GLOBAL TESTING AGAINST SPARSE ALTERNATIVES
UNDER ISING MODELS

By RAJARSHI MUKHERJEE', SUMIT MUKHERJEES, AND MING YUANT

University of California, Berkeleyt and Columbia University 89

APPENDIX — PROOF OF AUXILIARY RESULTS

Proor oF LEMMA 1. This is a standard application of Stein’s Method
for concentration inequalities (Chatterjee, 2005). The details are included
here for completeness. One begins by noting that

EqQu (Xil X, j #4) = tanh (m; (X) + ), mi (X) := ) Qi X;.
j=1

Now let X be drawn from (1) and let X' is drawn by moving one step
in the Glauber dynamics, i.e. let I be a random variable which is discrete
uniform on {1,2,--- ,n}, and replace the I** coordinate of X by an element
drawn from the conditional distribution of the I*" coordinate given the rest.
It is not difficult to see that (X,X/) is an exchangeable pair of random
vectors. Further define an anti-symmetric function F' : R® x R®" — R as
F(x,y) =i (i — yi), which ensures that

Equ (F(X,X’)|X) :% 3" X — tanh (m; (X) + 1) = fu(X).
j=1

Denoting X' to be X with X; replaced by —X;, by Taylor’s series we have
tanh(m;(X') + 15) — tanh(m; (X) + 1)

= (my(X7) = my (X))g/(m5 (X)) + 5 (X7) = m; (X)) (65)

’ 2 n
= —2Q;; Xig' (m;(X)) +2Q;;9" (&i5)
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for some {&;;}1<ij<n, where g(t) = tanh(¢). Thus f,(X) — fu(X") can be
written as

fu(X) = fu(X9) :%Xi + % Z {tanh (mj (X') + ;) — tanh (m; (X) + ;) }

+ Z 2 //&]

Now setting p;(X) := Pqu(X! = —X;| Xy, k # i) we have

C2X; 2X;
N n

=1

o(X) 3:1EQM<’fu(X) ~ XN - x|

*Z’fu X)|pi(X)

<3 ZPi(X) - ﬁ > 1Qipi(X)g' (mi(X))]
i=1 ij=1
2 n
+5 ) Qg (85) Xipi(X)
ij=1
2 2
<SS s QY+ Z Q.

2
n " u,veo,1)m ij—1

where in the last line we use the fact that max(|¢'(t)|,|¢”(¢)|) < 1. The
proof of the Lemma is then completed by an application of Theorem 3.3 of
Chatterjee (2007). O

PROOF OF LEMMA 2. Let Y := (Y1,---,Y,) be i.i.d. random variables

on {—1,1} with P(Y; = +1) = 1, and let W := (W), --- ,W,,) "&" N(0,1).

Also, for any t > 0 let Z(tQ, p) denote the normalizing constant of the p.m.f.

1 L+ T )
————exp| =x"tQx+p ' x
Z(tQ.p) (2 g

Thus we have
2" 2(1Q, ) = Bexp( ;YT QY + Z piYi) < Bexp(;WT QW + Z i),

where we use the fact that IEYlk < IEFJVVZ’C for all positive integers k. Using
spectral decomposition write Q = PTAP and set v := Pu, W = PW to
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note that

v2

e2-tx))

t - LSS OT2 1S i) = T
Eexp(inQW 4 ; Mle) = EeXp<§ ; )\zwlz + ; Vsz) = };[1 \/ﬁ

Combining for any ¢ > 1 we have the bounds

v2

n 3
=1 2(1—tX;)

2 il;[lcosh(uz) = Z(0,p) < Z(Q,p) < Z(tQ, ) <2 N

where the lower bound follows from on noting that log Z(tQ, p) is monotone
non-decreasing in ¢, using results about exponential families. Thus invoking
convexity of the function t — log Z(tQ, u) we have

dlog Z(1Q. p)
XT X = 2 o\l
Ho Q ot ‘t:l

log Z(tQ.p) —log Z(Q,p)
t -1

< _1 h( }
> (i et

where we use the bounds obtained in (1). Proceeding to bound the rightmost
hand side above, set t = l%pp > 1 and note that

Eq

1
fogl—t)\)

||£ﬂ:

By <¥<1

For z € 3[—(1+ p), (14 p)] C (—1,1) there exists a constant 7, < oo such
that

<l+4ax+2y2%, -—log(l—=x) <+ 27,2

1—=2
Also a Taylor’s expansion gives

2
—log cosh(z) < —% + 24,

where we have used the fact that ||(log cosh(z))®||s < 1. These, along with
the observations that

n

SoN=tr(Q =0, Y vF=[Pull* = lul
=1

i=1
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give the bound

2 n

Z {ﬁ —log cosh(ﬂz‘)} - Z B log(1 —tA;)

i=1 i=1

DR D SRR S SR D SIE D S B SPY:
=1 =1 =1 =1 =1 =1

t n n
=" Qut Py Q7+ Y il +pt® D Q)
=1

3,j=1

—_

t
§§C'p\/ﬁ + 127,Cp*/n + Cy/n + y,t2Dy/n,

where D > 0 is such that 37", _, Q?j < D+y/n. This along with (1) gives

1 1 1 -
[70(1 +tp) + t2,Cp% + C + vthD] Vit 2 EQuX QX = JEqud_ Ximi(X)

2 i=1
But, for some random (&,i=1,...,n)
1 n
SEQu > Ximi(X)
i=1
1 n
= iEQ’“ Zl tanh(ml- (X) + uz)mz(X)
1 - 1 =
= iEQ’” Z tanh(m;(X))m;(X) + iEQ’” Z pim; (X) sech?(&;).
i=1 =1
Now,
1 n ,’7 n
5EQu Y tanh(m;(X))mi(X) >5Equ Y mi(X)%,
i=1 i=1
where .
7 := inf tanh(z) > 0.
lz[<1 @

The desired conclusion of the lemma follows by noting that

‘]EQ,M > pimi(X) sech?(&)| < Cv/n.
i=1
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PROOF OF LEMMA 3. We begin with Part (a). By a simple algebra, the
p.m.f. of X can be written as

no _ =
Py (X = x) o exp {2332 + lem} .

i=1
Consequently, the joint density of (X, Z,) with respect to the product mea-

sure of counting measure on {—1,1}" and Lebesgue measure on R is pro-
portional to

6 & 6
exp {Z:EQ + Zmi,ui - %(z - :E)2}
i=1

=exp {—712922 + Z.’L‘Z(,uz + 29)} .

i=1
Part (a) follows from the expression above.

Now consider Part (b). Using the joint density of Part (a), the marginal
density of Z,, is proportional to

Z exp {—7;922 + Z:cz(,u, + 20)}

xe{-1,1}" i=1
=€xp —2922 + i log cosh(p; 4 26) p = e (2
2 i=1 ’

thus completing the proof of Part (b).
Finally, consider Part (c). By Part (a) given Z,, = z the random variables
(X1,---,X,) are independent, with

ehit0z

PH,;L(X’Z = ]_‘Zn = Z) = 6Ni+ez T Q*Nifezj

and so
Eou(Xi|Z, = 2) = tanh(p; + 02), Varg,(X;|Z, = n) = sech?(u; + 02).

Thus for any p € [0,00)" we have

2 Zn}

Eo,, ( zn:(xi ~ tanh(u; + azn)))2 :EWEW{ ( zn:(xi — tanh(u; + ezn)))

i=1 i=

=E Z sech?(p; + 0Z,) < n.
i=1



PROOF OF LEMMA 4. We begin with Part (a). Since

Fau(z) =) tanh®(z + ;)

i=1

is strictly positive for all but at most one z € R, the function z — f,, 4(2) is
strictly convex with fy, ,(+00) = o0, it follows that z — f, ,(2) has a unique
minima m,, which is the unique root of the equation f; ,(2) = 0. The fact
that m,, is positive follows on noting that

fr(0) = = tanh(p:) <0, f,(+00) = oo.
i=1
Also f](my,) = 0 gives
My, = ! it h ) <1
n= anh(my, + ;) <1,

i=1

and so my, € (0, 1]. Finally, f;, ,(my) = 0 can be written as
m, — tanh(m,,) = &l [tanh(mn + B) — tanh(mn)] >0 tanh(B),
n n

for some C' > 0, which proves Part (a).
Now consider Part (b). By a Taylor’s series expansion around m,, and
using the fact that f//(z) is strictly increasing on (0, 00) gives

fn(2) = fu(my) + %(z — mn)2 " (my, + Kn_1/4) for all z € [m,, + Kn_1/4, 00)
fn(2) < fu(my) + %(z —mn) 2 (i + Kn ™) for all z € [mn, mn, + Kn =4,

Setting by, := f/(my + Kn~/*) this gives
Py u(Zn > my, + Kn~1/%)
Jonsn-1s2 € TPz
fR e—fn(2)dz
S B (Emmn)? g

mp+Kn—1/4 e
fanrKrﬁl/‘1 6—%1(z—mn)2dz

Mn

P(N(0,1) > Kn~Y%/b,)
- P(0 < N(0,1) < Kn=1/4\/b,)’
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from which the desired conclusion will follow if we can show that lim inf,,_,. n~/2b,, >
0. But this follows on noting that

n~Y2p, =02 " (m,, + Kn~Y%)) > /ntanh?(Kn~1/4) = K20(1).

Finally, let us prove Part (c). By a Taylor’s series expansion about dm,,
and using the fact that f,,(-) is convex with unique global minima at m,, we
have

In(2) > fu(my) + (2 — dmy) f1,(6my),  Vz € (=00, dmy,).

Also, as before we have

Fa(2) £ alima) + 5 = 1) F20m0), V= € [, 2]

Thus with ¢, := f}/(2m,,) for any § > 0 we have

f‘sm" e_fn(z)dz

Jz e—fn(2)dz
flsmn ef(zfémn)fé(émn)dz

—0o0
a me" e~ 3 (Emmn)? g,

Mn,
_ \2me,
1 (0m)[P(0 < Z < mny/en)
To bound the the rightmost hand side of (2), we claim that the following
estimates hold:

PH,;L(Zn < 6mn) =

(2)

(3) Cn :@(nm%)7
(4) g, =O0(|f,(0my)]).

Given these two estimates, we immediately have
(5) May/en = O(miy/n) > O(AY?/n) — oo,

as A, > n~3/* by assumption. Thus the rightmost hand side of (2) can be
bounded by

mpy/n 1

= —0
nm3  m2y/n ’

where the last conclusion uses (5). This completes the proof of Part (c).



It thus remains to prove the estimates (3) and (4). To this effect, note
that

n
fil(2mn) = tanh®(2m,, + ;)
=1

< Zn: (tanh(an) + taﬂh(ﬂi)>2
=1

n
<2ntanh?(2m,,) + 2C? Z tanh?(;)
i=1
<om? + nA(in) < nm,

where the last step uses part (a), and C1 < oo is a universal constant. This
gives the upper bound in (3). For the lower bound of (3) we have

n
fr(my) = ZtanhQ(an + ;) > ntanh?(2m,) > nm?.
i=1

Turning to prove (4) we have

£, (6mn)| = tanh(3my, + ;) — ndmy,

=1

= [ Z tanh(dm,, + p;) — tanh(ém,,)| — n[dm,, — tanh(dm,,)]
=1
>CynA(p,) — C3nd>m?

3
Znms,

where § is chosen small enough, and Cs > 0, C3 < oo are universal constants.
This completes the proof of (4), and hence completes the proof of the lemma.
O
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