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Abstract Suppose the auto-correlations of real-valued, centered Gaussian process
Z(·) are non-negative and decay as ρ(|s − t |) for some ρ(·) regularly varying at
infinity of order −α ∈ [−1, 0). With Iρ(t) = ∫ t0 ρ(s)ds its primitive, we show that
the persistence probabilities decay rate of − logP(supt∈[0,T ]{Z(t)} < 0) is precisely
of order (T/Iρ(T )) log Iρ(T ), thereby closing the gap between the lower and upper
bounds of Newell andRosenblatt (Ann.Math. Stat. 33:1306–1313, 1962), which stood
as such for over fifty years. We demonstrate its usefulness by sharpening recent results
of Sakagawa (Adv. Appl. Probab. 47:146–163, 2015) about the dependence on d of
such persistence decay for the Langevin dynamics of certain ∇φ-interface models on
Z
d .
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1 Introduction

Persistence probabilities, namely the asymptotic of P(supt∈[0,T ]{Z(t)} < 0) as T →
∞, have a fairly long history in probability theory with the case of stationary, centered,
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Gaussian processes Z(t) receiving much attention (c.f. [2,10,21,24,25,27–29,33]
and the references therein). In particular, for non-negative, stationary auto-correlation
A(s, t) = E[Z(s)Z(t)], it directly follows by an application of Slepian’s lemma and
sub-additivity that the limit

b(A) := − lim
T→∞

1

T
logP

(

sup
t∈[0,T ]

{Z(t)} < 0

)

(1.1)

exists in [0,∞], and it is easy to see that b(A) is finite whenever Z(·) has continuous
sample paths (c.f. Lemma 2.6). Hereafter for any stationary non-negative correlation
function A(·, ·) we use the notation b(A) to denote the limit defined in (1.1).

For such processes the positivity of b(A), namely the exponential decay of the
corresponding persistence probabilities, is equivalent to integrability of A(0, ·), under
certain regularity condition on τ �→ A(0, τ ).

For many processes of interest τ �→ A(s, s + τ) is non-integrable, with b(A) = 0
(see for example Remark 1.4, Corollary 1.10 and Remark 1.12). In such cases (1.1) is
of limited value, and the finer, sub-exponential persistence probability decay rate, is of
much interest. Indeed, focusing on the special case where A(s, t) decays as |t − s|−α

for some α ∈ (0, 1], already in 1962, Newell and Rosenblatt [25] showed that

T α � − logP

(

sup
t∈[0,T ]

{Z(t)} < 0

)

�T α log T, for 0 < α < 1, (1.2)

T

log T
� − logP

(

sup
t∈[0,T ]

{Z(t)} < 0

)

�T, for α = 1. (1.3)

Hereafter, for any non-negative functions a1(T ), a2(T ), we denote by a1(T ) � a2(T )

the existence of C < ∞, possibly depending on the law of {Z(·)}, such that a1(T ) ≤
Ca2(T ) for all T large enough, with a1(T ) = �(a2(T )) when both a1(T ) � a2(T )

and a2(T ) � a1(T ).
To the best of our knowledge, the gap between the upper and lower bounds of [25],

as in (1.2) and (1.3), has never been improved. Our main result closes this gap, by
determining the correct decay rate of the relevant persistence probabilities, in case of
asymptotically stationary non-negative A(s, t) that are regularly decaying in |t − s|
large. To this end, we shall make use of the following definition.

Definition 1.1 For α ≥ 0, let Rα denote the collection of measurable, regularly
varying of order −α functions ρ : [0,∞) �→ (0, 1], i.e. for every λ > 0 one has

lim
t→∞

ρ(λt)

ρ(t)
= λ−α.

Associate to each ρ ∈ Rα the primitive function Iρ : (0,∞) �→ (0,∞) such that

Iρ(t) :=
t∫

0

ρ(s)ds, (1.4)
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and the asymptotic persistence decay rate

aρ(t) := t log Iρ(t)

Iρ(t)
. (1.5)

Theorem 1.2 Suppose the centered Gaussian process {Z(t)}t≥0 has non-negative
auto-correlation

A(s, t) := E[Zs Zt ]√
E[Z2

s ]E[Z2
t ]

. (1.6)

(a) If some α ∈ (0, 1] and ρ ∈ Rα with Iρ(∞) = ∞, are such that there exists η̃ > 0
satisfying

lim sup
t,τ→∞,τ≤η̃t

A(t, t + τ)

ρ(τ)
< ∞, (1.7)

then,

− lim sup
T→∞

1

aρ(T )
logP

(

sup
t∈[0,T ]

{Z(t)} < 0

)

> 0. (1.8)

(b) Suppose further that

lim
u↓0 sups≥0

E

[

sup
t∈[s,s+u]

{Z(t)}
]

< ∞, (1.9)

and there exists η > 0 such that

lim inf
t,τ→∞,τ≤ηt

A(t, t + τ)

ρ(τ)
> 0. (1.10)

Then,

− logP

(

sup
t∈[0,T ]

{Z(t)} < 0

)

= �(aρ(T )). (1.11)

Theorem 1.2 is proved in Sect. 2, where for the upper bound of part (a) it suffices to
consider the persistence probabilities over [rT, T ] for suitably chosen r ∈ (0, 1). We
can further split [rT, T ] into sub-intervals while leaving large enough gaps to ensure
that the dependence between the restrictions of Z(t) to the different sub-intervals, is
weak enough for deducing an exponential decay of the overall persistence probability
in terms of the number of such sub-intervals. The more delicate proof of the com-
plementary lower bound of part (b) consists of four steps. We first rely on Slepian’s
lemma and the non-negativity of the correlation A(·, ·) of (1.6) to show that if such
lower bound holds for intervals [rT ′, T ′] with r ∈ (0, 1) fixed and T ′ large enough,
then it must also extend to the interval [0, T ]. To verify such a bound for [rT, T ],
in the second step we split it to many sub-intervals, now employing a conditioning
argument to control the height of the end-points of these sub-intervals, provided that
the conditioned process has non-negative correlations. The third step establishes the
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latter crucial fact, thanks to certain properties of any such correlation function, the
derivations of which are deferred to the last step of the proof.

Remark 1.3 For α ∈ (0, 1), upon comparing (1.5) and (2.1) we see that aρ(T ) =
�(ρ(T )−1 log T ). So, in this case our conclusion (1.11) is that the persistence
probability lower bound of [25], namely the rhs of (1.2), is tight. In contrast,
Iρ(T ) is not �(Tρ(T )) when α = 1, and in particular ρ(t) = 1/(1 + t) yields
aρ(T ) = T (log log T )/(log T ), with neither the upper nor the lower persistence prob-
ability bound of [25] then tight.

Remark 1.4 The conclusion (1.11) holds for any stationary process {Z(·)} having
non-negative auto-correlation A(0, τ ) = �(ρ(τ)) for some ρ ∈ Rα , α ∈ (0, 1], such
that Iρ(∞) = ∞ and t �→ Z(t) has a.s. continuous sample path (which holds for
example when | log u|η(1− A(0, u)) → 0 as u → 0, for some η > 1, see [1, (1.4.3)]).
Such stationary Gaussian processes of algebraically decaying, non-summable corre-
lations appear frequently in the physics literature (see for example [16,22,23], and the
excellent survey in [5]). An interesting open problem is to find in this context sufficient
conditions for the existence of the limit

b∗(A) := − lim
T→∞

1

aρ(T )
logP

(

sup
t∈[0,T ]

{Z(t)} < 0

)

, (1.12)

possibly after replacing aρ(T ) of (1.5) by an equivalent function.

For slowly varying, eventually decaying to zero, correlations (namely, as in The-
orem 1.2, but with ρ ∈ R0), we next determine the rate of decay of persistence
probabilities, up to a log factor.

Proposition 1.5 Suppose in the setting of Theorem 1.2 that conditions (1.7), (1.9) and
(1.10) hold for some ρ ∈ R0 which is eventually non-increasing and

lim
x→∞ ρ(x) = 0.

Then, we have that

aρ(T ) � − logP

(

sup
t∈[0,T ]

{Z(t)} < 0

)

� aρ(T ) log T . (1.13)

Remark 1.6 Recall that the spectral measure μA of a centered, stationary Gaussian
process {Z(·)} is the unique non-negative measure such that

A(0, τ ) =
∫

R

e−iλτdμA(λ) ∀τ ∈ R

and in particular, the absolute integrability of A(0, ·) implies the existence of uniformly
bounded density ofμA. Following [11] treatment of discrete time, centered, stationary
Gaussian sequences, [4, Theorem 2.1] derives the Large Deviations Principle (ldp) at
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speed T andCb(R)-topology, for LT := T−1
∫ T
0 δZ(t) dt , providedμA has a vanishing

at infinity, continuous density. This does not imply the ldp for LT (−∞, 0), so when
goingbeyondnon-negative correlations, the limit in (1.1)might not exist.Nevertheless,
[12] provide in this setting sufficient conditions for truly exponential decay of the
persistence probabilities. Specifically, [12] shows that

− logP

(

sup
t∈[0,T ]

{Z(t)} < 0

)

= �(T ), (1.14)

if near the origin the corresponding spectral measure μA has a bounded away from
zero and infinity density, and for some δ > 0 the integral

∫
R

|λ|δμA(dλ) is finite. Our
proof of Lemma 3.1 shows that any centered, stationary, separable Gaussian process
Z(·)with absolutely integrable A(0, ·), has at least exponentially decaying persistence
probabilities (so neither bounded away from zero density near the origin nor having∫
R

|λ|δμA(dλ) < ∞, are required for such exponential decay). It further raises the
natural question what is the precise necessary and sufficient condition for having at
least exponential decay of persistence probabilities of such processes.

As an application of Theorem 1.2, we sharpen some of the results of [26] about
asymptotic persistence probabilities for a certain family of ∇φ-interface models.
Specifically, consider the R+ × Z

d -indexed centered Gaussian process {φt (x)} given
by the unique strong solution of the corresponding (Langevin) system of interacting
diffusion processes:

dφt (x) =
⎧
⎨

⎩
−φt (x) +

∑

y =x

q(y − x)φt (y)

⎫
⎬

⎭
dt + √

2dBt (x), φ0(x) = 0. (1.15)

Here {Bt (x)}x∈Zd is a collection of independent standard Brownian motions, and we
make the following assumptions about q : Zd �→ R+.

Assumption 1.7 The function q : Zd �→ R+ satisfies the following four conditions:

(a) q(x) = q(−x),
(b) There exists R < ∞ such that q(x) = 0 whenever ||x||2 ≥ R,
(c)
∑

x =0 q(x) = 1,

(d) The additive group generated by {x ∈ Z
d : q(x) > 0} is Zd .

Such ∇φ and other, closely related, models received much interest in mathematical
physics and probability literature (c.f. [7,13–15,17] and the references therein). It is
not hard to verify that a standard approximation argument proves the existence of a
unique strong solution of (1.15) (that is, a stochastic process φt (x) ∈ C([0,∞), E ′)
for E ′ = {x :∑i (1+ ‖i‖)−2p|x(i)|2 < ∞, for some p ≥ 1}, adapted to the filtration
σ(Bs(x) : x ∈ Z

d , s ≤ t) and satisfying (1.15)). Further, there exists a random
walk representation for the space-time correlations of (1.15) (c.f. [6,8]; see also the
references therein for other interacting diffusion processes admitting a random walk
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representation for their correlations). From this random walk representation we have
that the covariance of the centered Gaussian process gt := φt (0) is

�(q)(s, t) :=
∫ s+t

|s−t |
P(S(q)

u = 0)du. (1.16)

Here {S(q)
u }u≥0 denotes the continuous time random walk on Z

d , starting at S(q)
0 = 0

which upon its arrival to any site x ∈ Z
d waits for an independent, Exponential(1)

time, then moves with probability q(y − x) to y ∈ Z
d\{x}. The correlation of the

process {gt } is consequently of the form

Cρ(s, t) = Iρ(s + t) − Iρ(|s − t |)
√
Iρ(2s)Iρ(2t)

, (1.17)

for Iρ(·) of (1.4), where ρ(u) := P(S(q)
u = 0) is bounded, strictly positive and

regularly varying (see the proof of Corollary 1.10).More generally, replacingP(S(q)
u =

0) by some other regularly varying function ρ, our next theorem provides asymptotic
decay of persistence probabilities for any centeredGaussian process {Yρ(t)}t>0 having
correlation C(s, t) := E[Yρ(t)Yρ(s)] of the form (1.17) for some ρ ∈ Rγ . To this
end, for γ > 1 we may utilize the corresponding limiting correlation function

Cρ(s, t) := lim
k→∞Cρ(s + k, t + k) = 1 − Iρ(|s − t |)

Iρ(∞)
. (1.18)

For γ ∈ [0, 1) we shall instead consider the universal limiting correlation functions
associated with the Lamperti transformation t = eu (see [19]). That is,

C
γ (v, u) := lim

k→∞Cρ(ev+k, eu+k) = cosh(|u − v|/2)1−γ − sinh(|u − v|/2)1−γ .

(1.19)
The latter functions appear in the physics literature when studying persistence of
Gaussian processes driven by linear stochastic differential equations (see [18,23]).

Theorem 1.8 Suppose the process {Yρ(·)} has correlation function of the form (1.17)
for some ρ ∈ Rγ and let Iρ̃ (·) denote the primitive of ρ̃(s) := sρ(s).

(a) If γ > 2 or γ = 2 and Iρ̃ (∞) < ∞, then

− lim
T→∞

1

T
logP

(

sup
t∈[1,T ]

{Yρ(t)} < 0

)

= b
(
Cρ

) ∈ (0,∞), (1.20)

provided ρ(·) is uniformly bounded away from zero on compacts.
(b) If γ ∈ [0, 1), then

− lim
T→∞

1

log T
logP

(

sup
t∈[1,T ]

{Yρ(t)} < 0

)

= b
(
C

γ

)
∈ (0,∞). (1.21)
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(c) If γ ∈ (1, 2) or γ = 2 and Iρ̃ (∞) = ∞, then

− logP

(

sup
t∈[1,T ]

{Yρ(t)} < 0

)

= �
(
aρ̃ (T )
)

(1.22)

Remark 1.9 Note that for γ ∈ [0, 1) we get the same persistence power exponent
b(C

γ ) for all ρ ∈ Rγ (which is not the case when γ > 2).

We have the following immediate application of Theorem 1.8 for ρ(q)(u) :=
P(S(q)

u = 0).

Corollary 1.10 Fixing d ∈ N and q : Z
d �→ R+ satisfying Assumption 1.7, let

gt = φt (0) for φt (x) which is the unique strong solution of (1.15).

(a) If d = 1 then

− 1

log T
logP

(

sup
t∈[1,T ]

{gt } < 0

)

= b(C
1/2) ∈ (0,∞). (1.23)

(b) If d = 3 then

− logP

(

sup
t∈[1,T ]

{gt } < 0

)

= �(
√
T log T ). (1.24)

(c) If d = 4 then

− logP

(

sup
t∈[1,T ]

{gt } < 0

)

= �

(
T log log T

log T

)

. (1.25)

(d) If d ≥ 5 then ρ(q)(u) = P(S(q)
u = 0) ∈ Rd/2 and

− lim
T→∞

1

T
logP

(

sup
t∈[1,T ]

{gt } < 0

)

= b
(
Cρ(q)

) ∈ (0,∞). (1.26)

(e) For jump rates qd : Zd �→ R+ satisfying Assumption 1.7 and any k ≥ 0, let G(qd )
k

denote the expected occupation time of 0 during {k, k + 1, . . .} by a discrete time
random walk of transition probabilities qd(y − x) that starts at {0}. Suppose the
Green functions G(qd )

0 → 1 as d → ∞ and k2G(qd )
k is uniformly bounded over

k ≥ 1 and d ≥ d0. Then,

lim
d→∞ b

(
Cρ(qd )

) = 1. (1.27)
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Proof In view of Assumption 1.7, the convergence ud/2
P(S(q)

u = 0) → cq for some

finite constant cq > 0 readily follows from the local clt for {S(q)
u }, as in [32, Theorem

2.1.3]. Hence, comparing (1.16) with (1.17), parts (a)–(d) of the corollary are an
immediate application of Theorem1.8 forρ(q)(u) ∈ Rd/2 (indeed, part (a) of Theorem
1.8 takes care of d ≥ 5, part (b) handles d = 1, while part (c) deals with both d = 3
for which Iρ̃ (T ) = �(

√
T ) and d = 4 for which Iρ̃ (T ) = �(log T )). Part (e) is an

application [9, Theorem 1.6], the details of which are provided in Sect. 3. ��
Remark 1.11 Corollary 1.10 gives the exact order of decay for any d = 2, as well
as existence of a limiting persistence exponent for d = 1 and d ≥ 5. In doing so it
improves upon the earlier results of [26] (where the decay rate is determined for d =
1, d ≥ 5without the existence of a limit, and decay rate upper and lower boundswithin
a log T factor are given for d = 2, 3, 4). Recall that P(S(q)

u = 0) = �(1/u)when d =
2, hence the process {gt/

√
Eg2t } then has auto-correlation A(s, t) = �(1/ log |t − s|)

for 1 � |s − t | = �(t). This corresponds to α = 0, a case for which Theorem 1.2
does not apply, but Proposition 1.5 predicts that

(log T )2 � − logP

(

sup
t∈[1,T ]

{gt } < 0

)

� (log T )3,

as indeed proved in [26].

Remark 1.12 As another application of Theorem 1.2, we determine the exact rate of
persistence decay for stationary fractional Brownian motion of order H ∈ (1/2, 1)
defined by the stochastic integral

YH (t) :=
∫ t

−∞
e−(t−s)dBH (s),

where BH (.) is two sided fractional Brownian motion of order H ∈ (1/2, 1). We refer
to [31] for a definition of stochastic integration with respect to fBM with Hurst index
H > 1

2 . Using [31, (1.1)] we find that the stationary correlation function of YH (·) is

�H (0, τ ) = e−τ + 1

E[YH (0)2]
∫ τ

0
e−(τ−s)R(s)ds,

where

R(s) := H(2H − 1)
∫ ∞

0
e−v(v + s)2H−2dv

is asymptotically of order H(2H − 1)s2H−2 for s large. Consequently we have that

lim sup
τ→∞

�H (t, t + τ)

τ 2H−2 = H(2H − 1)

E[YH (0)2] ,
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with conditions (1.7) and (1.10) satisfied for the regularly varying ρ(τ) =
min(1, τ 2H−2). As for (1.9), recall that �H (0, τ )≥ �1/2(0, τ ) = e−τ , hence by
Slepian’s lemma,

E[ sup
t∈[s,s+u]

{YH (t)}] ≤ E[ sup
t∈[s,s+u]

{Y1/2(t)}]

for the stationary ou process Y1/2(·), which satisfies (1.9). Consequently, so does
YH (·) and from Theorem 1.2 we conclude that

− logP

(

sup
[0,T ]

YH (t) < 0

)

= �(T 2−2H log T ).

Section 2 is devoted to the proof of Theorem 1.2, with Theorem 1.2 applied in
Sect. 3 to yield part (c) of Theorem 1.8 (and [9, Theorem 1.6] utilized for deducing
the complementary parts (a) and (b) of Theorem 1.8, as well as part (e) of Corollary
1.10).

2 Proof of Theorem 1.2

We first collect a few standard, well known results about Gaussian processes, that will
be used throughout this paper.

2.1 Preliminaries on Gaussian processes

A key tool in our analysis is the following comparison theorem, known in literature
as Slepian’s lemma (see [1, Theorem 2.2.1]).

Theorem 2.1 (Slepian’s Lemma) Suppose centered Gaussian processes {Xt }t∈I and
{Yt }t∈I are almost surely bounded on I . If

EX2
t = EY 2

t , ∀t ∈ I, EXt Xs ≤ EYtYs, ∀s, t ∈ I,

then for any u ∈ R one has

P

(

sup
t∈I

Xt < u

)

≤ P

(

sup
t∈I

Yt < u

)

.

Combining Slepian’s lemma and sub-additivity, one has the following immediate
corollary.

Corollary 2.2 If {Xt }t≥0 is a centered, stationary Gaussian process of non-negative
correlation function, such that supt∈[0,T ] Xt is almost surely finite for any T < ∞,
then the limit

− lim
T→∞

1

T
logP

(

sup
t∈[0,T ]

Xt < 0

)

exists in [0,∞].
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The Sudakov-Fernique inequality (see [1, Theorem 2.2.3]), is another comparison
tool we use.

Theorem 2.3 (Sudakov–Fernique) Suppose centered Gaussian processes {Xt }t∈I
and {Yt }t∈I are almost surely bounded on I . If

E(Xt − Xs)
2 ≤ E(Yt − Ys)

2, ∀s, t ∈ I,

then one has

E

[

sup
t∈I

Xt

]

≤ E

[

sup
t∈I

Yt

]

.

We often rely on Borell-TIS inequality (see [1, Theorem 2.1.1]) to provide concen-
tration results for the supremum of Gaussian processes.

Theorem 2.4 (Borell-TIS) If centered Gaussian process {Xt }t∈I is almost surely
bounded on I , then E[supt∈I Xt ] < ∞ and for σ 2

I := supt∈I EX2
t and any u > 0,

P

(

sup
t∈I

Xt − E sup
t∈I

Xt > u

)

≤ e−u2/2σ 2
I .

We conclude with the standard formula for the distribution of a Gaussian process
conditioned on finitely many coordinates.

Theorem 2.5 If centered Gaussian process {Zt }t≥0 has covariance A(·, ·), then for
any � distinct indices 0 ≤ t1 < · · · < t�, conditional on (Zti , 1 ≤ i ≤ �) the process
Zt has Gaussian distribution of mean

m(t) :=
�∑

i, j=1

�(i, j)A(t, ti )Zt j

and covariance function

Ã(s, t) := A(s, t) −
�∑

i, j=1

A(s, ti )�(i, j)A(s, t j ),

where �−1 is the �-dimensional covariance matrix of the centered Gaussian vector
(Zti , 1 ≤ i ≤ �).

2.2 Proof of Theorem 1.2

We begin by showing the positivity of persistence probabilities over compact intervals
for centered Gaussian processes of unit variance, non-negative correlation and a.s.
continuous sample path.
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Lemma 2.6 Suppose the centered Gaussian process {Z(t)} has a.s. continuous sam-
ple paths, unit variance and non-negative correlation. Then, for any u ∈ R and
compact interval I ,

P

(

sup
t∈I

{Z(t)} < u

)

> 0.

Proof Let M(I ) := supt∈I {Z(t)} and suppose that P(M(I1) < u) = 0 for some
u ∈ R and compact interval I1. Representing I1 as the disjoint union of intervals I

(−)
2

and I (+)
2 each of half the length of I1, we get by the non-negativity of correlations and

Slepian’s lemma (Theorem 2.1) that

0 = P( M(I1) < u) ≥ P

(
M(I (−)

2 ) < u
)
P

(
M(I (+)

2 ) < u
)

.

So, either P(M(I (−)
2 ) < u) = 0 or P(M(I (+)

2 ) < u) = 0 and proceeding inductively
with the sub-interval for which we have zero probability, we construct non-empty
nested compact intervals Ik of shrinking diameters such that P(M(Ik) < u) = 0 for
all k. By Cantor’s intersection theorem,

⋂
k Ik is a single non-random point t. Thus,

by the continuity of sample paths we get that a.s.

lim
k→∞ M(Ik) = Z(t).

Consequently,

0 = lim
k→∞P( M(Ik) < u) ≥ P(Z(t) < u) > 0,

a contradiction which rules out our hypothesis that {M(I1) < u} has zero probability.
��

We recall some properties of positive, measurable slowly varying functions, that
are used throughout this paper.

Remark 2.7 For any L ∈ R0 (namely, positive, measurable, slowly varying function
onR+), the convergence of L(λt)

L(t) to 1 is uniform over λ in a compact subset of (0,∞)

(see [3, Theorem 1.2.1]). Further, by the representation theorem (see [3, Theorem
1.3.1]), there exists then L̃ ∈ R0 such that

lim
x→∞

L̃(x)

L(x)
= 1,

and x �→ xη L̃(x) is eventually increasing (decreasing) if η > 0 (η < 0 resp.). That
is, up to a universal constant factor (that depend on L(·)), the function xηL(x) may
be assumed eventually increasing (decreasing) if η > 0 (η < 0 resp.).
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W.l.o.g. we assume throughout that {Z(·)} has been re-scaled so that E[Z(t)2] = 1
for all t ∈ R+ and state next three auxiliary lemmas which are needed for proving
Theorem 1.2 (while deferring the proof of these lemmas to the end of the section).

Lemma 2.8 For α ≥ 0 and ρ ∈ Rα , let Lρ(x) = xαρ(x) ∈ R0 for which we further
assume the eventual monotonicity properties of Remark 2.7.

(a) If 0 ≤ α < 1,

lim
b→∞ sup

a∈[0,b)

∣
∣
∣
∣

Iρ(b) − Iρ(a)

Lρ(b)(b1−α − a1−α)
− 1

1 − α

∣
∣
∣
∣ = 0. (2.1)

(b) If α > 1,

lim
b→∞ sup

a∈(b,∞)

∣
∣
∣
∣

Iρ(a) − Iρ(b)

Lρ(b)(b1−α − a1−α)
− 1

α − 1

∣
∣
∣
∣ = 0. (2.2)

Lemma 2.9 Suppose ρ ∈ Rα for α ≥ 0.

(a) The function Iρ(·) is a regularly varying function of order (1 − α)+ and

lim sup
n,M→∞

M
∑n

�=1 ρ(�M)

Iρ(nM)
< ∞. (2.3)

If Iρ(∞) < ∞, then we have the stronger conclusion

lim sup
M→∞

M
∞∑

�=1

ρ(�M) = 0. (2.4)

(b) Suppose α ∈ [0, 1], with ρ(x) → 0 when α = 0 and Iρ(∞) = ∞ when α = 1.
Then, fixing μ > 0 we have for M := μIρ(T ) that

lim
T→∞

�T/M�∑

�=1

ρ(�M) = 1

μ
. (2.5)

Lemma 2.10 If the auto-correlation A(·, ·) of a centered Gaussian process {Z(·)}
satisfies (1.7) for some ρ ∈ Rα and α ∈ (0, 1]. Then, there exist η, δ > 0 such that

lim
M→∞

1

logM
sup

s≥M/η

logP

(

sup
t∈[s,s+M]

{Z(t)} <
√

δ logM

)

= −∞. (2.6)

Proof of Theorem 1.2 Throughout the proof, all constants implied by the notation �
depend only on the function A(·, ·).
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(a) By (1.7) there exist η̃ > 0 small, T finite and r = 1 − η̃ ∈ (0, 1) such that

sup
t∈[rT,T−τ ]

A(t, t + τ) � ρ(τ), ∀τ ≥ 0, T ≥ T. (2.7)

For some large universal constant λ < ∞ to be chosen in the sequel, we set M =
M(T ) := λIρ(T ) and n = n(T ) := � (1−r)T

2M �, both of which diverge with T → ∞
due to our assumptions on ρ(·). We then consider the following subset of [rT, T ],

J :=
n⋃

�=1

J2�.

That is, J is the union of every other sub-interval J� := [s�, s�+1], where s� :=
rT + (� − 1)M for � ≥ 1, and n(T ) is the largest � ∈ N such that s2�+1 ≤ T . With
J ⊂ [0, T ], we trivially have that

P

(

sup
t∈[0,T ]

{Z(t)} < 0

)

≤ P

(

sup
t∈J

{Z(t)} < 0

)

. (2.8)

For t ∈ J let J (t) = � when t ∈ J2� for some � ∈ {1, 2, . . . , n} noting that for all
s, t ∈ J ,

A(s, t) ≤ 1

2
A(s, t)1{J (s)=J (t)} + 1

2
B(J (s), J (t)), (2.9)

where

B(i, j) := 2 sup{A(s, t) : s ∈ J2i , t ∈ J2 j }, if i = j, B(i, i) = 1. (2.10)

If s, t ∈ J with J (s) = J (t), then clearly

M |J (s) − J (t)| ≤ |s − t | ≤ 3M |J (s) − J (t)|. (2.11)

Since M = M(T ) → ∞, we have from (2.7), (2.10) and (2.11), that with ρ(·)
regularly varying,

B(i, j) � sup
x∈[M|i− j |,3M|i− j |]

ρ(x) � ρ(M |i − j |), (2.12)

uniformly in i = j and for all M large enough. We thus deduce by (2.12) and (2.3)
that

ξ(T ) := sup
1≤ j≤n

⎧
⎨

⎩

n∑

i=1,i = j

B(i, j)

⎫
⎬

⎭
�

n∑

�=1

ρ(�M) � Iρ(nM)

M
≤ 1

λ
(2.13)
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where the right-most inequality results from having chosenM = λIρ(T ) and nM ≤ T
(so Iρ(nM) ≤ Iρ(T )). The universal constant on the rhs of (2.13) is independent of
λ, hence there exist λ = λ1 and T finite, such that ξ(T ) ≤ 1/2 for all T ≥ T.
Using hereafter λ = λ1 for the remainder of part (a) and the fact that B(i, i) = 1, it
follows by the Gershgorin circle theorem and the interlacing property of eigenvalues,
that for any T ≥ T, the principal sub-matrices of the symmetric n-dimensional
matrix B = {B(i, j)} have all their eigenvalues within [1/2, 3/2]. In particular, B is
positive definite, and with {X�}n�=1 denoting the centered Gaussian random vector of
covariance matrix B, upon applying the argument in [9, display following (2.5)] for
principal sub-matrices of B, we get that for any L > 0 and all 1 ≤ i1 < · · · < ik ≤ n,

P

(
k

sup
l=1

{Xil } < −√
L

)

≤ 3k/2P(X1 >
√
2L/3)k . (2.14)

Next, we denote by {Z(t), t ∈ J } the centered Gaussian process which has the same
law as {Z(t)}when restricted to each sub-intervalJ2�, while being independent across
different sub-intervals and independent of the random vector {X�}n�=1. Then by (2.9),
upon applying Slepian’s lemma we get that for all L > 0 and T ≥ max(T, T),

P

(

sup
t∈J

{Z(t)} < 0

)

≤ E

⎡

⎣
n(T )∏

�=1

(

P

(

sup
t∈J2�

{Z(t)} <
√
L

)

+ 1{X�<−√
L}

)⎤

⎦ (2.15)

(c.f. [9, (2.4)] for a more detailed version of this argument). Utilizing now (2.14), we
deduce from (2.15) in a similar manner as the derivation of [9, (2.6)] that for all L > 0,

P( sup
t∈J

{Z(t)} < 0 ) ≤
[
f (δ, T ) + √

3P(X1 >
√
2L/3)

]n(T )

≤ 2n(T ) max
[
f (δ, T ),

√
3P(X1 >

√
2L/3)

]n(T )

, (2.16)

where

f (δ, T ) := n(T )
sup
�=1

P

(

sup
t∈J2�

{Z(t)} <
√
L

)

.

Moreover, setting L = L(T ) := δ log Iρ(T ), upon considering (2.6) for the intervals
J2� within [rT, T ], of length M(T ) = λ1 Iρ(T ) each, we can choose δ > 0 small
enough so that

lim
T→∞

log f (δ, T )

log Iρ(T )
= −∞. (2.17)

123



Persistence of Gaussian processes: non-summable correlations

Since n(T )L(T ) = (1−r)δ
2λ1

aρ(T ), considering −aρ(T )−1 log of both sides of (2.16),
we deduce from the usual tail estimates for the N (0, 1) law of X1, that

− lim sup
T→∞

1

aρ(T )
logP

(

sup
t∈J

{Z(t)} < 0

)

≥ (1 − r)δ

6λ1
> 0

(with a negligible contribution of f (δ, T ) due to (2.17)). Combined with (2.8) this
yields the stated upper bound (1.8).
(b) Step I We first show that suffices for (1.11) to have for some r ∈ (0, 1) and finite
C1, T1,

P

(

sup
t∈[rT,T ]

{Z(t)} < 0

)

≥ e−C1aρ(T ) ∀ T ≥ T1. (2.18)

To this effect, for T ≥ T1 set m = m(T ) := ⌈ log(T/T1)
log(1/r)

⌉
and

âρ(T ) :=
m∑

i=1

aρ(Ti ), Ti := r1−i T1, i ≥ 0, (2.19)

so that Tm ∈ [T, T/r ]. With A(·, ·) non-negative, by Slepian’s lemma and (2.18) we
have

P

(

sup
t∈[0,T ]

{Z(t)} < 0

)

≥ P

(

sup
t∈[0,T0]

{Z(t)} < 0

)
m∏

i=1

P

(

sup
t∈[Ti−1,Ti ]

{Z(t)} < 0

)

≥ P

(

sup
t∈[0,T0]

{Z(t)} < 0

)

e−C1âρ(T ). (2.20)

Next, by Lemma 2.6 the event {supt∈[0,T0]{Z(t)} < 0} has positive probability, so
considering the lim sup as T → ∞ of −aρ(T )−1 log of both sides of the preceding
inequality, we get (1.11) upon showing that

âρ(T ) � aρ(T ). (2.21)

To this end, recall by Lemma 2.9 that t �→ Iρ(t) is regularly varying of order 1 − α,
hence aρ(t) = t log Iρ(t)/Iρ(t) is regularly varying of order α > 0. Thus, there exists
K ≥ 1 finite such that aρ(Ti−1) ≤ rα/2aρ(Ti ) for all i ≥ K , from which we deduce
that

âρ(T ) ≤
K∑

i=1

aρ(Ti ) + aρ(Tm)

∞∑

l=0

rαl/2.
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The first sum on the rhs is finite and independent of T . Further, with α > 0 and
r ∈ (0, 1), the same applies for the second sum there. Lastly, since aρ(·) is regularly
varying of positive order, aρ(Tm) � aρ(T ), yielding (2.21) and thereby (1.11).
Step II We proceed to verify (2.18) for r = 1 − η ∈ (0, 1) and η small enough so
that by (1.10) in addition to (2.7), we further have for all T large enough

ρ(τ) � inf
t∈[rT,T−τ ] A(t, t + τ), ∀τ ≥ 0. (2.22)

Then, for such T large, set M = M(T ) = λIρ(T ) for some finite λ to be chosen in
the sequel, and cover the interval [rT, T ] by

J :=
3n′
⋃

�=1

J�

for the corresponding open sub-intervalsJ� = (s�, s�+1), with s� = rT +(�−1)M for
� = 1, . . . , n′ and n′ = n′(T ) := � (1−r)T

3M � the smallest integer for which [rT, T ] ⊆
J . An application of Slepian’s lemma gives

P

(

sup
t∈[rT,T ]

{Z(t)} < 0

)

≥
2∏

i=0

P

(

sup
t∈J i

{Z(t)} < 0

)

, J i :=
n′
⋃

�=1

J 3�−i

We will show that for i = 0,

lim inf
T→∞

1

aρ(T )
logP

(

sup
t∈J i

{Z(t)} < 0

)

> −∞ (2.23)

and with the same reasoning applicable for i = 1, 2, the bound (2.18) follows for suit-
ably chosen C1, T1 finite. Turning to show (2.23), we take L = L(T ) := β log Iρ(T )

for some β = β(λ) finite to be determined later, and get a lower bound by enforcing
the event

� :=
{
−√

L < Z(s3�−1) < −(3/4)
√
L, � = 1, . . . , n′} ,

which is measurable with respect to the σ -algebra F := σ(Z(s3�−1), 1 ≤ � ≤ n′).
Indeed,

P

(
n′
sup
�=1

sup
t∈J 3�

{Z(t)} < 0

)

≥ E

⎡

⎣P

⎛

⎝
n′
⋂

�=1

sup
t∈J 3�

{Z(t)} < 0 |F
⎞

⎠ 1�

⎤

⎦ (2.24)

and proceeding to bound the rhs of (2.24), let m(t) denote the conditional mean of
Z(t) given F . We claim that for some choice of λ = λ2 and C2 = C2(λ) > 0 one has
that
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� �⇒ −√C2L ≥ sup
t∈J 0

{m(t)}, (2.25)

Cov(Z(u), Z(v)|F) ≥ 0. (2.26)

We next complete the proof of (2.23) assuming both (2.25) and (2.26) hold (deferring
to Step III the proof of the latter estimates). Indeed, by Slepian’s lemma it then follows
that

P

⎛

⎝
n′
⋂

�=1

sup
t∈J 3�

{Z(t)} < 0|F
⎞

⎠ 1� ≥
n′
∏

�=1

P

(

sup
t∈J 3�

{Z(t)} < 0|F
)

1�

≥
n′
∏

�=1

P

(

sup
t∈J 3�

{Z(t) − m(t)} <
√
C2L |F

)

1�.

(2.27)

Conditional onF , the centered normal randomvariable Yu,v := Z(u)−m(u)−Z(v)+
m(v) has variance E[Y 2

u,v|F] ≤ E[(Z(u) − Z(v))2]. Thus, by the Sudakov-Fernique
inequality (Theorem 2.3), for any s, u > 0, a.s.

E

[

sup
t∈[s,s+u]

{Z(t) − m(t)}|F
]

≤ E

[

sup
t∈[s,s+u]

{Z(t)}
]

.

Thus, from (1.9) there exist u0 > 0 and K < ∞ (independent of T and M), such that
a.s.

sup
s≥0

E

[

sup
t∈[s,s+u0]

{Z(t) − m(t)}|F
]

≤ K .

Upon coveringJ3� by intervals of length u0, in each of which we apply the Borell-TIS
inequality (Theorem 2.4), for the conditional Gaussian centered process {Z(t)−m(t)}
of maximal variance one, we get by a union bound that a.s.

P

(

sup
t∈J3�

{Z(t) − m(t)} ≥ √C2L |F
)

≤ �M/u0� sup
s≥0

P

(

sup
t∈[s,s+u0]

{Z(t) − m(t)} ≥ √C2L |F
)

≤ 2M

u0
exp

{

−1

2
(
√
C2L − K )2

}

.

With M = λ2 Iρ(T ), L = β log Iρ(T ) and Iρ(T ) ↑ ∞, upon taking β > 2/C2 the
rhs is bounded by 1/2 for all T large enough. In this case, we deduce from (2.24) and
(2.27) that
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P

(

sup
t∈J 0

{Z(t)} < 0

)

≥ 2−n′
P(�) = 2−n′

P

⎛

⎝
n′
⋂

�=1

{3
4

√
L < Z(s3�−1) <

√
L}
⎞

⎠

≥ 12−n′/2
P

(
3

4

√
2L < Z <

√
2L

)n′

,

where noting that by (2.28) all eigenvalues of the covariance matrix I + � are within
[1/2, 3/2], the last inequality follows by the same argument employed in [9, display
following (2.5)]. Considering the limit as T → ∞ of −aρ(T )−1 log of both sides,
results with

lim inf
T→∞

1

aρ(T )
logP

(

sup
t∈J 0

{Z(t)} < 0

)

≥ − (1 − r)β

16λ2
,

thereby establishing (2.23), and consequently (2.18).
Step III It remains only to establish (2.25) and (2.26). To this end, setting � the
n′-dimensional matrix of non-negative entries

�(�, �′) := Cov(Z(s3�−1), Z(s3�′−1)) for 1 ≤ � = �′ ≤ n′, �(�, �) := 0,

we claim that there exists λ2 such that for all λ ≥ λ2 the following estimates hold
simultaneously:

max

⎧
⎨

⎩
n′

max
�=1

n′
∑

�′=1

�(�, �′), sup
t∈J 0

n′
∑

�=1

A(t, s3�−1)

⎫
⎬

⎭
≤ 1

2
, (2.28)

n′
max

a,b=1,a =b
sup

v∈J 3a ,u∈J 3b

1

A(u, v)

n′
∑

�=1

A(u, s3�−1)A(v, s3�−1) ≤ 1

2
, (2.29)

n′
max
a,b=1

sup
v∈J 3a

1

A(v, s3b−1)

n′
∑

�=1

�(b, �)A(v, s3�−1) ≤ 1

2
. (2.30)

While deferring the proof of (2.28)–(2.30) to Step IV, we fix hereafter λ = λ2 and
rely on these bounds to establish (2.23). Indeed, setting the vectors

y(t) := [A(t, s3�−1), 1 ≤ � ≤ n′], z := [Z(s3�−1), 1 ≤ � ≤ n′]

and utilizing Theorem 2.5, the conditional mean of Z(t) given F is

m(t) = 〈y(t), (I + �)−1z〉 =
∞∑

k=0

〈y(t),�2k(I − �)z〉

where the expansion as a power series requires that the operator norm of� is less than
1. To verify this, recall that the operator norm of a symmetric matrix is bounded by
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the maximum row sum, which coupled with (2.28) gives ‖�1‖∞ ≤ 1/2. In view of
the latter bound on �, the event � implies that

〈y(t),�2k(I − �)z〉 ≤ −√
L

〈

y(t),�2k
[
3

4
1 − �1

]〉

≤ −
√
L

4
〈y(t),�2k1〉.

In particular, this is negative for any k ≥ 1, hence under �,

m(t) ≤ 〈y(t), (I − �)z〉 ≤ −
√
L

4
〈y(t), 1〉 = −

√
L

4

n′
∑

�=1

A(t, s3�−1). (2.31)

Further, recall that for any t ∈ J 0 the elements of {|t − s3�−1|/M} are of the form
{θ + 3Z}, for some θ = θ(t) ∈ [1, 2]. Hence, with ρ(·) and Iρ(·) regularly varying,
by (2.22) and (2.5) (for 3M/Iρ((1 − r)T ) → μ = cλ2),

inf
t∈J 0

n′
∑

�=1

A(t, s3l−1) � inf
θ∈[1,2]

⎧
⎨

⎩

n′−1∑

k=0

ρ((θ + 3k)M)

⎫
⎬

⎭
� 1

λ2
. (2.32)

Combining (2.31) and (2.32), we get the existence of C2 independent of T and L for
which (2.25) holds. Proceeding to bound the covariance of the conditional process
across blocks, we set

ak(u, v) :=
n′
∑

�,�′=1

A(u, s3�−1)�
k(�, �′)A(v, s3�′−1),

for u ∈ J3 j , v ∈ J3 j ′ with 1 ≤ j = j ′ ≤ n′, and use Theorem 2.5 to note that

Cov(Z(u), Z(v)|F) = A(u, v) −
∞∑

k=0

(−1)kak(u, v) ≥ A(u, v) −
∞∑

k=0

a2k(u, v),

(2.33)

where �0 := I. Note that by (2.30), for any k ≥ 1,

ak(u, v) =
n′
∑

�,�′′=1

A(u, s3�−1)�
k−1(�, �′′)

n′
∑

�′=1

�(�′′, �′)A(v, s3�′−1)

≤ 1

2

n′
∑

�,�′=1

A(u, s3�−1)�
k−1(�, �′′)A(v, s3�′′−1) = 1

2
ak−1(u, v)
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and consequently, for any k ≥ 0, by (2.29),

ak(u, v) ≤
(
1

2

)k
a0(u, v) ≤

(
1

2

)k+1

A(u, v). (2.34)

Combining (2.33) and (2.34) we deduce that

Cov(Z(u), Z(v)|F) ≥ A(u, v)

[

1 −
∞∑

k=0

(
1

2

)2k+1
]

≥ 0.

thus verifying (2.26) as well.
Step IV In proving (2.28)–(2.30) we repeatedly use properties of regularly varying
functions, and in particular, having α > 0, assume hereafter wlog that ρ(·) is even-
tually non-increasing (see Remark 2.7). Starting with (2.28), note that by the same
argument used for deriving (2.32),

sup
t∈J 0

⎧
⎨

⎩

n′
∑

�=1

A(t, s3�−1)

⎫
⎬

⎭
� sup

θ∈[1,2]

⎧
⎨

⎩

n′−1∑

k=0

ρ((θ + 3k)M)

⎫
⎬

⎭
� 1

λ
.

The same calculation shows that

n′
max
�=1

n′
∑

�′=1

�(�, �′) �
n′
∑

k=1

ρ(3kM) � 1

λ
,

so choosing λ large enough guarantees that (2.28) holds. Next, in view of (2.7), (2.22)
and having ρ(·) regularly varying and eventually non-increasing, the lhs of (2.29)
and (2.30) are both bounded up to a universal constant multiplicative factor, by

ρ(M) + max
1≤a≤b≤n′{R[1,n′]},

where setting I1 = [1, a − 1], I2 = [a + 1, (a + b)/2], I3 = [(a + b)/2, b − 1],
I4 = [b + 1, n′],

R[1,n′] :=
n′
∑

� =a,b

ρ(|s� − sa |)ρ(|s� − sb|)
ρ(|sa − sb|) =

4∑

i=1

RIi ,

and RIi corresponds to the sum over � ∈ Ii . It thus suffices to show that maxi,a,b RIi �
1/λ (so choosing λ large enough guarantees that also (2.29) and (2.30) hold). Now
with ρ(·) eventually non-increasing, we have that for M large enough and all a ≤ b,

RI1 ≤
a−1∑

�=1

ρ(sa − s�), RI4 ≤
n′
∑

�=b+1

ρ(s� − sb).
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Further, I2 and I3 are empty unless a < b, in which case sba := sb − sa ≥ M and

RI2 =
(a+b)/2∑

�=a+1

ρ(sb − s�)

ρ(sba )
ρ(s� − sa) ≤ sup

θ∈[1/2,1]

{
ρ(θsba )

ρ(sba )

} (a+b)/2∑

�=a+1

ρ(s� − sa)

≤ C
(a+b)/2∑

�=a+1

ρ(s� − sa),

while by the same reasoning also

RI3 =
b−1∑

�>(a+b)/2

ρ(s� − sa)

ρ(sba )
ρ(sb − s�) ≤ C

b−1∑

�>(a+b)/2

ρ(sb − s�).

Combining the latter four bounds, we conclude that

max
i,a,b

{RIi } ≤ C
n′
∑

�=1

ρ(�M) � 1

λ

as claimed. ��
Proof of Proposition 1.5 The bulk of the proof of Theorem 1.2 dealt with
supt∈[rT,T ]{Z(t)} for some fixed r ∈ (0, 1). This part of the proof applies even for
ρ ∈ R0, under our extra assumptions that ρ(·) is eventually non-increasing and decays
to 0 at ∞. Thus, for some r ∈ (0, 1)

−∞ < lim inf
T→∞

1

aρ(T )
logP

(

sup
t∈[rT,T ]

{Z(t)} < 0

)

≤ lim sup
T→∞

1

aρ(T )
logP

(

sup
t∈[rT,T ]

{Z(t)} < 0

)

< 0, (2.35)

from which the lhs of (1.13) trivially follows. As for the rhs of (1.13), the derivation
of (2.20) remains valid here, leading to

lim inf
T→∞

1

âρ(T )
log P

(

sup
t∈[0,T ]

{Z(t)} < 0

)

> −∞,

for âρ(T ) of (2.19). Since T �→ ρ(T ) is non-decreasing, the map T �→ aρ(T ) is
differentiable a.e., with

T Iρ(T )
d log aρ(T )

dT
≥
∫ T

0
(ρ(x) − ρ(T ))dx .
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The rhs is eventually non-negative due to our assumption that the positive and even-
tually non-increasing ρ(T ) decreases to zero as T → ∞. Thus, the slowly varying
aρ(·) is eventually non-decreasing, resulting for large enough T1 with

âρ(T ) =
m∑

i=1

aρ(Ti ) ≤ maρ(Tm) � aρ(T ) log T,

thereby completing the proof. ��
Proof of Lemma 2.8 (a) Recall that Iρ(b) − Iρ(a) = ∫ ba x−αLρ(x)dx . Let δ := a/b
and μα denote the probability measure on [0, 1] of density (1 − α)y−α . The change
of variable x = yb transforms our claim (2.1) to

lim
b→∞ sup

δ∈[0,1)

∣
∣
∣
∣
∣
∣

∫ 1
δ

(
Lρ(yb)
Lρ(b) − 1

)
dμα(y)

μα([δ, 1])

∣
∣
∣
∣
∣
∣
= 0. (2.36)

For bounded below δ > 0 this follows from the uniformity of the convergence
Lρ(yb)/Lρ(b) → 1, w.r.t. y in a compact subset of (0, 1] (see Remark 2.7). Fur-
ther, μα([0, δ]) = δ1−α → 0 as δ → 0, so fixing 0 < η < 1 − α, it suffices to show
that for some b0 and κ finite, all b ≥ b0 and any δ ∈ (0, 1],

∫ δ

0

Lρ(yb)

Lρ(b)
dμα(y) ≤ κδ1−α−η. (2.37)

Indeed, recall Remark 2.7 on existence of K finite, such that Lρ(yb) ≤ y−ηLρ(b)

whenever b ≥ yb ≥ K . Hence, with
∫ δ

0 y−ηdμα(y) = cδ1−α−η for some c = c(α, η)

finite, we only need to consider the contribution of y ≤ δ ∧ K/b to the lhs of (2.37).
Since ρ ∈ Rα is (0, 1]-valued, the latter is at most (δ∧K/b)/ρ(b)which for b ≥ b0 is
further bounded by δ(1∧ K/(δb))bα+η, so the elementary inequality (1∧ x) ≤ xα+η

yields (2.37).
(b) For α > 1 taking as μα the probability measure on [1,∞) of density (α − 1)y−α ,
the same change of variable as in part (a), transforms (2.1) into

lim
b→∞ sup

δ∈(1,∞)

∣
∣
∣
∣
∣
∣

∫ δ

1

(
Lρ(yb)
Lρ(b) − 1

)
dμα(y)

μα([1, δ])

∣
∣
∣
∣
∣
∣
= 0.

As in part (a), for bounded above δ this trivially follows from the uniform convergence
Lρ(yb)/Lρ(b) → 1, and since μα([δ,∞)) = δ1−α → 0 as δ → ∞, it suffices to
show that

lim
δ↑∞ lim sup

b→∞

∫ ∞

δ

Lρ(yb)

Lρ(b)
dμα(y) = 0. (2.38)

To this end, we fix 0 < η < α − 1 and recall that Lρ(yb) ≤ yηLρ(b) whenever
yb ≥ b ≥ K . Since

∫∞
δ

yηdμα(y) → 0 for δ → ∞, this completes the proof of
(2.38) and of the lemma. ��
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Proof of Lemma 2.9 (a) In case α ∈ [0, 1) it follows by (2.1) (for a = 0), that

lim
b→∞

Iρ(b)

bρ(b)
= 1

1 − α
(2.39)

and consequently Iρ(·) is regularly varying of order 1 − α. Turning to show that the
increasing function Iρ(·) is slowly varying when α = 1, it suffices to show that for
any λ > 1,

lim sup
T→∞

{
Iρ(λT ) − Iρ(T )

Iρ(T )

}

≤ 0. (2.40)

To this end, fixing δ ∈ (0, 1), we have that

Iρ(T ) ≥
∫ T

δT

Lρ(x)

x
dx ≥ log(1/δ) inf

x∈[δT,T ]{Lρ(x)}, (2.41)

whereas

Iρ(λT ) − Iρ(T ) =
∫ λT

T

Lρ(x)

x
dx ≤ log λ sup

x∈[T,λT ]
{Lρ(x)}. (2.42)

Dividing (2.42) by (2.41) and taking T → ∞, we arrive at the bound

lim sup
T→∞

{
Iρ(λT ) − Iρ(T )

Iρ(T )

}

≤ log λ

log(1/δ)
.

Taking now δ → 0 yields (2.40) and thereby that Iρ(·) is slowly varying. Finally, since
Iρ(∞) < ∞ when α > 1, the function Iρ(·) is then (trivially) slowly varying at ∞.
Proceeding to establish (2.3), by the regular variation of ρ(·) we have that for any
M > 0,

sup
�≥1

{
Mρ(�M)

∫ (�+1)M
�M ρ(t)dt

}

≤ sup
x≥M

sup
θ∈[1,2]

{
ρ(x)

ρ(θx)

}

=: κ(M),

with κ(·) non-increasing, hence uniformly bounded by universal κ finite (on some
[M0,∞)). Consequently, for any M ≥ M0 and n ≥ 1,

M
n∑

�=1

ρ(�M) ≤ κ[Iρ((n + 1)M) − Iρ(M)], (2.43)

and (2.3) follows by the regular variation of Iρ(·). If Iρ(∞) < ∞, the rhs of (2.43)
goes to zero when n → ∞ followed by M → ∞, thus yielding (2.4).
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(b) Fixing ε > 0, by the regular variation of ρ we have that for any M ≥ Mε and
� ≥ Kε

∣
∣
∣
∣
∣

∫ �M
(�−1)M ρ(t)dt

Mρ(�M)
− 1

∣
∣
∣
∣
∣
≤ sup

λ∈[1−1/�,1]

∣
∣
∣
∣
ρ(λ�M)

ρ(�M)
− 1

∣
∣
∣
∣ ≤ ε.

Thus, setting n := �T/M� we have for any M ≥ Mε ,

Iρ(T ) ≤
n∑

�=1

∫ �M

(�−1)M
ρ(t)dt ≤ Iρ(KεM) + (1 + ε)M

n∑

�=1

ρ(�M). (2.44)

Ifα ∈ (0, 1] then the regularly varying Iρ(·)has order 1−α < 1, hence Iρ(KM)/M →
0 when M → ∞ and K is fixed. From (2.39) the same holds even for α = 0, provided
ρ(x) → 0. Note that when α < 1 necessarily Iρ(·) diverges, and our hypothesis
extends this conclusion to the case of α = 1. Thus, fixing μ > 0 we have that
M(T ) = μIρ(T ) → ∞ when T → ∞. In particular, dividing both sides of (2.44) by
M = μIρ(T ), then taking T → ∞, yields

1

μ
≤ (1 + ε) lim inf

T→∞

n∑

�=1

ρ(�M).

Taking now ε ↓ 0 establishes the lower bound of (2.5). The same reasoning we have
used in deriving (2.44), leads also to

Iρ(nM) ≥ Iρ(KεM) + (1 − ε)M
n∑

�=Kε+1

ρ(�M). (2.45)

We divide both sides by M = μIρ(T ), then take T → ∞ followed by ε ↓ 0. This in
turn results with the corresponding upper bound of (2.5), since by (2.43), upon fixing
K < ∞,

lim sup
M→∞

K∑

�=1

ρ(�M) ≤ κ lim sup
M→∞

Iρ((K + 1)M)

M
= 0,

while by (2.39), n ≥ μ−1T/Iρ(T ) → ∞ and hence

1 ≤ Iρ(nM)

Iρ(T )
≤ Iρ(nM)

Iρ((n − 1)M)

where the rhs converges to 1 when T → ∞, due to the regular variation of Iρ(·). ��
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Proof of Lemma 2.10 By (1.7) we have the existence of C < ∞ and η ∈ (0, 1) such
that for any τ0 large enough,

sup
τ≥τ0

sup
t≥τ/η

A(t, t + τ) ≤ Cρ(τ0). (2.46)

Fixing ε > 0 we take τ0 large enough to assure that Cρ(τ0) ≤ ε (which is always
possible since ρ(τ) → 0 when τ → ∞). For such τ0 and n := �M/τ0� we set

ti := s + (i − 1)τ0 ∈ [s, s + M], i = 1, . . . , n,

noting that if s ≥ M/η then for any 1 ≤ i, j ≤ n,

ti ≥ s ≥ M

η
≥ (n − 1)τ0

η
≥ |ti − t j |

η

and consequently, by (2.46)

E[Z(ti )Z(t j )] = A(ti , t j ) ≤ Cρ(τ0) ≤ ε.

By Slepian’s lemma and the union bound, we then have for i.i.d. standard normal
{Xi }ni=0, any r ∈ R, s ≥ M/η and ε < 5/9,

P

(

sup
t∈[s,s+M]

{Z(t)} < r

)

≤ P

(
n
sup
i=1

{Z(ti )} < r

)

≤ P

(
n
sup
i=1

{√1 − εXi+√
εX0}<r

)

≤ P

(
X0 < −rε−1/2

)
+P (X1 < 3r)n . (2.47)

Setting r = √
δ logM we note that for δ < 0.1 and all M large enough

P(X1 < 3r)n ≤ e−nP(X1≥3r) ≤ e−√
M .

Thus, from (2.47) we deduce that

lim sup
M→∞

1

logM
sup

s≥M/η

logP

(

sup
t∈[s,s+M]

{Z(t)} <
√

δ logM

)

≤ − δ

2ε

and taking ε ↓ 0 results with the desired conclusion (2.6). ��

3 Proof of Theorem 1.8

Part (c) of Theorem 1.8 relies on Theorem 1.2 whereas parts (a) and (b) follow from
[9, Theorem 1.6]. For the latter task we extend the scope of [9, Lemma 1.8] to non-
stationary Ak(·, ·) and, for fully handling the γ = 2 case, relax the uniform correlation
tail decay requirement of [9, (1.15)].
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Lemma 3.1 Suppose {Z (k)
t }, for 1 ≤ k ≤ ∞, are centered Gaussian processes on

[0,∞), of non-negative covariance Ak normalized to have Ak(s, s) = 1 for all s ≥ 0,
such that Z (∞)

t is a stationary process and Ak(s, s + τ) → A∞(0, τ ) when k → ∞,
uniformly in s ≥ 0. Suppose

lim sup
k,τ→∞

sup
s≥0

{ Ak(s, s + τ)

ρ̃(τ )

}
< ∞ (3.1)

for some integrable ρ̃ ∈ Rα , α ≥ 1, and in addition A∞(0, τ ) is non-increasing, such
that

a2h,θ := inf
0<t≤h

{
A∞(0, θ t) − A∞(0, t)

1 − A∞(0, t)

}

> 0, (3.2)

and there exists η > 1 such that

lim sup
u↓0

| log u|η sup
1≤k≤∞,s≥0,τ∈[0,u]

(1 − Ak(s, s + τ)) < ∞. (3.3)

Then we have

− lim
k,T→∞

1

T
logP

(

sup
t∈[0,T ]

{Z (k)
t } < 0

)

= b(A∞). (3.4)

Proof The statement (3.4) is shown in [9, Theorem 1.6] to hold under the following
assumptions:

lim sup
k,τ→∞

sup
s≥0

{
log Ak(s, s + τ)

log τ

}

< −1, (3.5)

− lim sup
M→∞

1

M
logP

(

sup
t∈[0,M]

Z (∞)
t < M−η

)

= b(A∞) for all η > 0, (3.6)

and there exists ζ > 0, M1 < ∞ such that for any z ∈ [0, ζ ] we have

P

(

sup
t∈[0,M]

Z (∞)
t < z

)

≤ lim inf
k→∞ inf

s≥0
P

(

inf
t∈[0,M] Z

(k)
s+t < z

)

≤ lim sup
k→∞

sup
s≥0

P

(

inf
t∈[0,M] Z

(k)
s+t < z

)

≤ P

(

sup
t∈[0,M]

Z (∞)
t ≤ z

)

.

(3.7)

We verify that both (3.6) and (3.7) hold here, then adapt the proof of [9, Theorem 1.6]
to apply also when α = 1 in (3.1) (while (3.5) follows from (2.19) if α > 1).

It follows from the proof of [9, Lemma 1.8], that (3.3) yields the a.s. continuity
of s �→ Z (k)

s for 1 ≤ k ≤ ∞, and that for any M < ∞, the collection {Z (k)
s+·, k ∈
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N, s ≥ 0} is uniformly tight in the space C[0, M] of continuous functions on [0, M],
equippedwith the topology of uniform convergence. This and Ak(s, s+·) → A∞(0, ·)
uniformly in s, resultwith (3.7). Indeed, the failure of (3.7) amounts to havingM < ∞,
z ∈ R, ε > 0, kn ↑ ∞ and sn ≥ 0, such that either

inf
n
P

(

sup
t∈[0,M]

{Z (kn)
sn+t } < z

)

≥ P

(

sup
t∈[0,M]

{Z (∞)
t } ≤ z

)

+ ε, or

sup
n

P

(

sup
t∈[0,M]

{Z (kn)
sn+t } < z

)

≤ P

(

sup
t∈[0,M]

{Z (∞)
t } < z

)

− ε. (3.8)

Since Akn (sn, sn + ·) → A∞(0, ·), all f.d.d.-s of the Gaussian processes {Z (kn)
sn+·}

converge to those of Z (∞)· . Thus Z (∞)· is the limit in distribution on C[0, M] of {Z (kn)
sn+·}

and necessarily

sup
t∈[0,M]

{Z (kn)
sn+t } d→ sup

t∈[0,M]
{Z (∞)

t },

in contradiction with (3.8).
Next, recall [20, Theorem 3.1(iii)], that for non-increasing τ �→ A∞(0, τ ), (3.6)

yields the continuity of ε �→ b(A∞; ε), where

b(A∞, ε) := − lim
T→∞

1

T
logP

(

sup
t∈[0,T ]

Z (∞)
t < ε

)

(3.9)

exists by Slepian’s lemma, which in particular verifies the weaker condition (3.6) as
well.

It thus remains tomodify the proof of [9, Theorem1.6] towork under the assumption
(3.1) instead of (3.5). Since the lower bound of [9, Theorem 1.6] does not involve [9,
(1.15)] it suffices to adapt the proof of the matching upper bound. To this end, by
(3.1) and the regular variation of ρ̃, there exist k0, τ0 and C finite such that ρ̃ is
non-increasing on [τ0,∞) and

Ak(s, t) ≤ C ρ̃(|s − t |), ∀k ≥ k0, s ≥ 0, |t − s| ≥ τ0. (3.10)

Fixing δ > 0 and M ≥ τ0/δ, consider, as in [9, proof of Theorem 1.6], a maximal
collection JT of N intervals Ii ⊂ [0, T ] of length M each, which are δM-separated.
Then, setting

γ = γ (δM) := 4C
∞∑

i=1

ρ̃(iδM), (3.11)
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and the symmetric N -dimensional matrix B = {B(i, j)} with B(i, i) = 1 and other-
wise B(i, j) = C

γ
ρ̃(|i − j |δM) non-increasing in |i − j |, we have that

max
1≤i≤N

∑

j =i

B(i, j) ≤ 2C

γ

∞∑

i=1

ρ̃(iδM) ≤ 1

2
.

Hence, all eigenvalues of B lie within [1/2, 3/2]. Further, if s ∈ Ii and t ∈ I j , then
Ak(s, t) ≤ γ B(i, j) by (3.10) and themonotonicity of ρ̃. Consequently, the relation of
[9, (2.3)] holds for any s, t ∈ JT . The latter allows us to proceed along the derivation
of [9, (2.4)-(2.6)], except for replacing the terms γ δ , from the rhs of [9, (2.4)] onward,
by ε > 0 (independent of γ ). We thus deduce the following variant of [9, (2.6)],

lim sup
k,T→∞

1

T
logP

(

sup
t∈[0,T ]

{Z (k)
t } < 0

)

≤ 1

M(1 + δ)
log

[

P

(

sup
t∈[0,M]

{Z (∞)
t } < 3ε

)

+ √
3P
(
X1 ≥ √2/3εγ −1/2

)
]

.

(3.12)

Here X1 is standard normal and Mγ (δM) → 0 when M → ∞ (by (2.4) and (3.11)),
hence

lim sup
M→∞

1

M
logP
(
X1 ≥ √2/3εγ −1/2

)
≤ −ε2

6
lim inf
M→∞ (Mγ )−1 = −∞, (3.13)

so in the limit M → ∞ the rhs of (3.12) is at most−b(A∞; 3ε)/(1+δ), for b(A∞; ·)
of (3.9). Thus, considering ε, δ ↓ 0 yields the upper bound of [9, Theorem 1.6].

Finally, from Lemma 2.6 the events {supt∈[0,M]{Z (∞)
t } < 0} have positive proba-

bility, hence b(A∞; 0) is finite (by the non-negativity of A∞ and Slepian’s lemma).
Further, in view of (3.13) the rhs of (3.12) is strictly negative for M large enough,
hence its lhs, namely −b(A∞; 0) is also strictly negative. ��

Proof of part (e) of Corollary 1.10 This is a direct application of Lemma 3.1. Indeed,
the relation between occupation times of 0 by S(q)

u , and the number of returns to 0 by
the corresponding embedded discrete time random walk, implies that

Iρ(q) (∞) − Iρ(q) (τ ) = E

[
G(q)

Nτ

]
,

for a unit rate Poisson process {Nτ }. Thus, here the auto-correlation of (1.18) is

Cρ(q) (0, τ ) = 1

G(q)
0

E

[
G(q)

Nτ

]
. (3.14)
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Clearly, G(q)
0 − 1 = G(q)

1 ≥ G(q)
k ≥ G(q)

k+1 for all k ≥ 1, resulting with the bounds

1 − P(Nτ ≥ 1) ≤ Cρ(q) (0, τ ) ≤ 1 − 1

G(q)
0

P(Nτ ≥ 1), (3.15)

so by the assumed convergence to one of G(qd )
0 we have that

lim
d→∞Cρ(qd ) (0, τ ) = 1 − P(Nτ ≥ 1) = e−τ .

Recall that the stationary Ornstein-Uhlenbeck (ou) process has persistence exponent
b = 1, continuous sample path and the correlation function e−|τ | for which holds. In
addition, from the uniform lower bound on the lhs of (3.15),

lim
u→0

| log u|2 sup
d

(1 − Cρ(qd ) (0, u)) = 0,

so (3.3) holds as well. Finally, from (3.14)

Cρ(qd ) (0, τ ) ≤ P(Nτ ≤ τ/2) + G(qd )
τ/2 ,

hence (3.1) follows from the assumed uniform tail bound G(qd )
τ/2 ≤ κτ−2. ��

Equipped with Lemma 3.1 we proceed to establish Theorem 1.8.

Proof of Theorem 1.8 (a) To prove (1.20), we apply Lemma 3.1 for the normalized,
centered Gaussian processes {Z (k)

t }, 1 ≤ k ≤ ∞, of correlation functions

Ak(s, t) := Cρ(s + k, t + k), A∞(s, t) := Cρ(s, t), s, t ≥ 0.

Specifically, from (1.18) we see that A∞(0, τ ) is non-increasing and Ak(s, s + τ) →
A∞(0, τ ) as k → ∞, uniformly in s ≥ 0. Further, with ρ ∈ Rγ uniformly bounded
and Iρ(·) strictly positive, non-decreasing, it follows from (1.17) that for s ≥ 1, τ > 0,

1 − Cρ(s, s + τ) ≤ Iρ(2s + 2τ) − Iρ(2s + τ) + Iρ(τ )

Iρ(2s)
≤ 2 supx≥0{ρ(x)}

Iρ(2)
τ.

Thus t �→ Yρ(t) is a.s. continuous on [1,∞) and with the preceding holding forCρ(·),
so does (3.3). Since Cρ(·) is non-negative, by Slepian’s lemma we have that for any
k ∈ (1, T ),

P

(

sup
t∈[k,T+k]

{Yρ(t)} < 0

)

≥ P

(

sup
t∈[1,T+k]

{Yρ(t)} < 0

)

≥ P

(

sup
t∈[1,k]

{Yρ(t)} < 0

)

P

(

sup
t∈[k,T+k]

{Yρ(t)} < 0

)
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and with Yρ(t) continuous the first term on the rhs is strictly positive (see Lemma
2.6). It thus suffices to confirm that

− lim
k→∞ lim

T→∞
1

T
logP

(

sup
t∈[k,T+k]

{Yρ(t)} < 0

)

= b(Cρ). (3.16)

With Z (k)
t = Yρ(k+ t), the identity (3.16) is merely (3.4). We thus complete the proof

upon verifying the remaining two assumptions of Lemma 3.1, first showing that (3.1)
holds for the integrable ρ̃(s) = sρ(s), then establishing the positivity of a2h,θ (Cρ) of
(3.2). Turning to the first task, setting sk = 2s + 2k ≥ 2 note that for any s ≥ 0,

Ak(s, s + τ) = Iρ(sk + τ) − Iρ(τ )
√
Iρ(sk + 2τ)Iρ(sk)

≤ Iρ(∞) − Iρ(τ )

Iρ(2)
, (3.17)

out of which we get (3.1), since by (2.1) (for a ↑ ∞ and α = γ > 1),

Iρ(∞) − Iρ(τ )

τρ(τ)
→ 1

γ − 1
< ∞. (3.18)

Next, setting g(θ, τ ) := ∫ 1
θ

ρ(τ y)dy we have from (1.18) that

a2h,θ (Cρ) = inf
0<τ<h

{
g(θ, τ )

g(0, τ )

}

≥ (1 − θ)
infx∈[0,h] ρ(x)

supx∈[0,h] ρ(x)
> 0,

by our hypothesis that ρ ∈ Rγ is uniformly bounded away from zero on compacts.
(b) Considering the Lamperti transformation t = ev on [0, V ] (where T = eV ),
similarly to part (a), due to Lemma 2.6 and the sample path continuity of Yρ(·) we
establish (1.21) upon showing that

− lim
k→∞ lim

V→∞
1

V
logP

(

sup
v∈[0,V ]

{Yρ(ev+k)} < 0

)

= b(C
γ ) ∈ (0,∞). (3.19)

The identity (3.19) is merely (3.4) for the centered Gaussian processes Z (k)
v =

Yρ(ev+k) of correlation functions

Ak(v, u) := Cρ(ev+k, eu+k), A∞(v, u) := C
γ (v, u), v, u ≥ 0.

Thus, (3.19) follows once we verify all the assumptions of Lemma 3.1, at least for all
k ≥ k0 finite. To this effect, for γ ∈ [0, 1) we have from (1.19) that Ak(v, v + τ) →
A∞(0, τ ), uniformly over v ≥ 0, with A∞(0, τ ) non-increasing. Further, for any
θ ∈ (0, 1), setting g(0) = 1 − θ1−γ > 0 makes

g(τ ) := C
γ (0, θτ ) − C

γ (0, τ )

1 − C
γ (0, τ )

,
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a continuous and strictly positive function on [0,∞). Thus, a2h,θ (C

γ ) being the infi-

mum of g(τ ) over [0, h] must be positive, and so (3.2) holds.
Turning next to verify (3.1), setting vk := ev+k ≥ ek we have that

Ak(v, v + τ) = Iρ((eτ + 1)vk) − Iρ((eτ − 1)vk)√
Iρ(2vk)Iρ(2eτ vk)

, ∀v, τ ≥ 0. (3.20)

Hence, three applications of (2.1) with α = γ , for b = (eτ + 1)vk , b = 2eτ vk and
b = 2vk , yield that

lim
k→∞ sup

v,τ≥0

∣
∣
∣
∣Rρ(vk, τ )

Ak(v, v + τ)

A∞(0, τ )
− 1

∣
∣
∣
∣ = 0, (3.21)

where by the eventual monotonicity of x±2ηLρ(x) (see Remark 2.7), we further get
that

Rρ(v, τ ) :=
√
Lρ(2v)Lρ(2eτ v)

Lρ((eτ + 1)v)
∈ (e−τη, eτη), (3.22)

for any η > 0, v ≥ v0(η) and all τ ≥ 0. Since γ �→ C
γ (0, τ ) is non-increasing, we

have that for any γ ∈ [0, 1),

A∞(0, τ ) ≤ C
0(0, τ ) = e−|τ |/2.

Combining this with (3.21) and (3.22) (say, for η = 1/4), we deduce that Ak(v, v +
τ) ≤ 2e−τ/4 for any k ≥ k0 and all v, τ ≥ 0, which is more than enough for (3.1).
It thus remains to verify (3.3). To this effect, set ξ := (1 − e−τ )/2 ≤ τ and

f (ξ ; b, τ ) := Iρ(b) − Iρ((1 − ξ)b) + Iρ(ξb)

Iρ(e−τb)
. (3.23)

Then, considering b = 2eτ vk in (3.20), we find that for any v, τ ≥ 0 and finite k ≥ 1,

1 − Ak(v, v + τ) ≤ sup
b≥2ek+τ

{ f (ξ ; b, τ )}.

As 1 − C
γ (0, τ ) ≤ |τ |1−γ for |τ | small enough, we get (3.3) upon showing that for

η > 0 and κ, b0 finite, f (ξ ; b, τ ) ≤ κξ1−γ−η, uniformly over τ ∈ [0, 1] and b ≥ b0.
To this end, setting

Fb(a1, a2) =
∫ a2

a1

Lρ(by)

Lρ(b)
dμγ (y),

for 0 ≤ a1 ≤ a2 ≤ 1 and the measure μγ on [0, 1] of density (1 − γ )y−γ , recall
(2.36) that

lim
b→∞ sup

δ∈[0,1)

∣
∣
∣
∣
Fb(δ, 1)

1 − δ1−γ
− 1

∣
∣
∣
∣ = 0
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and (2.37) that for some b0 finite,

sup
b≥b0

sup
δ∈(0,1]

{
Fb(0, δ)

δ1−γ−η

}

< ∞.

Further, we find as in the proof of Lemma 2.8(a), that

f (ξ ; b, τ ) = Fb(1 − ξ, 1) + Fb(0, ξ)

Fb(0, e−τ )
,

where by the preceding, once b is large enough Fb(1 − ξ, 1) ≤ 2ξ and Fb(0, ξ) ≤
κξ1−γ−η for all ξ , while Fb(0, e−τ ) ≥ Fb(0, e−1) are bounded below away from zero.
(c). We get (1.22) upon applying Theorem 1.2 for the centered Gaussian process
Yρ(t), t ∈ [1,∞) (with non-integrable ρ̃(s) = sρ(s) ∈ Rγ−1). Turning to verify the
three hypothesis of Theorem 1.2, recall first that while proving part (a) we saw that
t �→ Yρ(t) is a.s. continuous and further showed that sups≥1(1−Cρ(s, s + τ)) decay
fast enough in τ → 0 to imply that E[supt∈[0,1]{Yρ(s + t)}] is uniformly bounded in
s ≥ 1. Next, similarly to (3.17),

Cρ(t, t + τ) ≤ Iρ(∞) − Iρ(τ )

Iρ(2)

and (1.7) follows from (3.18). Finally, if τ ∈ [0, ηt] then by (2.1) with α = γ , we
deduce that for τ → ∞,

Cρ(t, t + τ)

ρ̃(τ )
≥ Iρ(hτ) − Iρ(τ )

ρ̃(τ )Iρ(∞)
→ 1 − h1−γ

(γ − 1)Iρ(∞)
,

which since h := 1+2/η diverges with η ↓ 0, yields (1.10) and thereby proves (1.22).
��
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