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Network sampling is an indispensable tool for understanding features
of large complex networks where it is practically impossible to search over
the entire graph. In this paper, we develop a framework for statistical in-
ference for counting network motifs, such as edges, triangles and wedges,
in the widely used subgraph sampling model, where each vertex is sam-
pled independently, and the subgraph induced by the sampled vertices is
observed. We derive necessary and sufficient conditions for the consistency
and the asymptotic normality of the natural Horvitz–Thompson (HT) esti-
mator, which can be used for constructing confidence intervals and hypoth-
esis testing for the motif counts based on the sampled graph. In particular,
we show that the asymptotic normality of the HT estimator exhibits an in-
teresting fourth-moment phenomenon, which asserts that the HT estimator
(appropriately centered and rescaled) converges in distribution to the stan-
dard normal whenever its fourth-moment converges to 3 (the fourth-moment
of the standard normal distribution). As a consequence, we derive the exact
thresholds for consistency and asymptotic normality of the HT estimator in
various natural graph ensembles, such as sparse graphs with bounded degree,
Erdős–Rényi random graphs, random regular graphs and dense graphons.

1. Introduction. One of the main challenges in network analysis is that the observed
network is often a sample from a much larger (parent) network. This is generally due to
the massive size of the network or the inability to access parts of the network, making it
practically impossible to search/query over the entire graph. The central statistical question
in such studies is to estimate global features of the parent network, that accounts for the bias
and variability induced by the sampling paradigm. The study of network sampling began with
the results of Frank [22, 23] and Capobianco [13], where methods for estimating features such
as connected components and graph totals were studied (see [49] for a more recent survey of
these results). Network sampling has since then emerged as an essential tool for estimating
features of large complex networks, with applications in social networks [32, 41, 58], protein
interaction networks [53, 57], internet and communication networks [29] and socioeconomic
networks [3, 4] (see [18, 38, 39] for a detailed discussion of different network sampling
techniques and their applications).

Counting motifs (patterns of subgraphs) [44, 50] in a large network, which encode impor-
tant structural information about the geometry of the network, is an important statistical and
computational problem. In this direction, various sublinear time algorithms based on edge
and degree queries have been proposed for testing and estimating properties such as the av-
erage degree [21, 25], triangles [7, 20], stars [2], general subgraph counts [27] and expansion
properties [26]. These results are, however, all based on certain adaptive queries, which are
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FIG. 1. The subgraph sampling scheme: (a) The population graph and the vertices sampled (colored in red),
and (b) the observed graph.

unrealistic in applications where the goal is to estimate features of the network based on
a single sampled graph [3, 14]. In this framework, estimating features such as the degree
distribution [59], the number of connected components [37] and the number of motifs [36]
have been studied recently, under various sampling schemes and structural assumptions on
the parent graph.

In this paper we consider the problem of motif estimation, that is, counting the number of
copies of a fixed graph H = (V (H),E(H)) (for example, edges, triangles, and wedges) in
a large parent graph Gn in the most popular and commonly used subgraph sampling model,
where each vertex of Gn is sampled independently with probability pn ∈ (0,1) and the sub-
graph induced by these sampled vertices is observed. Here, the natural Horvitz–Thompson
(HT) estimator obtained by weighting the number of copies of H in the observed network
by p

−|V (H)|
n (the inverse probability of sampling a subset of size |V (H)| in the graph Gn) is

unbiased for the true motif count. Very recently, Klusowski and Yu [36] showed that the HT
estimator (for induced subgraph counts) is minimax rate optimal in the subgraph sampling
model for classes of graphs with maximum degree constraints. Given this result, it becomes
imperative to develop a framework for statistical inference for the motif counts in the sub-
graph sampling model. In this paper we derive precise conditions for the consistency and
the asymptotic normality of the HT estimator, which can be used for constructing confidence
intervals and hypothesis testing for the motif counts in the subgraph sampling model. The re-
sults give a complete characterization of the asymptotics of the HT estimator, thus providing
a mathematical framework for evaluating its performance in different examples. We begin
by formally describing the subgraph sampling model and the motif estimation problem in
Section 1.1. A summary of the results obtained is given in Section 1.2.

1.1. The subgraph sampling model. Suppose Gn = (V (Gn),E(Gn)) is a simple, labeled
and undirected graph with vertex set V (Gn) = {1,2, . . . , |V (Gn)|} and edge set E(Gn). We
denote by A(Gn) = ((aij ))i,j∈V (Gn) the adjacency matrix of Gn, that is, aij = 1 whenever
there is an edge between (i, j) and zero otherwise. In the subgraph sampling model, each
vertex of the graph Gn is sampled independently with probability pn ∈ (0,1), and we ob-
serve the subgraph induced by the sampled vertices. The parameter pn is referred to as the
sampling ratio of the graph Gn. In the survey sampling literature, this sampling scheme is
also referred to as the Poisson sampling plan (see Tillé [56] and the references therein). The
sampling scheme is illustrated in Figure 1, where the population graph and the vertices sam-
pled (colored in red) are shown in the left and the observed graph is shown in the right.
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Having observed this sampled subgraph, our goal is to estimate the number of copies of a
fixed connected graph H = (V (H),E(H)) in the parent graph Gn. Formally, the number of
copies of H in Gn is given by

N(H,Gn) := 1

|Aut(H)|
∑

s∈V (Gn)|V (H)|

∏
(i,j)∈E(H)

asisj ,(1.1)

– V (Gn)|V (H)| is the set of all |V (H)|-tuples s = (s1, . . . , s|V (H)|) ∈ V (Gn)
|V (H)| with dis-

tinct indices.1 Thus, the cardinality of V (Gn)|V (H)| is |V (Gn)|!
(|V (Gn)|−|V (H)|)! .

– Aut(H) is the automorphism group of H , that is, the number permutations σ of the vertex
set V (H) such that (x, y) ∈ E(H) if and only if (σ (x), σ (y)) ∈ E(H).

Let Xv be the indicator of the event that the vertex v ∈ V (Gn) is sampled under subgraph
sampling model. Note that {Xv}v∈V (Gn) is a collection of i.i.d. Ber(pn) variables. For s ∈
V (Gn)|V (H)|, denote

Xs := Xs1Xs2 . . .Xs|V (H)| :=
|V (H)|∏
u=1

Xsu and MH(s) := ∏
(i,j)∈E(H)

asisj .

Then the number of copies of H in the sampled subgraph is given by

T (H,Gn) := 1

|Aut(H)|
∑

s∈V (Gn)|V (H)|
MH(s)Xs .(1.2)

Note that E[T (H,Gn)] = p
|V (H)|
n N(H,Gn), hence

N̂(H,Gn) := 1

p
|V (H)|
n

T (H,Gn)(1.3)

is a natural unbiased estimator for the parameter N(H,Gn). This is referred to in the literature
as the Horvitz–Thompson (HT) estimator of the motif count N(H,Gn) [36], since it uses
inverse probability weighting to achieve unbiasedness [33].

1.2. Summary of results. In this paper, we develop a framework for statistical inference
for the motif counts using the HT estimator in the subgraph sampling model. The following
is a summary of the results obtained:

• To begin with, we establish a necessary and sufficient condition for the consistency of
the HT estimator, that is, conditions under which N̂(H,Gn)/N(H,Gn) converges to 1
in probability. To this end, we introduce the notion of local count function, which counts
the number of copies of H incident on a fixed subset of vertices, and show that the pre-
cise condition for the consistency of the HT estimator is to ensure that subsets of vertices
with “high” local counts have asymptotically negligible contribution to the total count
N(H,Gn) (Theorem 2.1).

• To derive the asymptotic normality of the HT estimator, we consider the rescaled statistic

Z(H,Gn) := N̂(H,Gn) − N(H,Gn)√
Var[N̂(H,Gn)]

.(1.4)

1For a set S, the set SN denotes the N -fold Cartesian product S × S × · · · × S.
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Using the Stein’s method for normal approximation, we derive an explicit rate of conver-
gence (in the Wasserstein’s distance) between Z(H,Gn) and the standard normal distribu-

tion. As a consequence, we show that Z(H,Gn)
D→ N(0,1), whenever the fourth moment

E[Z(H,Gn)] → 3 (the fourth moment of N(0,1)) (see Theorem 2.3 for details). This is
an example of the celebrated fourth-moment phenomenon, which initially appeared in the
asymptotics of multiple stochastic integrals (Wiener chaos) in the seminal papers [45, 48]
and has, since then, emerged as the driving condition for the asymptotic normality of var-
ious nonlinear functions of random fields [46]. In the present context of motif estimation,
we show that the asymptotic normality of Z(H,Gn) is a consequence of a more general
central limit theorem (CLT) for random multilinear forms in Bernoulli variables, a result
which might be of independent interest (Theorem A.3).

• Next, we discuss how the CLT for Z(H,Gn) can be used to compute a confidence inter-
val for the motif count N(H,Gn). Toward this, we provide an unbiased estimate of the
variance of Z(H,Gn) that is consistent whenever the CLT error term for Z(H,Gn) goes
to zero, which can be used to construct an asymptotically valid confidence interval for
N(H,Gn) (Proposition 2.4).

• We then derive a necessary and sufficient condition for the asymptotic normality of
Z(H,Gn). For this, we need to weaken the fourth-moment condition E[Z(H,Gn)

4] →
3, which although sufficient, is not always necessary for the asymptotic normality of

Z(H,Gn). In particular, there are graph sequences for which Z(H,Gn)
D→ N(0,1), even

though the fourth-moment condition fails (Example D.4). Instead, we show that the asymp-
totic normality of Z(H,Gn) is characterized by a truncated fourth-moment condition.
More precisely, Z(H,Gn) converges in distribution to N(0,1) if and only if the second
and fourth moments of an appropriate truncation of Z(H,Gn), based on the local count
functions, converges to 1 and 3, respectively (Theorem 2.5).

• As a consequence of the above results, we derive the exact thresholds for consistency and
asymptotic normality of the HT estimator in various natural graph ensembles, such as
sparse graphs with bounded degree (Proposition 2.6), Erdős–Rényi random graphs (Theo-
rem 2.8), random regular graphs (Corollary 2.10) and graphons (Proposition 2.12). In each
of these cases, there is a threshold (which depends on the graph parameters) such that if the
sampling ratio pn is much larger than this threshold, then the HT estimator is consistent
and asymptotically normal, whereas if pn is of the same order as the threshold, the HT
estimator is neither consistent nor asymptotic normal. In particular, for the Erdős–Rényi
graph, the threshold for consistency and asymptotic normality depends on the well-known
balancedness coefficient of the graph H (Definition 2.7), and is related to the threshold for
the occurrence of H is the sampled random graph.

These results provide a comprehensive characterization of the asymptotics of the HT esti-
mator for the motif counts in the subgraph sampling model, which can be used to validate its
performance in various applications. The formal statements of the results and their various
consequences are given below in Section 2.

1.3. Asymptotic notation. Throughout we will use the following standard asymptotic no-
tations. For two positive sequences, {an}n≥1 and {bn}n≥1, an = O(bn) means an ≤ C1bn,
an = �(bn) means an ≥ C2bn, and an = �(bn) means C2bn ≤ an ≤ C1bn, for all n large
enough and positive constants C1,C2. Similarly, an � bn means an = O(bn), and an � bn

means an = �(bn), and subscripts in the above notation, for example, �� or ��, denote
that the hidden constants may depend on the subscripted parameters. Moreover, an � bn

means an = o(bn), and an � bn means bn = o(an). Finally, for a sequence of random vari-
ables {Xn}n≥1 and a positive sequence {an}n≥1, the notation Xn = OP (an) means Xn/an is
stochastically bounded, that is, limM→∞ limn→∞P(|Xn/an| ≤ M) = 1, and Xn = �P (an)

will mean Xn = OP (an) and limδ→0 limn→∞ P(|Xn/an| ≥ δ) = 1.
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2. Statements of the main results. In this section, we state our main results. Throughout
we will assume that there exists κ ∈ (0,1) such that

pn ≤ 1 − κ,(2.1)

for all n ≥ 1. This is to rule out the degenerate case when we observe nearly the whole graph,
in which case the estimation problem becomes trivial. The rest of this section is organized
as follows: The necessary and sufficient condition for the consistency of the HT estimator
is discussed in Section 2.1. The precise conditions for the asymptotic normality of the HT
estimator and construction of confidence intervals are given in Section 2.2. Finally, in Sec-
tion 2.3 we compute the thresholds for consistency and asymptotic normality for various
graph ensembles.

2.1. Consistency of the HT estimator. In this section, we obtain the precise conditions
for consistency of the HT estimator N̂(H,Gn), for any fixed connected motif H and any
sequence of graphs {Gn}n≥1, such that N(H,Gn) > 0 for all n ≥ 1. To state our results
precisely, we need a few definitions. For an ordered tuple s ∈ V (Gn)|V (H)| with distinct
entries, denote by s the (unordered) set formed by the entries of s (e.g., if s = (4,2,5), then
s = {2,4,5}). For any nonempty set A ⊂ V (Gn) with 1 ≤ |A| ≤ |V (H)|, define the local
count function of H on the set A as follows:

tH (A) := 1

|Aut(H)|
∑

s∈V (Gn)|V (H)|:s⊇A

MH(s),(2.2)

where the sum is over of all ordered s ∈ V (Gn)|V (H)| such that the set s contains all the
elements of A. In other words, tH (A) counts the number of copies of H in Gn that passes
through a given set A of distinct vertices.

EXAMPLE 2.1. To help parse the above definition, we compute tH (A) in a few examples.
For this, fix vertices u, v,w ∈ V (Gn).

– If H = K2 is an edge, then

tK2

({v}) =1

2

∑
u∈V (Gn)

{auv + avu} = ∑
u∈V (Gn)

auv,

is the degree of vertex v in Gn. On the other hand, tK2({u, v}) = auv+avu

2 = auv .
– If H = K1,2 is a 2-star (wedge), then

tK1,2

({v}) = ∑
1≤u1<u2≤|V (Gn)|

u1,u2 �=v

(avu1au1u2 + au2vavu1 + au1u2au2v),

tK1,2

({u, v}) = ∑
1≤w≤|V (Gn)|

w �=u,v

(avuauw + awvavu + auwawv),

tK1,2

({u, v,w}) = avuauw + awvavu + auwawv.

– If H = K3 is a triangle, then

tK3

({v}) = ∑
1≤u1<u2≤|V (Gn)|

u1,u2 �=v

avu1au1u2avu2, tK3

({u, v}) = ∑
1≤w≤|V (Gn)|

w �=u,v

avuauwavw,

counts the number of triangles in Gn which passes through the vertex v, and the edge (u, v),
respectively. Finally, tK3({u, v,w}) = avuauwavw .
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Our first result gives a necessary and sufficient condition for the consistency of the HT
estimator N̂(H,Gn) (recall (1.3)). Note that, since the parameter being estimated N(H,Gn)

can grow to infinity with n, consistency is defined in terms of the ratio of the estimator to the
true parameter converging to 1. More formally, given a sequence of graphs {Gn}n≥1 the HT
estimator N̂(H,Gn) is said to be consistent for the true motif count N(H,Gn), if

N̂(H,Gn)

N(H,Gn)

P→ 1,

as n → ∞.

THEOREM 2.1. Suppose Gn = (V (Gn),E(Gn)) is a sequence of graphs, with
|V (Gn)| → ∞ as n → ∞, and H is a fixed connected graph. Then, given a sampling ra-
tio pn ∈ (0,1) which satisfies (2.1), the HT estimator N̂(H,Gn) is consistent for N(H,Gn)

if and only if the following holds: For all ε > 0,

lim
n→∞

1

N(H,Gn)

∑
A⊂V (Gn)

1≤|A|≤|V (H)|

tH (A)1
{
tH (A) > εp|A|

n N(H,Gn)
} = 0.(2.3)

REMARK 2.1. Note that since every term in the sum in (2.3) is nonnegative, (2.3) is
equivalent to

lim
n→∞

1

N(H,Gn)

∑
A⊂V (Gn)

|A|=s

tH (A)1
{
tH (A) > εps

nN(H,Gn)
} = 0,(2.4)

for all ε > 0 and all 1 ≤ s ≤ |V (H)|. To understand the implications of the condition in (2.3)
(or equivalently, (2.4)) note that

∑
A⊂V (Gn)

1≤|A|≤|V (H)|

tH (A) =
|V (H)|∑
K=1

∑
A⊂V (Gn)

|A|=K

1

|Aut(H)|
∑

s:s⊇A

MH(s)

=
|V (H)|∑
K=1

∑
s∈V (Gn)|V (H)|

1

|Aut(H)|MH(s)
∑
A⊆s

|A|=K

1(2.5)

=
|V (H)|∑
K=1

N(H,Gn)

(∣∣V (H)
∣∣

K

)
= (

2|V (H)| − 1
)
N(H,Gn).

Hence, (2.3) demands that the contribution to N(H,Gn) coming from subsets of vertices
with “high” local counts is asymptotically negligible.

The proof of Theorem 2.1 is given in Section 2.1. To show (2.3) is sufficient for con-
sistency, we define a truncated random variable T +

ε (H,Gn) (see (3.2)), which is obtained
by truncating the HT estimator whenever the local counts functions are large, more pre-
cisely, if tH (A) > εp

|A|
n N(H,Gn). Then the proof involves two steps: (1) showing that the

difference between T +
ε (H,Gn) and T (H,Gn) is asymptotically negligible whenever (2.3)

holds (Lemma 3.1), and (2) a second-moment argument to show that T +
ε (H,Gn) concen-

trates around its expectation. For the necessity, assuming condition (2.3) does not hold, an
application of the well-known Fortuin–Kasteleyn–Ginibre (FKG) correlation inequality [30],
Chapter 2, shows that with positive probability no |V (H)|-tuple with “high” local count func-
tions is observed. Moreover, conditional on this event, there is a positive probability (bounded
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FIG. 2. Error bars for N̂(K3,Gn)/N(K3,Gn) in a 2-block stochastic block model on n = 10,000 vertices and
equal block size, with off-diagonal probability 0.5 and diagonal probability varying between 0 and 0.01 (shown
along the horizontal axis).

away from 0) that the HT estimator is atypically small. This implies that the (unconditional)
probability of the HT estimator being atypically small is also bounded away from zero, which
shows the inconsistency of the HT estimator.

In Section 2.3, we will use Theorem 2.1 to derive the precise thresholds for consistency
of the HT estimator for many natural classes of graph ensembles. The condition in (2.4)
simplifies for specific choices of the motif H , as illustrated for the number of edges (H = K2)
in the example below.

EXAMPLE 2.2. Suppose H = K2 is an edge. Then N(K2,Gn) = |E(Gn)| is the number
of edges in Gn and, recalling the calculations in Example 2.1, the assumption in (2.4) is
equivalent to the following two simultaneous conditions: For all ε > 0,

lim
n→∞p2

n

∣∣E(Gn)
∣∣ = ∞ and

lim
n→∞

1

|E(Gn)|
|V (Gn)|∑

v=1

dv1
{
dv > εpn

∣∣E(Gn)
∣∣} = 0,

(2.6)

where dv is the degree of the vertex v in Gn. Note that first condition requires that the
expected number of edges in the sampled graph goes to infinity, and the second condi-
tion ensures that the fraction of edges incident on vertices with “high” degree (greater than
εpn|E(Gn)|) is small. In Example D.1, we construct a sequence of graphs {Gn}n≥1 for which
p2

n|E(Gn)| → ∞, but the HT estimator N̂(K2,Gn) is inconsistent, illustrating the necessity
of controlling the number of edges incident on the high-degree vertices, as in the second con-
dition of (2.6). The condition in (2.4) can be similarly simplified for H = K1,2 and H = K3
using the calculations in Example 2.1.

Figure 2 shows the empirical 1-standard deviation error bars for estimating the number
of triangles in a 2-block stochastic block model (SBM) with equal block sizes, where edges
between vertices in the same block are present independently with probability a ∈ (0,1)

and edges between vertices in different blocks are present independently with probability
b ∈ (0,1). Here, fixing a, b ∈ (0,1) we consider a realization of Gn from a stochastic block
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model on n = 10,000 vertices with equal block sizes and diagonal probability a and off-
diagonal probability b = 0.5, and sampling ratio pn = 0.03. Figure 2 then shows the em-
pirical 1-standard deviation error bars of N̂(K3,Gn)/N(K3,Gn) over 1000 repetitions, for
a range of 8 values of a between 0 and 0.01 (as shown along the horizontal axis). Note
that as a increases, the sizes of the error bars decrease, that is, N̂(K3,Gn) becomes a more
accurate estimator of N(K3,Gn). This is because one of the conditions that determine the
consistency of N̂(K3,Gn) is that the expected number of triangles in the sampled graph
diverges, that is, E[T (K3,Gn)] = p3

nE[N(K3,Gn)] (which is obtained by taking s = 3 in
(2.4)). Now, as a increases, E[N(K3,Gn)], which is the expected number of triangles in the
SBM, increases, hence E[T (K3,Gn)] increases, improving the accuracy of N̂(K3,Gn) for
estimating N(K3,Gn).

2.1.1. A simpler variance condition. In this section, we discuss a simpler sufficient con-
dition for the consistency of the HT estimator, arising from the direct application of Cheby-
shev’s inequality, which will be useful in applications. To this end, note that

lim
n→∞

1

N(H,Gn)2

∑
A⊂V (Gn)

1≤|A|≤|V (H)|

tH (A)2

p
|A|
n

= 0(2.7)

is a sufficient condition for (2.3), since

tH (A)1
{
tH (A) > εp|A|

n N(H,Gn)
} ≤ tH (A)2

εp
|A|
n N(H,Gn)

.

The condition in (2.7), which does not require any truncations, is often easier to verify, as
will be seen in the examples discussed below. To derive (2.7) without using (2.3), use Cheby-
shev’s inequality to note that a straightforward sufficient condition for the consistency of the
estimate N̂(H,Gn) is that Var[N̂(H,Gn)] = o(N̂(H,Gn)

2). This last condition is equivalent
to (2.7), as can be seen by invoking Lemma C.1 to get the estimate

Var
(
N̂(H,Gn)

) = �

( ∑
A⊂V (Gn)

1≤|A|≤|V (H)|

tH (A)2

p
|A|
n

)
.

Even though the variance condition (2.7) is natural and often easier to verify, it is not neces-
sary for consistency, as shown in the example below.

EXAMPLE 2.3 (The variance condition is not necessary for consistency). Let H = K2
be the edge, and Gn be the disjoint union of an an-star K1,an and bn disjoint edges, with

an � bn � a
3/2
n . Then ∣∣V (Gn)

∣∣ = an + 1 + 2bn = (
1 + o(1)

)
2bn,

N(H,Gn) = ∣∣E(Gn)
∣∣ = an + bn = (

1 + o(1)
)
bn.

(2.8)

In this case, the HT estimator is consistent whenever the sampling probability pn satisfies
1√
bn

� pn � a2
n/bn. To see this, note that p2

n|E(Gn)| = (1 + o(1))p2
nbn � 1, that is, the first

condition in (2.6) holds. Also, fixing ε > 0 and noting that pn|E(Gn)| = (1 +o(1))pnbn � 1
implies, for all n large only the central vertex of the an-star satisfies the dv > εpn|E(Gn)|
cutoff. Hence,

|V (Gn)|∑
v=1

dv1
{
dv > εpn|E(Gn)

} = an = o(bn),
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FIG. 3. The graph G(s1, s2, s3, s4, s5) as in Definition 2.2 with s1 = (1,2,3), s2 = (1,2,6), s3 = (4,7,8),
s4 = (2,4,6) and s5 = (5,6,8).

verifying second condition in (2.6). However, since

1

pn|E(Gn)|2
|V (Gn)|∑

v=1

d2
v = 1

pnb2
n

(
a2
n + an + bn

) = (
1 + o(1)

) a2
n

pnb2
n

→ ∞,

the variance condition (2.7) does not hold. Thus for this example one needs the full strength
of Theorem 2.1 to show that the HT estimator is consistent.

2.2. Asymptotic normality of the HT estimator. In this section, we determine the pre-
cise conditions under which the HT estimator is asymptotically normal. For this, recall the
definition of Z(H,Gn) from (1.4),

Z(H,Gn) := N̂(H,Gn) − N(H,Gn)√
Var[N̂(H,Gn)]

= T (H,Gn) − p
|V (H)|
n N(H,Gn)

σ(H,Gn)
,(2.9)

where σ(H,Gn)
2 := Var[T (H,Gn)]. To begin with, one might wonder whether the condi-

tions which ensure the consistency of N̂(H,Gn) is enough to imply the asymptotic normality
of Z(H,Gn). However, it is easy to see that this is not the case. In fact, there are examples
where N̂(H,Gn) is consistent, but Z(H,Gn) has a non-Gaussian limiting distribution (see
Example D.2 in Appendix D). Hence, to establish the asymptotic normality of Z(H,Gn)

additional conditions are needed. To state our result, we need the following definition.

DEFINITION 2.2. Fix r ≥ 1. Given a collection of r tuples {s1, s2, . . . , sr} from
V (Gn)|V (H)|, let G(s1, . . . , sr ) be the simple graph with vertex set {s1, . . . , sr}, with an edge
between si and sj whenever si ∩ sj �= ∅ (see Figure 3 for an illustration). We will say the
collection {s1, . . . , sr} is connected, if the graph G(s1, . . . , sr ) is connected. The set of all r

tuples {s1, . . . , sr} in V (Gn)|V (H)| such that the collection {s1, . . . , sr} is connected will be
denoted by Kn,r .

Now, denote by Wn the random variable

Wn := ∑
{s1,s2,s3,s4}∈Kn,4

|Ys1Ys2Ys3Ys4 |,(2.10)

where Ys := 1
|Aut(H)|

∏
(i,j)∈E(H) asisj (Xs − p

|V (H)|
n ). In the following theorem, we give a

quantitative error bound (in terms of the Wasserstein distance) between Z(H,Gn) and the
standard normal distribution N(0,1), in terms of the expected value of the random variable
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Wn. To this end, recall that the Wasserstein distance between random variables X ∼ μ and
Y ∼ ν on R is defined as

Wass(X,Y ) = sup
{∣∣∣∣∫ f dμ −

∫
f dν

∣∣∣∣ : f is 1-Lipschitz
}
,

where a function f :R →R is 1-Lipschitz if |f (x) − f (y)| ≤ |x − y|, for all x, y ∈ R.

THEOREM 2.3. Fix a connected graph H , a network Gn = (V (Gn),E(Gn)) and a sam-
pling ratio pn, which satisfies (2.1). Then

Wass
(
Z(H,Gn),N(0,1)

)
� |V (H)|

(1 − κ)3 ·
√

E[Wn]
σ(H,Gn)4 ,(2.11)

where Z(H,Gn) and Wn are as defined in (2.9) and (2.10), respectively. Moreover, if pn ∈
(0, 1

20 ], then E[Wn]
σ(H,Gn)4 ≤ E[Z(H,Gn)

4] − 3 and, as a consequence,

Wass
(
Z(H,Gn),N(0,1)

)
�

∣∣V (H)
∣∣ · √

E
[
Z(H,Gn)4

] − 3,(2.12)

The proof of this result is given in Appendix A.2. In addition to giving an explicit rate
of convergence between Z(H,Gn) and N(0,1), Theorem 2.3 shows that for pn small
enough, the asymptotic normality of the (standardized) HT estimator exhibits a curious

fourth-moment phenomenon, that is, Z(H,Gn)
D→ N(0,1) whenever E[Z(H,Gn)

4] → 3
(the fourth moment of the standard normal distribution). The proof uses Stein’s method
for normal approximation [5, 17, 54] and is a consequence of more general result about
the asymptotic normality and the fourth-moment phenomenon of certain random multilinear
forms in Bernoulli variables, which might be of independent interest (Theorem A.3).

REMARK 2.2. The fourth-moment phenomenon was first discovered by Nualart and Pec-
cati [48], who showed that the convergence of the first, second and fourth moments to 0,1
and 3, respectively, guarantees asymptotic normality for a sequence of multiple stochastic
Wiener–Itô integrals of fixed order. Later, Nourdin and Peccati [45] provided an error bound
for the fourth-moment theorem of [48]. The fourth-moment phenomenon has since then
emerged as a unifying principle governing the central limit theorems for various nonlinear
functionals of random fields [9, 43, 47]. We refer the reader to the book [46] for an introduc-
tion to the topic and the website https://sites.google.com/site/malliavinstein/home for a list of
the recent results. The result in Theorem 2.3 is an example of the fourth-moment phenomenon
in the context of motif estimation. In fact, the result in Section A on the asymptotic normality
of general random multilinear forms suggests that the fourth-moment phenomenon is more
universal, and we expect it to emerge in various other combinatorial estimation problems,
where counting statistics similar to T (H,Gn) arise naturally.

REMARK 2.3. Note that the result in (2.12) requires an upper bound on the sampling ra-
tio pn ≤ 1

20 . This condition ensures that the leading order of the central moments of T (H,Gn)

is the same as the leading order of its raw moments (as shown in Lemma A.2), a fact which
is used to estimate the error terms arising from the Stein’s method calculations. Interest-
ingly, it is, in fact, necessary to assume an upper bound on pn for the limiting normality
and the fourth-moment phenomenon of the HT estimator to hold (see Example D.3 in Ap-
pendix D). This example constructs a sequence of graphs {Gn}n≥1 for which if pn is chosen
large enough, then E[Z(K2,Gn)

4] → 3, but Z(K2,Gn) does not converge to N(0,1). How-
ever, in applications, where it is natural to chose pn � 1 to have any significant reduction in
the size of the sampled graph, the fourth-moment phenomenon always holds.

https://sites.google.com/site/malliavinstein/home
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We now discuss how the results above can be used to construct asymptotically valid con-
fidence intervals for the parameter N(H,Gn). To this end, we need to consistently estimate
σ(H,Gn)

2, the variance of T (H,Gn). The following result shows that it is possible to con-
sistently estimate σ(H,Gn)

2 whenever the error term in (2.11) goes to zero, which combined
with the asymptotic normality of Z(H,Gn) gives a confidence for N(H,Gn) with asymptotic
coverage probability 1 − α.

PROPOSITION 2.4. Fix a connected graph H , a network Gn = (V (Gn),E(Gn)) and a
sampling ratio pn, which satisfies (2.1). Suppose E[Wn] = o(σ (H,Gn)

4), where Wn is as
defined in (2.10). Then the following hold, as n → ∞:

(a) The HT estimator N̂(H,Gn) is consistent for N(H,Gn).
(b) Let

σ̂ (H,Gn)
2 := ∑

s1,s2∈V (Gn)|V (H)|
s1∩s2 �=∅

MH(s1)MH(s2)
(
Xs1 − p|V (H)|

n

)(
Xs2 − p|V (H)|

n

)
.

Then σ̂ (H,Gn)
2 is a consistent estimate of σ(H,Gn)

2, that is, σ̂ (H,Gn)2

σ(H,Gn)2
P→ 1.

(c) Let σ̂ (H,Gn)+ := √
max(0, σ̂ (H,Gn)2). Then, as n → ∞,

P

(
N(H,Gn) ∈

[
N̂(H,Gn) − zα

2

σ̂ (H,Gn)+
p

|V (H)|
n

, N̂(H,Gn) + zα
2

σ̂ (H,Gn)+
p

|V (H)|
n

])
→ 1 − α,

where zα
2

is the (1 − α
2 )th quantile of the standard normal distribution N(0,1).

The proof of this result is given in Appendix A.3. The proof of (a) entails showing
that σ(H,Gn)

2 = o((E[T (H,Gn)])2). This is a consequence of the assumption E[Wn] =
o(σ (H,Gn)

4) and the more general bound σ(H,Gn)
6 �H E[Wn](E[T (H,Gn)])2, which

can be proved by expanding out the terms and an application of the Hölder’s inequality. For
(b), note that σ̂ (H,Gn)

2 is an unbiased estimate of σ(H,Gn)
2; hence, to prove the consis-

tency of σ̂ (H,Gn)
2 it suffices to show that Var[σ̂ (H,Gn)

2] = o(σ (H,Gn)
4), under the given

assumptions. Finally, (c) is an immediate consequence of (b) and the asymptotic normality
of Z(H,Gn) proved in Theorem 2.3.

Given the result in Theorem 2.3, it is now natural to wonder whether the convergence of the
fourth moment E[Z(H,Gn)

4] → 3 is necessary for the asymptotic normality of Z(H,Gn).
This however turns out to be not the case. In fact, Example D.4 gives a sequence of graphs
{Gn}n≥1 for which Z(K2,Gn) is asymptotic normal, but E[Z(K2,Gn)

4] � 3, showing that
the (untruncated) fourth-moment condition is not necessary for the asymptotic normality of
the HT estimator. As we will see, in this example the graph Gn has a few “high” degree
vertices, which forces E[Z(H,Gn)

4] to diverge. However, the existence of a “small” number
of high-degree vertices does not affect the distribution of the rescaled statistic. This suggests
that, as in the case of consistency in Theorem 2.1, to obtain the precise condition for the
asymptotic normality of Z(H,Gn) we need to appropriately truncate the graph Gn, by re-
moving a small number of hubs with “high” local count functions, and consider the moments
of the truncated statistic. Toward this end, fix M > 0 and define the event

CM(A) = {
tH (A)2 > Mp2|A|−2|V (H)|

n Var
[
T (H,Gn)

]}
,(2.13)

and CM(s)c = ⋂
A⊆s:A �=∅ CM(A)c. (For any set A, Ac denotes the complement of A.) Then

consider the truncated statistic,

T ◦
M(H,Gn) := 1

|Aut(H)|
∑

s∈V (Gn)|V (H)|
MH(s)Xs1

{
CM(s)c

}
,(2.14)
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and define

Z◦
M(H,Gn) := T ◦

M(H,Gn) −E[T ◦
M(H,Gn)]

σ(H,Gn)
.(2.15)

The following theorem gives a necessary and sufficient condition for asymptotic normality
for Z(H,Gn) in the terms of the second and fourth moments of the truncated statistic (2.14).

THEOREM 2.5. Suppose Gn = (V (Gn),E(Gn)) is a sequence of graphs, with
|V (Gn)| → ∞ and H is a fixed connected graph. Then, given a sampling ratio pn ∈ (0, 1

20 ],
the rescaled statistic Z(H,Gn)

D→ N(0,1) if and only if

lim sup
M→∞

lim sup
n→∞

∣∣E[
Z◦

M(H,Gn)
2] − 1

∣∣ = 0 and

lim sup
M→∞

lim sup
n→∞

∣∣E[
Z◦

M(H,Gn)
4] − 3

∣∣ = 0,
(2.16)

holds simultaneously.

This result shows that the asymptotic normality of Z(H,Gn) is characterized by a trun-
cated fourth-moment phenomenon, more precisely, the convergence of the second and fourth
moments of Z◦

M(H,Gn) to 1 and 3, respectively. Note that the second-moment condition in
(2.16) ensures that Var[T ◦

M(H,Gn)] = (1 + o(1))Var[T (H,Gn)]. Hence, the fourth-moment
condition in (2.16) and the Theorem 2.3 implies that

T ◦
M(H,Gn) −E[T ◦

M(H,Gn)]√
Var[T ◦

M(H,Gn)]
D→ N(0,1).

Therefore, to establish the sufficiency of the conditions in (2.16), it suffices to show that
the difference between T (H,Gn) and T ◦

M(H,Gn) scaled by Var[T (H,Gn)] is small, which
follows from the properties of the truncation event (2.13) (see Lemma C.2). To prove that
(2.16) is also necessary for the asymptotic normality of Z(H,Gn), we show all moments
of Z◦

M(H,Gn) are bounded (Lemma C.3), which combined with the fact that T (H,Gn) −
T ◦

M(H,Gn)
P→ 0 and uniform integrability, implies the desired result (see Appendix C.2 for

details).

2.3. Thresholds for consistency and normality. In this section, we apply the results above
to derive the thresholds for consistency and asymptotic normality of the HT estimator in
various natural graph ensembles. Throughout this section, we will assume that pn ∈ (0, 1

20 ].
2.3.1. Bounded degree graphs. We begin with graphs which have bounded maximum

degree. Toward this, denote by dv the degree of the vertex v in Gn = (V (Gn),E(Gn)), and
let 
(Gn) = maxv∈V (Gn) dv be the maximum degree of the graph Gn.

PROPOSITION 2.6 (Bounded degree graphs). Suppose {Gn}n≥1 is a sequence of graphs
with bounded maximum degree, that is, 
 := supn≥1 
(Gn) = O(1). Then for any connected
graph H the following hold:

(a) If p
|V (H)|
n N(H,Gn) � 1, then the HT estimator N̂(H,Gn) is consistent for

N(H,Gn), and the rescaled statistic Z(H,Gn)
D→ N(0,1). Moreover,

Wass
(
Z(H,Gn),N(0,1)

)
�
,H

√√√√ 1

p
|V (H)|
n N(H,Gn)

.



MOTIF ESTIMATION VIA SUBGRAPH SAMPLING 999

(b) If p
|V (H)|
n N(H,Gn) = O(1), then the HT estimator N̂(H,Gn) is not consistent for

N(H,Gn) and the rescaled statistic Z(H,Gn) is not asymptotically normal.

Recall that E[T (H,Gn)] = p
|V (H)|
n N(H,Gn). Therefore, in other words, the result above

shows that the HT estimator is consistent and asymptotic normal in bounded degree graphs
whenever the expected number of copies of H in the sampled graph diverges, whereas it is
inconsistent whenever the expected number copies remains bounded. The proof of Propo-
sition 2.6 is given in Appendix B.1. For (a), using Proposition 2.4, it is suffices to bound

1
σ(H,Gn)4E[Wn]. This involves, recalling the definition of Wn from (2.10), bounding the num-
ber of copies of various subgraphs in Gn obtained by the union of 4 isomorphic copies H ,
which in this case can be estimated using the maximum degree bound on Gn. For (b), we
show that whenever E[T (H,Gn)] = p

|V (H)|
n N(H,Gn) = O(1), there is a positive chance

that T (H,Gn) is zero, which immediately rule out consistency and normality.

2.3.2. Erdős–Rényi random graphs. We now derive the thresholds for consistency and
asymptotic normality in various random graph models. We begin with the Erdős–Rényi model
Gn ∼ G(n, qn), which is a random graph on n vertices where each edge is present indepen-
dently with probability qn ∈ (0,1). Here, the location of the phase transition is related to the
notion of balancedness of a graph.

DEFINITION 2.7 ([34], Chapter 3). For a fixed connected graph H , define

m(H) = max
H1⊆H

|E(H1)|
|V (H1)| ,

where the maximum is over all nonempty subgraphs H1 of H . The graph H is said to be
balanced, if m(H) = |E(H)|

|V (H)| , and unbalanced otherwise.

THEOREM 2.8 (Erdős–Rényi graphs). Let Gn ∼ G(n, qn) be an Erdős–Rényi random
graph with edge probability qn ∈ (0,1). Then for any connected graph H the following hold:

(a) If npnq
m(H)
n � 1, then the HT estimator N̂(H,Gn) is consistent for N(H,Gn), and

the rescaled statistic Z(H,Gn)
D→ N(0,1). Moreover,

Wass
(
Z(H,Gn),N(0,1)

) = OP

((
npnq

m(H)
n

)− 1
2
)
.

(b) If npnq
m(H)
n = O(1), then N̂(H,Gn) is not consistent for N(H,Gn), and Z(H,Gn)

is not asymptotically normal.

The proof of this result is given in Appendix B.2. Here, to estimate Wn, we first take
expectation over the randomness of the graph, and then use an inductive counting argument
(Lemma B.2) combined with a second-moment calculation, to obtain the desired bound.

REMARK 2.4. To interpret the threshold in Theorem 2.8, recall that nq
m(H)
n is the thresh-

old for the occurrence of H in the random graph G(n, qn) [34], Theorem 3.4. More pre-
cisely, whenever nq

m(H)
n = O(1) the number of copies of H in G(n, qn) is OP (1), whereas

if nq
m(H)
n � 1, the number of copies of H in Gn diverges. In this case, conditional on the set

of sampled vertices S, the observed graph behaves like the Erdős–Rényi model G(|S|, qn).
As a result, since S ∼ Bin(n,pn), the observed graph (unconditionally) looks roughly like
the model G(npn, qn). Therefore, Theorem 2.8 essentially shows that the HT estimator is
consistent and asymptotically normal whenever the number of copies of H in sampled graph
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FIG. 4. Histogram of N̂(K2,Gn)/N(K2,Gn) in the Erdős–Rényi random graph Gn ∼ G(10,000,0.5) with
sampling ratio pn = 0.03 over 10,000 replications, and the limiting normal density (plotted in red).

diverges (which happens if npnq
m(H)
n → ∞), whereas it is inconsistent whenever the number

of copies of H is bounded in probability. The histogram in Figure 4 illustrates the asymptotic
normality of the HT estimator for the number of edges (H = K2). Here, we fix a realiza-
tion of the Erdős–Rényi random graph Gn ∼ G(n, qn), with n = 10,000 and qn = 1

2 , choose
the sampling ratio pn = 0.03, and plot the histogram of N̂(K2,Gn)/N(K2,Gn) over 10,000
replications. Note that, as expected, the histogram is centered around 1, with the red curve
showing the limiting normal density.

Note that Theorem 2.8 above gives a CLT for N̂(H,Gn) centered around N(H,Gn),
when npnq

m(H)
n � 1. However, since Gn is a random graph N(H,Gn) is itself random,

and it is natural to wonder whether one can obtain a CLT for N̂(H,Gn) centered around
E[N(H,Gn)], where the expectation is taken with respect to the randomness of Gn. This
question is not just specific to the Erdős–Rényi model, it arises whenever Gn is generated
from any underlying stochastic model. To address this issue, suppose {Gn}n≥1 is a sequence
of random graphs (from some generative model) and define

A(H,Gn) := N̂(H,Gn) −E[N(H,Gn)]√
Var[N̂(H,Gn)]

,(2.17)

where the expectation and the variance above are taken over both the randomness of the
sampling scheme and the graph Gn. Note that

(2.18) A(H,Gn) =
√

VarGn[N̂(H,Gn)]
Var[N̂(H,Gn)] · Z(H,Gn) +

√
Var[N(H,Gn)]
Var[N̂(H,Gn)] · E(H,Gn),

where

Z(H,Gn) := N̂(H,Gn) − N(H,Gn)√
VarGn[N̂(H,Gn)]

and

(2.19)

E(H,Gn) := N(H,Gn) −E[N(H,Gn)]√
Var[N(H,Gn)] ,
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with EGn and VarGn denoting the conditional expectation and conditional variance taken con-
ditionally on the random graph Gn. Recall that Theorem 2.3 deals with the CLT of Z(H,Gn)

conditional on the graph Gn (often known as a quenched CLT in the language of statistical
physics). Given this result, to obtain a CLT for A(H,Gn) (i.e., an annealed CLT in statistical
physics terminology), we would need to show a CLT for E(H,Gn) and establish that the con-
ditional variance VarGn[N̂(H,Gn)] is consistent for its expectation (see Lemma B.3 for the
formal statement). In particular, for the Erdős–Rényi (ER) model G(n,qn) both these results
can be easily established and we have the following result.

COROLLARY 2.9 (Erdős–Rényi graphs (annealed version)). Let Gn ∼ G(n, qn) be an
Erdős–Rényi random graph with edge probability qn ∈ (0,1). Then for any connected graph
H the following hold:

(a) If npnq
m(H)
n � 1, then the HT estimator N̂(H,Gn) is consistent for E[N(H,Gn)] and

A(H,Gn)
D→ N(0,1).

(b) If npnq
m(H)
n = O(1), then N̂(H,Gn) is not consistent for E[N(H,Gn)], and

A(H,Gn) is not asymptotically normal.

The proof of Corollary 2.9 is given in Appendix B.3. This is a consequence of a more gen-
eral result (see Lemma B.3) about the CLT of A(H,Gn) (when Gn is generated according

to some stochastic model). In particular, in Lemma B.3 we show that A(H,Gn)
D→ N(0,1)

whenever the following conditions hold: (a) conditional on the graph sequence {Gn}n≥1,

Z(H,Gn)
D→ N(0,1), (b) E(H,Gn)

D→ N(0,1), and (c) VarGn[N̂(H,Gn)] is consistent for
its expected value E[VarGn[N̂(H,Gn)]]. These conditions can be easily verified for the
Erdős–Rényi model G(n, qn) whenever npnq

m(H)
n � 1, which establishes the result in Corol-

lary 2.9(1).

REMARK 2.5. The normality condition (assumption (b)) on E(H,Gn) in Lemma B.3
can be removed if instead of assumption (c) the following stronger condition holds:

Var[N̂(H,Gn)]
E[Var[N̂(H,Gn)|Gn]]

P→ 1.(2.20)

This is because (2.20) implies Var[N(H,Gn)] � Var[N̂(H,Gn)], hence, recalling (2.18),
the CLT of A(H,Gn) follows from the conditional CLT of Z(H,Gn), since E(H,Gn) is
bounded in probability. In the Erdős–Rényi model, there is a regime of the parameters pn, qn

where (2.20) holds. There is also a regime where Var[N(H,Gn)] and Var[N̂(H,Gn)] are of
the same order (i.e., (2.20) does not hold), where one needs to invoke Lemma B.3 to establish
the CLT of A(H,Gn). (Recall that unlike (2.20), assumption (c) in Lemma B.3 holds in the
full range of parameters in Erdős–Rényi model.) Nevertheless, condition (2.20) broadens the
scope of our results and can be useful in other random graph models.

2.3.3. Random regular graphs. As a corollary to Theorem 2.8, we can also derive the
threshold for random regular graphs. To this end, denote by Gn,d the collection of all simple
d-regular graphs on n vertices, where 1 ≤ d ≤ n − 1 is such that nd is even.

COROLLARY 2.10 (Random regular graphs). Suppose Gn is a uniform random sample
from Gn,d and H = (V (H),E(H)) is a connected graph with maximum degree 
(H).

(a) If d � 1, then setting qn = d/n the following hold:
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• If npnq
m(H)
n � 1, then N̂(H,Gn) is consistent for N(H,Gn), and Z(H,Gn) converges in

distribution to N(0,1).
• If npnq

m(H)
n = O(1), then N̂(H,Gn) is not consistent for N(H,Gn), and Z(H,Gn) is not

asymptotically normal.

(b) If d = O(1), then assuming 
(H) ≤ d , the following hold:

• If |E(H)| = |V (H)| − 1, then N̂(H,Gn) is consistent for N(H,Gn) and Z(H,Gn) con-
verges in distribution to N(0,1) if and only if np

|V (H)|
n � 1.

• If |E(H)| ≥ |V (H)|, then N̂(H,Gn) is not consistent for N(H,Gn), and Z(H,Gn) is not
asymptotically normal, irrespective of the value of pn.

It is well known that the typical behavior of the number of small subgraphs in a ran-
dom d-regular graph asymptotically equals to that in a Erdős–Rényi graph G(n, qn), with
qn = d/n, whenever d � 1 [35, 40]. As a result, the threshold for consistency and asymp-
totic normality for random d-regular graphs obtained in Corollary 2.10 above, match with the
threshold for Erdős–Rényi graphs obtained in Theorem 2.8 with qn = d/n, whenever d � 1.
However, this analogy with the Erdős–Rényi model is no longer valid when d = O(1). In
this case, to compute the threshold we invoke Proposition 2.6 instead, which deals with the
case of general bounded degree graphs. Note that here it suffices to assume 
(H) ≤ d , since
N(H,Gn) = 0 whenever 
(H) > d . Therefore, assuming 
(H) ≤ d , there are two cases:
(1) |E(H)| = |V (H)|− 1 (i.e., H is a tree) and (2) |E(H)| ≥ |V (H)| (i.e., H has a cycle). In
the second case, it can be easily shown that N(H,Gn) = OP (1); hence, by Proposition 2.6(b)
consistency and asymptotic normality does not hold. On the other hand, in the first case, by
a inductive counting argument, it can be shown that N(H,Gn) = �P (n). Hence, by Propo-
sition 2.6(a), the threshold for consistency and asymptotic normality is np

|V (H)|
n � 1. The

details of the proof are given in Appendix B.4.

2.3.4. Graphons. In this section, we apply our results for dense graph sequences. The
asymptotics of dense graphs can be studied using the framework of graph limit theory
(graphons), which was developed by Borgs et al. [11, 12] (for a detailed exposition see the
book by Lovász [42]), and commonly appears in various popular models for network analysis
(see [1, 10, 15, 16, 18, 24, 55] and the references therein). For a detailed exposition of the
theory of graph limits, refer to Lovász [42]. Here, we recall the basic definitions about the
convergence of graph sequences. If F and G are two graphs, then define the homomorphism
density of F into G by

t (F,G) := |hom(F,G)|
|V (G)||V (F)|,

where |hom(F,G)| denotes the number of homomorphisms of F into G. In fact, t (F,G) is
the proportion of maps φ : V (F) → V (G), which define a graph homomorphism.

To define the continuous analogue of graphs, consider W to be the space of all measurable
functions from [0,1]2 into [0,1] that satisfy W(x,y) = W(y,x), for all x, y ∈ [0,1]. For a
simple graph F with V (F) = {1,2, . . . , |V (F)|}, let

t (F,W) =
∫
[0,1]|V (F)|

∏
(i,j)∈E(F)

W(xi, xj )dx1 dx2 · · · dx|V (F)|.

DEFINITION 2.11 ([11, 12, 42]). A sequence of graphs {Gn}n≥1 is said to converge to
W if for every finite simple graph F ,

lim
n→∞ t (F,Gn) = t (F,W).



MOTIF ESTIMATION VIA SUBGRAPH SAMPLING 1003

The limit objects, that is, the elements of W , are called graph limits or graphons. A finite
simple graph G = (V (G),E(G)) can also be represented as a graphon in a natural way.
Define

WG(x, y) = 1
{(⌈∣∣V (G)

∣∣x⌉
,
⌈∣∣V (G)

∣∣y⌉) ∈ E(G)
}
,

that is, partition [0,1]2 into |V (G)|2 squares of side length 1/|V (G)|, and let WG(x, y) = 1
in the (i, j)th square if (i, j) ∈ E(G), and 0 otherwise.

The following result gives the threshold for consistency and asymptotic normality of the
HT estimator for a sequence of graphs {Gn}n≥1 converging to a graphon W .

PROPOSITION 2.12 (Graphons). Fix a connected graph H and suppose Gn = (V (Gn),

E(Gn)) is a sequence of graphs converging to a graphon W such that t (H,W) > 0. Then the
following hold:

(a) If |V (Gn)|pn � 1, then the HT estimator N̂(H,Gn) is consistent for N(H,Gn) and
the rescaled statistic Z(H,Gn) is asymptotically normal. Moreover,

Wass
(
Z(H,Gn),N(0,1)

)
�H

(∣∣V (Gn)
∣∣pn

)− 1
2 .

(b) If |V (Gn)|pn = O(1), then the HT estimator N̂(H,Gn) is not consistent for
N(H,Gn) and the rescaled statistic Z(H,Gn) is not asymptotically normal.

Note that the assumption t (H,W) > 0 ensures that the density of the graph H in
the graphon W is positive, which can be equivalently reformulated as N(H,Gn) =
�(|V (Gn)||V (H)|). In fact, as will be evident from the proof, the result above holds for any
sequence of graphs with N(H,Gn) = �(|V (Gn)||V (H)|).

2.4. Organization. The rest of the article is organized as follows. The proof of Proposi-
tion 2.4 is given Section 3. Consequences of our results and future directions are discussed in
Section 4. The proofs of the remaining results are given in the Supplementary Material [8].

3. Proof of Theorem 2.1. In this section, we prove the necessary and sufficient condition
for the consistency of the estimate N̂(H,Gn). We start with a few definitions. Fix an ε > 0.
For each set A ⊂ V (Gn) and each s ∈ V (Gn)|V (H)|, define the following events:

Bn,ε(A) := {
tH (A) > εp|A|

n N(H,Gn)
}
, Bn,ε(s)

c := ⋂
A:A⊆s,A�=∅

Bn,ε(A)c.(3.1)

Consider the following truncation of T (H,Gn) (recall (1.2)):

T +
ε (H,Gn) = 1

|Aut(H)|
∑

s∈V (Gn)|V (H)|

∏
(i,j)∈E(H)

asisj Xs1
{
Bn,ε(s)

c}.(3.2)

Moreover, let N+
ε (H,Gn) := 1

p
|V (H)|
n

E[T +
ε (H,Gn)] be the truncation of the true motif count

N(H,Gn). This truncation has the following properties:

LEMMA 3.1. Define

Mn := ∑
A⊂V (Gn)

1≤|A|≤|V (H)|

tH (A)1
{
Bn,ε(A)

}
.

Then the following hold:

(a) Mn

2|V (H)|−1
≤ N(H,Gn) − N+

ε (H,Gn) ≤ Mn.
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(b) P(T (H,Gn) �= T +
ε (H,Gn)) ≤ Mn

εN(H,Gn)
.

PROOF. Note that


n := N(H,Gn) − N+
ε (H,Gn) = 1

|Aut(H)|
∑

s∈V (Gn)|V (H)|

∏
(i,j)∈E(H)

asisj 1
{
Bn,ε(s)

}
.

Since Bn,ε(s) = ⋃
A:A⊆s,A�=∅ Bn,ε(A) is the union of 2|V (H)| − 1 many sets, applying the

elementary inequality

1

m

m∑
r=1

1{Br} ≤ 1

{
m⋃

r=1

Br

}
≤

m∑
r=1

1{Br},

for any finite collection of sets B1,B2, . . . ,Bm, gives

Mn

2|V (H)| − 1
≤ 
n ≤ Mn,

with

Mn = 1

|Aut(H)|
∑

s∈V (Gn)|V (H)|

∑
A⊆s

1≤|A|≤|V (H)|

∏
(i,j)∈E(H)

asisj 1
{
Bn,ε(A)

}

= ∑
A⊂V (Gn)

1≤|A|≤|V (H)|

tH (A)1
{
Bn,ε(A)

}
,

where last equality follows by interchanging the order of the sum and recalling the definition
of tH (A) in (2.2). This proves the result in (a).

We now proceed to prove (b). For any A ⊂ V (Gn), define XA := ∏
u∈A Xu. Hence, recall-

ing definitions (1.2) and (3.2) gives

P
(
T (H,Gn) �= T +

ε (H,Gn)
) ≤ E

[
T (H,Gn) − T +

ε (H,Gn)
]

≤ ∑
A⊂V (Gn)

1≤|A|≤|V (H)|

P(XA = 1)1
{
Bn,ε(A)

}

≤ ∑
A⊂V (Gn)

1≤|A|≤|V (H)|

p|A|
n 1

{
tH (A) > εp|A|

n N(H,Gn)
}

≤ 1

εN(H,Gn)

∑
A⊂V (Gn)

1≤|A|≤|V (H)|

tH (A)1
{
tH (A) > εp|A|

n N(H,Gn)
}

≤ Mn

εN(H,Gn)

This completes the proof of (b). �

PROOF OF THEOREM 2.1 (SUFFICIENCY). Recall that condition (2.3) assumes
Mn

N(H,Gn)
→ 0, where Mn is as defined above in Lemma 3.1. Therefore, Lemma 3.1 and

the condition in (2.3) together implies that

E[T +
ε (H,Gn)]

E[T (H,Gn)] = N+
ε (H,Gn)

N(H,Gn)
→ 1 and P

(
T (H,Gn) = T +

ε (H,Gn)
) → 1,(3.3)
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as n → ∞, for every fixed ε > 0. Now, write

N̂(H,Gn)

E[N̂(H,Gn)] = T (H,Gn)

E[T (H,Gn)] = T (H,Gn)

T +
ε (H,Gn)

· T +
ε (H,Gn)

E[T +
ε (H,Gn)] · E[T +

ε (H,Gn)]
E[T (H,Gn)] .

Note that, by (3.3), the first and the third ratios in the RHS above converge to 1 in probability
for every fixed ε. Therefore, to prove the consistency of N̂(H,Gn) it suffices to show that the

ratio T +
ε (H,Gn)

E[T +
ε (H,Gn)]

P→ 1, as n → ∞ followed by ε → 0. This follows by the using Chebyshev’s
inequality if we show that

lim
ε→0

lim
n→∞

Var[T +
ε (H,Gn)]

(E[T +
ε (H,Gn)])2

= 0.(3.4)

To this effect, we have

Var
[
T +

ε (H,Gn)
]

= 1

|Aut(H)|2
∑

s1,s2∈V (Gn)|V (H)|
s1∩s2 �=∅

Cov(Xs,Xs2)MH(s1)MH(s2)1
{
Bn,ε(s1)

c}1
{
Bn,ε(s2)

c}.

Now, if |s1 ∩ s2| = K , then Cov[Xs1,Xs2] = p
2|V (H)|−K
n − p

2|V (H)|
n ≤ p

2|V (H)|−K
n . Thus,

Var
[
T +

ε (H,Gn)
]

≤ 1

|Aut(H)|2
|V (H)|∑
K=1

p2|V (H)|−K
n(3.5)

× ∑
s1,s2∈V (Gn)|V (H)|

K=|s1∩s2|

MH(s1)MH(s2)1
{
Bn,ε(s1)

c}1
{
Bn,ε(s2)

c}.
We now focus on the inner sum in the right-hand side of (3.5). Note that∑

s1,s2∈V (Gn)|V (H)|
K=|s1∩s2|

MH(s1)MH(s2)1
{
Bn,ε(s1)

c}1
{
Bn,ε(s2)

c}

= ∑
A⊂V (Gn)

|A|=K

∑
s1,s2∈V (Gn)|V (H)|

s1∩s2=A

MH(s1)MH(s2)1
{
Bn,ε(s1)

c}1
{
Bn,ε(s2)

c}(3.6)

≤ ∑
A⊂V (Gn)

|A|=K

∑
s1:s1⊇A

∑
s2:s2⊇A

MH(s1)MH(s2)1
{
Bn,ε(s1)

c}1
{
Bn,ε(s2)

c}.
The argument inside the sum now separates out. Therefore, applying the fact∑
s1:s1⊇A

MH(s1)1
{
Bn,ε(s1)

c} ≤ ∑
s1:s1⊇A

MH(s1)1
{
Bn,ε(A)c

} = ∣∣Aut(H)
∣∣tH (A)1

{
Bn,ε(A)c

}
,

it follows from (3.5) and (3.6) that

Var
[
T +

ε (H,Gn)
] ≤

|V (H)|∑
K=1

p2|V (H)|−K
n

∑
A⊂V (Gn)

|A|=K

tH (A)21
{
Bn,ε(A)c

}
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(since tH (A) ≤ εp
|A|
n N(H,Gn) on Bn,ε(A)c )

≤ εN(H,Gn)

|V (H)|∑
K=1

p2|V (H)|
n

∑
A⊂V (Gn)

|A|=K

tH (A)1
{
Bn,ε(A)c

}

≤ εp2|V (H)|
n N(H,Gn)

|V (H)|∑
K=1

∑
A⊂V (Gn)

|A|=K

tH (A)

εp2|V (H)|
n N(H,Gn)

|V (H)|∑
K=1

(∣∣V (H)
∣∣

K

)
N(H,Gn)

= εp2|V (H)|
n

(
2|V (H)| − 1

)
N(H,Gn)

2,

where the last line uses (2.5). Since (3.4) is immediate from this, we have verified sufficiency.
�

PROOF OF THEOREM 2.1 (NECESSITY). We will show the contrapositive statement,
that is, if (2.3) fails, then N̂(H,Gn) is not consistent for N(H,Gn). Toward this, assume
(2.3) fails. Define

E1 := {
Xs = 0 for all s ∈ V (Gn)|V (H)| with 1

{
Bn,ε(s)

c} = 0
}
,(3.7)

and, for 1 ≤ K ≤ |V (H)|, let

E2,K =
{
XA := ∏

u∈A

Xu = 0 for all A ⊂ V (Gn) where |A| = K and 1
{
Bn,ε(A)

} = 1
}
.

Take any s ∈ V (Gn)|V (H)| with 1{Bn,ε(s)
c} = 0. By definition (recall (3.1)), this implies

1{Bn,ε(A)} = 1 for some A ⊆ s,A �= ∅. In particular, under the event
⋂|V (H)|

K=1 E2,K , we

have XA = 0, forcing Xs = 0. Hence, E1 ⊃ ⋂|V (H)|
K=1 E2,K . Note that

E2,K =
|V (H)|⋂
K=1

⋂
A⊂V (Gn):|A|=K

1{Bn,ε(A)}=1

{XA = 0},

and the event {XA = 0} is a decreasing event, for all A ⊂ V (Gn) with 1 ≤ |A| ≤ |V (H)|.2
Then the FKG inequality between decreasing events for product measures on {0,1}|V (Gn)|
[30], Chapter 2, gives

P(E1) ≥ P

(|V (H)|⋂
K=1

E2,K

)
≥

|V (H)|∏
K=1

∏
A⊂V (Gn):|A|=K

1{Bn,ε(A)}=1

P(XA = 0)

≥
|V (H)|∏
K=1

(
1 − pK

n

)∑
A⊂V (Gn):|A|=K 1{Bn,ε(A)}

2An event D ⊆ {0,1}|V (Gn)| is said to be decreasing if for two vectors x = (xa)a∈V (Gn) ∈ {0,1}|V (Gn)| and

y = (ya)a∈V (Gn) ∈ {0,1}|V (Gn)|, with {a : ya = 1} ⊆ {a : xa = 1}, x ∈ D implies y ∈ D. Then the FKG in-

equality states that if D1,D2 ⊆ {0,1}|V (Gn)| are two decreasing events, P(D1 ∩ D2) ≥ P(D1)P(D2) (see [30],
Chapter 2).
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Now, since pn is bounded away from 1 (recall (2.1)), there exists a constant c > 0 such that
log(1 − pK

n ) > −cpK
n , for all 1 ≤ K ≤ |V (H)|. Hence,

P(E1) ≥ exp

(
−c

|V (H)|∑
K=1

p|K|
n

∑
A⊂V (Gn):|A|=K

1
{
Bn,ε(A)

})

≥ exp

(
− c

εN(H,Gn)

|V (H)|∑
K=1

∑
A⊂V (Gn):|A|=K

tH (A)

)
(3.8)

≥ e− c(2|V (H)|−1)
ε ,

where the last step uses (2.5). Now, since (2.3) does not hold, there exists ε > 0 and δ ∈ (0,1)

such that

lim sup
n→∞

1

N(H,Gn)

|V (H)|∑
K=1

∑
A⊂V (Gn):|A|=K

tH (A)1
{
Bn,ε(A)

}
>

(
2|V (H)| − 1

) 2δ

1 + δ
.

From Lemma 3.1, it follows that along a subsequence, N(H,Gn)−N+
ε (H,Gn) > 2δ

1+δ
N(H,

Gn), that is, (1 + δ)N+
ε (H,Gn) < (1 − δ)N(H,Gn). Thus, by Markov inequality, along a

subsequence

P
(
T +

ε (H,Gn) ≥ (1 − δ)p|V (H)|
n N(H,Gn)

)
≤ P

(
T +

ε (H,Gn) ≥ (1 + δ)p|V (H)|
n N+

ε (H,Gn)
)

(3.9)

≤ 1

1 + δ
.

Also, observe that {T +
ε (H,Gn) ≤ (1 − δ)p

|V (H)|
n N(H,Gn)} is a decreasing event, be-

cause if X = (Xa)a∈V (Gn) ∈ {T +
ε (H,Gn) ≤ (1 − δ)p

|V (H)|
n N(H,Gn)} then any vector X′ =

(X′
a)a∈V (Gn) obtained changing a subset of the ones in X to zeros does not increase the value

of T +
ε (H,Gn), and hence, X′ ∈ {T +

ε (H,Gn) ≤ (1 − δ)p
|V (H)|
n N(H,Gn)}. Similarly, E1 (re-

call definition in (3.7)) is a decreasing event. Hence, by the FKG inequality,

P
(
T +

ε (H,Gn) ≤ (1 − δ)p|V (H)|
n N(H,Gn)|E1

) ≥ P
(
T +

ε (H,Gn)

≤ (1 − δ)p|V (H)|
n N(H,Gn)

)
.

(3.10)

This implies

P
(
N̂(H,Gn) ≤ (1 − δ)N(H,Gn)

)
≥ P

(
T (H,Gn) ≤ (1 − δ)p|V (H)|

n N(H,Gn)|E1
)
P(E1)(

since T (H,Gn) ≥ T +
ε (H,Gn)

) ≥ P
(
T +

ε (H,Gn) ≤ (1 − δ)p|V (H)|
n N(H,Gn)|E1

)
P(E1)(

by (3.10)
) ≥ P

(
T +

ε (H,Gn) ≤ (1 − δ)p|V (H)|
n N(H,Gn)

)
P(E1)

≥ δ

1 + δ
P(E1),

where the last step uses (3.9). This is a contradiction to the consistency of N̂(H,Gn), since
lim infn→∞P(E1) > 0 by (3.8), completing the proof of the desired result. �
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4. Discussions and future directions. The theme that emerges from the examples con-
sidered in the paper is that in most of the natural network models, the HT estimator N̂(H,Gn)

is consistent and asymptotically normal whenever the expected number of copies of H in
the sampled graph diverges, and inconsistent and not asymptotically normal otherwise. For
dense graphs (graphons), this implies sampling at rate pn � 1/|V (Gn)| ensures that the HT
estimator is consistent and asymptotically normal. For sparser graphs, one needs to sample

at rate pn � N(H,Gn)
− 1

|V (H)| , which can be much larger, depending on the magnitude of
N(H,Gn). In particular, this implies that there is a nontrivial sampling rate beyond which
the HT estimator is consistent for sparser graphs (even for bounded degree graphs), as soon
as the number of copies of H in Gn is diverging. An interesting question is whether under this
assumption (N(H,Gn) → ∞), it is possible to improve the estimation accuracy of N(H,Gn)

using other sampling strategies, such as neighborhood sampling [32, 36, 38], snowball sam-
pling [28] or random walk based exploration methods [41, 51]. However, not much is known
about the asymptotic fluctuations of the resulting estimates in these sampling models. In fact,
it has been shown recently in [36] that the natural inverse probability weighted estimator
might not be minimax optimal in the neighborhood sampling scheme. Therefore, it is encour-
aging to see that the HT estimator in the simple (albeit idealized) subgraph sampling model
provides consistent and asymptotically exact confidence intervals for large classes of natural
network models. These results are the first steps toward understanding properties of more
practical (and complicated) models for network sampling, and will provide useful bench-
marks for comparing the performances of different estimates arising from other sampling
schemes.

From a computational perspective, the subgraph sampling scheme has time complexity
O(|V (Gn)|). Since on average the sampled graph as O(pn|V (Gn)|) vertices, one way to
reduce the computational cost is to sample without replacement a uniform random subset
of size N = pn|V (Gn)| from V (Gn), and then consider the induced graph as before. This
can be done in O(N logN) time [31, 52], which is faster whenever N � |V (Gn)| (up to a
logarithmic factor). In certain situations, the asymptotic properties of the HT estimator in the
sampling without replacement model should be the same as that in the subgraph sampling
model with sampling probability pn = N/|V (Gn)|. For example, we conjecture that using
[19], Theorem 4, one should be able to derive consistency of the HT estimator in the sampling
without replacement model, at least for certain regimes of pn. In a similar manner, using
the asymptotic normality for the HT estimator in the subgraph sampling model along with
the conditional approach in [6], one should be able verify a similar result for the sampling
without replacement model in certain regimes of pn as well. The exact detection boundary
of the sampling without replacement model seems to be an interesting question for possible
future research.
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SUPPLEMENTARY MATERIAL

Supplement to “Motif estimation via subgraph sampling: The fourth-moment phe-
nomenon” (DOI: 10.1214/21-AOS2134SUPP; .pdf). Proofs of the main results and addi-
tional examples are given in the supplementary materials.

https://doi.org/10.1214/21-AOS2134SUPP
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