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APPENDIX – PROOF OF AUXILIARY RESULTS

Proof of Lemma 1. This is a standard application of Stein’s Method
for concentration inequalities (Chatterjee, 2005). The details are included
here for completeness. One begins by noting that

EQ,µµµ (Xi|Xj , j 6= i) = tanh (mi (X) + µi) , mi (X) :=
n∑
j=1

QijXj .

Now let X be drawn from (1) and let X
′

is drawn by moving one step
in the Glauber dynamics, i.e. let I be a random variable which is discrete
uniform on {1, 2, · · · , n}, and replace the Ith coordinate of X by an element
drawn from the conditional distribution of the Ith coordinate given the rest.
It is not difficult to see that (X,X

′
) is an exchangeable pair of random

vectors. Further define an anti-symmetric function F : Rn × Rn → R as
F (x,y) =

∑n
i=1 (xi − yi), which ensures that

EQ,µµµ

(
F (X,X

′
)|X
)

=
1

n

n∑
j=1

Xj − tanh (mj (X) + µj) = fµµµ(X).

Denoting Xi to be X with Xi replaced by −Xi, by Taylor’s series we have

tanh(mj(X
i) + µj)− tanh(mj(X) + µj)

=(mj(X
i)−mj(X))g′(mj(X)) +

1

2
(mj(X

i)−mj(X))2g′′(ξij)

=− 2QijXig
′(mj(X)) + 2Q2

ijg
′′(ξij)
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for some {ξij}1≤i,j≤n, where g(t) = tanh(t). Thus fµµµ(X) − fµµµ(Xi) can be
written as

fµµµ(X)− fµµµ(Xi) =
2Xi

n
+

1

n

n∑
j=1

{
tanh

(
mj

(
Xi
)

+ µj
)
− tanh (mj (X) + µj)

}
=

2Xi

n
− 2Xi

n

n∑
j=1

Qijg
′(mj(X)) +

2

n

n∑
j=1

Q2
ijg
′′(ξij)

Now setting pi(X) := PQ,µµµ(X ′i = −Xi|Xk, k 6= i) we have

v(X) :=
1

2
EQ,µµµ

(
|fµµµ(X)− fµµµ(X′)‖(XI −X ′I)|

∣∣∣X)
=

1

n

n∑
i=1

|fµµµ(X)− fµµµ(Xi)|pi(X)

≤ 2

n2

n∑
i=1

pi(X)− 2

n2

n∑
i,j=1

|Qijpi(X)g′(mj(X))|

+
2

n2

n∑
i,j=1

Q2
ijg
′′(ξij)

2Xipi(X)

≤ 2

n
+

2

n2
sup

u,v∈[0,1]n
|u′Qv|+ 2

n2

n∑
i,j=1

Q2
ij ,

where in the last line we use the fact that max(|g′(t)|, |g′′(t)|) ≤ 1. The
proof of the Lemma is then completed by an application of Theorem 3.3 of
Chatterjee (2007).

Proof of Lemma 2. Let Y := (Y1, · · · , Yn) be i.i.d. random variables

on {−1, 1} with P(Yi = ±1) = 1
2 , and let W := (W1, · · · ,Wn)

i.i.d.∼ N(0, 1).
Also, for any t > 0 let Z(tQ, µ) denote the normalizing constant of the p.m.f.

1

Z(tQ,µµµ)
exp

(
1

2
x>tQx +µµµ>x

)
Thus we have

2−nZ(tQ,µµµ) = Eexp
( t

2
Y>QY +

n∑
i=1

µiYi

)
≤ Eexp

( t
2
W>QW +

n∑
i=1

µiWi

)
,

where we use the fact that EY k
i ≤ EW k

i for all positive integers k. Using

spectral decomposition write Q = P>ΛP and set ν := Pµµµ,W̃ = PW to
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note that

Eexp
( t

2
W>QW +

n∑
i=1

µiWi

)
= Eexp

( t
2

n∑
i=1

λiW̃
2
i +

n∑
i=1

νiW̃i

)
=

n∏
i=1

e
ν2i

2(1−tλi)
√

1− tλi
.

Combining for any t > 1 we have the bounds

2n
n∏
i=1

cosh(µi) = Z(0,µµµ) ≤ Z(Q,µµµ) ≤ Z(tQ,µµµ) ≤ 2n
e
∑n
i=1

ν2i
2(1−tλi)∏n

i=1

√
1− tλi

,(1)

where the lower bound follows from on noting that logZ(tQ,µµµ) is monotone
non-decreasing in t, using results about exponential families. Thus invoking
convexity of the function t 7→ logZ(tQ,µµµ) we have

EQ,µµµ
1

2
X>QX =

∂ logZ(tQ,µµµ)

∂t

∣∣∣
t=1

≤ logZ(tQ,µµµ)− logZ(Q,µµµ)

t− 1

≤
n∑
i=1

{ ν2i
2(1− tλi)

− log cosh(µi)
}
−

n∑
i=1

1

2
log(1− tλi),

where we use the bounds obtained in (1). Proceeding to bound the rightmost
hand side above, set t = 1+ρ

2ρ > 1 and note that

|tλi| ≤
1 + ρ

2
< 1.

For x ∈ 1
2 [−(1 + ρ), (1 + ρ)] ⊂ (−1, 1) there exists a constant γρ < ∞ such

that
1

1− x
≤ 1 + x+ 2γρx

2, − log(1− x) ≤ x+ 2γρx
2.

Also a Taylor’s expansion gives

− log cosh(x) ≤ −x
2

2
+ x4,

where we have used the fact that ‖(log cosh(x))(4)‖∞ ≤ 1. These, along with
the observations that

n∑
i=1

λi = tr(Q) = 0,
n∑
i=1

ν2i = ||Pµµµ||2 = ||µµµ||2
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give the bound

n∑
i=1

{ ν2i
2(1− tλi)

− log cosh(µi)
}
−

n∑
i=1

1

2
log(1− tλi)

≤
{1

2

n∑
i=1

ν2i +
t

2

n∑
i=1

ν2i λi + t2γρ

n∑
i=1

ν2i λ
2
i

}
+
{
− 1

2

n∑
i=1

µ2i +

n∑
i=1

µ4i

}
+ γρt

2
n∑
i=1

λ2i

=
t

2
µµµ>Qµµµ+ t2γρµµµ

>Q2µµµ+
n∑
i=1

µ4i + γρt
2

n∑
i,j=1

Q2
ij

≤ t
2
Cρ
√
n+ t2γρCρ

2√n+ C
√
n+ γρt

2D
√
n,

where D > 0 is such that
∑n

i,j=1 Q2
ij ≤ D

√
n. This along with (1) gives

[1

2
C(1 + tρ) + t2γρCρ

2 + C + γρt
2D
]√

n ≥1

2
EQ,µµµX

>QX =
1

2
EQ,µµµ

n∑
i=1

Ximi(X)

But, for some random (ξi, i = 1, . . . , n)

1

2
EQ,µµµ

n∑
i=1

Ximi(X)

=
1

2
EQ,µµµ

n∑
i=1

tanh(mi(X) + µi)mi(X)

=
1

2
EQ,µµµ

n∑
i=1

tanh(mi(X))mi(X) +
1

2
EQ,µµµ

n∑
i=1

µimi(X) sech2(ξi).

Now,

1

2
EQ,µµµ

n∑
i=1

tanh(mi(X))mi(X) ≥η
2
EQ,µµµ

n∑
i=1

mi(X)2,

where

η := inf
|x|≤1

tanh(x)

x
> 0.

The desired conclusion of the lemma follows by noting that∣∣∣EQ,µµµ

n∑
i=1

µimi(X) sech2(ξi)
∣∣∣ ≤ C√n.
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Proof of Lemma 3. We begin with Part (a). By a simple algebra, the
p.m.f. of X can be written as

Pθ,µµµ(X = x) ∝ exp

{
nθ

2
x̄2 +

n∑
i=1

xiµi

}
.

Consequently, the joint density of (X, Zn) with respect to the product mea-
sure of counting measure on {−1, 1}n and Lebesgue measure on R is pro-
portional to

exp

{
nθ

2
x̄2 +

n∑
i=1

xiµi −
nθ

2
(z − x̄)2

}

=exp

{
−nθ

2
z2 +

n∑
i=1

xi(µi + zθ)

}
.

Part (a) follows from the expression above.
Now consider Part (b). Using the joint density of Part (a), the marginal

density of Zn is proportional to∑
x∈{−1,1}n

exp

{
−nθ

2
z2 +

n∑
i=1

xi(µi + zθ)

}

=exp

{
−nθ

2
z2 +

n∑
i=1

log cosh(µi + zθ)

}
= e−fn,µµµ(z),

thus completing the proof of Part (b).
Finally, consider Part (c). By Part (a) given Zn = z the random variables

(X1, · · · , Xn) are independent, with

Pθ,µµµ(Xi = 1|Zn = z) =
eµi+θz

eµi+θz + e−µi−θz
,

and so

Eθ,µµµ(Xi|Zn = z) = tanh(µi + θz), Varθ,µµµ(Xi|Zn = n) = sech2(µi + θz).

Thus for any µµµ ∈ [0,∞)n we have

Eθ,µµµ
( n∑
i=1

(Xi − tanh(µi + θZn))
)2

=Eθ,µµµEθ,µµµ
{( n∑

i=1

(Xi − tanh(µi + θZn))
)2∣∣∣Zn}

=E
n∑
i=1

sech2(µi + θZn) ≤ n.
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Proof of Lemma 4. We begin with Part (a). Since

f ′′n,µµµ(z) =
n∑
i=1

tanh2(z + µi)

is strictly positive for all but at most one z ∈ R, the function z 7→ fn,µµµ(z) is
strictly convex with fn,µµµ(±∞) =∞, it follows that z 7→ fn,µµµ(z) has a unique
minima mn which is the unique root of the equation f ′n,µµµ(z) = 0. The fact
that mn is positive follows on noting that

f ′n,µµµ(0) = −
n∑
i=1

tanh(µi) < 0, f ′n,µµµ(+∞) =∞.

Also f ′n(mn) = 0 gives

mn =
1

n

n∑
i=1

tanh(mn + µi) ≤ 1,

and so mn ∈ (0, 1]. Finally, f ′n,µµµ(mn) = 0 can be written as

mn − tanh(mn) =
s

n

[
tanh(mn +B)− tanh(mn)

]
≥ C s

n
tanh(B),

for some C > 0, which proves Part (a).
Now consider Part (b). By a Taylor’s series expansion around mn and

using the fact that f ′′n(z) is strictly increasing on (0,∞) gives

fn(z) ≥ fn(mn) +
1

2
(z −mn)2f ′′n(mn +Kn−1/4) for all z ∈ [mn +Kn−1/4,∞)

fn(z) ≤ fn(mn) +
1

2
(z −mn)2f ′′n(mn +Kn−1/4) for all z ∈ [mn,mn +Kn−1/4].

Setting bn := f ′′n(mn +Kn−1/4) this gives

Pθ,µµµ(Zn > mn +Kn−1/4)

=

∫
mn+Kn−1/4 e−fn(z)dz∫

R e
−fn(z)dz

≤
∫∞
mn+Kn−1/4 e

− bn
2
(z−mn)2dz∫mn+Kn−1/4

mn
e−

bn
2
(z−mn)2dz

=
P(N(0, 1) > Kn−1/4

√
bn)

P(0 < N(0, 1) < Kn−1/4
√
bn)

,
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from which the desired conclusion will follow if we can show that lim infn→∞ n
−1/2bn >

0. But this follows on noting that

n−1/2bn = n−1/2f ′′n(mn +Kn−1/4)) ≥
√
n tanh2(Kn−1/4) = K2Θ(1).

Finally, let us prove Part (c). By a Taylor’s series expansion about δmn

and using the fact that fn(·) is convex with unique global minima at mn we
have

fn(z) ≥ fn(mn) + (z − δmn)f ′n(δmn), ∀z ∈ (−∞, δmn].

Also, as before we have

fn(z) ≤ fn(mn) +
1

2
(z −mn)2f ′′n(mn), ∀z ∈ [mn, 2mn]

Thus with cn := f ′′n(2mn) for any δ > 0 we have

Pθ,µµµ(Zn ≤ δmn) =

∫ δmn
−∞ e−fn(z)dz∫
R e
−fn(z)dz

≤
∫ δmn
−∞ e−(z−δmn)f

′
n(δmn)dz∫ 2mn

mn
e−

cn
2
(z−mn)2dz

=

√
2πcn

|f ′n(δmn)|P(0 < Z < mn
√
cn)

.(2)

To bound the the rightmost hand side of (2), we claim that the following
estimates hold:

cn =Θ(nm2
n),(3)

nm3
n =O(|f ′n(δmn)|).(4)

Given these two estimates, we immediately have

mn
√
cn = Θ(m2

n

√
n) ≥ Θ(A2/3

n

√
n)→∞,(5)

as An � n−3/4 by assumption. Thus the rightmost hand side of (2) can be
bounded by

mn
√
n

nm3
n

=
1

m2
n

√
n
→ 0,

where the last conclusion uses (5). This completes the proof of Part (c).
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It thus remains to prove the estimates (3) and (4). To this effect, note
that

f ′′n(2mn) =
n∑
i=1

tanh2(2mn + µi)

≤
n∑
i=1

(
tanh(2mn) + C1 tanh(µi)

)2
≤2n tanh2(2mn) + 2C2

1

n∑
i=1

tanh2(µi)

.nm2
n + nA(µn) . nm2

n,

where the last step uses part (a), and C1 <∞ is a universal constant. This
gives the upper bound in (3). For the lower bound of (3) we have

f ′′n(mn) =
n∑
i=1

tanh2(2mn + µi) ≥ n tanh2(2mn) & nm3
n.

Turning to prove (4) we have

|f ′n(δmn)| =
n∑
i=1

tanh(δmn + µi)− nδmn

=
[ n∑
i=1

tanh(δmn + µi)− tanh(δmn)
]
− n[δmn − tanh(δmn)]

≥C2nA(µn)− C3nδ
3m3

n

&nm3
n,

where δ is chosen small enough, and C2 > 0, C3 <∞ are universal constants.
This completes the proof of (4), and hence completes the proof of the lemma.
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