(t))2 +

(
1− λ

n
f(2A)

)
(a(s)′′(t))2,

a(s)′(t) = Pβ,λ

∑l 6=j Yi,l −
λ
2n(n− 2)√

(n− 2) λ2n
(
1− λ

2n

) > t

√
n− 1

n− 2
−

√
1− λ

2n

(n− 2) λ2n

 ,(C.11)

a(s)′′(t) = Pβ,λ

∑l 6=j Yi,l −
λ
2n(n− 2)√

(n− 2) λ2n
(
1− λ

2n

) > t

√
n− 1

n− 2
+

√
λ
2n

(n− 2)(1− λ
2n)

 .

(C.12)
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Using the same argument as (C.4), we have,

a(s)(t) =
λ

n
f(2A)a(s)′(t) +

(
1− λ

n
f(2A)

)
a(s)′′(t).

Therefore, we have, using (C.10),

T3 = s(s− 1)
λ

n
f(2A)

(
1− λ

n
f(2A)

)
(a(s)′(t)− a(s)′′(t))2. (C.13)

Combining (C.11) and (C.12), we have,

a(s)′(t)− a(s)′′(t) = Pβ,λ

∑
l 6=j

Yi,l =

⌊
(n− 1)

λ

2n
+ t

√
(n− 1)

λ

2n

(
1− λ

2n

)⌋ .

We note that
∑

l 6=j Yi,l
d
= Z1 + Z2 where Z1 ∼ Bin

(
s− 2, λnf(2A)

)
, Z2 ∼

Bin
(
n− s, λnf(A)

)
, and Z1, Z2 are independent random variables. Setting

tn =

⌊
(n− 1) λ2n + t

√
(n− 1) λ2n

(
1− λ

2n

)⌋
, by direct computation, we have,

tn = (n− s)λ
n
f(A) + Cn

√
(n− s)λ

n
f(A)

(
1− λ

n
f(A)

)
log(n− s),

such that Cn →
√

2r−
√

C∗

8(1−θ) > 0 as n→∞. Therefore, applying Lemma

6.2 Part (b, i), we have,

a(s)′(t)− a(s)′′(t) ≤ n−(
√
r−
√
C∗/16(1−θ))2+o(1)

√
λ

. (C.14)

Plugging this bound back into (C.13) immediately implies that

T3 ≤ n
1−2α−

(√
2r−
√
C∗/(8(1−θ))

)2
+o(1)

.

This completes the bound on T3.
We next turn to the bound on T4. We use the same argument in this

case to derive the following expression for T4 which is exactly comparable
to (C.13). We have,

T4 = (n− s)(n− s+ 1)
λ

n
f(0)

(
1− λ

n
f(0)

)
(a(n−s)′(t)− a(n−s)′′(t))2,

(C.15)
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where a(n−s)′(t), a(n−s)′′(t) are defined analogous to a(s)′(t) and a(s)′′(t) in
(C.11), (C.12) respectively. The same argument as in the bound on T3 now
implies that

T4 ≤ n1−2r+o(1).

This gives us the desired bound on T4.
Finally, we control the last covariance term T5. In this case, we fix (i, j) ∈

S × Sc. Recall the notations introduced in (C.9). We have, similar to (C.1),

b(s,n−s)(t) =
λ

n
f(A)a(s,n−s)′(t)a(n−s,s)′(t) +

(
1− λ

n
f(A)

)
a(s,n−s)′′(t)a(n−s,s)′′(t),

a(s,n−s)′(t) = Pβ,λ

∑l 6=j Yi,l −
λ
2n(n− 2)√

(n− 2) λ2n
(
1− λ

2n

) > t

√
n− 1

n− 2
−

√
1− λ

2n

(n− 2) λ2n

 ,(C.16)

a(s,n−s)′′(t) = Pβ,λ

∑l 6=j Yi,l −
λ
2n(n− 2)√

(n− 2) λ2n
(
1− λ

2n

) > t

√
n− 1

n− 2
+

√
λ
2n

(n− 2)(1− λ
2n)

 .

(C.17)

a(n−s,s)′(t) and a(n−s,s)′′(t) are defined by switching the roles of i, j in (C.16)
and (C.17) respectively.

Similar to (C.4), we have,

a(s)(t) =
λ

n
f(A)a(s,n−s)′(t) +

(
1− λ

n
f(A)

)
a(s,n−s)′′(t),

a(n−s)(t) =
λ

n
f(A)a(n−s,s)′(t) +

(
1− λ

n
f(A)

)
a(n−s,s)′′(t).

Therefore, we have,

T5 = 2s(n− s)λ
n
f(A)

(
1− λ

n
f(A)

)(
a(s,n−s)′(t)− a(s,n−s)′′(t)

)
×
(
a(n−s,s)′(t)− a(n−s,s)′′(t)

)
.

(C.18)

We bound
(
a(s,n−s)′(t)−a(s,n−s)′′(t)

)
and

(
a(n−s,s)′(t)−a(n−s,s)′′(t)

)
exactly

as (C.14) to obtain

(
a(s,n−s)′(t)− a(s,n−s)′′(t)

)
≤ n−(

√
r−
√
C∗/16(1−θ))2+o(1)

√
λ

,
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(
a(n−s,s)′(t)− a(n−s,s)′′(t)

)
≤ n−r+o(1)

√
λ

.

Plugging these bounds back into (C.18) completes the proof.
It remains to study the diagonal terms T1, T2. Recall that for i ∈ S,

a(s)(t)

= Pβ,λ

(
di > (n− 1)

λ

2n
+ t

√
(n− 1)

λ

2n

(
1− λ

2n

))
,

= Pβ,λ

(
di > (n− s)λ

n
f(A) + Cn

√
(n− s)λ

n
f(A)

(
1− λ

n
f(A)

)
log(n− s)

)
.

for a sequence Cn →
√

2r−
√

C∗

8(1−θ) > 0. We note that di = Z1 +Z2, where

Z1 ∼ Bin(s, λnf(2A)) and Z2 ∼ Bin(n − 2, λnf(A)) are independent random
variables. Thus using Lemma 6.2 part (b, ii), we have,

a(s)(t) = n
− 1

2
(
√

2r−
√

C∗
8(1−θ) )2+o(1)

.

Plugging this bound back into the definition of T1 gives us the desired result.
The proof for T2 is exactly similar to that of T4 and is therefore omitted.

C.3. Proof of (6.13). Recall the definition of a(t) from the proof of
(6.12). In this case, we have, for i ∈ S, j ∈ Sc,

Eβ,λ (HC(t)) = sPβ,λ (Di > t) + (n− s)Pβ,λ (Dj > t)− na(t)

≥ s (Pβ,λ (Di > t)− Pβ=0,λ (Di > t)) ,

using the fact that the vertex degrees are stochastically larger under the
alternative. An application of Lemma 6.2 Part (a, ii) and (b, ii), implies
that for r > C∗

16(1−θ)

Eβ,λ (HC(t)) ≥ s
(
n
−
(√

2r−
√
C∗/8(1−θ)

)2
/2+o(1) − n−r+o(1)

)
≥ n1−α−

(√
2r−
√
C∗/8(1−θ)

)2
/2+o(1)

.

This completes the proof.
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APPENDIX D: PROOF OF THEOREM 3.3

Proof of 3.3i.. Using monotonicity arguments without loss of general-
ity one can consider the alternative Pβ,λ where β is given by

βi = A for i ∈ S, 0 otherwise,

where A =
√
C∗ logn

λ for some C∗ with

16(1− θ) ≥ C∗ > Cmax(α): = 16(1− θ)(1−
√

1− α)2,

and |S| = s = n1−α. Given C∗ let δ > 0 be such that

C∗ > 16(1− θ)[
√

1 + δ −
√

1− α]2.

and let φn be the sequence of tests which rejects when maxi∈[n] di > kn(δ),
and accepts otherwise, where

pn: =
λ

2n
.

kn(δ): = npn +
√

2(1 + δ)npn(1− pn) log n

=
λ

2
+

√
(1 + δ)λ

(
1− λ

2n

)
log n.

Thus, using FKG inequality gives

1− Eβ=0,λφn ≥ Pβ=0,λ(d1 ≤ kn(δ))n ≥
(

1− n−(1+δ+o(1)
)n
,

where the last inequality uses Part (a, ii) of Lemma 6.2. Since the RHS
above converges to 1, it is enough to show that

sup
β∈Ξ(s,A)

Pβ,λ(
n

max
i=1

di ≤ kn(δ))
n→∞→ 0.

With d′1, · · · , d′s
i.i.d.∼ Bin(n−s, p′n) with p′n: = λ

n
eA

1+eA
, it is easy to see that

maxni=1 di is stochastically larger than maxsi=1 d
′
i, and so it suffices to show

that

Pβ,λ(
s

max
i=1

d′i ≤ kn(δ)) = P(d′1 ≤ kn(δ))s = (1− P(d′1 > kn(δ)))s
n→∞→ 0.

(D.1)

To this effect, note that

lim
n→∞

kn(δ)− (n− s)p′n√
(n− s)p′n(1− p′n) log(n− s)

= −
√

2C∗

4
√

1− θ
+
√

2(1 + δ).
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Also note that the assumption C∗ ≤ 16(1 − θ) implies the limit above is
positive. Since s = n1−α and (1 − x) = exp(−x + O(x2)) as x → 0, (D.1)
will follow from Lemma 6.2 Part (a, ii) if we can show that[

−
√

2C∗

4
√

1− θ
+
√

2(1 + δ)
]2
< 2(1− α)

⇔−
√
C∗

4
√

1− θ
+
√

1 + δ <
√

1− α

⇔
√
C∗

4
√

1− θ
>
√

1 + δ −
√

1− α,

which holds by choice of δ. This completes the proof of the upper bound.

Proof of ii.. To show the lower bound, again consider an alternative of
the form Pβ,λ, where β is given by

βi = A for i ∈ S, 0 otherwise,

where A =
√
C∗ logn

λ for some positive C∗ with

C∗ < Cmax(α): = 16(1− θ)(1−
√

1− α)2.

and |S| = s = n1−α.
Suppose, to the contrary, that there is a sequence of consistent tests based

on maxi∈[n] di. Thus there exists sequence of positive reals {kn}n≥1 such that

lim
n→∞

Pβ=0,λ(max
i∈[n]

di ≤ kn) = 1, lim
n→∞

Pβ,λ(max
i∈[n]

di ≤ kn) = 0.

Denote pn = λ/2n, qn = 1− pn and consider the sequence δn such that

kn = npn + (2npnqn log n)1/2

(
1− log log n+ log(4π)

4 log n
+

δn
2 log n

)
.

We first claim that δn → ∞. The proof of the claim follows immediately
since by Corollary 3.4 of Bollobás (2001), we have for any fixed δ ∈ R that

Pβ=0,λ

(
n

max
i=1

di < npn + (2npnqn log n)1/2

(
1− log logn+ log(4π)

4 log n
+

δ

2 log n

))
→ e−e

−δ
, (D.2)

whenever npnqn
(logn)3

→ ∞, a condition that holds by our assumption of λ �
(log n)3. Indeed, if δn ≤M for some 0 < M <∞, then

lim supPβ=0,λ(
n

max
i=1

di ≤ kn) ≤ ee−M < 1.
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We now show that for any such choice of kn the probability of making a
type II error converges to 1. To this end note that letting S: = {l:βl 6= 0},
by union bound we have the following inequality for i ∈ S

Pβ,λ

(
n

max
i=1

di > kn

)
≤ sPβ,λ (di > kn) + Pβ,λ

(
max
j∈Sc

dj > kn

)
.

We now show that individually, the two summands in the last display con-
verges to 0. First, if i ∈ S: = {l:βl ≥ 0}, we have for X ′n ⊥ Y ′n with X ′n ∼
Bin

(
s− 1, λnf(2A)

)
, Y ′n ∼ Bin

(
n− s, λnf(A)

)
(where as usual f(x) = ex

1+ex )

sPβ,λ (di > kn) = sPβ,λ(X ′n + Y ′n > kn) ≤ n1−α−
(

1−
√
C∗/16(1−θ)

)2
+o(1)

= o(1).

The last inequality follows by calculations similar to those leading to proof
of Lemma 6.5 upon invoking Lemma 6.2 Part (b, ii) and the last equality
follows by the property of C∗ < Cmax(α).

The control of Pβ,λ

(
max
j∈Sc

dj > kn

)
is in philosophy similar to that of un-

derstanding the null behavior of maxni=1 di. However, one needs to carefully
overcome the contamination by signals in each of the degrees involved. In
particular, for any sequence k′n,

Pβ,λ

(
max
j∈Sc

dj > kn

)
= Pβ

(
max
j∈Sc

(Xj + Yj) > kn

)
≤ Pβ

(
max
j∈Sc

Xj + max
j∈Sc

Yj > kn

)
≤ Pβ,λ(

n
max
i=1

Xi > k′n) + Pβ,λ(
n

max
i=1

Yi > kn − k′n),

(D.3)

where Xi
i.i.d.∼ Bin(s, λnf(A)) and Yi

i.i.d.∼ Bin(n − s − 1, λnf(0)). We choose

k′n =
√
npnqnan√

2 logn
for some sequence an → ∞ sufficiently slow, to be chosen

appropriately. Then by union bound and Bernstein’s Inequality

Pβ,λ(
n

max
i=1

Xi > k′n)

≤ nPβ=0,λ

(
X1 − s

λ

n
f(A) > k′n − s

λ

n
f(A)

)
≤ n exp

(
−

1
2(k′′n)2

sλnf(A)(1− λ
nf(A)) + 1

3k
′′
n

)
, k′′n = k′n − s

λ

n
f(A)
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≤ n exp
(
−Ck′n

)
,

where the last inequality holds for a universal constant C > 0 since for
any an → ∞, k′n � sλnf(A) (since s = n1−α, α > 1

2 , and λ ≤ n). Since
λ� (log n)3 we have k′n � log n and therefore

Pβ,λ(
n

max
i=1

Xi > k′n)→ 0, (D.4)

as n→∞. Now note that by stochastic ordering

Pβ,λ(
n

max
i=1

Yi > kn − k′n) ≤ Pβ,λ(
n

max
i=1

Y ′i > kn − k′n)

where Y ′i
i.i.d.∼ Bin(n, pn). But,

kn − k′n

= npn + (2npnqn log n)1/2

(
1− log logn

4 log n
− log(2π1/2)

2 log n
+
δn − an
2 log n

)

For any sequence δn → ∞, we can choose an → ∞ sufficiently slow such
that δn − an → ∞ as n → ∞. But due to convergence to a continuous
distribution, the convergence in (D.2) is uniform. Therefore

Pβ,λ(
n

max
i=1

Y ′i > kn − k′n)→ 0. (D.5)

The proof is therefore complete by combining (D.3), (D.4), and (D.5).

APPENDIX E: ALTERNATE LOWER BOUND ARGUMENT FOR
MAXIMUM DEGREE TEST

We recall that lower bound in Theorem 3.3 contains a gap regarding
log n � λ . log3 n. In this section we show that for log n � λ . log3 n,
if one considers the Maximum Degree Test that rejects when maxni=1 di >
npn+

√
δnnpnqn log n, where pn = λ/2n, qn = 1−pn, and δn is some sequence

of real numbers, then such tests are asymptotically powerless as soon as
C∗ < Cmax(α) defined above, if lim sup δn 6= 2. The case when lim sup δn = 2
is extremely challenging, and the result of the testing problem depends on
the rate of convergence of δn to 2 along subsequences.

In particular, once again consider an alternative of the form Pβ,λ, where
β is given by

βi = A for i ∈ S, 0 otherwise,
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where A =
√
C∗ logn

λ for some positive C∗ with

C∗ < Cmax(α): = 16(1− θ)(1−
√

1− α)2.

and |S| = s = n1−α.
Suppose to the contrary, there exists sequence of positive reals {kn}n≥1

such that

lim
n→∞

Pβ=0,λ(max
i∈[n]

di ≤ kn) = 1, lim
n→∞

Pβ,λ(max
i∈[n]

di ≤ kn) = 0.

Suppose kn = npn+δn
√

log n
√
npnqn, and let δ = lim sup δn, δ = lim inf δn.

Suppose δ ≤ 0. Then arguing along a subsequence

Pβ=0,λ(
n

max
i=1

di > kn) ≥ Pβ=0,λ(d1 ≤ npn) ≥ 1

4

by looking at the median of d1 under Pβ=0,λ, if λ is even.
Therefore, we can safely assume that ∃ δ > 0 such that δ ≥ δ. Sub-

sequently, we work along the subsequence along which δn eventually be-
comes at least as large as δ. Now if i ∈ S: = {l:βl 6= 0}, we have along
an appropriate subsequence, for Xn ⊥ Yn with Xn ∼ Bin

(
s− 1, λnf(2A)

)
,

Yn ∼ Bin
(
n− s, λnf(A)

)
(where as usual f(x) = ex

1+ex )

Pβ,λ (di ≤ kn) = Pβ,λ(Xn + Yn ≤ kn)

= 1− Pβ,λ(Xn + Yn > kn)

≥ 1− Pβ,λ(Xn + Yn > npn + δ
√

log n
√
npnqn)

≥ 1− n−
(
δ√
2
−
√
C∗/16(1−θ)

)2
+o(1)

.

The last inequality follows by calculations similar to those leading to the
behavior of T1 in Lemma 6.5 upon invoking Lemma 6.2 Part (b, ii).

Similarly if i ∈ Sc, we have for Xn ⊥ Yn with Xn ∼ Bin
(
s, λnf(A)

)
,

Yn ∼ Bin
(
n− s− 1, λnf(0)

)
Pβ,λ (di ≤ kn) = Pβ,λ(Xn + Yn ≤ kn)

= 1− Pβ,λ(Xn + Yn > kn)

≥ 1− Pβ,λ(Xn + Yn > npn + δ
√

log n
√
npnqn)

≥ 1− n−
δ2

2
+o(1).

Therefore, by FKG inequality

Pβ,λ

(
n

max
i=1

di ≤ kn
)
≥

n∏
i=1

Pβ,λ (di ≤ ki)
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≥ exp

(
(n− s) log

(
1− n−

δ2

2
+o(1)

)
+ s log

(
1− n−

(
δ√
2
−
√
C∗/16(1−θ)

)2
+o(1)

))
∼ exp

(
−n1− δ

2

2
+o(1)(1 + o(1))− n1−α−

(
δ√
2
−
√
C∗/16(1−θ)

)2
+o(1)

(1 + o(1))

)
.

Now suppose that δ >
√

2. Then 1 − δ2/2 < 0 and note that 1 − α −(
δ√
2
−
√
C∗/16(1− θ)

)2
< 0 since the function

g(x) = 1− α−
(
x−

√
C∗/16(1− θ)

)2

is decreasing for for x ≥
√
C∗/16(1− θ) < 1, and g(1) < 0. Therefore,

δ ≤
√

2. Let us consider the case when δ <
√

2 first.
Then there exists ε > 0 such that δ =

√
2(1− ε). We now show that

∃ η > 0 such that Pβ=0,λ(maxni=1 di > kn) ≥ η, and thereby arriving at a
contradiction. To show this we use a second moment method in conjunction
with Paley-Zygmund Inequality.

In particular, define ζi = I(di > kn), i = 1, . . . , n. Then by Paley-
Zygmund Inequality

Pβ=0,λ

(
n∑
i=1

ζi >
1

2
Eβ=0,λ(

n∑
i=1

ζi)

)
≥ 1

4

(Eβ=0,λ(
∑n

i=1 ζi))
2

Eβ=0,λ(
∑n

i=1 ζi)
2
. (E.1)

Now with a proof similar to that of (6.13) in Lemma 6.5

Eβ=0,λ(

n∑
i=1

ζi) = nPβ=0,λ(d1 > kn) & n1−(1−ε)2+o(1). (E.2)

Also by a proof similar to that of (C.6)

Eβ=0,λ(
n∑
i=1

ζi)
2

= nPβ=0,λ(d1 > kn) + n(n− a)(Pβ=0,λ(d1 > kn, d2 > kn)

− Pβ=0,λ(d1 > kn)Pβ=0,λ(d2 > kn)) + n(n− 1)Pβ=0,λ(d1 > kn)Pβ=0,λ(d2 > kn)

. n1−(1−ε)2+o(1) + n1−2(1−ε)+o(1) + n2−2(1−ε)2+o(1). (E.3)

Therefore, combining (E.4), (E.2), and (E.3), we have the existence of an
η > 0 such that

Pβ=0,λ

(
n∑
i=1

ζi >
1

2
Eβ=0,λ(

n∑
i=1

ζi)

)
≥ 4η

4
= η. (E.4)
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This in turn implies the proof in the case of δ >
√

2 since

Pβ=0,λ(
n

max
i=1

di > kn) = Pβ=0,λ(
n∑
i=1

ζi ≥ 1)

≥ Pβ=0,λ(
n∑
i=1

ζi ≥
1

2
Eβ=0,λ(

n∑
i=1

ζi)) ≥ η,

where the second to last inequality holds since by (E.2), Eβ=0,λ(
∑n

i=1 ζi) ≥ 1
for sufficiently large n.
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