GLOBAL TESTING AGAINST SPARSE ALTERNATIVES UNDER ISING MODELS

By Rajarshi Mukherjee[‡], Sumit Mukherjee[§], and Ming Yuan[¶]

University of California, Berkeley[‡] and Columbia University §¶

APPENDIX – PROOF OF AUXILIARY RESULTS

PROOF OF LEMMA 1. This is a standard application of Stein's Method for concentration inequalities (Chatterjee, 2005). The details are included here for completeness. One begins by noting that

$$\mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}}\left(X_{i}|X_{j}, j\neq i\right) = \tanh\left(m_{i}\left(\mathbf{X}\right)+\mu_{i}\right), \quad m_{i}\left(\mathbf{X}\right) := \sum_{j=1}^{n} \mathbf{Q}_{ij}X_{j}.$$

Now let **X** be drawn from (1) and let **X**' is drawn by moving one step in the Glauber dynamics, i.e. let *I* be a random variable which is discrete uniform on $\{1, 2, \dots, n\}$, and replace the *I*th coordinate of **X** by an element drawn from the conditional distribution of the *I*th coordinate given the rest. It is not difficult to see that $(\mathbf{X}, \mathbf{X}')$ is an exchangeable pair of random vectors. Further define an anti-symmetric function $F : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ as $F(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n (x_i - y_i)$, which ensures that

$$\mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}}\left(F(\mathbf{X},\mathbf{X}')|\mathbf{X}\right) = \frac{1}{n}\sum_{j=1}^{n}X_{j} - \tanh\left(m_{j}\left(\mathbf{X}\right) + \mu_{j}\right) = f_{\boldsymbol{\mu}}(\mathbf{X}).$$

Denoting \mathbf{X}^i to be \mathbf{X} with X_i replaced by $-X_i$, by Taylor's series we have

$$\begin{aligned} &\tanh(m_j(\mathbf{X}^i) + \mu_j) - \tanh(m_j(\mathbf{X}) + \mu_j) \\ = &(m_j(\mathbf{X}^i) - m_j(\mathbf{X}))g'(m_j(\mathbf{X})) + \frac{1}{2}(m_j(\mathbf{X}^i) - m_j(\mathbf{X}))^2 g''(\xi_{ij}) \\ = &-2\mathbf{Q}_{ij}X_i g'(m_j(\mathbf{X})) + 2\mathbf{Q}_{ij}^2 g''(\xi_{ij}) \end{aligned}$$

[§]The research of Sumit Mukherjee was supported in part by NSF Grant DMS-1712037.

[¶]The research of Ming Yuan was supported in part by NSF FRG Grant DMS-1265202, and NIH Grant 1-U54AI117924-01.

for some $\{\xi_{ij}\}_{1\leq i,j\leq n}$, where $g(t) = \tanh(t)$. Thus $f_{\mu}(\mathbf{X}) - f_{\mu}(\mathbf{X}^{i})$ can be written as

$$f_{\boldsymbol{\mu}}(\mathbf{X}) - f_{\boldsymbol{\mu}}(\mathbf{X}^{i}) = \frac{2X_{i}}{n} + \frac{1}{n} \sum_{j=1}^{n} \left\{ \tanh\left(m_{j}\left(\mathbf{X}^{i}\right) + \mu_{j}\right) - \tanh\left(m_{j}\left(\mathbf{X}\right) + \mu_{j}\right) \right\}$$
$$= \frac{2X_{i}}{n} - \frac{2X_{i}}{n} \sum_{j=1}^{n} \mathbf{Q}_{ij}g'(m_{j}(\mathbf{X})) + \frac{2}{n} \sum_{j=1}^{n} \mathbf{Q}_{ij}^{2}g''(\xi_{ij})$$

Now setting $p_i(\mathbf{X}) := \mathbb{P}_{\mathbf{Q}, \boldsymbol{\mu}}(X'_i = -X_i | X_k, k \neq i)$ we have

$$\begin{split} v(\mathbf{X}) &:= \frac{1}{2} \mathbb{E}_{\mathbf{Q}, \boldsymbol{\mu}} \Big(|f_{\boldsymbol{\mu}}(\mathbf{X}) - f_{\boldsymbol{\mu}}(\mathbf{X}')| |(X_{I} - X_{I}')| \Big| \mathbf{X} \Big) \\ &= \frac{1}{n} \sum_{i=1}^{n} |f_{\boldsymbol{\mu}}(\mathbf{X}) - f_{\boldsymbol{\mu}}(\mathbf{X}^{i})| p_{i}(\mathbf{X}) \\ &\leq \frac{2}{n^{2}} \sum_{i=1}^{n} p_{i}(\mathbf{X}) - \frac{2}{n^{2}} \sum_{i,j=1}^{n} |\mathbf{Q}_{ij}p_{i}(\mathbf{X})g'(m_{j}(\mathbf{X}))| \\ &+ \frac{2}{n^{2}} \sum_{i,j=1}^{n} \mathbf{Q}_{ij}^{2}g''(\xi_{ij})^{2} X_{i}p_{i}(\mathbf{X}) \\ &\leq \frac{2}{n} + \frac{2}{n^{2}} \sup_{\mathbf{u}, \mathbf{v} \in [0,1]^{n}} |\mathbf{u}' \mathbf{Q} \mathbf{v}| + \frac{2}{n^{2}} \sum_{i,j=1}^{n} \mathbf{Q}_{ij}^{2}, \end{split}$$

where in the last line we use the fact that $\max(|g'(t)|, |g''(t)|) \leq 1$. The proof of the Lemma is then completed by an application of Theorem 3.3 of Chatterjee (2007).

PROOF OF LEMMA 2. Let $\mathbf{Y} := (Y_1, \dots, Y_n)$ be i.i.d. random variables on $\{-1, 1\}$ with $\mathbb{P}(Y_i = \pm 1) = \frac{1}{2}$, and let $\mathbf{W} := (W_1, \dots, W_n) \stackrel{i.i.d.}{\sim} N(0, 1)$. Also, for any t > 0 let $Z(t\mathbf{Q}, \mu)$ denote the normalizing constant of the p.m.f.

$$\frac{1}{Z(t\mathbf{Q},\boldsymbol{\mu})}\exp\left(\frac{1}{2}\mathbf{x}^{\top}t\mathbf{Q}\mathbf{x}+\boldsymbol{\mu}^{\top}\mathbf{x}\right)$$

Thus we have

$$2^{-n}Z(t\mathbf{Q},\boldsymbol{\mu}) = \mathbb{E}\exp\left(\frac{t}{2}\mathbf{Y}^{\top}\mathbf{Q}\mathbf{Y} + \sum_{i=1}^{n}\mu_{i}Y_{i}\right) \leq \mathbb{E}\exp\left(\frac{t}{2}\mathbf{W}^{\top}\mathbf{Q}\mathbf{W} + \sum_{i=1}^{n}\mu_{i}W_{i}\right),$$

where we use the fact that $\mathbb{E}Y_i^k \leq \mathbb{E}W_i^k$ for all positive integers k. Using spectral decomposition write $\mathbf{Q} = \mathbf{P}^{\top} \mathbf{\Lambda} \mathbf{P}$ and set $\nu := \mathbf{P} \boldsymbol{\mu}, \widetilde{\mathbf{W}} = \mathbf{P} \mathbf{W}$ to

note that

$$\mathbb{E}\exp\left(\frac{t}{2}\mathbf{W}^{\top}\mathbf{Q}\mathbf{W} + \sum_{i=1}^{n}\mu_{i}W_{i}\right) = \mathbb{E}\exp\left(\frac{t}{2}\sum_{i=1}^{n}\lambda_{i}\widetilde{W}_{i}^{2} + \sum_{i=1}^{n}\nu_{i}\widetilde{W}_{i}\right) = \prod_{i=1}^{n}\frac{\nu_{i}^{2}}{\sqrt{1-t\lambda_{i}}}$$

Combining for any t > 1 we have the bounds

(1)
$$2^{n} \prod_{i=1}^{n} \cosh(\mu_{i}) = Z(\mathbf{0}, \boldsymbol{\mu}) \le Z(\mathbf{Q}, \boldsymbol{\mu}) \le Z(t\mathbf{Q}, \boldsymbol{\mu}) \le 2^{n} \frac{e^{\sum_{i=1}^{n} \frac{\nu_{i}^{2}}{2(1-t\lambda_{i})}}}{\prod_{i=1}^{n} \sqrt{1-t\lambda_{i}}},$$

where the lower bound follows from on noting that $\log Z(t\mathbf{Q}, \boldsymbol{\mu})$ is monotone non-decreasing in t, using results about exponential families. Thus invoking convexity of the function $t \mapsto \log Z(t\mathbf{Q}, \boldsymbol{\mu})$ we have

$$\begin{split} \mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}} \frac{1}{2} \mathbf{X}^{\top} \mathbf{Q} \mathbf{X} &= \frac{\partial \log Z(t\mathbf{Q},\boldsymbol{\mu})}{\partial t} \Big|_{t=1} \\ &\leq \frac{\log Z(t\mathbf{Q},\boldsymbol{\mu}) - \log Z(\mathbf{Q},\boldsymbol{\mu})}{t-1} \\ &\leq \sum_{i=1}^{n} \left\{ \frac{\nu_{i}^{2}}{2(1-t\lambda_{i})} - \log \cosh(\mu_{i}) \right\} - \sum_{i=1}^{n} \frac{1}{2} \log(1-t\lambda_{i}), \end{split}$$

where we use the bounds obtained in (1). Proceeding to bound the rightmost hand side above, set $t = \frac{1+\rho}{2\rho} > 1$ and note that

$$|t\lambda_i| \le \frac{1+\rho}{2} < 1.$$

For $x \in \frac{1}{2}[-(1+\rho), (1+\rho)] \subset (-1, 1)$ there exists a constant $\gamma_{\rho} < \infty$ such that

$$\frac{1}{1-x} \le 1 + x + 2\gamma_{\rho}x^2, \quad -\log(1-x) \le x + 2\gamma_{\rho}x^2.$$

Also a Taylor's expansion gives

$$-\log\cosh(x) \le -\frac{x^2}{2} + x^4,$$

where we have used the fact that $\|(\log \cosh(x))^{(4)}\|_{\infty} \leq 1$. These, along with the observations that

$$\sum_{i=1}^{n} \lambda_i = tr(\mathbf{Q}) = 0, \quad \sum_{i=1}^{n} \nu_i^2 = ||\mathbf{P}\boldsymbol{\mu}||^2 = ||\boldsymbol{\mu}||^2$$

give the bound

$$\begin{split} &\sum_{i=1}^{n} \left\{ \frac{\nu_{i}^{2}}{2(1-t\lambda_{i})} - \log\cosh(\mu_{i}) \right\} - \sum_{i=1}^{n} \frac{1}{2}\log(1-t\lambda_{i}) \\ &\leq \left\{ \frac{1}{2}\sum_{i=1}^{n} \nu_{i}^{2} + \frac{t}{2}\sum_{i=1}^{n} \nu_{i}^{2}\lambda_{i} + t^{2}\gamma_{\rho}\sum_{i=1}^{n} \nu_{i}^{2}\lambda_{i}^{2} \right\} + \left\{ -\frac{1}{2}\sum_{i=1}^{n} \mu_{i}^{2} + \sum_{i=1}^{n} \mu_{i}^{4} \right\} + \gamma_{\rho}t^{2}\sum_{i=1}^{n} \lambda_{i}^{2} \\ &= \frac{t}{2}\boldsymbol{\mu}^{\top}\mathbf{Q}\boldsymbol{\mu} + t^{2}\gamma_{\rho}\boldsymbol{\mu}^{\top}\mathbf{Q}^{2}\boldsymbol{\mu} + \sum_{i=1}^{n} \mu_{i}^{4} + \gamma_{\rho}t^{2}\sum_{i,j=1}^{n} \mathbf{Q}_{ij}^{2} \\ &\leq \frac{t}{2}C\rho\sqrt{n} + t^{2}\gamma_{\rho}C\rho^{2}\sqrt{n} + C\sqrt{n} + \gamma_{\rho}t^{2}D\sqrt{n}, \end{split}$$

where D > 0 is such that $\sum_{i,j=1}^{n} \mathbf{Q}_{ij}^2 \leq D\sqrt{n}$. This along with (1) gives

$$\left[\frac{1}{2}C(1+t\rho) + t^2\gamma_{\rho}C\rho^2 + C + \gamma_{\rho}t^2D\right]\sqrt{n} \ge \frac{1}{2}\mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}}\mathbf{X}^{\top}\mathbf{Q}\mathbf{X} = \frac{1}{2}\mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}}\sum_{i=1}^{n}X_im_i(\mathbf{X})$$

But, for some random $(\xi_i, i = 1, ..., n)$

$$\begin{split} &\frac{1}{2} \mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}} \sum_{i=1}^{n} X_{i} m_{i}(\mathbf{X}) \\ &= \frac{1}{2} \mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}} \sum_{i=1}^{n} \tanh(m_{i}(\mathbf{X}) + \mu_{i}) m_{i}(\mathbf{X}) \\ &= \frac{1}{2} \mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}} \sum_{i=1}^{n} \tanh(m_{i}(\mathbf{X})) m_{i}(\mathbf{X}) + \frac{1}{2} \mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}} \sum_{i=1}^{n} \mu_{i} m_{i}(\mathbf{X}) \operatorname{sech}^{2}(\xi_{i}). \end{split}$$

Now,

$$\frac{1}{2}\mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}}\sum_{i=1}^{n}\tanh(m_{i}(\mathbf{X}))m_{i}(\mathbf{X})\geq\frac{\eta}{2}\mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}}\sum_{i=1}^{n}m_{i}(\mathbf{X})^{2},$$

where

$$\eta := \inf_{|x| \le 1} \frac{\tanh(x)}{x} > 0.$$

The desired conclusion of the lemma follows by noting that

$$\left|\mathbb{E}_{\mathbf{Q},\boldsymbol{\mu}}\sum_{i=1}^{n}\mu_{i}m_{i}(\mathbf{X})\operatorname{sech}^{2}(\xi_{i})\right| \leq C\sqrt{n}.$$

PROOF OF LEMMA 3. We begin with Part (a). By a simple algebra, the p.m.f. of \mathbf{X} can be written as

$$\mathbb{P}_{\theta,\boldsymbol{\mu}}(\mathbf{X}=\mathbf{x}) \propto \exp\left\{\frac{n\theta}{2}\bar{x}^2 + \sum_{i=1}^n x_i\mu_i\right\}.$$

Consequently, the joint density of (\mathbf{X}, Z_n) with respect to the product measure of counting measure on $\{-1, 1\}^n$ and Lebesgue measure on \mathbb{R} is proportional to

$$\exp\left\{\frac{n\theta}{2}\bar{x}^2 + \sum_{i=1}^n x_i\mu_i - \frac{n\theta}{2}(z-\bar{x})^2\right\}$$
$$=\exp\left\{-\frac{n\theta}{2}z^2 + \sum_{i=1}^n x_i(\mu_i + z\theta)\right\}.$$

Part (a) follows from the expression above.

Now consider Part (b). Using the joint density of Part (a), the marginal density of Z_n is proportional to

$$\sum_{\mathbf{x}\in\{-1,1\}^n} \exp\left\{-\frac{n\theta}{2}z^2 + \sum_{i=1}^n x_i(\mu_i + z\theta)\right\}$$
$$= \exp\left\{-\frac{n\theta}{2}z^2 + \sum_{i=1}^n \log\cosh(\mu_i + z\theta)\right\} = e^{-f_{n,\boldsymbol{\mu}}(z)},$$

thus completing the proof of Part (b).

Finally, consider Part (c). By Part (a) given $Z_n = z$ the random variables (X_1, \dots, X_n) are independent, with

$$\mathbb{P}_{\theta,\boldsymbol{\mu}}(X_i=1|Z_n=z) = \frac{e^{\mu_i+\theta_z}}{e^{\mu_i+\theta_z}+e^{-\mu_i-\theta_z}},$$

and so

$$\mathbb{E}_{\theta,\boldsymbol{\mu}}(X_i|Z_n=z) = \tanh(\mu_i + \theta z), \quad \mathsf{Var}_{\theta,\boldsymbol{\mu}}(X_i|Z_n=n) = \mathrm{sech}^2(\mu_i + \theta z).$$

Thus for any $\boldsymbol{\mu} \in [0,\infty)^n$ we have

$$\mathbb{E}_{\theta,\boldsymbol{\mu}} \Big(\sum_{i=1}^{n} (X_i - \tanh(\mu_i + \theta Z_n)) \Big)^2 = \mathbb{E}_{\theta,\boldsymbol{\mu}} \mathbb{E}_{\theta,\boldsymbol{\mu}} \Big\{ \Big(\sum_{i=1}^{n} (X_i - \tanh(\mu_i + \theta Z_n)) \Big)^2 \Big| Z_n \Big\}$$
$$= \mathbb{E} \sum_{i=1}^{n} \operatorname{sech}^2(\mu_i + \theta Z_n) \le n.$$

PROOF OF LEMMA 4. We begin with Part (a). Since

$$f_{n,\boldsymbol{\mu}}''(z) = \sum_{i=1}^n \tanh^2(z+\mu_i)$$

is strictly positive for all but at most one $z \in \mathbb{R}$, the function $z \mapsto f_{n,\mu}(z)$ is strictly convex with $f_{n,\mu}(\pm \infty) = \infty$, it follows that $z \mapsto f_{n,\mu}(z)$ has a unique minima m_n which is the unique root of the equation $f'_{n,\mu}(z) = 0$. The fact that m_n is positive follows on noting that

$$f'_{n,\mu}(0) = -\sum_{i=1}^{n} \tanh(\mu_i) < 0, \quad f'_{n,\mu}(+\infty) = \infty.$$

Also $f'_n(m_n) = 0$ gives

$$m_n = \frac{1}{n} \sum_{i=1}^n \tanh(m_n + \mu_i) \le 1,$$

and so $m_n \in (0, 1]$. Finally, $f'_{n, \mu}(m_n) = 0$ can be written as

$$m_n - \tanh(m_n) = \frac{s}{n} \Big[\tanh(m_n + B) - \tanh(m_n) \Big] \ge C \frac{s}{n} \tanh(B),$$

for some C > 0, which proves Part (a).

Now consider Part (b). By a Taylor's series expansion around m_n and using the fact that $f''_n(z)$ is strictly increasing on $(0, \infty)$ gives

$$f_n(z) \ge f_n(m_n) + \frac{1}{2}(z - m_n)^2 f_n''(m_n + Kn^{-1/4}) \text{ for all } z \in [m_n + Kn^{-1/4}, \infty)$$

$$f_n(z) \le f_n(m_n) + \frac{1}{2}(z - m_n)^2 f_n''(m_n + Kn^{-1/4}) \text{ for all } z \in [m_n, m_n + Kn^{-1/4}].$$

Setting $b_n := f_n''(m_n + Kn^{-1/4})$ this gives

$$\mathbb{P}_{\theta, \mu}(Z_n > m_n + Kn^{-1/4})$$

$$= \frac{\int_{m_n + Kn^{-1/4}} e^{-f_n(z)} dz}{\int_{\mathbb{R}} e^{-f_n(z)} dz}$$

$$\leq \frac{\int_{m_n + Kn^{-1/4}}^{\infty} e^{-\frac{b_n}{2}(z - m_n)^2} dz}{\int_{m_n}^{m_n + Kn^{-1/4}} e^{-\frac{b_n}{2}(z - m_n)^2} dz}$$

$$= \frac{\mathbb{P}(N(0, 1) > Kn^{-1/4} \sqrt{b_n})}{\mathbb{P}(0 < N(0, 1) < Kn^{-1/4} \sqrt{b_n})},$$

from which the desired conclusion will follow if we can show that $\liminf_{n\to\infty} n^{-1/2}b_n > 0$. But this follows on noting that

$$n^{-1/2}b_n = n^{-1/2}f_n''(m_n + Kn^{-1/4})) \ge \sqrt{n} \tanh^2(Kn^{-1/4}) = K^2\Theta(1).$$

Finally, let us prove Part (c). By a Taylor's series expansion about δm_n and using the fact that $f_n(\cdot)$ is convex with unique global minima at m_n we have

$$f_n(z) \ge f_n(m_n) + (z - \delta m_n) f'_n(\delta m_n), \quad \forall z \in (-\infty, \delta m_n].$$

Also, as before we have

$$f_n(z) \le f_n(m_n) + \frac{1}{2}(z - m_n)^2 f_n''(m_n), \forall z \in [m_n, 2m_n]$$

Thus with $c_n := f_n''(2m_n)$ for any $\delta > 0$ we have

(2)
$$\mathbb{P}_{\theta, \mu}(Z_n \leq \delta m_n) = \frac{\int_{-\infty}^{\delta m_n} e^{-f_n(z)} dz}{\int_{\mathbb{R}} e^{-f_n(z)} dz}$$
$$\leq \frac{\int_{-\infty}^{\delta m_n} e^{-(z-\delta m_n)f'_n(\delta m_n)} dz}{\int_{m_n}^{2m_n} e^{-\frac{c_n}{2}(z-m_n)^2} dz}$$
$$= \frac{\sqrt{2\pi c_n}}{|f'_n(\delta m_n)| \mathbb{P}(0 < Z < m_n\sqrt{c_n})}$$

To bound the rightmost hand side of (2), we claim that the following estimates hold:

(3)
$$c_n = \Theta(nm_n^2),$$

(4)
$$nm_n^3 = O(|f_n'(\delta m_n)|).$$

Given these two estimates, we immediately have

(5)
$$m_n\sqrt{c_n} = \Theta(m_n^2\sqrt{n}) \ge \Theta(A_n^{2/3}\sqrt{n}) \to \infty.$$

as $A_n \gg n^{-3/4}$ by assumption. Thus the rightmost hand side of (2) can be bounded by

$$\frac{m_n\sqrt{n}}{nm_n^3} = \frac{1}{m_n^2\sqrt{n}} \to 0,$$

where the last conclusion uses (5). This completes the proof of Part (c).

It thus remains to prove the estimates (3) and (4). To this effect, note that

$$f_n''(2m_n) = \sum_{i=1}^n \tanh^2(2m_n + \mu_i)$$

$$\leq \sum_{i=1}^n \left(\tanh(2m_n) + C_1 \tanh(\mu_i) \right)^2$$

$$\leq 2n \tanh^2(2m_n) + 2C_1^2 \sum_{i=1}^n \tanh^2(\mu_i)$$

$$\lesssim nm_n^2 + nA(\mu_n) \lesssim nm_n^2,$$

where the last step uses part (a), and $C_1 < \infty$ is a universal constant. This gives the upper bound in (3). For the lower bound of (3) we have

$$f_n''(m_n) = \sum_{i=1}^n \tanh^2(2m_n + \mu_i) \ge n \tanh^2(2m_n) \gtrsim nm_n^3.$$

Turning to prove (4) we have

$$|f'_{n}(\delta m_{n})| = \sum_{i=1}^{n} \tanh(\delta m_{n} + \mu_{i}) - n\delta m_{n}$$
$$= \left[\sum_{i=1}^{n} \tanh(\delta m_{n} + \mu_{i}) - \tanh(\delta m_{n})\right] - n[\delta m_{n} - \tanh(\delta m_{n})]$$
$$\geq C_{2}nA(\mu_{n}) - C_{3}n\delta^{3}m_{n}^{3}$$
$$\gtrsim nm_{n}^{3},$$

where δ is chosen small enough, and $C_2 > 0, C_3 < \infty$ are universal constants. This completes the proof of (4), and hence completes the proof of the lemma.

REFERENCES

CHATTERJEE, S. (2005). Concentration inequalities with exchangeable pairs (PhD thesis). arXiv preprint math/0507526.

CHATTERJEE, S. (2007). Stein's method for concentration inequalities. Probability theory and related fields **138** 305–321.

Division of Biostatistics, Haviland Hall, Berkeley, CA- 94720. E-mail: rmukherj@berkeley.edu DEPARTMENT OF STATISTICS 1255 AMSTERDAM AVENUE NEW YORK, NY-10027. E-MAIL: sm3949@columbia.edu E-MAIL: ming.yuan@columbia.edu

8