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Abstract Weconsider the Pottsmodelwith q colors on a sequence ofweighted graphs
with adjacency matrices An , allowing for both positive and negative weights. Under
a mild regularity condition on An we show that the mean-field prediction for the log
partition function is asymptotically correct, whenever tr(A2

n) = o(n). In particular,
our results are applicable for the Ising and the Potts models on any sequence of graphs
with average degree going to +∞. Using this, we establish the universality of the
limiting log partition function of the ferromagnetic Potts model for a sequence of
asymptotically regular graphs, and that of the Ising model for bi-regular bipartite
graphs in both ferromagnetic and anti-ferromagnetic domain. We also derive a large
deviation principle for the empirical measure of the colors for the Potts model on
asymptotically regular graphs.

Keywords Ising measure · Potts model · Log partition function · Mean-field · Large
deviation

Mathematics Subject Classification 60K35 · 82B20 · 82B44

1 Introduction

One of the fundamental models in statistical physics is the nearest neighbor q-state
Potts model. For a finite undirected graph G := (V, E), with vertex set V , and edge
set E , the Potts model is a probability measure on [q]|V | with [q] := {1, 2, . . . , q},
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where | · | denotes the cardinality of a set. The probability mass function for the Potts
model at y := {yi , i ∈ V } is given by

μβ,B( y) := 1

ZG(β, B)
exp

⎧
⎨

⎩
β

∑

(i, j)∈E
δ(yi , y j ) + B

∑

i∈V
δ(yi , 1)

⎫
⎬

⎭
. (1.1)

Here δ(y, y′) = 1y=y′ , and ZG(β, B) is the normalizing constant, which is commonly
termed as the partition function. The parameters β and B are known as inverse tem-
perature parameter and external magnetic field parameters respectively, with β ≥ 0
is said to be the ferromagnetic regime, and β < 0 is the anti-ferromagnetic regime.
When q = 2, the measure μβ,B(·) is the well known Ising measure.

Although Ising and Potts models originated from statistical physics [34,41], due to
its wide applications it has received a lot of recent interest from varied areas, including
statistics (cf. [1,5,15,42] and references therein), computer science (cf. [4,12,31,44]
and references therein), combinatorics, finance, social networks, computer vision,
biology, and signal processing. Potts models on graphs also have connections with
many graph properties, such as the number of proper colorings, max cut, min cut, min
bisection (cf. [2,10,11,22] and references therein), which are of interest in classical
graph theory. One of the main difficulties in the study of the Ising and the Potts model
is the intractability of its partition function. If the partition function were available
in closed form, one could analyze it to compute moments and limiting distributions,
carry on inference in a statistical framework using maximum likelihood, or compute
thermodynamic limits of these models which are of interest in statistical physics.
As the partition function involves summing the unnormalized mass function over
exponentially many terms, computing the partition function numerically or otherwise
is challenging in general. Since exact computations are infeasible, they are broadly two
approaches to tackle this problem. A branch of research is directed towards devising
efficient algorithms to approximate the log partition function (cf. [35,46], and the
references therein). Whereas, probabilists are interested in studying the asymptotics
of the log partition function for sequence of graphs Gn for large n (cf. [23,24,28,29]
and references therein), in an attempt to understand these measures. More precisely,
considering a sequence of graphs Gn := ([n], En), with growing size, the goal is to
compute the asymptotic limiting log partition function �(β, B), where

�(β, B) := lim
n→∞

1

n
�n(β, B),

and�n(β, B) := log ZGn (β, B). To get a non-trivial value of�(β, B) one must scale
β appropriately depending on |En|. In particular, the inverse temperature parameter in
(1.1) should be replaced by βn := (n/2|En|)β for the Potts model onGn . This scaling
ensures that �(β, B) is not a constant function for all choices of β, and B. By a slight
abuse of notation we denote this measure by μ

β,B
n (·).

One common scheme of approximating �n(β, B) is via the naive mean-field
method. Mean-field method has been in the statistical physics literature for a long
time (see [14,38]). Below we describe the mean-field method in our context in detail:
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1.1 Mean-field method

Let P([q]n) denote the space of probability measures on [q]n . For any two measures
μ, ν ∈ P([q]n) define the Kullback–Leibler divergence between μ and ν by

D(μ||ν) :=
∑

y∈[q]n
μ( y) logμ( y) −

∑

y∈[q]n
μ( y) log ν( y),

where 0 log 0 = 0 and log 0 = −∞ by convention.
Then, for any q ∈ P([q]n) an easy computation gives

D(q||μβ,B
n ) = �n(β, B) +

∑

y∈[q]n
q( y) log q( y) −

∑

y∈[q]n
q( y)Hβ,B

n ( y),

where

Hβ,B
n ( y) := βn

∑

(i, j)∈En

δ(yi , y j ) + B
∑

i∈[n]
δ(yi , 1).

Since D(q||μβ,B
n ) ≥ 0, with equality iff q = μ

β,B
n , we get

�n(β, B) = sup
q∈P([q]n)

⎧
⎨

⎩

∑

y∈[q]n
q( y)Hβ,B

n ( y) −
∑

y∈[q]n
q( y) log q( y)

⎫
⎬

⎭
. (1.2)

In literature (1.2) is known as the variational formula for the log partition function
�n(β, B). From (1.2) one can obtain a lower bound on �n(β, B) by restricting the
supremum in (1.2) to product measures, i.e. q = ∏

i∈[n] qi ∈ P([q])n . Therefore

�n(β, B) ≥ sup
q∈P([q])n

Mβ,B
n (q), (1.3)

where

Mβ,B
n (q) :=

⎧
⎨

⎩
βn

∑

(i, j)∈En

∑

r∈[q]
qi (r)q j (r) + B

∑

i∈[n]
qi (1) −

∑

i∈[n],r∈[q]
qi (r) log qi (r)

⎫
⎬

⎭
.

(1.4)

The RHS of (1.3) is referred as the mean-field approximation for the log-partition
function �n(β, B).

Since the supremum in (1.3) is much more tractable than the one in (1.2), it is
therefore naturally interesting to find graph sequences forwhich (1.3) is asymptotically
tight. For the complete graph it has been long known that the mean-field prediction
is indeed tight for both Ising and Potts measure (see [28–30]). However, for locally
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tree-like graphs (see [23, Definition 1.1]) this is not the case. Indeed, in [20] it is shown
that the Bethe prediction is the correct answer for Ising measures on such graphs when
the limiting tree is a Galton–Watson tree whose off-spring distribution have a finite
variance. In [26] it was extended for power law distribution, and finally in [23] it was
extended to full generality. Moreover the same was shown be true for the Potts model
on regular graphs in [23,24].

For the complete graph on n vertices one has �(n2) edges, whereas locally tree-
like graphs has only O(n) edges (see Definition 1.2 for O(·), and �(·)). Therefore,
it is natural to ask for graph sequences such that n � |En| � n2, if one of the
two predictions is correct for the limiting log partition function. Very few results are
known about the asymptotics of the log partition function in this regime. See however
[9, Theorem 2.10] which in particular shows that if a sequence of graphs converges in
L p cut metric, then corresponding log partition functions converge. Also, it follows
from [13, Theorem 1] that the mean field approximation is correct for the limiting
log-partition function of Potts models on a sequence of growing graphs in Z

d , when
d goes to ∞ as well. We re-derive both these results to demonstrate flexibility of our
approach (see Theorem 2.4 and Example 1.3.1(d) respectively).

In this paper, we consider Ising and Potts measures (we consider a slightly gen-
eralized version of standard Potts model, see Definition 1.1) on graphs with growing
sizes such that |En|/n → ∞, as n → ∞, and show that the asymptotic log partition
function can be expressed as a variational problem (see Theorem 1.1). Building on
Theorem 1.1, and focusing on asymptotically regular graphs, we prove the univer-
sality of the limiting log partition function in the ferromagnetic domain, and confirm
that it matches with the one obtained from the complete graph (see Theorem 2.1).
We further derive asymptotic log partition function for bi-regular bipartite graphs (see
Theorem 2.3). Recently, in [9] the asymptotic log partition function was derived for
graph sequences converging in cut metric. As a byproduct of Theorem 1.1 we give an
alternate proof of the same (see Sect. 2.3). For an outline of the proof techniques of
the results we refer the reader to Sect. 1.4.

1.2 Statement of main theorem

We will work with the following slightly general version of the Potts model.

Definition 1.1 For q ≥ 2, let J , h be a symmetric q×q matrix, and a vector of length
q respectively. Also let An be a real symmetric n× n matrix. We define a hamiltonian
H J,h

n (·) on [q]n by setting

H J,h
n ( y) := 1

2

n∑

i, j=1

An(i, j)
q∑

r,s=1

Jrsδ(yi , r)δ(y j , s) +
n∑

i=1

q∑

r=1

hrδ(yi , r), (1.5)

where y := (y1, . . . , yn). Using H J,h
n (.) we now define the following probability

measure on [q]n :
μJ,h
n ( y) := 1

Zn(J, h)
exp(H J,h

n ( y)), (1.6)
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where

Zn(J, h) :=
∑

y∈[q]n
eH

J,h
n ( y).

Considering J to be the identity matrix Iq , h = B(1, 0, 0, . . . , 0), and An to be
the adjacency matrix of Gn divided by 2|En|/n, we see that the probability measure
μ

J,h
n in (1.6) is a generalized version of the standard Potts measure μ

β,B
n . Throughout

most of the article, we will fix a choice of {An}n∈N, J , and h. Therefore, to lighten
the notation we will often write μn(·) instead of μ

J,h
n (·).

Now similarly as before we define the log partition function

�n(J, h) := log Zn(J, h).

Arguing same as before we also obtain that

�n(J, h) = sup
q∈P([q]n)

⎧
⎨

⎩

∑

y∈[q]n
q( y)H J,h

n ( y) −
∑

y∈[q]n
q( y) log q( y)

⎫
⎬

⎭
, (1.7)

and

�n(J, h) ≥ sup
q∈P([q])n

MJ,h
n (q), (1.8)

where

MJ,h
n (q) :=

⎧
⎨

⎩

1

2

n∑

i, j=1

An(i, j)
q∑

r,s=1

qi (r)qj (s)Jrs +
n∑

i=1

q∑

r=1

hrqi (r) −
n∑

i=1

q∑

r=1

qi (r) log qi (r)

⎫
⎬

⎭
.

(1.9)

In Theorem 1.1 below we show that under a fairly general condition (1.8) is actually
tight as n → ∞. Before going to the statement of Theorem 1.1, for convenience of
writing, first let us introduce the following notation:

Definition 1.2 Let an and bn be two non-negative sequences of real numbers.Wewrite
an = o(bn) if limn→∞ an

bn
= 0, whereas an = O(bn) implies lim supn→∞ an

bn
< ∞.

Note that an = O(bn) includes the possibility of an = o(bn). Next we use the notation
an = �(bn), if an = O(bn) and bn = O(an).

Note that for both Ising and Potts model we must assume some conditions on An to
ensure that the resulting log partition is O(n), or equivalently the limiting log partition
function to be non-trivial. In this paper we work with the following condition:

sup
x∈[0,1]n

∑

i∈[n]

∣
∣
∣
∣
∣
∣

∑

j∈[n]
An(i, j)x j

∣
∣
∣
∣
∣
∣
= O(n). (1.10)
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Now let us denote ‖J‖∞ := maxr,s∈[q] |Jr,s | and ‖h‖∞ := maxr∈[q] |hr |. Since

|H J,h
n ( y)| ≤ ‖J‖∞

2

∑

i∈[n],r,s∈[q]

∣
∣
∣
∣
∣
∣

∑

j∈[n]
An(i, j)δ(y j , s)

∣
∣
∣
∣
∣
∣
+ ‖h‖∞

∑

i∈[n]

∑

r∈[q]
δ(yi , r)

≤ ‖J‖∞
2

∑

r,s∈[q]
sup

x∈[0,1]n
∑

i∈[n]

∣
∣
∣
∣
∣
∣

∑

j∈[n]
An(i, j)x j

∣
∣
∣
∣
∣
∣
+ n ‖h‖∞ ,

it follows by (1.10) that | sup y∈[q]n H
J,h
n ( y)| = O(n), which implies �n(J, h) =

O(n) as well.
When all entries of An have the same sign, condition (1.10) is equivalent to

‖An‖1 :=
∑

i, j∈[n]
|An(i, j)| = O(n).

If (1.10) does not hold then there exists J, h such that the resulting log partition
function �n(J, h) scales super linearly. For example, if all entries of An are positive,
J = β Iq , then for any β > 0 an application of the mean-field lower bound gives
limn→∞ 1

n�n(β, B) = +∞, thus proving that (1.10) is necessary for the log partition
function to be O(n) in general. If An has both positive and negative entries, (1.10)
continues to hold formanywell-knownmodels with both positive and negative entries,
such as the Sherrington–Kirkpatrick model and Hopfield model (see Sect. 1.3).

Of course we do not expect the mean-field approximation to hold for all matrices
An satisfying (1.10). For example, it is known that the mean-field approximation is not
correct for the Sherrington–Kirkpatrick model [45], or Ising models on sparse graphs
[21]. With this in mind we introduce the following definition.

Definition 1.3 Suppose An is a sequence of symmetric n × n matrices satisfying
(1.10). We say that An satisfies the mean-field assumption if tr(A2

n) = o(n).

Now we are ready to state our first result.

Theorem 1.1 If An satisfies the mean-field assumption, then

lim
n→∞

1

n

[

�n(J, h) − sup
q∈P([q])n

MJ,h
n (q)

]

= 0.

Theorem 1.1 essentially says that if An is a sequence of matrices which satisfies
the mean-field assumption then the mean-field approximation gives the right answer
for the log partition function upto an error which is o(n).

As an application of Theorem 1.1, one immediately obtains the following corollary.
This corollary will be used in all of our applications involving graphs.

Corollary 1.2 Suppose Gn is a sequence of simple graphs, and An is the adjacency
matrix ofGn := ([n], En)multiplied by n/(2|En|), where |En| is the number of edges.
Then the conclusion of Theorem 1.1 holds if n = o(|En|).
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Proof Since

sup
x∈[0,1]

∑

i∈[n]

∣
∣
∣
∣
∣
∣

∑

j∈[n]
An(i, j)x j

∣
∣
∣
∣
∣
∣
=

∑

i, j∈[n]
An(i, j) = n,

(1.10) holds. Also we have

1

n

∑

i, j∈[n]
An(i, j)

2 = n

2|En|2 |En| = O

(
n

|En|
)

= o(1),

and so An satisfies the mean-field assumption. The conclusion then follows by Theo-
rem 1.1. 
�
Below we consider few different choices of An , and verify for which of those the
mean-field assumption is satisfied.

1.3 Examples

This is broadly divided into two categories.

1.3.1 Matrices An which are scaled adjacency graphs

(a) Let Gn be any sequence of simple dense labeled graphs on n vertices, i.e. it has
�(n2) edges. Let An be adjacency matrix of Gn scaled by n, i.e. An(i, j) :=
1
n 1(i, j)∈En . Since this scaling is equivalent to the scaling proposed in Corol-
lary 1.2, it suffices to check that n = o(|En|). But this is immediate as
|En| = �(n2).

(b) Let Gn be a dn regular graph, and An(i, j) := 1
dn
1(i, j)∈En . In this case again the

scaling is the same one as that of Corollary 1.2, and so it suffices to check that
n = o(|En|). Since 2|En| = ndn , Corollary 1.2 holds iff dn → ∞.

(c) LetGn be an Erdős-Rényi random graph with parameter pn . Setting An(i, j) :=
1

npn
1(i, j)∈En it again suffices to check by Corollary 1.2 that n = o(|En|), in

probability. Since |En| has Bin(
(n
2

)
, pn) distribution,

2|En|
n2 pn

→1, in probability,

as soon as n2 pn → ∞, the mean-field assumption holds in probability iff npn →
∞. In particular the mean-field condition does not hold if pn = λ

n for some
λ < ∞.

(d) Let G(d)
n be the [−n1/d , n1/d ]d box of the d-dimensional integer lattice Zd .

Physicists have long been interested in studying Ising and Pottsmodels on lattices
(see [40,47], and the references therein). For any finite d, setting A(d)

n (i, j) :=
1
d 1{(i, j) ∈ En} we note that 1

n tr((A
(d)
n )2) = O( 1d ), and thus the sequence does

123



A. Basak, S. Mukherjee

not satisfy the mean-field assumption. So our results are not applicable on Z
d for

finite d. However, if we allow d to go to infinity (at any rate) along with n, then
Corollary 1.2 is applicable. One can check that this also implies that if we let
d → ∞ after letting n → ∞, the same conclusion continues to hold. Behavior
of limiting log-partition function for the Potts model on Z

d for large d has been
studied in [6,13]. We recover their results as an application of Corollary 1.2

1.3.2 Matrices with both positive and negative entries

A general sufficient condition for (1.10) to hold is ‖An‖ := supx:‖x‖2=1 ‖Anx‖2 =
O(1). To see this note that an application of Cauchy–Schwarz inequality gives

sup
x∈[0,1]n

∑

i∈[n]

∣
∣
∣
∣
∣
∣

∑

j∈[n]
An(i, j)x j

∣
∣
∣
∣
∣
∣
≤ √

n sup
x∈[0,1]n

‖Anx‖2 ≤ √
n ‖An‖ sup

x∈[0,1]n
‖x‖2 = O(n).

(a) Let An be a symmetric matrix with 0 on the diagonal, and An(i, j) = 1√
n
Z(i, j)

with

{Z(i, j)}1≤i< j≤∞
i.i.d.∼ N (0, 1).

This is the celebrated Sherrington–Kirkpatrick model of statistical physics intro-
duced in [43]. Since ‖An‖ = O(1), in probability, in this case (see [3, Theorem
2.12]), (1.10) holds. However An does not satisfy the mean-field assumption, as

1

n

∑

i, j∈[n]
An(i, j)

2 = 1

n2
∑

i, j∈[n]
Z(i, j)2→ 1, in probability.

This is expected, as the log partition function in this case is given by the Parisi
formula, and not by the mean-field approximation.

(b) Let η be an n × m matrix of i.i.d. random variables with P(ηik = ±1) = 1
2 , and

let

An(i, j) = 1

n

∑

k∈[m]
ηikη jk .

This is the Hopfield model of neural networks, first introduced in [33]. In this
case also one has ‖An‖ = O(1), in probability, when m = �(n) (see [3,
Section 2.2.2]), and therefore (1.10) holds. Proceeding to check the mean-field
condition one has

1

n
E

∑

i, j∈[n]
An(i, j)

2 = 1

n3
∑

i, j∈[n]k,l∈[m]
[δ(i, j) + δ(k, l) − δ(i, j)δ(k, l)]

= nm2 + n2m − mn

n3
,

and so the mean-field condition does not hold for m = �(n).
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1.4 Proof technique

Establishing the conclusion of Theorem 1.1 for graphs whose adjacency matrix has
a single dominant eigenvalue is much easier, since in that case the behavior of the
log partition function is governed by that eigenvalue. This is indeed the case for
Erdős-Rényi random graphs on n vertices with parameter pn such that npn � log n.
For example, in this regime the largest eigenvalue equals npn(1 + o(1)) (see [36,
Section 1]), whereas the second largest eigenvalue is o(npn) (see [32, Theorem 1.1]),
providing a spectral gap. Similarly for random dn-regular graphs on n vertices, one
also has a spectral gap, as long as dn ≥ (log n)γ for some γ positive (see [17,19]).
More generally, any expander graph has a spectral gap, and therefore for such graphs
one can show that the mean-field approximation is asymptotically tight. However,
there are many graphs which are not expanders, such as the d-dimensional hypercube
{0, 1}d with d → ∞. In this case the number of vertices in the graph is n = 2d , and
it is well known that the set of eigenvalues are {d − 2i, 0 ≤ i ≤ d} with multiplicity
of d − 2i being

(d
i

)
. Thus the two largest eigenvalues are d and d − 2 whose ratio

converges to 1 as d becomes large, and consequently there is no dominant eigenvalue.
Even though there is no spectral gap in the hypercube, it is still the case that the

number of big eigenvalues is small. For example, the largest eigenvalue is d, and the
proportion of eigenvalues that lie outside the interval [−dδ, dδ], for any δ > 0, equals

1

n

n∑

i=1

1{|d − 2i | > dδ} = P

⎛

⎝

∣
∣
∣
∣
∣
∣

1

d

∑

i∈[d]
Bi − 1

2

∣
∣
∣
∣
∣
∣
> δ

⎞

⎠ ,

where {Bi }i∈[d] are i.i.d. Bernoulli random variables with P(Bi = 0) = P(Bi = 1) =
.5. By weak law of large numbers the RHS above is o(1), as d → ∞, and so the
proportion of eigenvalues which are comparable to the leading eigenvalue is o(1). Our
proof makes this precise proving Theorem 1.1 which covers not just the hypercube,
but any sequence of graphs Gn satisfying n = o(|En|) (see Corollary 1.2). In fact the
main condition of Theorem 1.1. i.e. the condition tr(A2

n) = o(n), can be rewritten as

1

n

n∑

i=1

λi (An)
2 = o(1),

which says that the (properly scaled) empirical eigenvalue distribution converges to 0
in L2. And of course, as already pointed out that the mean-field approximation does
not hold in general when |En| = �(n), thus demonstrating that the conditions of
Theorem 1.1, and Corollary 1.2 are tight.

The main tool in the proof of Theorem 1.1 is a modified version of [16, Theorem
1.5]. For readers not familiar with [16], we informally describe the theorem and the
ideas behind the proof of [16, Theorem 1.5]. Before proceeding, we define the notion
of a net of a set.

Definition 1.4 For any S ⊂ R
n and ε > 0, a set S̃ ⊂ R

n is said to be a ε net of S, if
given s ∈ S there exists (at least one) s̃ ∈ S̃ such that ‖s − s̃‖2 ≤ ε.
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The theorem assumes that f : [0, 1]n �→ R is a smooth function such that the set
{∇ f (u) : u ∈ {0, 1}n} has an √

nε netDn(ε) with log |Dn(ε)| = o(n), and concludes
that

log
∑

u∈{0,1}n
e f (u) = sup

u∈[0,1]n
{ f (u) − In(u)} + o(n),

where In(u) := ∑n
i=1 ui log ui + (1− ui ) log(1− ui ) is the binary entropy function,

and u := (u1, . . . , un).
For the proof, they introduce ameasure νn(·)on {0, 1}n given by νn(u) ∝ exp( f (u))

for u := (u1, u2, . . . , un) ∈ {0, 1}n . First it is argued that f (u) and f (̂u) are
close on a set with high probability under νn(·), say An (see [16, Lemma 3.1]).
Here ûi is conditional expectation of ui , conditioned on everything else. Therefore∑

u∈{0,1}n exp( f (u)) can be well approximated by
∑

u∈An
exp( f (̂u)). Turning to

evaluate the latter summation, it is further noted that g(u, û), and In (̂u) are also close
on An (see [16, Lemma 3.2]), where for u ∈ [0, 1]n , and w ∈ (0, 1)n ,

g(u,w) :=
∑

i∈[n]
ui logwi + (1 − ui ) log(1 − wi ), and In(w) := g(w,w).

Therefore one only needs to control
∑

u∈An
exp( f (̂u)+ g(u, û)− In (̂u)). To control

the above, the summation over An is broken into smaller sets where each sum is over
only those u for which û ≈ p, for some p ∈ [0, 1]n . Next instead of summing over
all choices of p ∈ [0, 1]n , the sum is restricted on the

√
nε-net of the image of the

map u �→ û, using the set Dn(ε). Thus one obtains

log
∑

u∈An

exp( f (̂u) + g(u, û) − In (̂u)) ≈ log
∑

p∈Dn(ε)

∑

u:̂u≈ p

exp( f ( p) + g(u, p) − In( p)). (1.11)

Finally noting that

∑

u∈{0,1}n
eg(u, p) = 1,

the proof follows as the size of Dn(ε) is sub-exponential.
In our proof we follow the same scheme. However, there are several challenges that

we had to overcome to apply this idea in our set-up. First, we need to find a netDn(ε)

with appropriate properties. In our set-up, we need to find a
√
nε-net Dn(ε) of the set

{Anv : v ∈ {0, 1}n}. Since we have very limited assumptions on the structure of An ,
obtaining a

√
nε-net is not straightforward. The main difficulty comes from the fact

that the eigenvalues of An can be unbounded. To overcome this, we split the range of
the eigenvalues into its level sets, and then we choose nets of varying size across each
of the level sets (for more details see proof of Lemma 3.4).

Equipped with Lemma 3.4, a direct application of [16, Theorem 1.5] proves The-
orem 1.1 for graphs Gn such that
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Universality of the mean-field for the Potts model

lim sup
n→∞

n
∑

i∈[n]

(
di (Gn)

∑
j∈[n] d j (Gn)

)2

< ∞, (1.12)

where {d1(Gn), . . . , dn(Gn)} are the degrees of Gn . The hypercube does satisfy this
condition, as does any regular graph. There are many graphs in literature such that
n = o(|En|), but (1.12) does not hold. For example, let Gn denote the complete
bipartite graph Kan ,n−an , where an is a sequence of natural numbers going to ∞ such
that an = o(n). In this case the LHS of (1.12) equals

n[an(n − an)2 + (n − an)a2n]
4a2n(n − an)2

= O

(
n

an

)

,

which is not O(1), as an = o(n). Since |En | = an(n−an)with an → ∞, Corollary 1.2
is still applicable for Kan ,n−an but [16, Theorem 1.5] does not apply.

To remove the requirement of (1.12) we modify the proofs of [16, Lemma 3.1],
and [16, Lemma 3.2]. In the proof of these two lemmas, at many places, supremum
norm bound is used for several functions. The condition (1.12) arises because of that.
Instead, we carefully use the assumption (1.10), and the fact that the hamiltonian in
our set-up is a quadratic function. This part of the proof has been inspired from [15].

In Sect. 2 we provide several applications of Theorem 1.1. One of which is the
computation of the limit for asymptotically regular graphs. To be more precise, we
call a sequence of graphs to be asymptotically regular if the empirical distribution of
the row sums of the properly scaled adjacency matrix converges to δ1, and if its mean
also converges to one. Using a truncation argument we derive the desired result. We
also find the limit for bi-regular bipartite graphs, for which we carefully analyze the
solutions of some fixed point equations. Lastly, we identify the limit for a sequence of
simple graphs converging in cut metric. This follows from a straightforward analysis
upon using Theorem 1.1.

1.5 Outline

The outline of the rest of the paper is as follows. As applications of Theorem 1.1, in
Sect. 2 we derive the asymptotics of the log partition function for ferromagnetic Potts
models on asymptotically regular graphs, that of Ising models (both ferromagnetic
and anti-ferromagnetic) on bi-regular bipartite graphs, and that of Potts model on a
sequence of simple graphs converging in cut metric in the L p sense. Section 3 carries
out the proof of Theorem 1.1 using three auxiliary lemmas, whose proofs are deferred
to Sect. 4. Finally in Sect. 5 we prove the results appearing in Sect. 2.

2 Applications of Theorem 1.1

2.1 Asymptotically regular graphs

In Theorem 1.1 we saw that the mean-field prediction is asymptotically correct when
An satisfies the mean-field condition. However, computing the supremum ofMJ,h

n (q)
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may often be very hard for general matrices An . Restricting ourselves to the case
J = β Iq for β > 0, in Theorem 2.1 below we show that when the matrices An

are “asymptotically regular” one can write the n-dimensional supremum as a one-
dimensional supremum, and thereby providing more tractable form of the limit. In
particular, setting hr = Bδ(r, 1), for asymptotically regular graphs the limit is same
as the one obtained for a Curie–Weiss Potts model.

Theorem 2.1 (a) Let An satisfies the mean-field assumption, and each entry of An

is non-negative. Also let J = β Iq , for some β ≥ 0. SetRn(i) := ∑n
j=1 An(i, j).

If

lim
n→∞

1

n

n∑

i=1

δRn(i)→δ1, in distribution, (2.1)

and

lim
n→∞

1

n

n∑

i=1

Rn(i) = 1, (2.2)

then

lim
n→∞

1

n
�n(J, h) = sup

q∈P([q])

[
β

2

q∑

r=1

q(r)2 −
q∑

r=1

q(r) log q(r) +
q∑

r=1

hrq(r)

]

.

(2.3)

(b) In particular, the conclusion of part (a) applies in the following two cases:
(i) Gn is a sequence of dn regular graphs with dn → ∞, and An = 1

dn
1(i, j)∈En .

(ii) Gn is an Erdős-Rényi random graph with parameter pn such that npn → ∞,
and An = 1

npn
1(i, j)∈En .

As an application of the above theorem, the following theorem derives the large
deviation for the empirical measure Ln on P([q]) defined by

Ln(r) := 1

n

∑

i∈[n]
δ(yi , r).

Below we recall a few definitions of large deviation theory which are necessary for
our paper.

Definition 2.1 Let (X ,B) be a measure space equipped with a topology such that
every open set is in B. A function I : X �→ [0,∞] is said to be a rate function if it
is lower semi continuous, i.e. for every α < ∞ the set {x ∈ X : I (x) ≤ α} is closed.
The function I is said to be a good rate function, if further the set {x ∈ X : I (x) ≤ α}
is compact as well. In particular if X is compact, any rate function is a good rate
function.
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A sequence of probability measures Pn on (X ,B) is said to satisfy a large deviation
on X with respect to a good rate function I (·), at speed n, if for every closed set F ,
and open set U , we have

lim sup
n→∞

1

n
logPn(F) ≤ − inf

x∈F I (x),

lim inf
n→∞

1

n
logPn(U ) ≥ − inf

x∈U I (x).

The large deviation reduces the concentration of measure problem to an optimiza-
tion problem involving the rate function. Next we introduce a few notations which
will be needed while solving this optimization problem.

Definition 2.2 For β > 0, B �= 0 let mβ,B denote the unique solution of m =
tanh(βm + B) with the same sign as that of B. For β > 1, B = 0 let mβ,0 denote the
unique positive root of the equation m = tanh(βm). The assertions about the roots of
the equation m = tanh(βm + B) can be found in [21, Section 1.1.3].

Theorem 2.2 (a) In the setting of Theorem 2.1, the sequence of empirical mea-
sures Ln satisfies a large deviation principle on P([q]) with speed n with
respect to Euclidean topology, with the good rate function Ĩβ,h(μ) := Iβ,h(μ) −
minμ∈P([q]) Iβ,h(μ), where

Iβ,h(μ) :=
∑

r∈[q]

(

μr logμr − βμ2
r

2
− hrμr

)

.

Consequently letting Kβ,h := argminμ∈P([q]) Iβ,h(μ), for any δ > 0 we have

lim sup
n→∞

1

n
logμn( min

μ∈Kβ,h
‖Ln − μ‖∞ ≥ δ) < 0. (2.4)

(b) Suppose we are in the setting of Theorem 2.1 with q = 2 (which corresponds to
Ising model).
(i) If h1 − h2 = 0 then

• For β ≤ 2, for any δ > 0 there exists ε = ε(β, δ) such that for all large
n we have

μn

⎛

⎝
1

n

∑

i∈[n]
{δ(yi , 1) − δ(yi , 2)} ∈ [−δ, δ]

⎞

⎠ ≥ 1 − e−nε.

• For β > 2, for any δ > 0 there exists ε = ε(β, δ) such that for all large
n we have

μn

⎛

⎝
1

n

∑

i∈[n]
{δ(yi , 1) − δ(yi , 2)} ∈ [mβ/2,0 − δ,mβ/2,0 + δ]

⎞

⎠ ≥ 1

2
− e−nε,
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μn

⎛

⎝
1

n

∑

i∈[n]
{δ(yi , 1) − δ(yi , 2)} ∈ [−mβ/2,0 − δ,−mβ/2,0 + δ]

⎞

⎠ ≥ 1

2
− e−nε,

where mβ,0 is as in Definition 2.2.
(ii) If h1 − h2 = B �= 0, for any δ > 0 there exists ε = ε(β, B, δ) such that for

all large n we have

μn

⎛

⎝
1

n

∑

i∈[n]
{δ(yi , 1) − δ(yi , 2)} ∈ [mβ/2,B/2 − δ,mβ/2,B/2 + δ]

⎞

⎠ ≥ 1 − e−nε,

where mβ,B is as in Definition 2.2.

Remark 2.1 Theorem 2.2(b) gives concentration results for 1
n

∑
i∈[n]{δ(yi , 1) −

δ(yi , 2)}, for the Ising model, i.e. for the Potts model of (1.1) for q = 2. If the
Ising model is formulated in such a way that the spins take values in {−1, 1}, then
one can easily see that the results of Theorem 2.2(b) are equivalent to the exponen-
tial concentration of average spin configuration in that set-up. This gives a complete
picture for the ferromagnetic Ising model μ

β I2,h
n for all choices of the vector h, for

asymptotically regular graphs. The optimization of Iβ,h for general q for some specific
choices of h is well known in the literature (see [7,18,27,29,30]). Using these results
similar concentration results can be derived for the Potts model on asymptotically
regular graphs, for those choices of h. We omit the details.

2.2 Ising model on bipartite graphs

This section focuses on the Ising model (q = 2) on bipartite graphs.

Definition 2.3 Let G(a,b),(c,d) denote a bi-regular bipartite graph on a + b labeled
vertices, such that the two partite sets have sizes a and b, and the common degree of
vertices in those two partite sets are c and d respectively. Thus we must have ac = bd,
which equals the number of edges.

In particular G(a,b),(b,a) denotes the complete bipartite graph with the two partite
sets having sizes a and b.

Definition 2.4 For any p ∈ (0, 1) and β ∈ R set ηβ,p(s) := tanh(β(1 −
p) tanh(βps)). By elementary calculus it follows that

(a) For β2 p(1 − p) ≤ 1 the equation s = ηβ,p(s) has the unique root 0.
(b) For β2 p(1 − p) > 1 the equation s = ηβ,p(s) has a unique positive root,

denoted hereafter by sβ,p. Thus the aforementioned equation has three roots,
namely 0, sβ,p , and −sβ,p. Applying implicit function theorem, we also note
that the function (β, p) �→ sβ,p is a continuously differentiable in the open set
{(β, p) : p(1 − p)β2 > 1}.
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Theorem 2.3 Let G(an ,n−an),(cn ,dn) be a sequence of bipartite graphs on n labeled
vertices, such that

lim
n→∞

an
n

= p ∈ (0, 1), (2.5)

and cn + dn → ∞, as n → ∞. Thus for q = 2, J = β I2 for some β ∈ R, h = 0 in
(1.6), setting An to be the adjacency matrix of G(an ,n−an),(cn ,dn) scaled by cn + dn we
have

(a) If β2 p(1 − p) ≤ 1, then

lim
n→∞ �n(β, 0) = βp(1 − p)

2
+ log 2.

(b) If β2 p(1 − p) > 1, then

lim
n→∞ �n(β, 0) = βp(1 − p)

2
+ |β|p(1 − p)

2
s|β|,ps|β|,1−p

+pH(s|β|,p) + (1 − p)H(s|β|,1−p),

where sβ,p(·) is as in Definition 2.4, and H(s) := − 1+s
2 log 1+s

2 − 1−s
2 log 1−s

2
for s ∈ [−1, 1].

2.3 Potts model on converging sequence of graphs in cut metric

The theory of dense graph limits was developed by Borgs, Chayes, Lovasz, and coau-
thors [10,11,37], and has received phenomenal attention over the last few years.

Recent works of Borgs et al [8,9] have extended this theory beyond the regime of
dense graphs. One of the results in [9] is the asymptotics of the log partition function
�n(J, h) of (1.6) of a sequence of graphs converging in the sense of cut metric to
functionsW that are unbounded. As a byproduct of Theorem 1.1we are able to provide
a short proof of their result. Before going to the statement of the result, we first need
to introduce necessary notations, and concepts. These are taken from [8,9].

Definition 2.5 A function W : [0, 1]2 �→ R is called a symmetric function if
W (x, y) = W (y, x) for all x, y ∈ [0, 1]. Any symmetric measurable function
W : [0, 1]2 �→ R which is L1 integrable, i.e. ‖W‖1 := ∫

[0,1]2 |W (x, y)|dxdy < ∞ is
called a graphon.

Given a symmetric n×n matrix An , define a graphon on [0, 1]2 by dividing [0, 1]2
into n2 smaller squares each of length 1/n, and settingWAn (x, y) := An(i, j) if (x, y)
is in the (i, j)-th box, i.e. �nx� = i, �ny� = j .

The cut norm of a graphon W is given by

‖W‖� =
∣
∣
∣
∣
∣

sup
S,T⊂[0,1]

∫

S×T
W (x, y)dxdy

∣
∣
∣
∣
∣
.

123



A. Basak, S. Mukherjee

After identifying graphons with cut distance zero, the set of equivalences classes of
graphons equipped with the cut metric is a compact metric space. The cut norm is
equivalent to the L∞ �→ L1 operator norm defined by

‖W‖∞�→1 := sup
f,g:‖ f ‖∞,‖g‖∞≤1

∣
∣
∣
∣

∫

[0,1]2
W (x, y) f (x)g(x)dxdy

∣
∣
∣
∣ .

More precisely, we have ‖W‖� ≤ ‖W‖∞�→1 ≤ 4 ‖W‖� .

Next we introduce the notion of fractional partition.

Definition 2.6 A q tuple of measurable functions ρ := (ρ1, . . . , ρq) : [0, 1]q �→
[0, 1]q , such that

∑

r∈[q]
ρr (x) = 1,∀x ∈ [0, 1],

will be called a fractional partition of [0, 1] into q classes. The set of fractional parti-
tions of [0, 1] into q classes will be denoted by FPq .

Now we are ready to state the result about the limiting log partition function for a
sequence of graphs converging in cut metric.

Theorem 2.4 Let Gn be a sequence of simple graphs, and let An be the adjacency
matrix of Gn scaled by 2|En |

n . If WnAn converges in cut metric to a graphon W, then
we have

lim
n→∞

1

n
�n(J, h) = sup

ρ∈FPq

F J,h(W, ρ),

where

F J,h(W, ρ) := 1

2

∑

r,s∈[q]
Jrs

∫

[0,1]2
ρr (x)ρs(y)W (x, y)dxdy

+
∑

r∈[q]
hr

∫

[0,1]
ρr (x)dx −

∫

[0,1]

∑

r∈[q]
ρr (x) log ρr (x)dx .

Theorem 2.4 follows from [9, Theorem 2.10], and [9, Lemma 3.2]. In Sect. 5 we
give a shorter proof of the same using Corollary 1.2.

3 Proof of Theorem 1.1

We begin with a simple lemma which allows us to assume that the entries of An are
o(1).
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Lemma 3.1 Let An be a sequence ofmatrices that satisfies themean-field assumption.
Then there is a sequence of matrices Ãn with 0 diagonal entries which also satisfies
the mean-field assumption such that maxi, j∈[n] | Ãn(i, j)| = o(1), and

|�n(J, h) − �̃n(J, h)| = o(n), sup
q∈P([q])n

|MJ,h
n (q) − M̃J,h

n (q)| = o(n),

where �̃n(J, h) and M̃J,h
n (q) are obtained by replacing An with Ãn in the corre-

sponding definitions.

Proof Since An satisfies the mean-field assumption, setting εn := n−1/2
√
tr(A2

n), we
see that εn → 0. Now defining an n × n symmetric matrix Ãn by

Ãn(i, i) := 0, Ãn(i, j) := An(i, j)1|An(i, j)|≤εn ,

one immediately has maxi, j∈[n] | Ãn(i, j)| ≤ εn → 0. Extending the definition of

H J,h
n (·) to P([q])n (see Definition 3.1 below for more details), and defining H̃

J,h
n

analogously one has

sup
q∈P([q])n

∣
∣
∣H J,h

n (q) − H̃
J,h
n (q)

∣
∣
∣ ≤ q ‖J‖∞

2

⎛

⎝
∑

i, j∈[n]
|An(i, j)|1|An(i, j)|>εn ) +

∑

i∈[n]
|An(i, i)|

⎞

⎠

≤ q ‖J‖∞
2εn

∑

i, j∈[n]
An(i, j)

2 + q ‖J‖∞
2

√

n
∑

i∈[n]
An(i, i)2

≤ nq ‖J‖∞ εn

2
+ q ‖J‖∞

2

√

n tr(A2
n) = o(n), (3.1)

which immediately implies supq∈P([q])n |MJ,h
n (q) − M̃J,h

n (q)| = o(n). Also we have

∣
∣�n(J, h) − �̃n(J, h)

∣
∣ =

∣
∣
∣
∣
∣
∣
log

∑
y∈[q]n eH

J,h
n ( y)

∑
y∈[q]n e H̃

J,h
n ( y)

∣
∣
∣
∣
∣
∣
≤ sup

y∈[q]n
|H J,h

n ( y) − H̃
J,h
n ( y)|

≤ sup
q∈P([q]n)

|H J,h
n (q) − H̃

J,h
n (q)|,

where the last inequality follows on noting that for any y ∈ [q]n setting qi (r) =
δ(yi , r) one has q ∈ P([q])n . Since the RHS above is o(n) by (3.1), the proof of the
lemma is complete. 
�

For the remaining of this section and the next, without loss of generality we will
assume that diagonal elements of An are 0, and maxi, j∈[n] |An(i, j)| = o(1). Next we
state three lemmas which are necessary for proving Theorem 1.1. First, for ease of
writing we introduce a few notations.
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Definition 3.1 For any y ∈ [q]n define the nq × 1 vector x := x( y) ∈ Xn by setting
xir := δ(yi , r), where

Xn :=
⎧
⎨

⎩
z ∈ {0, 1}nq :

∑

r∈[q]
zir = 1 for all i ∈ [n]

⎫
⎬

⎭
.

Let m : [0, 1]nq �→ [0, 1]nq by

mir (z) :=
q∑

s=1

Jrs

n∑

j=1

An(i, j)z js .

Note that, since diagonal entries of An are zero, mir (z) is free of {zis, s ∈ [q]}. Next
for every r ∈ [q], define a map Tr : (−∞,∞)q �→ (0, 1) by

Tr (m1,m2, . . . ,mq) := emr

∑
s∈[q] ems

.

Define another nq × 1 vector x̂ by

x̂ir := Pμn (Yi = r | Yk = yk, k �= i) = Tr (mi1 + h1, . . . ,miq + hq)

= exp (mir (x) + hr )
∑q

s=1 exp (mis(x) + hs)
,

and note that x̂ ∈ X̂n , where

X̂n :=
⎧
⎨

⎩
z ∈ (0, 1)nq :

∑

r∈[q]
zir = 1 for all i ∈ [n]

⎫
⎬

⎭
,

When Y := (Yi )i∈[n] ∼ μn , let X, X̂ denote the corresponding random vectors.
Finally by a slight abuse of notation for any z ∈ [0, 1]nq let H J,h

n (z) stand for Fn(z)+∑
i∈[n],r∈[q] hr zir , where Fn : [0, 1]nq �→ R is defined by

Fn(z) := 1

2

∑

r,s∈[q],i, j∈[n]
Jrs zir z js An(i, j) = 1

2

∑

i∈[n],r∈[q]
mir (z)zir = 1

2

∑

r,s∈[q]
Jrs z′r An zs ,

zr := (zir )1≤i≤n ∈ R
n , and z′r denotes the transpose of zr . In this notation H

J,h
n (x( y))

is the Hamiltonian of the Potts model at y ∈ [q]n in (1.6).

With this notation we have

Lemma 3.2 If An satisfies the mean-field assumption, then

Eμn

{[
Fn(X) − Fn(X̂)

]2
}

= o(n2).
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Lemma 3.3 If An satisfies the mean-field assumption, then

Eμn

⎡

⎢
⎣

⎛

⎝
∑

i∈[n],r∈[q]
(Xir − X̂ir )mir (X)

⎞

⎠

2
⎤

⎥
⎦ = o(n2), (3.2)

and,

Eμn

⎡

⎢
⎣

∑

r∈[q]

⎛

⎝
∑

i∈[n]
(Xir − X̂ir )

⎞

⎠

2
⎤

⎥
⎦ = o(n2). (3.3)

Recalling the definition of net (see Definition 1.4) we now state our next lemma.

Lemma 3.4 If An satisfies the mean-field assumption, then given any ε > 0, there
exists a

√
nε-net Dn(ε) of the set {Anv : v ∈ [0, 1]n}, such that

lim
n→∞

1

n
log |Dn(ε)| = 0. (3.4)

We now complete the proof of Theorem 1.1 using Lemmas 3.2, 3.3, and 3.4, defer-
ring the proof of the lemmas to Sect. 4.

Proof of Theorem 1.1 For z ∈ [0, 1]nq , and w ∈ (0, 1)nq define

gn(z,w) :=
∑

i∈[n]

∑

r∈[q]
zir logwir , In(z) := gn(z, z).

Note that

gn(x, x̂) − In(x̂) =
∑

i∈[n],r∈[q]
(xir − x̂ir ) log x̂ir =

∑

i∈[n],r∈[q]
(xir − x̂ir )(mir (x) + hr )

−
∑

i∈[n],r∈[q]
(xir − x̂ir ) log σi ,

where

σi :=
∑

s∈[q]
exp(mis(x) + hs).

Since for each i ∈ [n],
∑

r∈[q]
xir =

∑

r∈[q]
x̂ir = 1,

we have that

gn(x, x̂) − In(x̂) =
∑

i∈[n],r∈[q]
(xir − x̂ir )(mir (x) + hr ).
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Therefore, from Lemma 3.3 we deduce that

Eμn

[(
gn(X, X̂) − In(X̂)

)2
]

≤ 2Eμn

⎡

⎢
⎣

⎛

⎝
∑

i∈[n],r∈[q]
(Xir − X̂ir )mir (X)

⎞

⎠

2
⎤

⎥
⎦

+ 2 ‖h‖2∞ qEμn

∑

r∈[q]

⎡

⎢
⎣

⎛

⎝
∑

i∈[n]
Xir − X̂ir

⎞

⎠

2
⎤

⎥
⎦ = o(n2),

where we recall ‖h‖∞ = maxr∈[q] |hr |. Similarly, recalling that H J,h
n (z) = Fn(z) +∑

i∈[n],r∈[q] hr zir , combining Lemmas 3.2, and 3.3, we get

Eμn

[(
H J,h

n (X) − H J,h
n (X̂)

)2
]

≤ 2Eμn

[(
Fn(X) − Fn(X̂)

)2
]

+ 2 ‖h‖2∞ qEμn

⎡

⎢
⎣

∑

r∈[q]

⎛

⎝
∑

i∈[n]
Xir − X̂ir

⎞

⎠

2
⎤

⎥
⎦ = o(n2).

Hence, applying Markov’s inequality we see that Pμn (X ∈ An) ≥ 1/2, where

An := {
x ∈ Xn : |Hn(x) − Hn (̂x)|, |gn(x, x̂) − In(x̂)| ≤ δn/2

}
,

for some δn = o(n), and
This implies that

�n(J, h) ≤ log 2 + log

⎛

⎝
∑

x∈An

exp(H J,h
n (x))

⎞

⎠

≤ log 2 + δn + log

⎛

⎝
∑

x∈An

exp
[
H J,h

n (x̂) − In(x̂) + gn(x, x̂)
]
⎞

⎠ . (3.5)

Since δn = o(n), it is enough to upper bound the rightmost term in the RHS of (3.5).
This will be done by approximating the summation over An , by a summation over a
suitable net of An .

To this end, usingLemma3.4we obtain an
√
nε-netDn(ε) having a sub-exponential

size, of the set {Anv, v ∈ [0, 1]n}. For any v := (v1, v2, . . . , vq) such that vr ∈
Dn(ε) for each r ∈ [q], choose (if exists) a v(v) ∈ An ⊂ Xn ⊂ {0, 1}nq such that
‖Anvr (v) − vr‖2 ≤ √

nε for all r ∈ [q]. Here vr (v) := (vir (v))i∈[n]. Also for any
v(v) define

D(v(v)) := {
x ∈ An : ‖Anxr − Anvr (v)‖2 ≤ 2

√
nε, r ∈ [q]} .
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By triangle inequality it is easy to see that

An ⊂
⋃

vr∈Dn(ε),r∈[q]
D(v(v)) =

⋃

v∈Dq
n (ε)

D(v(v)),

and so

∑

x∈An

exp
[
H J,h

n (x̂) − In(x̂) + gn(x, x̂)
]

≤
∑

v∈Dq
n (ε)

∑

x∈D(v(v))

exp
[
H J,h

n (x̂) − In(x̂) + gn(x, x̂)
]
. (3.6)

We then claim that for any x ∈ D(v(v)),

|H J,h
n (x̂) − H J,h

n (v̂(v))| + |gn(x, x̂) − gn(x, v̂(v))| + |In(x̂) − In(v̂(v))|
≤ (q ‖h‖∞ + 1)δn + 2q2 ‖J‖∞ (‖h‖∞ + 1)nε + 4q3 ‖J‖∞ nε. (3.7)

Since δn = o(n) the RHS of (3.7) is bounded by C(q)nε for some finite constant
C(q), for all large n. Thus using (3.5)-(3.7) and noting the fact that

∑

x∈Xn

egn(x,z) = 1,

for any z ∈ X̂n , we deduce that

�n(J, h) ≤ log 2 + C(q)nε + log

⎛

⎝
∑

v∈Dq
n (ε)

∑

x∈D(v(v))

exp
[
H J,h

n (̂v(v)) − In (̂v(v)) + gn(x, v̂(v))
]
⎞

⎠

≤ log 2 + C(q)nε + log

⎛

⎝
∑

v(v)∈Dq
n (ε)

exp
[
Hn (̂v(v)) − In (̂v(v))

]
⎞

⎠

≤ log 2 + C(q)nε + q log |Dn(ε)| + sup
q∈P([q])n

MJ,h
n (q), (3.8)

where the last inequality uses the fact that for any x ∈ Xn setting qi (r) = x̂ir one has
qi ∈ P([q]), for each i ∈ [n]. Thus using the fact that log |Dn(ε)| = o(n) we have

lim sup
n→∞

1

n

[

�n(J, h) − sup
q∈P([q])n

MJ,h
n (q)

]

≤ C(q)ε.

Since ε > 0 is arbitrary, letting ε → 0 the proof completes. Therefore it only remains
to verify (3.7).
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Turning to prove (3.7), we recall that for every v(v) ∈ D(q)
n (ε), and any x ∈

D(v(v)), both x and v(v) are in the set An . Therefore

|H J,h
n (x) − H J,h

n (x̂)| ≤ δn/2, and |H J,h
n (v(v)) − H J,h

n (v̂(v))| ≤ δn/2.

Thus, in order to bound |H J,h
n (x̂)−H J,h

n (v̂(v))|, we only need to consider |H J,h
n (x)−

H J,h
n (v(v))|. Now recall that

H J,h
n (x) = 1

2

∑

r,s∈[q]
Jrsx′

r Anxs +
∑

r∈[q]
hr1′xr .

Note that x ∈ D(v(v)) we have

∣
∣x′

r Anxs − vr (v)′Anvs(v)
∣
∣ ≤ ∣

∣x′
r Anxs − x′

r Anvs(v)
∣
∣ + ∣

∣x′
r Anvs(v) − vr (v)′Anvs(v)

∣
∣

≤ √
n ‖Anxr − Anvr (v)‖2 + √

n ‖Anxs − Anvs(v)‖2 ≤ 4nε. (3.9)

Next we proceed to bound |1′xr − 1′vr (v)|. From Lemma 3.3, applying Markov’s
inequality it follows that |1′xr − 1′ x̂r | ≤ δn/2, for every x ∈ An , and r ∈ [q].
Hence it remains to find an upper bound on

∥
∥
∥x̂r − v̂r (v)

∥
∥
∥
2
. To this end, recalling that

x̂ir = Tr (mi1(x) + h1, . . . ,miq(x) + hq) and noting that

∥
∥
∥
∥
∂Tr (m1, . . . ,mq)

∂ms

∥
∥
∥
∥∞

= ∥
∥Tr (m1, . . . ,mq){δ(r, s) − Ts(m1, . . . ,mq)}

∥
∥∞ ≤ 1,

(3.10)
applying a multivariate version of the mean-value theorem we obtain that

|x̂ir − v̂(v)ir | ≤
∑

s∈[q]
|mis(x) − mis(v(v))| =

∑

s∈[q]

∣
∣
∣
∣
∣
∣

∑

s′∈[q]
Jss′

{
(Anxs′ )i − (Anvs′ (v))i

}

∣
∣
∣
∣
∣
∣

≤ q ‖J‖∞
∑

s′∈[q]

∣
∣(Anxs′)i − (Anvs′(v))i

∣
∣ .

This further implies that

∥
∥
∥x̂r − v̂(v)

∥
∥
∥
2

2
≤ q3 ‖J‖2∞

∑

i∈[n],s′∈[q]
|(Anxs′)i − (Anvs′(v))i |2 ≤ 4q4 ‖J‖2∞ nε2.

Therefore,

|H J,h
n (x̂) − H J,h

n (v̂(v))| ≤ |H J,h
n (x) − H J,h

n (v(v))| + δn

≤ δn + ‖J‖∞
2

∑

r,s∈[q]

∣
∣x′

r Anxs − vr (v)Anvs(v)
∣
∣ + ‖h‖∞

∑

r∈[q]

∣
∣1′xr − 1′vr (v)

∣
∣
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≤ (q ‖h‖∞ + 1)δn + 2q2 ‖J‖∞ nε + √
n ‖h‖∞

∑

r∈[q]

∥
∥
∥x̂r − v̂r (v)

∥
∥
∥
2

≤ (q ‖h‖∞ + 1)δn + 2q2 ‖J‖∞ (‖h‖∞ + 1)nε. (3.11)

Next we proceed to bound |gn(x, x̂) − gn(x, v̂(v))|. To this end, we have

|gn(x, x̂) − gn(x, v̂(v))|
≤

∑

i∈[n],r∈[q]

∣
∣
∣ logTr (mi1(x) + h1, . . . ,miq(x) + hq)

− logTr (mi1(v̂(v)) + h1, . . . ,miq(v̂(v)) + hq)
∣
∣
∣

≤
∑

i∈[n],r,s∈[q]
|mis(x)−mis(v(v))|

∥
∥
∥
∥
∂ logTr

∂ms

∥
∥
∥
∥∞

≤
∑

i∈[n],s∈[q]
|mis(x)−mis(v(v))|,

where the last inequality uses (3.10) to conclude that
∥
∥
∥

∂ logTr
∂ms

∥
∥
∥∞ ≤ 1.

This gives

|gn(x, x̂) − gn(x, v̂(v))| ≤ q
∑

i∈[n]s∈[q]
|mis(x) − mis(v(v))|

= q
∑

i∈[n],s∈[q]

∣
∣
∣
∣
∣
∣

∑

s′∈[q]
Jss′ {(Anxs′)i − (Anvs′(v))i }

∣
∣
∣
∣
∣
∣

≤ q2 ‖J‖∞
∑

i∈[n],s′∈[q]
|(Anxs′)i − (Anvs′(v))i |

≤ q2
√
n ‖J‖∞

∑

s′∈[q]
‖Anxs′ −Anvs′(v)‖2 ≤ 2q3 ‖J‖∞ nε,

(3.12)

where the penultimate step uses Cauchy–Schwarz inequality, and the last step uses
the fact that x ∈ D(v(v)).

Now it remains to bound |In(x̂)− In(v̂(v))|, for which we follow a similar program.
Setting γ (t) := t log t for t ≥ 0, we have

|In(x̂) − In(v̂(v))|
≤

∑

i∈[n],r∈[q]

∣
∣γ

(
Tr (mi1(x) + h1, . . . ,miq(x) + hq)

)
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−γ
(
Tr (mi1(v(v)) + h1, . . . ,miq(v(v)) + hq)

)∣
∣

≤
∑

i∈[n],r,s∈[q]
|mis(x) − mis(v(v))|

∥
∥
∥
∥
∂(γ ◦ Tr )

∂ms

∥
∥
∥
∥∞

Using (3.10) gives

∥
∥
∥
∥
∂(γ ◦ Tr )

∂ms

∥
∥
∥
∥∞

= ‖Tr (1 + logTr ){δ(r, s) − Ts}‖∞ ≤ sup
t∈[0,1]

t |1 + log t | ≤ 1,

and therefore

|In(x̂) − In(v̂(v))| ≤ q
∑

i∈[n]s∈[q]
|mis(x) − mis(v̂(v))| ≤ 2q3 ‖J‖∞ nε, (3.13)

where the last bound follows by arguments similar to (3.12). Finally combining (3.11)-
(3.13) we arrive at (3.7), and this completes the proof. 
�

4 Proof of auxiliary Lemmas

In this section we prove Lemmas 3.2, 3.3, and 3.4. We start with the proof of
Lemma 3.2.

Proof of Lemma 3.2 To lighten the notation, we drop the subscript n in Fn , and write
F through out the proof. Before we begin the proof let us introduce some notation:

Fir (x) := ∂

∂xir
F(x), and Fir, js(x) := ∂2

∂xir∂x js
F(x).

Equipped with these notation by mean-value theorem we have

F(x) − F (̂x) =
∫ 1

0

∑

i∈[n],r∈[q]
(xir − x̂ir )Fir (tx + (1 − t )̂x)dt.

Thus denoting �(x) := F(x) − F (̂x), and uir (t, x) := Fir (tx + (1 − t )̂x), we have

Eμn

{[
F(X) − F(X̂)

]2
}

=
∫ 1

0

∑

i∈[n],r∈[q]
Eμn

(
(Xir − X̂ir )uir (t, X)�(X)

)
dt.

(4.1)
Hence to complete the proof it is enough to find upper bound on the RHS of (4.1) for
each value of t ∈ [0, 1]. To this end observe that for any i ∈ [n], r ∈ [q] we have
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Eμn

(
(Xir − X̂ir )uir (t, X(ir))�(X(ir))

)
= 0,

where X(ir) is obtained by setting Xir = 0 in the random vector X . Therefore for
each i ∈ [n], r ∈ [q] it suffices to consider the difference

Eμn

(
(Xir − X̂ir )uir (t, X)�(X) − (Xir − X̂ir )uir (t, X(ir))�(X(ir))

)
,

and show that

sup
t∈[0,1]

∣
∣
∣
∣
∣
∣

∑

i∈[n],r∈[q]
Eμn

(
(Xir − X̂ir )(uir (t, X) − uir (t, X(ir)))�(X(ir))

)
∣
∣
∣
∣
∣
∣
= o(n2),

(4.2)
and

sup
t∈[0,1]

∣
∣
∣
∣
∣
∣

∑

i∈[n],r∈[q]
Eμn

(
(Xir − X̂ir )uir (t, X)(�(X) − �(X(ir)))

)
∣
∣
∣
∣
∣
∣
= o(n2). (4.3)

To establish (4.2), we first note that using (1.10) there exists C1 < ∞ such that

∣
∣
∣Eμn

(
(Xir − X̂ir )(uir (t, X) − uir (t, X(ir)))�(X(ir))

)∣
∣
∣

≤ C1nEμn

∣
∣
∣uir (t, X) − uir (t, X(ir))

∣
∣
∣ . (4.4)

Since

uir (t, X) = tmir (x) + (1 − t)mir (x̂)

= tmir (x) + (1 − t)
∑

j∈[n],s∈[q]
Jrs An(i, j)Ts(m j1(x) + h1, . . . ,m jq (x) + hq ),

and mir (x) is free of {xis}s∈[q], by chain rule the RHS of (4.4) can be bounded by

C1n
∣
∣
∣

∑

j∈[n],s∈[q]
Jrs An(i, j)

∑

s′∈[q]

( ∂Ts

∂ms′
(m1, . . . ,mq )

∣
∣
∣{mr ′=m jr ′ (x)+hr ′ ,r ′∈[q]}

)
An(i, j)Jrr ′

∣
∣
∣

≤ C1q
2n‖J‖2∞

∑

j∈[n]
|An(i, j)|2,

where the last step uses (3.10). This, on summing over i ∈ [n], and r ∈ [q] gives (4.2)
by the mean-field assumption. Next turning to bound (4.3), we first write
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2(�(X) − �(X(ir))) =
∑

a,b∈[q]
Jab

[
X ′
a AnXb − X (ir)′

a AnX
(ir)
b

]

−
∑

a,b∈[q]
Jab

[

X̂
′
a An X̂b − X̂

′
a An

(
̂X(ir)

)

b

]

−
∑

a,b∈[q]
Jab

[

X̂
′
a An

̂X(ir)
b − ̂X (ir)

′
a An

(
̂X(ir)

)

b

]

. (4.5)

Here the notation (̂X(ir))b means the bth column of the matrix ̂X(ir). Now note for
any a ∈ [q]\{r}, xa = x(ir)

a ,

x′
a Anxr − x(ir)′

a Anx(ir)
r = x′

a Anxr − xa Anx(ir)
r = xir (Anxa)i ,

and

x′
r Anxr − x(ir)′

r Anx(ir)
r = xir (Anxr )i + xir

(
Anx(ir)

r

)

i
= 2xir (Anxr )i ,

where the last equality follows from the fact that An(i, i) = 0. Thus recalling the
definition of mir (x), we have

∣
∣
∣
∣
∣
∣

∑

i∈[n],a,b,r∈[q]
Jab

(
(Xir − X̂ir )uir (t, x){x′

a Anxb − x(ir)′
a Anx

(ir)
b }

)
∣
∣
∣
∣
∣
∣

≤ 2
∑

i∈[n],r∈[q]
|mir (x)|(|mir (x)| + |mir (x̂)|)

≤ 2

⎧
⎨

⎩

∑

r∈[q],i∈[n]
mir (x)2 +

∑

r∈[q]

√
√
√
√

n∑

i=1

mir (x)2

√
√
√
√

n∑

i=1

mir (x̂)
2

⎫
⎬

⎭
, (4.6)

where the first step uses the fact that |uir (t, x)| ≤ t |mir (x) + (1− t)|mir (x̂), and last
step follows by an application of Cauchy–Schwarz inequality.

Also the mean-field assumption implies that λmax(An) = o(
√
n), and therefore we

have

∑

i∈[n]
mir (x)2 ≤ q ‖J‖2∞

∑

s∈[q]
‖Anxs‖22 ≤ q ‖J‖2∞ λ2max(An)

∑

s∈[q]
‖xs‖22 = o(n2).

By similar arguments, from (4.6) we deduce that

sup
t∈[0,1]

∣
∣
∣
∣
∣
∣

∑

i∈[n],r∈[q]
Eμn

⎛

⎝(Xir − X̂ir )uir (t, X)
∑

a,b∈[q]
Jab

[
X ′
a AnXb − X (ir)′

a AnX
(ir)
b

]
⎞

⎠

∣
∣
∣
∣
∣
∣
= o(n2).

(4.7)
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Next we consider the second term in the RHS of (4.5), where using first order Taylor’s
theorem, upon application of chain rule, followed by (3.10), gives

x̂′
a An x̂r − x̂′

a An

(
̂x(ir)

)

b
=

∑

j,k∈[n]
x̂ ja An( j, k)

{
x̂kr −

(
̂x (ir)

)

kb

}

=
∑

j,k∈[n]
x̂ ja An( j, k)An(i, k)ξi,k,b,r ,

for some ξi,k,b,r , such that |ξi,k,b,r | ≤ q ‖J‖∞. Denoting ‖An‖∞ := supi, j |An(i, j)|,
and summing over i ∈ [n], a, b, r ∈ [q] this gives

∣
∣
∣
∣
∣
∣

∑

a,b,r∈[q],i∈[n]
Jab

(
(xir − x̂ir )uir (t, x)

{
x̂′
a An x̂b − x̂′

a An

(
̂x(ir)

)

b

})
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

i,k∈[n],b,r∈[q]

(
(xir − x̂ir )xirmkb(x̂)An(i, k)ξi,k,b,r uir (t, x)

)

∣
∣
∣
∣
∣
∣

≤ q ‖An‖∞ ‖J‖∞
∑

i,k∈[n],b,r∈[q]
(|mir (x)| + |mir (x̂)|)|mkb(x̂)|

= q ‖An‖∞ ‖J‖∞

⎡

⎣

⎛

⎝
∑

i∈[n],r∈[q]
|mir (x)|

⎞

⎠

⎛

⎝
∑

k∈[n],b∈[q]
|mkb(x̂)|

⎞

⎠

+
⎛

⎝
∑

i∈[n],r∈[q]
|mir (x̂)|

⎞

⎠

⎛

⎝
∑

k∈[n],b∈[q]
|mkb(x̂)|

⎞

⎠

⎤

⎦ .

Now using (1.10) we obtain

∑

i∈[n],r∈[q]
|mir (x)|,

∑

i∈[n],r∈[q]
|mir (x̂)| = O(n).

This together with the fact that ‖An‖∞ = o(1), implies that the RHS above is o(n2),
thus giving

sup
t∈[0,1]

∣
∣
∣
∣
∣
∣

∑

i∈[n],r∈[q]
Eμn

⎛

⎝(Xir − X̂ir )uir (t, X)
∑

a,b∈[q]
Jab

[
X̂

′
a An X̂b − X̂

′
a An

(
̂X(ir)

)

b

]
⎞

⎠

∣
∣
∣
∣
∣
∣
= o(n2).

(4.8)
Finally, considering the third term in the RHS of (4.5) and using first order Taylor’s
theorem again, we also note that
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x̂′
b An

(
̂x(ir)

)

a
−

(
̂x(ir)

)′
b
An

(
̂x(ir)

)

a
=

∑

j,k∈[n]

(
̂x (ir)

)

kb
(x̂ ja −

(
̂x (ir))

)

ja
An( j, k)

=
∑

j,k∈[n]

(
̂x (ir)

)

kb
ξi, j,a,r An( j, k)An(i, k).

From this, proceeding similarly as in the proof of(4.8) we have

∣
∣
∣
∣
∣
∣

∑

i, j,k∈[n],a,b,r∈[q]
Jab

(

(xir − x̂ir )ui (t, x)

{

x̂′
b An

̂x(ir)
a − ̂x(ir)

′
b An

(
̂x(ir)

)

a

})
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

i, j∈[n],a,r∈[q]

(
(xir − x̂ir )xirm ja(

̂x(ir))An(i, k)ξi, j,a,r uir (t, x)
)
∣
∣
∣
∣
∣
∣

≤ ‖An‖∞ ‖J‖∞
∑

i, j∈[n],a,r∈[q]
(|mir (x)| + |mir (x̂)|)(|m̂ ja(

̂x(ir))|) = o(n2) (4.9)

as before, and so

∣
∣
∣
∣
∣
∣

∑

i∈[n],r∈[q]
Eμn

⎛

⎝(Xir − X̂ (ir))uir (t, X)
∑

a,b∈[q]
Jab

[

X̂
′
a An

(
̂X (ir)

)

b
−

(
̂X(ir)

)′
a
An

(
̂X(ir)

)

b

]
⎞

⎠

∣
∣
∣
∣
∣
∣

= o(n2). (4.10)

Finally combining (4.7), (4.8), and (4.10), the proof is complete. 
�

Now we prove Lemma 3.3.

Proof of Lemma 3.3 First we prove (3.2). To this end, for any x ∈ Xn define

G(x) :=
∑

i∈[n],r∈[q]
(xir − x̂ir )mir (x)

and note that

Eμn

(
(Xir − X̂ir )mir (X)G(X(ir))

)
= 0.

Thus we need to show that

∑

i∈[n],r∈[q]
Eμn

[
(Xir − X̂ir )mi,r (X)(G(X) − G(X (ir)))

]
= o(n2).

123



Universality of the mean-field for the Potts model

To this end, we first observe that

G(x) − G(x(ir)) = 2xirmir (x) +
∑

j∈[n],s∈[q]
x̂ js

(
m js(x(ir)) − m js(x)

)

+
∑

j∈[n],s∈[q]
(̂x (ir)

js − x̂ js)m js(x(ir)). (4.11)

For the first term in the RHS of (4.11), proceeding as in (4.7), by a Cauchy–Schwarz
argument we have

∣
∣
∣
∣
∣
∣

∑

i∈[n],r∈[q]
(xir − x̂ir )xirm

2
ir

∣
∣
∣
∣
∣
∣
≤

∑

i∈[n],r∈[q]
mir (x)2 = o(n2),

giving ∣
∣
∣
∣
∣
∣
Eμn

∑

i∈[n],r∈[q]

[
(Xir − X̂ir )Xirmir (X)2

]
∣
∣
∣
∣
∣
∣
= o(n2). (4.12)

For controlling the second term in the RHS of (4.11) first note that m js(x) −
m js(x(ir)) = An(i, j)Jrs xir . Thus proceeding as in (4.6) again we further have

∣
∣
∣
∣
∣
∣

∑

i, j∈[n],r,s∈[q]
(xir − x̂ir )mir (x)x̂ js(m js(x) − m js(x(ir)))

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑

i∈[n],r∈[q]
(xir − x̂ir )xirmir (x)mir (x̂)

∣
∣
∣
∣
∣
∣
≤

∑

i∈[n],r∈[q]
|mir (x)||mir (x̂)|

which is o(n2) by a Cauchy–Schwarz argument as in the proof of (4.7). Thus we have

∣
∣
∣
∣
∣
∣
Eμn

∑

i, j∈[n],r,s∈[q]
(Xir − X̂ir )mi,r (X)X̂ js(m js(X) − m js(X(ir)))

∣
∣
∣
∣
∣
∣
= o(n2). (4.13)

Finally for controlling the third term in the RHS of (4.11), applying first order Taylor’s

theorem yields that x̂ js − (̂x (ir)) js = An(i, j)ξi, j,r,s with |ξi, j,r,s | ≤ q ‖J‖∞. Thus
we have
∣
∣
∣
∣
∣
∣

∑

i, j∈[n],r,s∈[q]
(xir − x̂ir )mir (x)m js(x(ir))

{

x̂ js −
(
̂x (ir)

)

js

}
∣
∣
∣
∣
∣
∣

≤ q ‖An‖∞ ‖J‖∞

⎛

⎝
∑

i∈[n],r∈[q]
|mir (x)|

⎞

⎠

2

+nq2 ‖An‖2∞ ‖J‖2∞
∑

i∈[n],r∈[q]
|mir (x)|,
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which is o(n2) by arguments similar to the proof of (4.8). This gives

∣
∣
∣
∣
∣
∣
Eμn

∑

i, j∈[n],r,s∈[q]
(Xir − X̂ir )mi,r (X)m js(X(ir))

{

X̂ js −
(

̂X (ir)
)

js

}
∣
∣
∣
∣
∣
∣
= o(n2),

(4.14)

which on combining with(4.12) and (4.13) completes the proof of (3.2).
Next to prove (3.3), we define

G̃r (x) =
∑

i∈[n]
(xir − x̂ir ),

and therefore

G̃r (x) − G̃r (x(ir)) = xir −
∑

j∈[n]

{

x̂ jr −
(
̂x (ir)

)

jr

}

.

Thus observing that

Eμn

[
(Xir − X̂ir )G̃r (X(ir))

]
= 0,

for any i ∈ [n], r ∈ [q], we only need to show that

∑

i∈[n]
Eμn

[
(Xir − X̂ir )(G̃r (X) − G̃r (X(ir)))

]
= o(n2).

This can be done proceeding similarly as above. We omit the details. 
�
Nowwe prove Lemma 3.4 . Before going to the proof let us introduce the following

notation:
For r ∈ N and R > 0 let Br (R) denote the Euclidean ball of radius R in dimension

r , i.e.

Br (R) := {v ∈ R
r : ‖v‖2 ≤ R}.

The proof of Lemma 3.4 also requires the following standard estimate on an η-net
Br (R). Its proof is based on simple volumetric argument. We refer the reader to [39,
Lemma 2.6] for its proof.

Lemma 4.1 For any R, η ∈ R, and r ∈ N, there exists an η-net of Br (R) of size at
most max{1, (3R/η)r }.
Proof of Lemma 3.4 Let {λ1(An), . . . , λn(An)} denote the eigenvalues of An . Fixing
ε ∈ (0, 1), let Nn denote the number of eigenvalues of An which are greater than
ε/2 in absolute value. Since An satisfies the mean-field assumption, by Chebyshev’s
inequality we have that
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0 ≤ lim
n→∞

Nn

n
≤ lim

n→∞
4

nε2

∑

i∈[n]
λi (An)

2 = 0. (4.15)

Set � = �n := �log2
√
n�, and for 1 ≤ k ≤ � let Ik := {1 ≤ i ≤ n : 2k−1 <

|λi (An)| ≤ 2k}. Thus with I0 := {1 ≤ i ≤ n : ε/2 < |λi (An)| ≤ 1} and I := ∪�
k=0 Ik ,

and using the fact that tr(A2
n) = O(n), we have

�∑

k=0

|Ik | = |I | = Nn .

For 0 ≤ k, j ≤ �, if Ik �= φ we let Ck( j) denote an ε2−(k+1)√|Ik |-net of the set
B|Ik |(2 j ). By Lemma 4.1 we may and will assume that

|Ck( j)| ≤ max

{

1,

(
6

ε

)|Ik | ( 2k+ j

√|Ik |
)|Ik|}

. (4.16)

Setting

Sn(ε) :=
⋃

0≤ j0, j1,..., j�≤�:∑�
k=0 2

2 jk≤5n

{C0( j0) × C1( j1) × · · · × C�( j�)}

we first claim that

lim
n→∞

1

n
log |Sn(ε)| = 0. (4.17)

Deferring the proof of (4.17) and setting

Dn(ε) :=
{
∑

i∈I
λi (An)ci pi : c := (ci )i∈I ∈ Sn(ε)

}

,

where p1, p2, . . . , pn are the eigenvectors of An , we will now show that Dn(ε) is
indeed an

√
nε-net of {Anv : v ∈ [0, 1]n} having a sub-exponential size. Since (3.4)

is immediate from (4.17), it only remains to show that Dn(ε) is a
√
nε-net.

To this end, fix v ∈ [0, 1]n , and expand v in the basis { p1, p2, . . . , pn} as

v =
n∑

i=1

αi pi ,

where α1, α2, . . . , αn ∈ R satisfies

n∑

i=1

α2
i =

n∑

i=1

v2i ≤ n, (4.18)
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For 0 ≤ k ≤ � setting sk :=
√∑

i∈Ik α2
i , we will now find a vector c ∈ Sn(ε) such

that

∥
∥
∥
∥
∥
Av −

∑

i∈I
λi (An)ci pi

∥
∥
∥
∥
∥
2

≤ √
nε.

If Ik �= φ for some k, setting jk := max(0, �log2 sk�) we note that (αi , i ∈ Ik) ∈
B|Ik |(2 jk ), and so there exists (ci , i ∈ Ik) ∈ Ck( jk) such that

∑

i∈Ik
(αi − ci )

2 ≤ |Ik |ε2
22k+2 . (4.19)

By our choice of jk we have 2 jk ≤ 2sk if sk ≥ 1, and jk = 0 if sk < 1. This gives

�∑

k=0

22 jk =
∑

k: jk=0

22 jk +
∑

k: jk≥1

22 jk ≤ � + 4
�∑

k=0

s2k ≤ � + 4
n∑

i=1

α2
i ≤ 5n,

where the last step uses (4.18). Thus we have shown that c = (ci )i∈I ∈ Sn(ε). Finally,
recalling that |λi (An)| ≤ 2k for any i ∈ Ik , we note

∥
∥
∥
∥
∥
Av −

∑

i∈I
λi (An)ci pi

∥
∥
∥
∥
∥

2

2

=
�∑

k=0

∑

i∈Ik
λi (An)

2(αi − ci )
2 +

∑

i /∈I
λi (An)

2α2
i

≤ ε2

4

�∑

k=0

22k
|Ik |
22k

+ ε2

4

n∑

i=1

α2
i

≤ (Nn + n)
ε2

4
≤ nε2

2
,

where the first two inequalities follow by an use of (4.19) and (4.18), respectively.
Thus we have shown that Dn(ε) is indeed an

√
nε-net.

Therefore to complete the proof it suffices to show (4.17). To this effect, fix any
j0, j1, j2, . . . , j� such that

∑�
k=0 2

2 jk ≤ 5n, and set K = K( j0, j1, . . . , j�) := {0 ≤
k ≤ � : 6 × 2k+ jk ≥ ε

√|Ik |}. Thus we have

log |C0( j0) × C1( j1) × · · · × C�( j�)| ≤
∑

k∈K
|Ik | log

(
6

ε

2k+ jk
√|Ik |

)

(4.20)

Further denote N ′
n = N ′

n( j0, j1, . . . , j�) := ∑
k∈K |Ik |, and obviously N ′

n ≤ Nn .
Now using Jensen’s inequality, applied for log(·), we have
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1

N ′
n

∑

k∈K
|Ik | log

(
6

ε

2k+ jk
√|Ik |

)

≤ log

{
6

εN ′
n

∑

k∈K
2k+ jk

√|Ik |
}

≤ log

⎧
⎨

⎩

6

εN ′
n

√
√
√
√

�∑

k=0

22k |Ik |
√
√
√
√

�∑

k=0

22 jk

⎫
⎬

⎭
, (4.21)

where the last step follows by Cauchy–Schwarz’s inequality. Since for any k ≥ 1, and
any i ∈ Ik , we have |λi (An)| ≥ 2k−1, we therefore deduce that

�∑

k=0

22k |Ik | ≤ |I0| + 4
�∑

k=1

∑

i∈Ik
|λi (An)|2 ≤ Nn + 4

n∑

i=1

λi (An)
2.

Now note that Assumption 1.3 in particular implies that
∑n

i=1 λi (An)
2 ≤ Cn for

some positive constant C . Therefore recalling that
∑�

k=0 2
2 jk ≤ 5n, using (4.20), and

(4.21), we deduce that

log |C0( j0) × C1( j1) × · · · × C�( j�)| ≤ N ′
n

(

log
6

ε

)

+ N ′
n log

n
√
5(4C + 1)

N ′
n

≤ Nn

(

log
6

ε

)

+ Nn log
n
√
5(4C + 1)

Nn
,

(4.22)

where the last step uses the facts that limn→∞ Nn
n = 0, and x �→ x log(1/x) is

increasing near 0. Therefore from the definition of the set Sn(ε) it now follows that

|Sn(ε)| ≤ (1 + �)1+� exp

[

Nn

(

log
6

ε

)

+ Nn log
n
√
5(4C + 1)

Nn

]

.

Now using the fact that limn→∞ Nn
n = 0 again the proof completes. 
�

Remark 4.1 Note that the proof of Lemma 3.4 goes through as long as the following
hold:

1

n

n∑

i=1

δλi (An)
w→ δ0, lim sup

n→∞
1

n

n∑

i=1

λi (An)
2 < ∞. (4.23)

For example, if An is the adjacency matrix of the n-star graph K1,n−1 then it does not
satisfy the mean-field assumption. Indeed, this follows from observing that

1

n

n∑

i=1

λ2i (An) = 2|E(K1,n−1)|
n

→ 2.
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However, all but 2 of the eigenvalues of the adjacencymatrix are zero. Therefore (4.23)
holds here, and hence proof of Lemma 3.4 goes through unchanged in this case. For the
n-star graph, one can directly check that the mean-field approximation (1.8) is tight. In
light of this and similar other examples, we believe the mean-field assumption can be
weakened to (4.23), and we conjecture that the conclusion of Theorem 1.1 continues
to hold as long as (4.23) holds.

5 Proof of applications

5.1 Proofs of Theorems 2.1 and 2.2

In this sectionwe compute the limiting log partition function for asymptotically regular
graphs. This is followed by the proof of large deviation principle for the empirical
measure of the colors for such graphs.

Proof of Theorem 2.1 (a) Since An satisfies the mean-field assumption, applying The-
orem 1.1 we get

lim
n→∞

1

n

[

�n(J, h) − sup
q∈P([q])n

MJ,h
n (q)

]

= 0.

Proceeding to estimate MJ,h
n (q), fixing δ > 0, we denote

A(δ)
n (i, j) := An(i, j)1|Rn(i)−1|≤δ1|Rn( j)−1|≤δ.

Thus we have

1

n

q∑

r=1

n∑

i, j=1

An(i, j)qi (r)q j (r)

≤ 1

n

q∑

r=1

n∑

i, j=1

A(δ)
n (i, j)qi (r)q j (r) + 1

n

∑

i :|Rn(i)−1|>δ

q∑

r=1

n∑

j=1

An(i, j)qi (r)q j (r)

+ 1

n

∑

j :|Rn( j)−1|>δ

q∑

r=1

n∑

i=1

An(i, j)qi (r)q j (r)

= 1

n

q∑

r=1

n∑

i, j=1

A(δ)
n (i, j)qi (r)q j (r) + 2

n

∑

i :|Rn(i)−1|>δ

q∑

r=1

n∑

j=1

An(i, j)qi (r)q j (r).

(5.1)
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Note that the second term in the RHS of (5.1) is bounded above by

2q

n

∑

i :|Rn(i)−1|>δ

Rn(i) ≤ 2q

n

[
n∑

i=1

Rn(i) − (1 − δ)

n∑

i=1

1|Rn(i)−1|≤δ

]

= 2qa(δ)
n ,

(5.2)

where

a(δ)
n := 1

n

[
n∑

i=1

Rn(i) − (1 − δ)

n∑

i=1

1|Rn(i)−1|≤δ

]

.

Considering the first term in the RHS of (5.1), and noting that A(δ)
n is a symmetric

entries with non negative matrix whose row sums are bounded by 1 + δ, we apply
Gershgorin circle theorem to obtain

1

n

q∑

r=1

n∑

i, j=1

A(δ)
n (i, j)qi (r)q j (r) ≤ 1 + δ

n

q∑

r=1

n∑

i=1

qi (r)
2. (5.3)

Combining (5.2)–(5.3), along with the expression for MJ,h
n (q), we get

sup
q∈P([q])n

1

n
MJ,h

n (q) ≤ sup
q∈P([q])

{
β

2

q∑

r=1

q(r)2 +
q∑

r=1

hrq(r) −
q∑

r=1

q(r) log q(r)

}

+ qβ

2

(
δ + 2a(δ)

n

)
. (5.4)

Now note that a(δ)
n → δ as n → ∞ by (2.1)-(2.2). Thus taking limits as n → ∞ on

both sides of (5.4), we get

lim sup
n→∞

sup
q∈P([q])n

1

n
MJ,h

n (q)

≤ sup
q∈P([q])

{
β

2

q∑

r=1

q(r)2 +
q∑

r=1

hrq(r) −
q∑

r=1

q(r) log q(r)

}

+ 2qβδ,

from which the upper bound of (2.3) follows, as δ > 0 is arbitrary.
For the lower bound, taking a supremum over all q = ∏n

i=1 qi such that qi is same
for all i , we have

sup
q∈P([q])n

1

n
MJ,h

n (q)

≥ sup
q∈P([q])

{
β

2

q∑

r=1

q(r)2
1

n

n∑

i=1

Rn(i) +
q∑

r=1

hrq(r) −
q∑

r=1

q(r) log q(r)

}

,
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which on dividing by n, and taking limits using (2.2), gives the lower bound in (2.3).
This completes the proof of part (a).

(b) To prove part (i), we note thatRn(i) = 1 for all i ∈ [n], and thus both (2.1) and
(2.2) hold trivially.

Turning to prove part (ii), note thatRn(i) = di (Gn)
npn

with di (Gn) denoting the degree

of vertex i ∈ [n]. Since the number of edges |En| has a Bin(
(n
2

)
, pn) distribution,

1

n

n∑

i=1

Rn(i) = 2|En|
n2 pn

→1, in probability.

This verifies (2.2). To check (2.1), fixing δ > 0, it suffices to check that
limn→∞ 1

nEN (δ)
n = 0, where

N (δ)
n :=

n∑

i=1

1|di (Gn)−npn |>npnδ.

This follows using Chebyshev’s inequality:

1

n
EN (δ)

n = 1

n

∑

i∈[n]
P(|di (Gn) − npn| > npnδ) ≤ (n − 1)pn(1 − pn)

n2 p2nδ
2 → 0,

as npn → ∞. 
�
Now as an application of Theorem 2.1, we derive the following large deviation

principle. As a byproduct we also get an exponential concentration of the average
sample spins in Ising model.

Proof of Theorem 2.2 (a) The proof of this theorem is based on Baldi’s theorem
(cf. [25, Theorem 4.5.20]). To this end, we first need to compute logarithmic moment
generating function. Fixing a vector t = (t1, t2, . . . , tq) ∈ R

q , using Theorem 2.1,
one has

1

n
logEμn e

n
∑

r∈[q] tr Ln(r) = 1

n
[�n(J, h + t) − �n(J, h)]

n→∞−→ sup
q∈P([q])

[
β

2

q∑

r=1

q(r)2 −
q∑

r=1

q(r) log q(r) +
q∑

r=1

(hr + tr )q(r)

]

− sup
q∈P([q])

[
β

2

q∑

r=1

q(r)2 −
q∑

r=1

q(r) log q(r) +
q∑

r=1

hrq(r)

]

.

Denoting the RHS above by �(t) we note that

�(t) = sup
μ∈P([q])

⎧
⎨

⎩

∑

r∈[q]
trμr − Ĩβ,h(μ)

⎫
⎬

⎭
.
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Therefore, applying the duality lemma (see [25, Lemma 4.5.8]), we have

Ĩβ,h(μ) = sup
t∈Rq

⎧
⎨

⎩

∑

r∈[q]
trμr − �(t)

⎫
⎬

⎭
.

Next note that the set P([q]) being compact, the law of Ln(·) is automatically expo-
nentially tight. Thus using the fact that �(t) < ∞ for all t ∈ R

q , applying [25,
Theorem 4.5.20(a)] we obtain that for any closed set F ⊂ P([q]),

lim sup
n→∞

1

n
logμn(Ln ∈ F) ≤ − inf

μ∈F Ĩβ,h(μ).

To derive the lower bound we use part (b) of [25, Theorem 4.5.20]. To this end, we
note that it is enough to prove that any μ ∈ P([q]) is an exposed point of Ĩβ,h(.),
i.e. for any ν ∈ P([q]) with μ �= ν there exists t ∈ R

q such that

∑

r∈[q]

{
β

2

q∑

r=1

μ2
r −

q∑

r=1

μr logμr +
q∑

r=1

(hr + tr )μr

}

>
∑

r∈[q]

{
β

2

q∑

r=1

ν2r −
q∑

r=1

νr log νr +
q∑

r=1

(hr + tr )νr

}

.

This follows on noting the existence of r ∈ [q] such that μr > νr , and then choosing
tr large enough for all r such that μr > νr , and tr = 0 for all r such that μr ≤ νr .

Now to prove (2.4), we note that the function μ �→ Iβ,h(μ) is a non constant
analytic function on a compact set, an thus the infimum is attained on a finite set
Kβ,h. Thus (2.4) follows from the large deviation principle on noting that the set
{ν ∈ P([q]) : minμ∈Kβ,h ‖ν − μ‖∞ ≥ δ} is closed.

(b) By the last conclusion of part (a) it suffices to minimize the function Iβ,h(μ).
To begin introduce the variable m = μ1 − μ2 ∈ [−1, 1] and note that

Iβ,h(μ) = −β

4
m2 − B

2
m + H(m) −

[
β

4
− h1 + h2

2

]

.

The optimization of this function has been carried out in [21, Section 1.1.3], where it is
shown that optimum is atm = 0 for β ≤ 2, B = 0, atm = ±mβ/2,0 for β > 2, B = 0,
and at m = mβ/2,B/2 for β > 0, B �= 0. This, along with the symmetry of the Ising
model for B = 0 completes the proof of part (b). 
�

5.2 Proofs of Theorems 2.3 and 2.4

In this sectionweprove the convergence of logpartition function for bi-regular bipartite
graphs, followed by the same for a sequence of graphs converging in cut metric.
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Proof of Theorem 2.3 To begin first note that (2.5), along with ancn = (n − an)dn
implies cn = �(dn), and therefore we deduce that cn and dn individually converge
to ∞, as n → ∞. This further implies that |En| = ancn � n. Thus Corollary 1.2 is
applicable, and it suffices only to consider the asymptotics of supq∈P([q])n M

β,B
n (q).

For computing the supremum in this setting, denoting bn := n − an we have

Mβ,B
n (q) = β

∑

i∈[an ] j∈[bn ],r∈[2]
q
(1)
i (r)q(2)

j (r)An(i, j) −
∑

i∈[an ],r∈[2]
q
(1)
i (r) log q(1)

i (r)

−
∑

j∈[bn ],r∈[2]
q
(2)
j (r) log q(2)

j (r).

Introducing variables s(1)
i := q

(1)
i (1) − q

(1)
i (2), and s

(2)
j := q

(2)
j (1) − q

(2)
j (2), and

noting that
∑

k∈[2] q
(1)
i (k) = ∑

k∈[2] q
(2)
j (k) = 1, the RHS above becomes

=β

2

∑

i∈[an ], j∈[bn ]
(1 + s

(1)
i s

(2)
j )An(i, j) +

∑

i∈[an ]
H(s

(1)
i ) +

∑

j∈[bn ]
H(s

(2)
j )

=β

2

∑

i∈[an ], j∈[bn ]
s
(1)
i s

(2)
j An(i, j) +

∑

i∈[an ]
H(s

(1)
i ) +

∑

j∈[bn ]
H(s

(2)
j ) + β

2

ancn
cn + dn

.

(5.5)

Hence, it suffices to maximize (5.5) over the set {s(1)
i ∈ [−1, 1], i ∈ [an]; s(2)

j ∈
[−1, 1], j ∈ [bn]}.

Fixing n first note that the optimum occurs at an interior point where s
(1)
i ∈

(−1, 1), s(2)
j ∈ (−1, 1), for any i ∈ [an], j ∈ [bn]. This is due to the facts that

for any i ∈ [an], we have

∂

∂s
(1)
i

Mβ,B
n

∣
∣
∣
∣
∣s

(1)
i →−1+ = +∞,

∂

∂s
(1)
i

Mβ,B
n

∣
∣
∣
∣
∣
s(1)
i →1−

= −∞,

and a similar argument holds for s(2)
j for j ∈ [bn], as well. Thus differentiating with

respect to s(1)
i , s

(2)
j and equating to 0, any optimum satisfies the following equations

s
(1)
i = tanh

⎛

⎝β
∑

j∈[bn ]
An(i, j)s

(2)
j

⎞

⎠ , (5.6)

s
(2)
j = tanh

⎛

⎝β
∑

i∈[an ]
An(i, j)s

(1)
i

⎞

⎠ . (5.7)

We now split the proof into four different cases.
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Case 1: β > 0, and β2 p(1 − p) < 1.
Since β > 0, and H(x) = H(−x), without loss of generality we can assume that
for any optimum we have s

(1)
i , s

(2)
j ≥ 0. Next combining (5.6), and (5.7), for every

i ∈ [an] we get

s
(1)
i = tanh

⎛

⎝β
∑

j∈[bn]
An(i, j) tanh

⎛

⎝β
∑

k∈[an ]
An( j, k)s

(1)
k

⎞

⎠

⎞

⎠ . (5.8)

Letting s
(1)
i0

:= argmaxi∈[an ] s
(1)
i , (5.8) further yields

s
(1)
i0

= tanh

⎛

⎝β
∑

j∈[bn ]
An(i, j) tanh

⎛

⎝β
∑

k∈[an ]
An( j, k)s

(1)
k

⎞

⎠

⎞

⎠

≤ tanh

⎛

⎝β
∑

j∈[bn ]
An(i, j) tanh

⎛

⎝β
∑

k∈[an ]
An( j, k)s

(1)
i0

⎞

⎠

⎞

⎠

= tanh

(

β
cn

cn + dn
tanh

(

βs
(1)
i0

dn
cn + dn

))

=: η
β,

dn
cn+dn

(s
(1)
i0

). (5.9)

It is easy to note that

∥
∥
∥
∥
∥

dη
β,

dn
cn+dn

(s)

ds

∥
∥
∥
∥
∥∞

= β2 cndn
(cn + dn)2

n→∞−→ β2 p(1 − p) < 1.

Thus s �→ η
β,

dn
cn+dn

(s) is a contraction. This implies that for any s > 0

η
β,

dn
cn+dn

(s) =
∣
∣
∣ηβ,

dn
cn+dn

(s) − η
β,

dn
cn+dn

(0)
∣
∣
∣ < |s − 0| = s,

for all large n. Using (5.9), for large n, we therefore deduce that s(1)
i0

must be equal

to zero. This further implies that s(1)
i must be equal to zero for all i ∈ [an]. Similar

arguments hold for s(2)
j , proving s

(2)
j = 0 for all j ∈ [bn]. Plugging in the values of

s
(1)
i , and s

2)
j in the RHS of (5.5) we have

sup
q∈P([q])n

Mβ,0
n (q) = β

2

ancn
cn + dn

+ n log 2,

which on dividing by n and taking limits proves Case 1.
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Case 2: β < 0, and β2 p(1 − p) < 1.
Note that one can rewriteMβ,0

n (q) as

(−β)

2

∑

i∈[an ], j∈[bn ]
s
(1)
i (−s

(2)
j )An(i, j)+

∑

i∈[an ]
H(s

(1)
i )+

∑

j∈[bn ]
H(−s

(2)
j ) + β

2

ancn
cn + dn

.

Since β < 0, one can argue that for any optimum we must have s(1)
i and −s

(2)
j non

negative for all i ∈ [an], and j ∈ [bn]. The rest of the arguments is similar to Case 1.
We omit the details.

Case 3: β > 0, and β2 p(1 − p) > 1.
We begin by noting that

dη
β,

dn
cn+dn

ds
(s) = β2 cndn

(cn + dn)2
sech2

(

tanh

(

βs
dn

cn + dn

))

sech2
(

βs
dn

cn + dn

)

,

which is decreasing in s, and goes to zero as s → ∞. Further noting that

dη
β,

dn
cn+dn

ds
(s)

∣
∣
∣
s=0

= β2 cndn
(cn + dn)2

n→∞−→ β2 p(1 − p) > 1,

we deduce that there is a unique positive root of the equation s = η
β,

dn
cn+dn

(s), denoted

by s
β,

dn
cn+dn

, for all n large enough. Also (5.9) implies

max
i∈[an ]

s
(1)
i = s

(1)
i0

≤ s
β,

dn
cn+dn

.

By a similar argument we also deduce

min
i∈[an ]

s
(1)
i ≥ s

β,
dn

cn+dn
,

and so s
(1)
i = s

β,
dn

cn+dn
for all i ∈ [an]. Plugging in this solution in (5.7) gives s(2)

j =
sβ,

cn
cn+dn

for all j ∈ [bn]. Thus the optimum solution is

s
(1)
i = s

β,
dn

cn+dn
, for all i ∈ [an], s

(2)
j = sβ,

cn
cn+dn

for all j ∈ [bn].

Plugging in this optimal solution in the RHS of (5.5) gives

sup
q∈P([q])n

Mβ,0
n (q) = βancn

2(cn + dn)

{
1 + s

β,
dn

cn+dn
sβ,

cn
cn+dn

)
}

+anH
(
s
β,

dn
cn+dn

)
+ bnH

(
s
β,

dn
cn+dn

)
,
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from which part (b) follows on dividing by n and taking limits, on noting that the
function p �→ sβ,p is continuous.

Case 4: β < 0, and β2 p(1 − p) > 1.
This can be done by combining the arguments of Case 2, and Case 3. We omit the
details.

Note that the above four cases complete the proof, barring the convergence of
�n(β, 0) at β = ±βc(p) = ±√

p(1 − p). To complete the proof first we use the fact
that | tanh(x)| < |x |, for any x �= 0, and deduce that sβ,p → 0, as β → ±βc. This
implies that

�(β, 0) := βp(1 − p)

2
+ |β|p(1 − p)

2
s|β|,ps|β|,1−p + pH(s|β|,p) + (1 − p)H(s|β|,1−p)

is continuous for all β. Since {�n(·, 0)} are convex functions, and limit of such func-
tions is also a convex function, using the fact that lim supn→∞ 1

n�n(β, 0) < ∞ at
β = ±βc(p), the proof completes by a standard analysis argument. 
�
Remark 5.1 Even though we do not pursue it here, by combining the arguments of
Theorems 2.1 and 2.3 one should be able to prove Theorem 2.3 for a sequence asymp-
totically bi-regular bipartite graphs. We believe a similar universality result for the
limiting log partition function for the q Potts model holds for general q-partite graphs
as well, though proving it will require an analysis of fixed points in q dimensional
equations for q > 2.

Finally we prove Theorem 2.4.

Proof of Theorem 2.4 By assumption WnAn converges to W in the cut metric, and
therefore by [8, Proposition C5 and Proposition C15], we have limn→∞ |En |

n = ∞.

Thus applying Corollary 1.2, we note that it suffices to show

lim
n→∞

1

n
sup

q∈(P[q])n
MJ,h

n (q) = sup
ρ∈FPq

F J,h(W, ρ). (5.10)

To this end, setting ρr (x) = qi (r) for ( i−1
n , i

n ] for each 1 ≤ r ≤ q, 1 ≤ i ≤ n, we
note that

1

n
MJ,h

n (q) = F J,h(WnAn , ρ). (5.11)

Since nWAn converges to W in the cut metric we have

sup
ρ∈FPq

|F J,h(WnAn , ρ) − F J,h(W, ρ)| → 0. (5.12)

This implies that

lim sup
n→∞

1

n
sup

q∈(P[q])n
MJ,h

n (q) ≤ sup
ρ∈FPq

F J,h(W, ρ).
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Thus to establish (5.10), we need to prove the other side of the inequality. Turning to
prove the same, we note that it suffices to show that given any ρ ∈ FPq there exists
ρ(n) ∈ FPq , with ρr being constant on ( i−1

n , i
n ] for 1 ≤ i ≤ n, 1 ≤ r ≤ q, such that

lim
n→∞ F J,h(W, ρ(n)) = F J,h(W, ρ). (5.13)

Indeed, using (5.11), we deduce that, for any ρ ∈ FPq

F J,h(W, ρ) ≤
∣
∣
∣F J,h(W, ρ) − F J,h(WnAn , ρ

(n))

∣
∣
∣ + 1

n
MJ,h

n (q).

Next taking a supremum over q ∈ P([q])n , followed by a liminf on the both sides,
and using (5.12), and (5.13), we further obtain that

F J,h(W, ρ) ≤ lim inf
n→∞

1

n
sup

q∈P([q])n
MJ,h

n (q).

Next taking another supremum over ρ ∈ FPq , we complete the proof of (5.10).
Now it only remains to establish (5.13). A standard measure theoretic arguments

yields the existence ρ(n) ∈ FPq , with ρr being constant on ( i−1
n , i

n ] for 1 ≤ i ≤
n, 1 ≤ r ≤ q, such that

lim
n→∞

q
max
r=1

|ρ(n)
r (x) − ρr (x)| = 0, Lebesgue almost surely. (5.14)

Therefore, noting ‖W‖1 < ∞, using dominated convergence theorem, and the fact
that the function x �→ x log x is continuous on [0, 1] we prove (5.13). This completes
the proof of the theorem. 
�
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