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1. Proofs of main results. This section carries out the proof of all
results of the main paper. Subsection 1.1 gives a brief description of the
notion of permutation limits, mostly adapted from [8]. Subsection 1.2 states
the large deviation principle for permutations in Theorem 1.1, and uses it
to prove the results of this paper. Finally, subsection 1.3 gives a proof of
Theorem 1.1 using permutation limits.

1.1. Permutation limits. The concept of permutation limits was intro-
duced in [8] in 2011, and was motivated from graph limit theory. For a
brief exposition of the theory of graph limits refer to Lovasz [9]. The central
idea in permutation limit theory is that any permutation can be thought
of as a probability measures M on [0, 1]2 with uniform marginals. For any
π ∈ Sn, define a probability measure µπ ∈M as dµπ := fπ(x, y)dxdy, where
fπ(x, y) = n111{(x, y) : π(bnxc) = bnyc} is the density of µπ with respect to
Lebesgue measure. An intuitive definition of µπ is as follows:

Partition [0, 1]2 into n2 squares of side length 1/n, and define fπ(x, y) =
n for all (x, y) in the (i, j)-th square if π(i) = j and 0 otherwise. As an
example, the measure µπ corresponding to the permutation π = (1, 3, 2) has
the density of figure 1.

(0, 0) (0, 1)

(1, 1)(1, 0)

Fig 1. Measure representation for the permutation (1, 3, 2). Here the shaded region has
density 3, and the white region has density 0.

1

http://www.imstat.org/aos/
http://arxiv.org/abs/arXiv:1307.0978


2 SUMIT MUKHERJEE

Here the shaded region has density 3, and the white region has 0 density.
A sequence of permutations πn ∈ Sn is said to converge to a measure

µ ∈M, if the corresponding sequence of probability measures µπn converge
weakly to µ. As an example if πn is uniformly distributed on Sn, then πn
converges to Lebesgue measure on [0, 1]2. If πn = (1, 2, · · · , n) is the identity
permutation on Sn, then πn converges to a measure which is uniform on the
diagonal x = y. Similarly if πn = (n, n−1, · · · , 1) is the reverse permutation,
then πn converges to the uniform measures on the diagonal x+y = 1. To see
that non trivial limits that can arise as permutation limits, refer to Theorem
1.5 and Proposition 1.12.

1.2. The large deviation principle. Given a permutation π, the previous
subsection defined a measure µπ on the unit square. Also recall part (b) of
theorem 1.5 which, given a permutation π ∈ Sn, defines a measure

νπ =
1

n

n∑
i=1

δ(i/n,π(i)/n)

on the unit square. Both marginals of νπ are discrete uniform on the set
{(i/n), i ∈ 1, 2, · · · , n}. Since the marginals are not uniform on [0, 1], νπ is
not an element ofM, but any weak limit of the sequence νπn is inM if the
size of the permutation goes to ∞. If the size of the permutation π is large,
the two measure µπ and νπ are close in the weak topology. To see this, let
π ∈ Sn, and let Fµπ and Fνπ represent the bivariate distribution functions
of µπ and νπ respectively. Then it follows that

d∞(µπ, νπ) := sup
0≤x,y≤1

|Fµπ(x, y)− Fνπ(x, y)| ≤ 2

n
.(1.1)

To see this note that both µπ and νπ can be defined by partitioning the
unit square into n2 boxes, such that exactly n boxes receive a mass of 1/n.
Also the choice of the n boxes is such that every row and every column will
have exactly one box of positive mass. Thus any vertical line through x can
intersection exactly one box in this partition which has positive probability,
and so the above difference can be at most 1/n+ 1/n.

The main tool for proving the results of this paper is a large deviation
principle for νπ with respect to weak convergence on M where π ∼ Pn, the
uniform probability measure on Sn. This result is stated below.

Theorem 1.1. If π ∼ Pn, the uniform measure on Sn, both the sequence
of probability measures µπ, and νπ satisfy a large deviation principle on the
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set of probability measures on [0, 1]2 with the good rate function

I(µ) := D(µ||u) if µ ∈M, +∞ otherwise,

where u is the uniform measure on [0, 1]2. More precisely, for any set A
which is a subset of the set of probability measures on the unit square one
has

− inf
µ∈Ao

I(µ) ≤ lim inf
n→∞

1

n
logPn(A) ≤ lim sup

n→∞

1

n
logPn(A) ≤ − inf

µ∈A
I(µ),

where Ao and A denotes the interior and closure of A respectively.

Theorem 1.5 follows from Theorem 1.1 as follows.

Proof of Theorem 1.5. (a) Note that

eZn(f,θ)−Zn(0) =
1

n!

∑
π∈Sn

eθ
∑n
i=1 f(i/n,π(i)/n) = EPne

nθνπ [f ],

where Zn(0) = log n!, and µ[f ] =
∫
[0,1]2 fdµ denotes the mean of f

with respect to µ. Since the function µ 7→ θµ[f ] is bounded and con-
tinuous, an application of Varadhan’s Lemma [5, Theorem 4.3.1] along
with the large deviation of νπ gives the desired conclusion.

(b) The function µ 7→ θµ[f ]−D(µ||u) is strictly concave (on the set where
it is finite) and upper semi continuous on the compact set M, and
so the global maximum is attained at a unique µf,θ ∈ M. To show
the weak convergence of νπ fix an open set U containing µf,θ, define a
function T :M 7→ [−∞,∞) by

T (µ) = θµ[f ] if µ ∈ U c, −∞ otherwise .

Then

1

n
logQn,f,θ(νπ ∈ U c) =

1

n
logEPne

nT (νπ) − 1

n
Zn(f, θ).

Since T is upper semi continuous and bounded above, [5, Equation
4.3.2] holds trivially and so by [5, Lemma 4.3.6] along with the large
deviation result for νπ one has

lim sup
n→∞

1

n
logEPne

nT (νπ) ≤ sup
µ∈Uc∩M

{θµ[f ]−D(µ||u)}.
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This, along with part (a) gives

lim sup
n→∞

1

n
logQn,f,θ(νπ ∈ U c)

≤ sup
µ∈Uc∩M

{θµ[f ]−D(µ||u)} − sup
µ∈M
{θµ[f ]−D(µ||u)}.

The quantity on the right hand side above is negative as the infimum
over the compact set U c∩M is attained, and the global minimizer µf,θ
is not in U c by choice. This proves that Qn,f,θ)(νπ ∈ U c) decays to 0
at an exponential rate, which in particular implies that {νπ} converges
to µf,θ weakly in probability.

(c) Since θf(.) is integrable with respect to du, by [4, Corollary 3.2] there
exists functions af,θ(.), bf,θ(.) :∈ L1[0, 1] such that

dµa,b = ga,bdxdy := eθf(x,y)+af,θ(x)+bf,θ(y)dxdy ∈M.

The proof that µa,b = µf,θ is by way of contradiction. Suppose this
is not true. Since µf,θ is the unique global minimizer of If,θ(µ) :=
D(µ||u)− θµ[f ], setting

h(α) := If,θ((1− α)µa,b + αµf,θ)

it must be that h(α) has a global minima at α = 1. Also

If,θ(µf,θ) ≤ If,θ(u) = −θu(f) <∞,

which forces D(µf,θ||u) <∞. Thus letting φf,θ :=
dµf,θ
du gives

h′(0) =

∫
T

(φf,θ(x, y)− ga,b(x, y))(log ga,b(x, y)− θf(x, y))du

=

∫
T

(φf,θ(x, y)− ga,b(x, y))(af,θ(x) + bf,θ(y))du

=Eµf,θ [af,θ(X) + bf,θ(Y )]− Eµa,b [af,θ(X) + bf,θ(Y )] = 0,

where the last equality follows from the fact that both µf,θ and µa,b
have the same uniform marginals. But h is convex, which forces that
α = 0 is also a global minima of h(.). Thus h(0) = h(1), a contradiction
to the uniqueness of arg maxµ∈M{θµ[f ]−D(µ||u)} proved in part (b).
Thus it must be that

dµf,θ = dµa,b = eθf(x,y)+af,θ(x)+bf,θ(y)dxdy.

Finally, the almost sure uniqueness of af,θ(.) and bf,θ(.) follows from
the uniqueness of the optimizing measure µf,θ. The last claim of part
(c) then follows from part (a) by a simple calculation.
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(d) Since νπ converges in probability to µf,θ, it follows by Dominated Con-
vergence theorem that

Z ′n(f, θ) = EQn,f,θ
1

n

n∑
i=1

f(i/n, π(i)/n)
n→∞→ µf,θ[f ].

Another application of Dominated Convergence theorem gives that

1

n
[Zn(f, θ)− Zn(0)] =

∫ θ

0

1

n
Z ′n(f, t)dt

n→∞→
∫ θ

0
µf,t[f ],

which along with part (a) gives that Z ′(f, θ) = µf,θ[f ].

Since Z(f, θ) is convex Z ′(f, θ) is non-decreasing. To show that Z ′(f, θ)
is strictly increasing, by way of contradiction let θ1 6= θ2 be such that
Z ′(f, θ1) = Z ′(f, θ2) for some θ1 6= θ2, which implies µf,θ1 [f ] = µf,θ2 [f ].
The optimality of µf,θ1 gives

θ1µf,θ1 [f ]−D(µf,θ1 ||u) ≥ θ1µf,θ2 [f ]−D(µf,θ2 ||u),

which implies D(µf,θ1 ||u) ≤ D(µf,θ2 ||u). By symmetry D(µf,θ1 ||u) =
D(µf,θ2 ||u), and so θ1µf,θ1 [f ]−D(µf,θ1 ||u) = θ1µf,θ2 [f ]−D(µf,θ2 ||u).
This implies µf,θ1 = µf,θ2 by the uniqueness of theorem 1.5 part (b).
By the form of the optimizer proved in theorem 1.5 part (c) one has

eθ1f(x,y)+af,θ1 (x)+bf,θ1 (y) = eθ2f(x,y)+af,θ2 (x)+bf,θ2 (y),

which on taking log gives

f(x, y) =
1

θ1 − θ2

(
af,θ2(x) + bf,θ2(y)− af,θ1(x)− bf,θ1(y)

)
.

Integrating with respect to y using the definition of C gives

af,θ1(x)− af,θ2(x) =

∫ 1

0
[bf,θ2(y)− bf,θ1(y)]dy,

and so af,θ1(x)−af,θ2(x) is a constant. By symmetry bf,θ1(y)−bf,θ2(y)
is a constant as well, and so f(x, y) is constant, a contradiction to the
assumption that f ∈ C.

Finally to show continuity of Z ′(f, θ), let θk be a sequence of reals
converging to θ. Since sequence of measures µf,θk ∈ M is tight, let µ
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be any limit point of this sequence. Then by continuity of Z(f, .) and
lower semi continuity of D(.||u) one has

Z(f, θ) = lim sup
k→∞

Z(f, θk)

= lim sup
k→∞

{θkµf,θk [f ]−D(µf,θk ||u)} ≤ θµ[f ]−D(µ||u).

Since Z(f, θ) = supµ∈M{θµ[f ] − D(µ||θ)} and the supremum is at-
tained uniquely at µf,θ it follows that µ = µf,θ, and so the sequence
µf,θk converge weakly to µf,θ. But this readily implies

Z ′(f, θk) = µf,θk [f ]
k→∞→ µf,θ[f ] = Z ′(f, θ),

and so Z ′(f, .) is continuous, thus completing the proof of the theorem.

Proof of Corollary 1.7. (a) Since 1
n

∑n
i=1 f(i/n, π(i)/n) = νπ[f ]

and νf converges weakly to µf,θ by Theorem 1.5, the desired conclusion
follows.

(b) Fixing δ > 0 by part (a) one has

LDn(π, θ0 + δ)
p→ Z ′(θ0)− Z ′(θ0 + δ) <0,

LDn(π, θ0 − δ)
p→ Z ′(θ0)− Z ′(θ0 − δ) >0,

and so by continuity and strict monotonicity of Z ′(f, θ) from part (d)
of Theorem 1.5 it follows that with probability tending to 1 there exists
a unique root θ̂LD of the equation LDn(π, θ) = 0, and |θ̂LD − θ0| ≤ δ.
This proofs the consistency of θ̂LD. The proof of consistency of θ̂ML

follows verbatim by replacing LDn(π, θ) with MLn(π, θ).
(c) Since θ̂LD converges to θ0 under Qn,f,θ0 and to θ1 under Qn,f,θ1 the

conclusion follows.

The following definition will be used in the proof of theorem 1.9.

Definition 1.2. For k ∈ N, partition [0, 1]2 into k2 squares {Trs}kr,s=1

of length 1/k, with

Trs :=
{

(x, y) ∈ T : dkxe = r, dkye = s
}

for 2 ≤ r, s,≤ k,

T1s :=
{

(x, y) ∈ T : dkxe ≤ 1, dkye = s
}

for 2 ≤ s ≤ k,

Tr1 :=
{

(x, y) ∈ T : dkxe ≤ 1, dkye = s
}

for 2 ≤ r ≤ k,

T11 :=
{

(x, y) ∈ T : dkxe ≤ 1, dkye ≤ 1
}
.
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Also define the k × k matrix M(π) by

Mrs(π) :=

n∑
i=1

1{(i/n, π(i)/n) ∈ Trs} = nνπ(Trs).(1.2)

The definition ensures that Trs is a disjoint partition of [0, 1]2, and so sum
of the elements of M(π) is n. It should be noted that all the sets Trs above
are µ continuity sets for any µ ∈ M. This readily follows from noting that
the boundary of Trs is contained in{

(x, y) : x =
r

k

}
∪
{

(x, y) : x =
r − 1

k

}
∪
{

(x, y) : y =
s

k

}
∪
{

(x, y) : y =
s− 1

k

}
,

which has probability 0 under any µ ∈M, as µ has uniform marginals.

Definition 1.3. For any k × k matrix A two probability distributions
pA, p̃A on the unit square are defined below: (Recall definition 1.8 which
introduces Mk as the set of k × k matrices with non negative entries, such
that each row and column sum equals 1/k.)

The measure pA is a discrete distribution with the p.m.f. pA(r/k, s/k) =
Ars for 1 ≤ r, s ≤ k.

The measure p̃A has a density with respect to Lebesgue measure given by
pA(x, y) =: k2Ars for x, y ∈ Trs, 1 ≤ r, s ≤ k. The assumption A ∈ Mk

ensures that both pA, p̃A are probability measures, and further p̃A ∈ M, i.e.
it has uniform marginals.

Proof of Theorem 1.9. (a) On applying [10, Theorem 1,2] one gets
the conclusion that Bm converges to a matrix Ak,θ ∈ Mk of the form
Λ1B0Λ2, where Λ1 and Λ2 are diagonal matrices.

(b) To begin note that

θ

k∑
r,s=1

f(r/k, s/k)A(r, s)− 2 log k−
k∑

r,s=1

A(r, s) logA(r, s)

=θpA[f ]−D(pA||pUk),

where Uk ∈ Mk is defined by Uk(r, s) := 1
k2

. By compactness of Mk

and strong concavity of A 7→ θpA[f ] − D(pA||pUk) there is a unique
maximizer in Mk, and by [4, Theorem 3.1] it follows that this maxi-
mizer is of the form D1B0D2 for some diagonal matrices D1, D2. Since
both Λ1B0Λ2 and D1B0D2 are inMk, by the uniqueness of [10, Theo-
rem 1] one has D1B0D2 = Λ1B0Λ2 = Ak,θ, thus completing the proof
of part (b).
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(c) Since the function (θ,A) 7→ θpA[f ] − D(pA||pUk) from R × Mk to
[−∞,∞) is linear in θ, and has a unique maximizer Ak,θ in A for
every θ fixed, the conclusion follows on applying Danskin’s theorem
[1, B.5].

(d) Since µ 7→ {µ(Trs)}kr,s=1 is a continuous map, by theorem 1.1 and [5,

Theorem 4.2.1] the matrix 1
nM(π) satisfies a large deviation principle

on the set of k × k matrices with the good rate function

Ik(A) := inf
µ∈M:µ(Trs)=Ars,1≤r,s≤k

D(µ||u)

if A ∈ Mk, and +∞ otherwise. By [4, Theorem 3.1] the maximum is
achieved at µ = p̃A, and so

Ik(A) = D(p̃A||u) =

k∑
r,s=1

Ars logArs + 2 log k = D(pA||pUk).

An application of Varadhan’s Lemma gives

1

n
logEPne

θ
∑k
r,s=1 f(r/k,s/k)Mrs(π)

=
1

n
logEPne

nθ
∑k
r,s=1 f(r/k,s/k)νπ(Trs)

n→∞→ sup
A∈Mk

{θ
k∑

r,s=1

f(r/k, s/k)A(r, s)−D(pA||u)} = Wk(f, θ).

Since

|
k∑

r,s=1

f(r/k, s/k)νπ(Trs)−
1

n

n∑
i=1

f(i/n, π(i)/n)|

≤ sup
|x1−x2|≤1/k,|y1−y2|≤1/k

|f(x1, y1)− f(x2, y2)| =: εk,

it follows that

|Wk(f, θ)− Z(f, θ)| =
∣∣∣ lim
n→∞

1

n
log

EPne
nθ

∑k
r,s=1 f(r/k,s/k)νπ(Trs)

EPne
nθ

∑n
i=1 f(i/n,π(i)/n)

∣∣∣ ≤ |θ|εk.
By continuity of f one has εk → 0, and so Wk(f, θ) converges to
Z(f, θ).
To complete the proof assume that pAk,θ

w→ µf,θ. In this case it follows
that

W ′k(f, θ) = pAk,θ [f ]
k→∞→ µf,θ[f ] = Z ′(f, θ),
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and so by Dominated Convergence we have limk→∞Wk(f, θ) = Z(f, θ).
Finally since

lim
m→∞

k∑
r,s=1

Bm(r, s) logBm(r, s) =

k∑
r,s=1

Ak,θ(r, s) logAk,θ(r, s)

by part (a), it follows that Z(f, θ) equals

lim
k→∞

lim
m→∞

{θ
k∑

r,s=1

f(r/k, s/k)Bm(r, s)− 2 log k −
k∑

r,s=1

Bm(r, s) logBm(r, s)},

which is the desired conclusion.
It thus remains to show that pAk,θ converges weakly to µf,θ as k →∞.
Since the set of probability measures on [0, 1]2 is compact, the sequence
pAk,θ is tight. If µ 6= µf,θ be a limit point, then by joint lower semi
continuity of D(.||.) one has

lim sup
k→∞

Wk(f, θ) = lim sup
k→∞

{θpAk,θ [f ]−D(pAk,θ ||pUk)}

≤θµ[f ]−D(µ||u) < Z(f, θ).

But this is a contradiction to the fact that Wk(f, θ) converges to
Z(f, θ), and hence pAk,θ does indeed converges to µf,θ. This completes
the proof of the theorem.

Before proving Theorem 1.11, a general lemma is stated which constructs√
n consistent estimates of θ in permutation models. The idea of this proof

is taken from [3].

Lemma 1.4. Let Rn,θ be any one parameter family on Sn, and let Gn(π, θ)
be a function on Sn × R which is differentiable in θ.

Suppose the following two conditions hold:

(a) For every θ0 ∈ R there exists a constant C = C(θ0) such that

ERnθ0Gn(π, θ0)
2 ≤ Cn3(1.3)

(b) There exists a strictly positive continuous function λ : R 7→ R such
that

lim
n→∞

Rn,θ0(G′n(π, θ) ≤ −n2λ(θ),∀θ ∈ R) = 1.(1.4)

Then the equation Gn(π, θ) = 0 has a unique root in θ. Further de-
noting this unique root by θ̂n one has

√
n(θ̂n − θ0) is OP (1) under

Rn,θ0.
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Proof. Fixing a large positive real M let Sn be defined by

Sn := {π ∈ Sn : |Gn(π, θ0)| ≤ n3/2M, G′n(π, θ) ≤ −n2λ(θ), θ ∈ R}.

Then for π ∈ Sn one has

Gn(π, θ0 + 1) = Gn(π, θ0) +

∫ θ0+1

θ0

G′n(π, θ)dθ ≤ n3/2M − n2 inf
θ∈[θ0,θ0+1]

λ(θ),

which is negative for all large n. Similarly it can be shown that Gn(π, θ0 −
1) > 0 for π ∈ Sn. Also note that Gn(π, θ) is strictly monotone on Sn,
and so by continuity of θ 7→ Gn(π, θ) there exists a unique θ̂n satisfying
Gn(π, θ̂n) = 0, and θ0 − 1 < θ̂n < θ0 + 1. Finally one has

n3/2M ≥ |Gn(π, θ0)| =|Gn(π, θ0)−Gn(π, θ̂n)|

≥n2|
∫ θ0

θ̂n

λ(θ)dθ| ≥
[

inf
|θ−θ0|≤1

λ(θ)
]
|θ̂n − θ0|,

and so
√
n|θ̂n−θ0| ≤ KM , where K := [inf |θ−θ0|≤1 λ(θ)]−1 <∞. Thus using

(1.3) and (1.4) gives

lim sup
n→∞

Rn,θ0(|θ̂n − θ0| > KM) ≤ lim sup
n→∞

Rn,θ(|Gn(π, θ0)| ≥Mn3/2)

≤ lim sup
n→∞

1

M2n3
ERn,θ0Gn(π, θ0)

2 ≤ C

M2
.

Since the r.h.s. above can be made arbitrarily small by choosing M large,
the proof of the lemma is complete.

Proof of Theorem 1.11. It suffices to check the two conditions (1.3)
and (1.4) of Lemma 1.4 with Rn,θ = Qn,f,θ and Gn(π, θ) = PLn(π, θ). For
checking (1.3) an exchangeable pair is constructed.

Consider the following exchangeable pair of permutations (π, π′) on Sn
constructed as follows:

Pick π from Qn,f,θ. To construct π′, first pick a pair (I, J) uniformly from
the set of all

(
n
2

)
pairs {(i, j) : 1 ≤ i < j ≤ n}, and replace (π(I), π(J)) by

an independent pick from the conditional distribution (π(I), π(J)|π(k), k 6=
I, J). By a simple calculation, the probabilities turn out to be the following:

(i) (π′(I), π′(J)) = (π(I), π(J)) with probability

Qn,f,θ(π(I ′) = π(I), π(J ′) = π(J)|π(k), k 6= I, J) =
1

1 + eθyπ(I,J)
,
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(ii) (π′(I), π′(J)) = (π(J), π(I)) with probability

Qn,f,θ(π(I ′) = π(J), π(J ′) = π(I)|π(k), k 6= I, J) =
eθyπ(I,J)

1 + eθyπ(I,J)
.

Set π′(i) = π(i) for all i 6= I, J . It can be readily checked that (π, π′) is
indeed an exchangeable pair. Also defining

W (π) :=

n∑
i=1

f(i/n, π(i)/n), and F (π, π′) := W (π)−W (π′)

one can check from the construction of (π, π′) that

EQn,f,θ [F (π, π′)|π] = W (π)− EQn,f,θ [W (π′)|π] =
1

Nn
PLn(π, θ),

where Pn(π, θ) is as defined in the statement of the Lemma, and Nn :=
n(n−1)

2 . Thus

EQn,f,θPLn(π, θ)2 =NnEQn,f,θPLn(π, θ)[EQn,f,θF (π, π′)|π]

=NnEQn,f,θPLn(π, θ)F (π, π′)

=NnEQn,f,θPLn(π′, θ)F (π′, π)

=−NnEQn,f,θPLn(π′, θ)F (π, π′)

=
Nn

2
EQn,f,θ(PLn(π, θ)− PLn(π′, θ))F (π, π′)

where the third line uses the exchangeability of (π, π′), the fourth line uses
the anti-symmetry of F , and the last line is obtained by adding the second
and fourth lines together and dividing by 2. This readily implies

EQn,f,θPLn(π, θ)2 =EQn,θVn(π)(1.5)

where Vn(π) = Nn
2 EQn,f,θ [(PLn(π, θ)−PLn(π′, θ))F (π, π′)|π). Letting πij

denote π with the elements (π(i), π(j)) swapped, Vn(π) can be written as

Vn(π) =
1

2

∑
1≤i<j≤n

[
PLn(π, θ)− PLn(πij , θ)

]yπ(i, j)eθyπ(i,j)

1 + eθyπ(i,j)
.(1.6)

Also setting M := 4 sup[0,1]2 |f | for any (i, j) one has

|PLn(π, θ)− PLn(πij , θ)| ≤ 4nM,
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using the fact that |yπ(i, j)| ≤ M . This along with equation (1.6) gives
|Vn(π)| ≤ 4n3M2, which, along with (1.5), completes the proof of (1.3) with
C = 4M2.

Proceeding to check (1.4) one has

− 1

n2
PL′n(π, θ) =

1

n2

∑
1≤i<j≤n

yπ(i, j)2
eθyπ(i,j)

1 + eθyπ(i,j)
1

1 + eθyπ(i,j)

≥e
−|θ|M

8n2

n∑
i,j=1

yπ(i, j)2,

where the last inequality again uses |yπ(i, j)| ≤ M . Since the function g :
[0, 1]4 7→ R defined by

g((x1, y1), (x2, y2)) :=
[
f(x1, y1) + f(x2, y2)− f(x1, y2)− f(x2, y1)

]2
is continuous, it follows that νπ × νπ

w→ µf,θ0 × µf,θ0 in probability by part
(b) of theorem 1.5. This gives

1

n2

n∑
i=1

yπ(i, j)2

=
1

n2

n∑
i,j=1

g((i/n, π(i)/n), (j/n, π(j)/n)) = (νπ × νπ)(g)

p→
∫
[0,1]4

[
f(x1, y1) + f(x2, y2)− f(x1, y2)− f(x2, y1)

]2
dµf,θ0(x1, y1)dµf,θ0(x2, y2)

= : α(θ), say.

If α(θ) = 0, then f(x1, y1) + f(x2, y2) = f(x1, y2) + f(x2, y1) almost surely.
On integrating with respect to x2, y2 and using the fact that f ∈ C gives
f(x1, y1) ≡ 0, a contradiction. Thus α(θ) > 0, and so (1.4) holds with
λ(θ) = e−M |θ|α(θ)/16. Thus both conditions of Lemma 1.4 hold, and so the
conclusion follows.

Proof of Proposition 1.12. (a) First it will be shown that µ 7→
θ[µ×µ](h)/2 is continuous with respect to weak topology onM. Since
M is separable, it suffices to work with sequences, and it suffices to
check the following:

µk ∈M, µk
w→ µ⇒ (µk×µk)(x1 ≤ x2, y1 ≤ y2)→ µ(x1 ≤ x2, y1 ≤ y2)
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But this follows from the fact that the boundary of the set {x1 ≤
x2, y1 ≤ y2} is a subset of {x1 = x2, 0 ≤ y ≤ 1}∪{0 ≤ x ≤ 1, y1 = y2},
and P(X1 = X2) = 0 where X1, X2 are i.i.d. with distribution U [0, 1].
Thus µ 7→ θ[µ× µ](h)/2 is continuous on M⊃ {µ : I(µ) <∞}.

Now, a similar computation as in the proof of Theorem 1.5 gives

eCn(θ)−Cn(0) =
1

n!

∑
π∈Sn

e
θ
n

∑
1≤i<j≤n h((i/n,π(i)/n),(j/n,π(j)/n))

=EPne
n θ

2
[νπ×νπ ](h).

It then follows by an application of Varadhan’s Lemma ([5, Theorem
4.3.1]) along with theorem 1.1 (on noting that the proof of Varadhan’s
lemma goes through as long as the function µ 7→ θ(µ × µ)(h)/2 is
continuous on the set {I(µ) <∞}), that

C(θ) = lim
n→∞

Cn(θ)− Cn(0)

n
= sup

µ∈M

{θ
2

(µ× µ)(h)−D(µ||u)
}
.

The optimization problem was solved in [11] to show that there is a
unique maximizer in M, and it has the density ρθ(., .) with respect
to Lebesgue measure. Plugging in the formula for uθ(., .) gives the
formula for C(θ).

(b) Since in this case the function C(θ) is convex, differentiable with a
derivative which is continuous and monotone increasing, consistency
of θ̃LD and θ̃ML follow from similar arguments as in Corollary 1.7.

1.3. Proof of Theorem 1.1. By (1.1) and [5, Theorem 4.2.13] µπ and νπ
has the same large deviation, if any. Also since µπ ∈ M, it is evident that
the rate function can only be finite onM. The rest of this subsection proves
the large deviation for µπ on M invoking [5, Theorem 4.1.11], by choosing
a suitable base for the weak topology on M.

Definition 1.5. Let Mk,n denote the number of non negative integer

valued k × k matrices with rth row sum equal to Mr := dnrk e − d
n(r−1)
k e and

sth column sum equal to dnsk e − d
n(s−1)
k e, i.e.

Mk,n :=
(
M ∈ Nk

2

0 :

k∑
s=1

Mrs = Mr,

k∑
r=1

Mrs = Ms

)
,
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where N0 := N ∪ {0}. Note that any M ∈ Mk,n satisfies
∑k

r,s=1Mrs = n.
Recall the matrix M(π) defined in (1.2) as the k × k matrix with Mrs(π) =
nνπ[Trs]. The following lemma shows that M(π) ∈Mk,n for all π ∈ Sn, and
gives the distribution of M(π) when π ∼ Pn.

Lemma 1.6. If π is distributed uniformly at random on Sn, the distri-
bution of M(π) is given by

Pn(M(π) = M) =

(∏k
r=1Mr!

)2
n!
∏k
r,s=1Mrs!

if M ∈Mk,n, and 0 otherwise.

Proof. Since

Mr,s(π) =
n∑
i=1

1
{⌈ki

n

⌉
= r,

⌈kπ(i)

n

⌉
= s
}
,

it follows that

k∑
s=1

Mr,s(π) =
n∑
i=1

1
{⌈ki

n

⌉
= r
}

= Mr,

and so any valid configuration M is inMk,n. So fixing a particular configu-
ration M ∈ Mk,n, the number of possible permutations π compatible with
this configuration can be computed as follows:

For the rth row there are Mr choices of indices i, and that can be allocated
in boxes {Tr,s}ks=1 in Mr!/

∏k
s=1Mrs! ways, so that box Tr,s receives Mr,s

indices. Taking a product over r, the number of ways to distribute the indices
over the boxes is ∏k

r=1Mr!∏k
r,s=1Mrs!

Similarly, the number of ways to distribute the targets {π(i)} such that box
Tr,s receives Mrs targets is ∏k

s=1Ms!∏k
r,s=1Mrs!

Finally after the above distribution box Tr,s has Mrs indices and Mrs targets,
which can then be permuted freely, and so the total number of permutations
compatible with any such distribution of indices and targets is

k∏
r,s=1

Mrs!
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Combining, the total number of possible permutations π satisfying M(π) =
M is given by ∏k

r=1Mr!
∏k
s=1Ms!∏k

r,s=1Mrs!

Since the total number of permutations in n!, the proof of the claim is
complete.

Remark 1.7. Note that in the above proposition the row and column
sums of the matrix M(π) are free of π. The distribution of M(π) is a multi-
variate generalization of the hypergeometric distribution, commonly known
as the Fisher-Yates distribution. This distribution arises in statistics while
testing for independence in a 2-way table in the works of Diaconis-Efron
([6],[7]).

Before proceeding the following definitions are needed. The first definition
gives a base for the weak topology on M.

Definition 1.8. For any µ ∈ M define a matrix Pk,µ ∈ [0, 1]k
2

by
setting Pk,µ(r, s) := µ(Tr,s). Note that Trs is a µ continuity set (since µ ∈
M), and so the map µ 7→ Pk,µ is continuous on M with respect to weak
convergence.

One can now define a base for the weak topology on M as follows: Fix
k ∈ N, ε > 0, µ0 ∈M, and define the set

M[k, µ0](ε) := {µ ∈M : ||Pk,µ − Pk,µ0 ||∞ < ε},

where
||Pk,µ − Pk,µ0 ||∞ := max

1≤r,s≤k
|Pk,µ(r, s)− Pk,µ0(r, s)|.

Since µ 7→ Pk,µ is continuous, the set M[k, µ0](ε) is open in M. Also, for
any µ ∈ M one has Pk,µ ∈ Mk. Thus the operation A 7→ pA introduced
in defintiion 1.3 maps a matrix to a probability measure, and the operation
µ 7→ Pk,µ maps a probability measure to a matrix.

Proposition 1.9. The collection

M0 := {M[k, µ0](ε) : k ∈ N; ε > 0, µ0 ∈M}

is a base for the weak convergence on M.
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Proof. One needs to verify that given any µ0 and an open set U con-
taining µ0, there is an element U0 from this collection M0 such that µ0 ∈
U0 ⊂ U . If not, then in particular the set M[k, µ0](1/k) is not contained
in U for any k, and so there exists µk ∈ M[k, µ0](1/k) ∩ U c. Then for any
function f which is continuous on the unit square, one has

|µ[f ]− µk[f ]| ≤max
[0,1]2
|f |||Pk,µ − Pk,µ0 ||∞

+2 sup
|x1−x2|,|y1−y2|≤1/k

|f(x1, y1)− f(x2, y2)|,

which goes to 0 as k goes to ∞. Thus µk converges weakly to µ, and since
U is open, one has that µk ∈ U for all large k. This is a contradiction to the
assumption that µk /∈ U , and so completes the proof.

This reduces the analysis of measures to the analysis of k×k matrices for
a large but fixed k.

Definition 1.10. For µ0 ∈M define a set V[k, µ0](ε) ⊂Mk as

V[k, µ0](ε) := {A ∈Mk : ||A− Pk,µ0 ||∞ < ε}.

Since M(π) ∈Mk,n is an integer valued matrix, all configurations in V[k, µ0](ε)
cannot be attained by setting A = M(π)/n. Define Vn[k, µ0](ε) to be the set
of all M ∈ Mk,n such that 1

nM ∈ V[k, µ0]. More precisely, Vn[k, µ0](ε) is
defined by

Vn[k, µ0](ε) :=Mk,n ∩ nV[k, µ0](ε) =
{
M ∈Mk,n : || 1

n
M − Pk,µ0 ||∞ < ε

}
.

The following lemma gives an estimate of the probability that M(π) ∈
Vn[k, µ0](ε).

Lemma 1.11.

lim
n→∞

1

n
logPn

(
M(π) ∈ Vn[k, µ0](ε)

)
= − inf

A∈V[k,µ0](ε)
D(pA||pUk),

where pA is as in definition 1.3.

Proof. For the proof, first assume that

lim
n→∞

min
M∈Vn[k,µ0](ε)

D(pM/n||pUk) = inf
A∈V[k,µ0](ε)

D(pA||pUk),(1.7)
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where the definition of pA is extended to matrices A whose row/column sums
need not equal 1/k, to accomodate for the fact that for any M ∈ Vn[k, µ0](ε)
the matrix 1

nM will not satisfy this exactly. The proof of (1.7) is deferred
till the end of the lemma.

For the lower bound, note that

Pn
(
M(π) ∈ Vn[k, µ0](ε)

)
≥ max
M∈Vn[k,µ0](ε)

Pn(M(π) = M)

= max
M∈Vn[k,µ0](ε)

(∏k
r=1Mr

)2
n!
∏k
r,s=1Mrs!

where the second step uses Lemma 1.6. Now, Stirling’s formula gives that
there exists C <∞ such that

| log n!− n log n+ n| =0 if n = 0

=1 if n = 1

≤C log n if n ≥ 2,

and so

1

n
logPn

(
M(π) ∈ Vn[k, µ0](ε)

)
≥ − min

M∈Vn[k,µ0](ε)
D(pM/n||pUk)− Ck log n

n

for some constant Ck <∞. On taking limits using (1.7) completes the proof
of the lower bound.

For the upper bound note that

Pn
(
M(π) ∈ Vn[k, µ0](ε)

)
≤
(n+ k2 − 1

k2 − 1

)
max

M∈Vn[k,µ0](ε)
Pn(M(π) = M)

≤(n+ k2)k
2

max
M∈Vn[k,µ0](ε)

Pn(M(π) = M),

since any valid configuration M is a non negative integral solution of the
equation

∑k
r,s=1Mrs = n. Thus proceeding as before it follows that

1

n
logPn(M(π) ∈ Vn[k, µ0](ε)) ≤ − min

M∈Vn[k,µ0](ε)
D(pM/n||pUk) +

C ′k log n

n

for some other C ′k < ∞, which on taking limits using (1.7) completes the
proof of the upper bound.
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It thus remains to prove (1.7). To this effect, let M (n) denote the mini-
mizing configuration on the l.h.s. of (1.7). Then 1

nM
(n) is a sequence in the

compact set

{A ⊂ [0, 1]k
2

: min
1≤r,s≤k

Ars ≥ 0 :
k∑

r,s=1

Ars = 1},

and any convergent subsequence converges to a point in V[k, µ0](ε). Thus

lim inf
n→∞

min
M∈Vn[k,µ0](ε)

D(pM/n||pUk) ≥ inf
A∈V[k,µ0](ε)

D(pA||pUk)

= inf
A∈V[k,µ0](ε)

D(pA||pUk),

where the last equality follows from since A 7→ D(pA||pUk) is continuous,
completing the proof of the lower bound in (1.7).

Proceeding to prove the upper bound, it suffices to prove that for any
A ∈ V[k, µ0](ε) there exists a sequence M (n) ∈ Vn[k, µ0](ε) such that 1

nM
(n)

converges to A as n→∞. To this effect, let µ ∈M be such that Pk,µ = A.
(It is easy to check that such a µ always exists for any A ∈ Mk). By [8,
Lemma 4.2] and [8, Lemma 5.3] there exists a sequence of permutations
{σn}n≥1 with σn ∈ Sn such that νσn converges weakly to µ, and so setting
M (n) = M(σn) one has that M (n) ∈Mk,n and 1

nM
(n) → Pk,µ = A. Also the

set
Wk := {B ∈ [0, 1]k

2
: ||B − Pk,µ0 ||∞ < ε}

is open, and since A ∈Wk, it follows that 1
nM

(n) ∈Wk for all large n. Since
Vn[k, µ0](ε) = nWk ∩Mk,n, the proof of (1.7) is complete.

The next and final lemma derives another technical estimate using Lemma
1.11. This lemma will be used to prove Theorem 1.1.

Lemma 1.12. For any set M[k, µ0](ε) one has

lim
n→∞

1

n
logPn

(
µπ ∈M[k, µ0](ε)

)
= − inf

A∈V[k,µ0](ε)
D(pA||pUk).

Proof. First note that

||Pk,µπ −
1

n
M(π)||∞ = ||Pk,µπ − Pk,νπ ||∞ ≤

4

n
.

Indeed, since each square Trs has four boundaries each of which intersect
in exactly one row/column of the n × n partition of the unit square, the



19

two quantities above can differ only if there is an element on one of these
rows/columns. Since each such square has probability 1/n under µπ, the
maximum difference can be at most 4/n.
Thus for any δ ∈ (0, ε) and all n large enough,

Pn
(
µπ ∈M[k, µ0](ε)

)
≥ Pn

(
M(π) ∈ Vn[k, µ0](ε− δ)

)
Using Lemma 1.11 gives

lim inf
n→∞

1

n
logPn

(
M(π) ∈ Vn[k, µ0](ε− δ)

)
≥ − inf

A∈V[k,µ0](ε−δ)
D(pA||pUk).

Letting δ ↓ 0 gives

lim inf
n→∞

1

n
logPn

(
µπ ∈M[k, µ0](ε)

)
≥ − inf

A∈V[k,µ0](ε)
D(pA||pUk).(1.8)

A similar argument gives

lim sup
n→∞

1

n
logPn

(
M(π) ∈ Vn[k, µ0](ε+ δ)

)
≤ − inf

A∈V[k,µ0](ε+δ)
D(pA||pUk),

from which, letting δ ↓ 0 gives

lim sup
n→∞

1

n
logPn

(
µπ ∈M[k, µ0](ε)

)
≤ − inf

A∈V[k,µ0](ε)
D(pA||pUk).(1.9)

Combining (1.8) and (1.9) gives

lim
n→∞

1

n
logPn

(
µπ ∈M[k, µ0](ε)

)
= − inf

A∈V[k,µ0](ε)
D(pA||pUk),

using the continuity of A 7→ D(pA||pUk). This completes the proof of the
lemma.

Proof of Theorem 1.1. Since M0 is a base for the weak topology on
M, by Lemma 1.12 and [5, Theorem 4.1.11] it follows that Pn follows a weak
large deviation principle with the rate function

I(µ) = sup
M[k,µ0](ε)3µ

inf
A∈V[k,µ0](ε)

D(pA||pUk).

Also since M is compact it follows that full large deviation principle holds
with the good rate function I(.). It thus remains to prove that I(µ) =
D(µ||u). To this effect, first note that µ ∈M[k, µ](1/k), and so

I(µ) ≥ lim inf
k→∞

inf
A∈V[k,µ](1/k)

D(pA||pUk) = lim inf
k→∞

D(pAk ||pUk),
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where Ak denotes any minimizer of A 7→ D(pA||pUk) over V[k, µ](1/k). But
then pAk converges weakly to µ as k → ∞. The lower semi continuity of
D(.||.) then implies I(µ) ≥ D(µ||u), proving the lower bound.

For the upper bound note that the first supremum is over allM[k, µ0](ε)
containing µ , and so with A = Pk,µ ∈ V[k, µ](ε) one has

I(µ) ≤ sup
k≥1

D(pPk,µ ||pUk)

Also note that

D(µ||u) = sup
f∈B[0,1]2

{∫
[0,1]2

fdµ− log

∫
[0,1]2

efdu
}
,

D(pPk,µ ||pUk) = sup
f∈Bk[0,1]2

{∫
[0,1]2

fdµ− log

∫
[0,1]2

efdu
}
,

where B[0, 1]2 denotes the set of all bounded measurable functions on [0, 1]2,
and Bk[0, 1]2 denotes the subset of B[0, 1]2 which is constant on every
Trs, 1 ≤ r, s ≤ k. Indeed, both the results follows from [5, Lemma 6.2.13].
Consequently supk≥1D(pPk,µ ||pUk) ≤ D(µ||u), thus completing the proof of

the upper bound.

2. Statement and Proof of Proposition 2.2. This section states
and proves Proposition 2.2 which characterizes the joint limiting distribu-
tion of {π(1), · · · , π(n)}, when π is generated either from the two distribu-
tions considered in this paper. Stating the proposition requires the following
definition:

Definition 2.1. For a permutation π ∈ Sn define the function πn :
(0, 1] 7→ (0, 1] by setting πn(t) := π(dnte)

n .
For any measure µ ∈ M define a stochastic process Zµ : (0, 1] 7→ (0, 1]

via the following finite dimensional distributions:
For any k ∈ N and 0 < t1 < t2 · · · < tk ≤ 1 the random variables

{Zµ(t1), · · · , Zµ(tk)} are mutually independent, with Zµ(ti) having the law

L(Y |X = ti), with (Xi, Yi)1≤i≤k
i.i.d.∼ µ.

Proposition 2.2. (a) If π is an observation from Qn,f,θ as in (1.1)
with f ∈ C, then for any k ∈ N and 0 < t1 < · · · < tk ≤ 1 one has

{πn(t1), · · · , πn(tk)}
d→ {Zµf,θ(t1), · · · , Zµf,θ(tk)},

where µf,θ is as in theorem 1.5.
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(b) If π is an observation from the Mallows model Mn,θ with Kendall’s Tau
as in Proposition 1.12, then for any k ∈ N and 0 < t1 < · · · < tk ≤ 1
one has

{πn(t1), · · · , πn(tk)}
d→ {Zµρθ (t1), · · · , Zµρθ (tk)},

where µρθ is the measure induced by the density ρθ of proposition 1.12.

Proof. (a) By theorem 1.5 part (b) one has π converges to µf,θ in
probability. The result then follows by an application [2, Prop 6.1]
along with [2, Cor 6.4].

(b) By [11, Theorem 1] one has that π converges to µρθ in probability.
The result then follows by an application [2, Prop 6.1] along with [2,
Lemma 7.1].

As an application of the above proposition, it immediately follows for
example

1

n
π(dnte) d→ Zµ(t) ∼ L(Y1|X1 = t)

P(π(dnte) > π(dnse)) n→∞→ P(Zµ(t) > Zµ(s)) = P(Y1 > Y2|X1 = t,X2 = s),

where (Xi, Yi)i=1,2
i.i.d.∼ µ, where µ is the relevant limiting measure. An ex-

plicit evaluation of these quantities for the models of the form Qn,f,θ requires
the computation of the limit µf,θ.
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