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1. Introduction

Let G, be a simple labeled undirected graph with vertex set V(G,) := {1, 2, ..., |V(G,)|}, edge
set E(Gy), and adjacency matrix A(G,) = {a;(Gn),1,j € V(Gy)}. In a uniformly random c,-coloring of
G, the vertices of G, are colored with ¢, colors as follows:

1
P(v € V(Gy) is colored with color a € {1, 2,...,c,}) = —, (1.1)
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independent from the other vertices. An edge (a, b) € E(G,) is said to be monochromatic if X, = X,
where X, denotes the color of the vertex v € V(G,) in a uniformly random c,-coloring of G,. Denote
by

1
T, G =5 ) aw(GXu =X}, (12)

1=<u#v=|V(Gn)l

the number of monochromatic edges in G,. Note that P(T(Kz, G,) > 0) = 1 — P(T(Kz, G,) = 0) =
1-— ch(Cn)/C V(e where Xca(Cn) counts the number of proper colorings of G, using c, colors.
The function xg, is known as the chromatic polynomial of G, and is a central object in graph
theory [18,22,23]. Moreover, the statistic (1.2) shows up in various applications, for example, in the
study of coincidences [17] as a generalization of the birthday paradox [3,16], the Hamiltonian of the
Ising/Potts models [4,8], and in non-parametric two-sample tests [5,20]. This requires understanding
the asymptotics of T(K;, G,) for various graph sequences G,. The limiting distribution of T(K>, G,)
has been recently characterized by Bhattacharya et al. [7], for any sequence of growing graphs G,.

Given these results, it is natural to ask what happens for monochromatic triangles, and more
general subgraphs. In this paper we consider the problem of determining the limiting distribution
of the number of monochromatic copies of a general connected simple graph H, in a uniformly
random c,-coloring of a graph sequence G,. Formally, this is defined as

1
T(H, Gp) = JAut(H)| E l_[ Gsqs, (Gn)1{X s},
seV(Gn)v(n)| (a,b)eE(H)

where:
- V(Gn) vy is the set of all |V(H)|-tuples s = (sl, < Swan)) € V(Gp)V™) with distinct indices.?
%
Thus, the cardinality of V(Gn)vw) IS mre=ivamn-
- For any s = (S], ey S|v(H)|) € V(Gn)W(H )»

11X} = 1{X,, =- (1.3)

Xsiyouy ;-
- Aut(H) is the automorphism group of H, that is, the number permutations o of the vertex set
V(H) such that (x, y) € E(H) if and only if (o(x), o(y)) € E(H).

The class of possible limiting distributions of T(H, G,), for a general graph H, is extremely
diverse [7], and, there appears to be no natural universality of the limiting distribution of T(H, G,),
for a general graph sequence {Gp}s>1. In this paper, using results from the emerging theory of graph
limits, we provide a complete characterization of the limiting distribution of T(H, G,), for any simple
connected graph H, whenever {G,},>1 is a convergent sequence of dense graphs [24]. Depending
on the behavior of ET(H, G,) there are 3 different regimes:

(1) E(T(H, G;)) = O(1): In this case, T(H, G,) converges to a finite linear combination of
independent Poisson random variables (Theorem 1.1).

(2) E(T(H, G,)) — o0, such that ¢, — o0: Here, T(H, G,) is asymptotically Gaussian, after
appropriate standardization (Theorem 1.2).

(3) E(T(H, G,;)) — oo, such that ¢, = c is fixed: In this case, T(H, G;,), after standardization, is
asymptotically a (possibly infinite) linear combination of independent centered chi-squared
random variables (Theorem 1.3).

We begin with a short background on graph limit theory. The results are formally stated in
Section 1.2.

2 For a set S, the set SV denotes the N-fold cartesian product S x S x --- x S.
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1.1. Graph limit theory

The theory of graph limits was developed by Lovasz and coauthors [9,10,24], and has received
phenomenal attention over the last few years. It builds a bridge between combinatorics and analysis,
and has found applications in several disciplines including statistical physics, probability, and
statistics [4,13,15]. For a detailed exposition of the theory of graph limits refer to Lovasz [24]. Here
we mention the basic definitions about the convergence of graph sequences. If F and G are two
graphs, then define the homomorphism density of F into G by

|hom(F, G)|
Ve,
where |hom(F, G)| denotes the number of homomorphisms of F into G. In fact, t(F, G) is the
proportion of maps ¢ : V(F) — V(G) which define a graph homomorphism. Denote by hom;y;(F, G)
the number of injective maps from F into G which are homomorphisms, and
[homyi(F, G)|
IVGI(IV(G) = 1)---(IV(G)| = [V(F)| + 1)’
which is the proportion of injective maps which are homomorphisms. Moreover, denote by tij,q(F, G)
the induced homomorphism density, that is, the proportion of injective maps ¢ : |V(F)| — |V(G)|,
which satisfy (¢(x), ¢(y)) € E(G) if and only if (x, y) € E(F):
Zse(v(c))w(p)| H(a,b)eE(F) Os,s,(G) n(a,b)¢£(r)(1 — G55, (G))
IVGI(VG) — 1)+ - (IV(G) — [V(F)| + 1)

where A(G) = (a;i(G));jeqvey is the adjacency matrix of G.

To define the continuous analogue of graphs, consider # to be the space of all measurable

functions from [0, 1]? into [0, 1] that satisfy W(x,y) = W(y, x), for all x, y. For a simple graph F
with V(F) = {1, 2, ..., |V(F)|}, let

t(F, G) :=

tmj(F G)

tina(F, G) =

) (1.4)

t(F,W)=/ ; l_[ W(x;, x;)dx1dx; - - - dxjv(py).
0.1V G ek

Definition 1.1 (/9,10,24]). A sequence of graphs {G,}>1 is said to converge to W if for every finite
simple graph F,

nlLrIgO t(F, G,) = t(F, W). (1.5)

If G, converges to W, according to definition above, then the injective homomorphism densities
converge: tiyi(F, Gy) — t(F, W), for every simple graph F. Moreover, the induced homomorphism
densities also converge, that is, ting(F, G;) — tina(F, W), for every simple graph F, where

tina(F, W) = f H Wx.,,xb) H (1 — W(xq, X))dx1d%; - - - dXpv . (16)
0.1V (@ b)EE(F

The limit objects, that is, the elements of ¥, are called graph limits or graphons. A finite simple
graph G = (V(G), E(G)) can also be represented as a graphon in a natural way: Define f¢(x,y) =
H(TIV(G)Ix], [IV(G)ly1) € E(G)}, that is, partition [0, 1]? into |V(G)|? squares of side length 1/|V(G)|,
and let f°(x,y) = 1 in the (i, j)-th square if (i,j) € E(G), and 0 otherwise. Observe that t(F, f®) =
t(F, G) for every simple graph H and therefore the constant sequence G converges to the graph limit
fC. Define an equivalence relation on the space of graphons by W; ~ W, iff t(F, W;) = t(F, W) for
all simple graphs F. It turns out that the quotient space under this equivalence relation, equipped
with the notion of convergence in terms of subgraph densities outlined above is a compact metric
space using the cut distance (refer to [24, Chapter 8]).
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1.2. Results

Throughout the paper, we will assume that H is a finite, simple, and connected graph, and G,
is a sequence of dense graphs converging to the graphon W such that t(H, W) > 0. Depending on
the limiting behavior of ET(H, G,) there are 3 different regimes.

1.2.1. Linear combination of Poissons
For a finite simple unlabeled graph F, let N(F, G,) be the number of copies of F in G,. Note that
hominj(H» Gn) N(H’ Gn)
NH,G,))= —————— and E(T(H,G,) = ————. 1.7
(H, G = = (T(H, Gu) = iy (17)
We begin with the regime where the mean E(T(H, G,;)) = O(1). In this case, the limit is a linear
combination of independent Poisson variables, where the weights are determined by the limiting
homomorphism densities of certain super-graphs of H. This is formalized in the following theorem:

Theorem 1.1. Let G, be a sequence of graphs converging to the graphon W, such that t(H, W) > 0.
Suppose ¢, — o0, such that ET(H, G,) — A. Then

T(H,G)—> Y.  NHFX, (18)
F2DH:|V(F)|=|V(H)|

where X; ~ Pois (A- mtt((;’))[' . t";'(digp",v“)/)) and the collection {X; : F 2 Hand |V(F)| = |V(H)|} is

independent.’

The proof is based on a moment comparison technique, where the moments of T(H, G,) are
compared with the moments of the corresponding random variable obtained by replacing every
subset of |V(H)| vertices with independent Bernoulli variables (refer to Section 2 for details).

Remark 1.1. A useful special case of the above theorem, which generalizes the well-known birthday
problem, is when H = K; is the s-clique (monochromatic cliques correspond to s-matching birthdays
in a friendship network G,). The asymptotics of multiple birthday matches have found many
applications, for example, in the study of coincidences [17, Problem 3], hash-function attacks in
cryptology [25], and the discrete logarithm problem [6,21]. Refer to Example 2 for more on the
birthday paradox.

Arratia et al. [2] used Stein’s method based on dependency graphs to prove Poisson approxima-
tion theorems for T(K;, Ky,), that is, the number of monochromatic s-cliques in a uniform coloring
of a complete graph K, (see also Chatterjee et al. [14]). Poisson limit theorems for T(H, G,) for
general H and arbitrary coloring distribution are given in Cerquetti and Fortini [11]. They assumed
that the distribution of colors was exchangeable and proved that T(H, G,) converges in distribution
to a mixture of Poisson. However, these results only give conditions under which the limit of
T(H, Gy,) is a Poisson, and require several assumptions on the number of certain subgraphs in G,
and the coloring distribution. On the other hand, Theorem 1.1 goes beyond the Poisson regime, and
characterizes the limiting distribution of T(H, G,) for all dense graphs, under the uniform coloring
distribution.

1.2.2. Asymptotic normality for growing colors

Theorem 1.1 asserts that if ET(H, G,) — A, then the number of monochromatic copies of H
converges to a linear combination of Poissons. Recall that a Poisson random variable with mean
growing to infinity converges to a standard normal distribution after centering by the mean and

3 For two graphs F and H, F D H means F is a super-graph of H.
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scaling by the standard deviation. Therefore, it is natural to wonder whether the same is true for
T(H, G,), whenever ET(H, G,) — oo. To this end, define
T(H, G,) — ET(H, G
Z(H, Gy) = (H, Gn) ( ”). (1.9)
Var(T(H, G))
The theorem shows that Z(H, G,) has a universal CLT whenever ET(H, G,) — oo and ¢, — o0. To
this end, we define the Wasserstein distance between two probability measures x and v on R is,

Wass(u, v) := sup {/fdv - ffdu :f:R—>Ris 1—Lipschitz} ,

that is, supremum over all f such that |f(x) — f(y)] < |x—y|. Moreover, for two nonnegative
sequences {@n}n>1 and {by}n>1, an < by means a, < Cby, for some constant C > 0 and all n large
enough.

Theorem 1.2. Let G, be a sequence of graphs converging to the graphon W, such that t(H, W) > 0.
If cp > oo, then

CrllV(H)I—l 2 1 1
Wass (Z(H, G, NO, 1) 5 ( ey +(a) . (110)

This implies, if t(H, W) > 0, then Z(H, G,,) LY N(0, 1), whenever ET(H, G,) — oo and ¢, — oQ.

The proof of the above theorem is given in Section 3, and is based on a Stein’s method based on
dependency graphs.

Remark 1.2. For the case of monochromatic edges, [7, Theorem 1.2] showed that Z(K;, G,) 2
N(0, 1), whenever E(T(K3, G,)) — oo such that ¢, — oo, for any sequence of graphs G, with
|V(Gp)| — oo. Error rates for the above CLT were obtained by Fang [19]. The above theorem shows
that this phenomenon extends to all simple connected graphs H, when G, is a converging sequence
of dense graphs. Moreover, unlike in the case of edges, the density assumption t(H, W) > 0 is, in
general, necessary for Z(H, G,) to have a non-degenerate normal limit (see Example 4).

1.2.3. Limiting distribution for fixed number of colors
In this section we derive the asymptotic distribution of the number of monochromatic subgraphs
when ET(H, G,) — oo such that c is fixed.

Definition 1.2 (2-Point Homomorphism Functions for Graphons). Let H be a labeled finite simple graph
and W is a graphon. Then, for 1 < u # v < |V(H)|, the function t, (-, -, H, W) : [0, 1]> — [0, 1] is
defined as:*

tu,v(X7 yv H’ W)

=WIU("’J’)/[O]]MH)|_Z l_[ W(x, z) ]_[ W(, z) l_[ W(z, z5) ]_[ dz,

reNy(u)\{v} seNy (v)\{u} (r.s)eE(H\{u,v}) ré{u,v}

with WIv(x,y) = W(x,y) if (u,v) € E(H) and 1 otherwise. Note that ¢, ,(x,y,H, W) = t,,
(ya X, H, W)'

For example, when H = K , is the 2-star, with the central vertex labeled 1. Then the following
hold:

4 For a graph F = (V(F), E(F)) and S C V(F), the neighborhood of S in F is Ng(S) = {v € V(F) : 3u € S such that (u,v) €
E(F)}. Moreover, for u, v € V(F), F\{u, v} is the graph obtained by removing the vertices u, v and all the edges incident
on them.
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- t12(%,y, K12, W) = t13(%,y, K12, W) = W(x, y)dw(x), where dw(x) = fo1 W(x, z)dz is the
degree function of the graphon W.
- 3%y, K2, W) = [ig 1, WX, 21)W(y, 21)dz1.

Similarly, t; 1(x, y, K12, W) = t31(x, y, K12, W) = W(x, y)dw(y), and
t32(%,y, Ky 2, W) = W(x, z:)W(y, z1)dz,.
[0,1]
More examples are computed in Section 4.2.
Using this definition we can now show that the limiting distribution of
T(H7 Gﬂ) - IET(H5 Gn)
V(G

is a linear combination of centered chi-squared random variables, whenever {G,},>1 converges and
the number of colors is fixed. To this end, note that every bounded non-negative symmetric function
K : [0, 11> — R defines an operator Ty : L,[0, 1] — Ly(R), by

I’'(H,Gp) =

, (1.11)

1
(Tef)x) = /0 K(x, yYF()dy.

Ty is a Hilbert-Schmidt operator, which is compact and has a discrete spectrum, that is, a countable
multi-set of non-zero real eigenvalues {A1(K), A2(K), ..., }, where every non-zero eigenvalue has
finite multiplicity.

Theorem 1.3. Let G, be a sequence of graphs converging to the graphon W, such that t(H, W) > 0.
If ¢, = c is fixed, then

oo
D 1
I(H,Gn) > gy - 2 Mr(H. W) -, (1.12)

r=1

where

- (91, m2, ...) is a collection of independent x("’c_]) — (¢ — 1) random variables,’

- {M(H, W), A2(H,W),...,} is the multi-set of the non-zero eigenvalues of the bounded non-
negative symmetric function Wy : [0, 11> — R defined by

1
Wiy(x,y) = - tuy(X, y, H, W). o
2|Aut(H)| lsuaé%v(ml "

(If the spectrum of Wy is finite, then the sum in (1.12) is interpreted by padding zeros to the
spectrum.)
Note that the function Wy is symmetric because of the relation t, ,(x, y, H, W) = t, ,(y, x, H, W)

and is point-wise bounded by Wy < 2I|:51’Z()}I'I)|. The proof of the above theorem is given in Section 4.
It has two main steps:

- The first step expands the random variable I'(H, G,) as a polynomial in the i.i.d. color vectors
{(1{Xy = a})aef) : v € V(Gn)}, and shows that only the quadratic term is dominant (refer to
Lemma 4.1 and Lemma 4.2 for details).

- The second step shows that the limiting distribution of the quadratic term remains unchanged
when the color vectors are replaced by a collection of i.i.d. Gaussian random vectors with the
same mean and covariance structure (Lemma 4.3). The result then follows by analyzing the
asymptotics of the Gaussian counterpart.

5 Recall that for a positive integer a, Xﬂz denotes the chi-squared distribution with a degrees of freedom, that is, the
sum of squares of a independent standard normal (N(0, 1)) random variables.
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1.3. Organization

The rest of the paper is organized as follows: The proof of Theorem 1.1 and its applications are
given in Section 2. The proof of Theorem 1.2 is in Section 3. The proof of Theorem 1.3 and related
examples are discussed in Section 4.

2. Linear combination of Poissons: Proof of Theorem 1.1

In this section we present the proof of Theorem 1.1 and discuss applications of this result in
various examples.

2.1. Proof of Theorem 1.1

To analyze T(H, G,) we use the ‘independent approximation’, where the indicators 1{X_s} are
replaced by independent Bernoulli variables, for every subset of vertices in G, of size |V(H)|. To this

end, define
1
J(H,Gy) = \At(H)| Z l_[ asasb(Gn)]s, (2.1)
s€V(Gn)jv(n)| (a,b)eE(H)
where {Js,$1 < 83 < -+ < Syymy € V(G,)} is a collection of i.i.d. Ber( m H)l —vay=r) Fandom variables,
and if the coordinates of s are not in 1ncreasmg order, define Js = Jo(s), w’here o(s) = (o(s1), o(s2),
., o (S )) such that o(s1) < o(s2) < -+ < o(sjymy ). This implies that

V(Ga)
{ =8 € <|V(H)|)} 22)

is a collection of i.i.d. Ber(w) random variables, where (V(G“)) denotes the set of all |V(H)|-

[V(H
element subset of V(G,). i

The following lemma shows that the moments of T(H, G,) and J(H, G,) are asymptotically close.
Note that A <y B, means A < C(H)B, where C(H) is a constant that depends only on the graph H.
Similarly, A >y B, means A > C(H)B, where C(H) is a constant that depends only on the graph H.

Lemma 2.1. Foranyr > 1,

lim {]ET(H, G — EJ(H, c;,,)r} =0. (2.3)
n—oo

Moreover, there exists a constant C = C(H,r) < oo such that for all n large, ET(H, G,)” < C and
EJ(H, G,) < C.

Proof. Let A be the collection of all ordered r-tuples s, s, .. s,, where s; € V(Gp)vy forj € [r],
with s1 = (511, S12, - . ., Syvey ) S2 = (821, S22, - -+, S2vay))s - - = (Sr1, 8125 - +» Sr|V(H ) such that
]_[(a,b)eE(H) Gs]-,,sj,,(Gn) = 1, for every j € [r]. Then by the multinomial expansion,

BT Y 50 61 = e 23 EHI{LS,}—EHJS,
1 ] 1
|Aut(H)| CLV(FJI—v(F) - CTI:IV(H)I—b ’

where F = F(sy,...,S;) is the graph on vertex set V(F) = Uf=1 s; and edge set U:=1{(sm,sﬂ,) :
(a, b) € E(H)}, v(F) is the number of connected components of F, and b is the number of distinct
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|V(H)|-element subsets in the collection {si, s>, ..., s;}.° Note that if the graph F is connected,
|V(F)| — 1 < b|V(H)| — b, and therefore, in general |V(F)| — v(F) < b|V(H)| — b.

We now claim that |V(F)| — v(F) < b|V(H)| — b implies |V(F)| > |V(H)|v(F). Indeed, first note
that trivially |V(F)| > |[V(H)|v(F). If |V(F)| = |V(H)|v(F), then every connected component of F is
isomorphic H, that is, v(F) = b and |V(F)| — v(F) = b|V(H)| — b, verifying the claim. Thus, setting
Np,q,r to be the set of all r ordered tuples sy, ..., s, in A such that IU;:1 s;| = p and v(F) = q, we
have

1
[ET(H, Gy) — EJ(H, Gn)'| Sh > > =
(p,q):qIV(H)|<p=<r|V(H)| Np,gr "
[V(Gn)IP .
SH > e (using |Npqr| = O(IV(Gn)P))
C
(0.q)qIV(H)|<p<r|[V(H) "

IV(Gn)IP

VH)
(p.ayaVE<p<rive)| [V(Gy)| VET=T¢~D)
(since clVHI=1 = @(|V(G,)|V#))

1
SH Z : .
(p.qralV(D <p<rivei) [V (Gp)] =T P—aIV(DD

SH

~i

Since p > q|V(H)|, each term in the above sum converges to 0, and because the sum is over a finite
index set free of n, (2.3) follows.
Finally, from the above arguments it also follows that
1
ET(H! Gn)r SH 1 ( IV(H)| ) = 0(1)1
(.ayalv=prive)) [V(Gy)| VET=TPTHEA

since p > |V(H)|q, for all (p, q) in the above sum. O

Next, we show that the limiting distribution of J(H, G,) is a linear combination of independent
Poisson random variables.

Lemma 2.2. Let J(H, G,) be as defined in (2.1). Then

JH,G)—> > NHFX,
FDH:|V(F)|=|V(H)|

in distribution and in moments, where X ~ Pois (k . llf“iztt((’;))ll . 5&‘}?7“;)) and the collection {Xf : F 2
H and |V(F)| = |V(H)|} is independent.

Proof. Let (“/,(G;)) be the collection of |V(H)|-element subsets of V(G,). For S C V(G,) denote by
G,[S] the subgraph of G, induced on the set S. Then recalling the definition of J(H, G,) from (2.1)
gives

1
J(H,Gp) = Qs,s (Gn)s
lAut(H)| SEV(GXH)I:V(HH (a,b]):!(H) '
= Y NH,GlsVs

V(G
SG(W((;?)D

6 Here, an ordered |V(H)|-tuple z = (21, 2,, ..., Zyu)) € V(Gy)ym) is considered as a |V(H)|-element subset {z;,z,
..., Zyyu)} of V(Gy). For example, in the collection of ordered triples {(1, 2, 3), (3,2, 1), (4, 3,6), (5,4, 1),(3, 6, 4), (5, 6, 8)},
there are 4 distinct 3-element subsets, that is, b = 4. Hereafter, we will slightly abuse notation and use the tuple and
set interpretations interchangeably, whenever it is clear from the context.
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= ), NHF) ) 1GlsI=F}J. (24)
F2H:|V(F)|=|V(H)| se(l‘(/(g;z))l)

Now, note that, by (2.2), the collection

> UGilsI=F}-Js:F 2 Hand |V(F)| = [V(H)
SE(W(H |)

is independent, since for any two distinct super-graphs F;, F, 2 H, with |V(F;)| = |V(F;)| = |V(H)|,
the sets

V(Gn) . _ V(Gn) ) 3
{s € (IV(H)|) : HGyls] = F1}] , and {s € (IV(H)I> : YGyls] = Fz}]

are disjoint. Moreover, for every fixed F,

In(F):=Y_ UGyls] = FYs

SE(\V(H)l)

is a sum of independent Ber gw random variables. Therefore, to prove theorem it suffices to
Cn
show that J,(F) — Xr (with Xp as defined in the statement of the theorem) in distribution and in
moments, which follows if we can prove that
Aut(H)| tina(F, W
E(J,(F)) = A - | (H)I . ind( ) (2.5)
|Aut(F)|  t(H, W)

To show (2.5), first note that

IV(G)IV™  N(H, Gy) |V(Gn)l'v““'_(1 o)A [V(Gy)VH) _, ; [Aut(H)
(V=TT (VST N(H, Gy) hominj(H, Gn)/|Aut(H))| t(H, W)’
homip;(H, Gn)

using TG = (14 o(1))tinj(H, Gz) — t(H, W) (by [24, (5.21)].
Then recalllng (1.7),
E ), 1Gisl=F}-Js
SG(W(g?])

ﬁ Z l_[ aSaSb GT! l_[ (1 asasb(Gn))

Cn

(I‘(’(g‘?))) a,b)eE(F (a,b)¢E(F
|V(Gn)|'v““'
= VET (G Z l_[ asasb (Gn) 1—[ — Gs,5,(Gn))
n n) V( Gn)) (a,b)eE(F (a,b)¢E(F
_ |Aut(H)| 1
= (14 oA v D 1 aew@) [T (1-a44G)
n (v Gn)) a,b)eE(F) (a,b)¢E(F)

_ |Aut(H)|  tina(F, Gp)

= (14 o(1))A (H. W) . \Aut(F)] (recall (1.4))
|Aut(H)|  ting(F, W)
t(H,W)  |Aut(F)|

where the last step uses ting(F, G;) — tina(F, W) (since G, converges to W). O

(2.6)

The proof of Theorem 1.1 can be easily completed using the above two lemmas: Let Y :=
> Fo:vE)=veny N(H, F)Xp. By Lemmas 2.1 and 2.2, T(H, G,) converges in moments to Y. Now, it is
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easy to check that Y satisfies the Stieltjes moment condition [1], therefore, it is uniquely determined
by its moments. This implies T(H, G,) Byas well, and hence completes the proof of Theorem 1.1.

2.2. Examples

Theorem 1.1 can be easily extended to converging sequence of dense random graphs, when the
limits in (1.5) hold in probability, by conditioning on the graph, under the assumption that the
graph and its coloring are jointly independent. Here, we compute the limiting distribution (1.8) for
the Erdés-Rényi random graph.

Example 1 (Erdés-Rényi Random Graphs). Let G, ~ G(n, p) be the Erdés-Rényi random graph. In
this case G, converges to the constant function W) = p. This implies that t(H, WP)) = plEH)I

and ting(F, W) = P'EWF )G'()} — p)("S)~1E®) Therefore, by Theorem 1.1, choosing ¢, such that
W) plECH)

ET(H, G,) = (1+ 0(1))% — A, gives

T(H, Gy) > > N(HFX,
F2H:|V(F)|=|V(H)|

where X; ~ Pois (1 - Sl pEOI-EI(1 — p)("3")~E01) and the collection {X; : F 2 H and V(F)|

= |V(H)|} is independent.

. . Aut(H :
- When G, = K, (that is, p = 1), Xk ~ Pois (k le—”(t}(,—l%l) = Pois (m) and Xr = 0
otherwise. Therefore,

D
T(H.K) 3 N(H. K - Pois (—) .
) ve)) N(H, Kymy)

- If H = K; is the complete graph, then {F 2 H : |V(F)| = |V(H)|} = {H} and, therefore,
T(H, Gy) - Pois(A).

When H = K; is the s-clique, we have a birthday problem on a general friendship network G;.

Example 2 (Birthday Problem). In the well-known birthday problem, G, is a friendship-network
graph where the vertices are colored uniformly with ¢, = 365 colors (corresponding to birthdays).
In this case, two friends will have the same birthday whenever the corresponding edge in the graph
G, is monochromatic. Therefore, P(T(K;, G,) > 0) is the probability that there is an s-fold birthday
match, that is, there are s friends with the same birthday. For this problem, Theorem 1.1 can be

used to do an approx1mate sample 51ze calculation. For example, using T(K;, G,) 2 Pois(A), where
N(K‘ ") — A, and IV(G |SN(KS,G,I) t(Ks,W) gives

Cn

P(T(K;, Gr) > 0)~1—e &' =p,

s! 1 s
hich implies [V(G,)| ~ log( )
which implies |V(G,)| (t(Ks,W)C" og<1 —p))

which approximates the minimum number of people needed to ensure a s-fold birthday match in
the network G,, with probability at least p. When the underlying graph G, = K, is the complete
graph K, on n vertices, this reduces to the classical birthday problem. For example, when G, = K,
P = % and s = 3, using ¢, = 365, the RHS above evaluates approximately to 82.1, that is, in
any group of 83 people, with probability at least 50%, there are three friends all having the same
birthday.

The assumption t(H, W) > 0 in Theorem 1.1 enforces that cI/™=! = @(|v(G,)|V™)), and, in
this regime, the limiting distribution of T(H, G,) is a linear combination of Poissons (1.8). However
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when t(H, W) = 0, for the scaling c,',V(H =T N (H, G,) we can get ‘non-linear’ limiting distributions,
as shown below.

Example 3 (Product of Independent Poissons). Let G, = Ki,n,n, the complete 3-partite graph, with
partite sets {z}, B, C such that |B| = |C| = n. Note that every triangle in G, passes through z, hence,
N(Ks, G») = n*. In this case, the limiting graphon is W(x,y) = 1{(x — 1)y — 1) < 0}, for which
t(K3, W) = 0. However, if we color G, randomly with ¢, = n colors, such that N(K3, G,,)/c,zl =1,
then T(K3, G,) has a non-degenerate limiting distribution: For a € [c,], let L,(a) and R,(a) be the
number of vertices in sets B and C with color g, respectively. Clearly,

La(a) ~ Bin(n, 1/ca) = X, Ra(a) ~ Bin(n, 1/c,) > Y,
where X and Y are independent Pois(1) variables. Thus, given the color of the vertex z is a,

T(Ks3, Gp) = Ly(a)Rq(a) 2 xy , and therefore, unconditionally T(K3, G,) B xy , the product of two
independent Pois(1) random variables.

3. Asymptotic normality: Proof of Theorem 1.2

In this section we prove the asymptotic normality of Z(H, G,), whenever t(H, W) > 0 and
ET(H, G,) — oo such that ¢, - 0o. We begin the following definition.

Definition 3.1. Given a graph H with vertices labeled {1, 2, ..., |V(H)|} such that a,b € V(H),
define the (a, b)-join of H, denoted by H(Za,b) as follows: Let H’ be an isomorphic copy of H with

vertices {1,2, ..., |V(H)|'}, where the vertex s maps to the vertex s, for s € V(H). The graph
2) is obtained by identifying the vertex a and b in H with the vertex a’ and b’ in H’, that is,
H;

H
V(HZ ) = V(H) U V(H')\{e, b'} and

E(H3, ) = EGH) | EH\{, D J((a,X) : X € Nuw(@ )} Ji(b,¥) : ¥ € N (b))

Note that H(Z;’b) has 2|V(H)| — 2 vertices and 2|E(H)| — 1 or 2|E(H)| edges, depending on whether
the edge (a, b) is present or absent in E(H) respectively.

Lemma 3.1. Let H be a graph with vertices labeled {1, 2, ..., |V(H)|} such that a,b € V(H). Then
t(H}, 5 W) > 0, whenever t(H, W) > 0.

Proof. Recalling Definition 1.2, gives

t(H’ W) = /‘ ta,b(xa, Xb, H’ W)dxﬂdxb
[0,1)2

=< (/ X tg,b(xa, Xp, H, W)dxadxb> = (t(H(Za,b), W))
[0,1]

This implies t(H, ,), W) > t(H, W)* > 0. O

Nl—

(by Cauchy-Schwarz)

Definition 3.2. For s € V(G,)vmy, define

2= 1o} — EMXos) = HXes) — (3.1
n
where 1{X_;} is as defined in (1.3). Then
1
T(H,Gn)—ET(H,Go)= ) Mg,(s,H) (1{x=s} - W)
seV(Gn)v(n)| Cn
= Z MGn (S, H)Zs, (32)

SeV(Gn)y(m))
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1
where Mg, (s, H) = TAut()] H(a,b)eE(H) Us;s,(Gn)-

The following lemma calculates the covariance of Z; and Z, and obtains a lower bound on the
variance of T(H, G,).

Lemma 3.2. The following hold:
(a) Fors,t € V(Gn)IV(H)
oz i IsUE=2|V(H)|

ENX_s}1{Xo} =1 @ ;
{X=s}1{X=} Im if Isut|<2lV(H) - 1.

(b) Fors,t € V(Gn)IV(H)

1 1 :
EZ,z, — | 40T T v if sUt| <2|V(H)| -2
0 if I[sUt|e{2|V(H)—1,2|V(H)|}.

(c) If t(H, W) > 0, then

|V(H)| 2|V(H)|-2
Var(T(H, G,)) > max ( [V(Gy)l IV (Gy)l ) '

VT C2V(H)I3

Proof. If |[sUt| = 2|V(H)|, the indices s, t do not intersect. In this case, the expectation factorizes
by independence, and

E1X_s1{Xoe)} = EYX_g)E1{X_ )} = S

Otherwise,
1

Ut—1°
clstl

ENX_ X} = B(X,, = --- = X,

S|V

=Xy = =Xyy) =

completing the proof of (a). The result in (b) follows from (a) and observing that E1{X_}E1{X_} =
W
To show (c) note that, by (3.2),
Var(T(H, Gn))

Mg, (s,H
> %Ezf + > Mg,(s, H)Mg,(t, H)EZZ,, (3.3)
seV(Gn)y(m)) SELEV(Ga)va)

using Mg, (s, H)? = ot H)|2 ]'[ (a.b)eE(H) Bsasy (Gn) = i Aut(H)|MGYl(s H). Now, since each of terms in the
covariance is non-negative by part (b),
N(H, Gy) _ IV(Ga)"™
2 s Un n
D Mo(s H)EZ 2 VT X VT
seV(Gn)v(h)| n n

Var(T(H, Gp)) ZH

tini(H,Gn) H,W
since W_G(W”)_)' =(14o0(1)) ﬁut(ﬂ)ﬂ — I%ﬂ(m > 0, when G, converges to W.

Another way to lower bound Var(T(H, G,)) is to use that the first term in (3.3) is non-negative,
and to consider only the sum over indices [sNt| = 2 in the second term. The sum over such
pairs s, t € V(Gp)yy, that is, s = (s1, 2, S3, ..., Sy )» € = (51, S2, B3, - - ., L) With the indices
{S1,52,53, ..., Syvm)s £3, - -, Gy} all distinct gives

N(H(ZLZ), Gn) N [V(Gy)[2VH)I-2

var(T(H Gn)) ~H 2|V(H)|-3 ~ 2|V(H)|-3 ’
Cn Cn
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where the last step uses lim;_, WN( (1.2)° Gn) = (H(1 2 W) > 0 by Lemma 3.1.
Combining these two estimates gives t?le desired lower bound on the variance. O

In the following two lemmas we estimate the variance and covariance of the product of Zs for
3 or 4 sets s € V(Gq)v), respectively. These will be used to control the error terms in Stein’s
method.

Lemma 3.3. Lets;, sy, 53 € V(Ga)uy be such that min {|s; (82|, [$1 (s3]} > 1. Then the following
hold:

(@) If |U;_1 Sal = 3IV(H)| — 2, then E(|Zs, |Z,Zs,) = 0.

(b) If [Ua=1 Sq| < 3|V(H)| — 2, then E|Zs,Zs,Zs,| < m-

Proof. We begin with the proof of case (a). First, we show that |sz N (s1 Us3)| < 1. To see this,
observe

3|V(H)| -2 =

= el + |si Uss| - 1 Us) 2|

< IVCH)| + 2V () - 1= |5 s s2]

which implies |s, () (s1 Uss)| < 1. Therefore, |s; () (s1Uss)| = 1, since min {|s; (52|, s1 () 53/}
> 1. Let s, ()(s1 Us3) = {j}, for some j € [|V(Gy,)|]. Then

(|25, |25, Zs,) = E(E(zsz X, {Xi, i € [I[V(Gn)II\$2})|Zs,|Zs,) = O,

since P(X; = X, - -~ Xaw, 1X;) = IV(H)l 1, for any g, qs, ..., quu) € V(Gy)\{j} distinct. This

completes the proof of (a ( ).
Next, we prove case (b). By a direct expansion, it follows that

lea<b53 E1 {X=Sa }1 {X=Sb }

4
ElzsleZZS3I =< El{x—sl}l{X—SZ}l{ $3} + 3|V(H)| -3 +

CIV(H)I—l
n
5 <a<h< ]E1{X= JHXos, )
S— 2 1<a<b<3 IV(H)I_: ) (3.4)
e Jam sl n
since |U‘31=1 sy| < 3|V(H)| — 2. To bound the second term in the RHS above, note that
3
s = ‘sl 32‘ +V(H)| - ‘ s1 USz)ﬂ83| ‘S1 Us2| +IV(H) -1, (35)
a=1

since |s3 ()(s1(Js2)| > 1. Then Lemma 3.2(a) gives

1 1 1 1
V= “wani—1 E &= }1{X=s,} = V- 7 max <c2IV(H)|—2’ Is1U52|—1)
n Cn

1 1
S max <C3|V(H)I_3’ IslUSZUs3|) (by (35))
n Cn

< ——— (using |, Sl < 3IV(H)| —2).
C,LUa=l Sal—1

Similar estlmates hold for the pairs (s1, s3) and (s3, s3) as well, and, therefore, the RHS of (3.4) is

bounded by IU— O
a—15al
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Lemma 34. Let s1,8;,53,84 € V(Gp)vmy be such that min{|s; ()sz[, |s3[)s4|} > 1. Then the
following hold:

(@) If IUz—y Sl € {4IV(H)| — 2, 4|V(H)| — 3}, then Cov(Zs,Zs,, Zs,Zs,) = 0.
(b) If IUy—; Sal < 4IV(H)| — 4, then Cov(Zs,Zs,, Zs,Zs,) < 1

|U;‘=1 sal-1"

Proof. We begin with the proof of case (a). First, consider |Ua_ s;| = 4|V(H)| — 2, then the index
sets §; Usz and s3 | s4 are disjoint, and so, Cov(Zs, Zs, , Zs,Zs,) = 0.

If |Ua_ sq| = 4|V(H)| — 3 and |(s;[Js2)((s3\Usa)l = O, then the index sets s; | Js, and
s3|Js4 are disjoint, and Cov(Zs,Zs,, Zs;Zs,) = 0. Then the assumptions |Ua= Sq| = 4|V(H)| — 3
and min{|s; sz, Is3[)Sal} = 1 implies, |(s; (Js2)(\(s3(Jss)| = 1. In this case, we must also
have [s; | s2| = |s3 | sa| = 2|V(H)| — 1, which implies

EZ;, Zs, = EZ,,Z;, = 0 (36)

by Lemma 3.2(a). Now, because |(s;|Js2)[)(s3|Uss)l = 1, one of the sets s;()(s3|Js4) and
s; ((s3 U s4) is non-empty. Assuming, without loss of generality, that s; [)(s3 | s4) is non-empty,
gives

s Uss Uss| = Isil-+[ss Uss| ~[s: s Uso)| = vani+2ivani—1-1=3vani-2,
and

1< s (s UssUso)| = vt +[s: Uss Usa| - caveni -3 <1
Denoting s, [\(s1 | Jss U s4) = {j}, then gives

EZ,, Zs, Zs,Zs, = EAE(Ze, X, {Xi, i € [[V(Gr)II\S2})Zs, Zs1 25, } = 0. (3.7)

Combining (3.6) and (3.7), Cov(Zs, Zs, , Zs,Zs,) = 0, whenever |U3=1 sg| = 4|V(H)|—3. This completes
the proof of (a).

Next, we prove case (b). Without loss of generality, assume |(s; [ Js2)(\(s3(Js4)| > 1, because
otherwise the covariance is 0 to begin with. As in Lemma 3.3, it suffices to find bounds up to fourth
joint moments of 1{X_s}. To this end, we first claim that

R MK K} < — (38)

H)I 1 |U2=1 sal—1 ’
n

and a similar bound holds for all other three triples. For proving (3.8), note that |(L_Jz=1 Sq) ()84l >
Is3 () s4| > 1 which gives

4 3
Use| = [Us.
a=1 a=1
Now, there are two cases:

e |(s1\Us2)() s3] > 1: In this case, by (3.9),

+ [V(H)| - + [V(H)l - 1. (3.9)

R

1 1
vy E1X=s, J1{X=s, X < , 3.10
{X=s X5, X, } = UL s W2 = Uiy (3.10)

n

V(H)|-1
n

and so we have verified (3.8).
e |(s1|Us2)() s3] = O: In this case,

1 1
Is Usy |[+2|V(H)|-3 = 4 ’
1Usy -
rLUﬂ_l Sa| 1

V(H)|—1 ]E]{X_sl }I{X—sz }I{X_s3}
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which verifies (3.8). Note that in the last inequality we have used the bound

Osa = ‘sl USZ‘ + ‘S3 US4’ - ‘(31 Us2)( s U&)‘
a=1

< s Use| +2vami -2,

using |s3 (Jsa| < 2|V(H)| — 1, since |s3[)sa] > 1, and |(s1 Us2)((s3 Usa)l > 1.

Next, proceeding to bound expectations of two tuples, observe that |s3 | Jss| — [(s1(Js2)()
(s3Usa)l< 2IV(H)| — 2, (since [(s; Us;) N(s3Usa)l = 1, Is; Usz| < 2|V(H)| = 1.) This implies

Osa = ls1 USZ‘ + ’s3 Us4‘ - ’(sl Us2( s Us4)| < ’sl Us2’ +2|V(H)| -2,
a=1

and so

1 1 1 1
C2|V(H)|—2]E1{X=sl}1{X=‘2} = V-2 MaX ( V-2’ Is1U$2I—1)
n n n Ch

1 1
< max , s 3.11
. <C:IV<H>I—4 O |> 311)

and a similar bound applies for all the other five pairs. Thus, expanding the fourth moment and
using (3.8) and (3.11) gives

1 + 1 < 1
Cr|lU2=15n|—1 C#IV(H)|_4 ~ C,I1U§=1 Sal-1

IEIZ$1252 ZS3ZS4 I N

~

(3.12)

Finally, by Lemma 3.2(b), if max(|s; Js:/, |s3 \Ussl) = 2|V(H)| — 1, then EZ;, Z, EZ, Zs, = 0. Thus,
assume that |s; [ sz| < 2|V(H)| — 2, |s3|Js4| < 2|V(H)| — 2, and so

1 1
Is1 Us2l+s3 Usal—2 = 4 ’
s _
51 2|+s3 US4 rlll Jaz1Sal—1

|EZS]ZSZ]EZS3ZS4| ﬁ (3.13)

where the last inequality uses the fact that |(s1 |Js2)()(s3 Us4)| > 1. Combining (3.12) along with
(3.13) completes the proof of the lemma. O

Proof of Theorem 1.2. Recall Z(H, G,) from (1.9). Note that (recalling (3.2)),
2 seV Gy | Lia.byeec) Bsass (Gn s Dsean Zs

|Aut(H)|+/Var(T(H, G;)) - |Aut(H)|/Var(T(H, G,))’

where .Ag') be the set all s € V(Gn)vuy such that [ ], ;cpm) Gses (Gn) = 1. Now, for every s; € A(;)
let ’

Z(H,G,) =

Ns ={s2 € A} : |s1[ )2l > 1},

In other word, N, is the subset of tuples in Ag’) which have at least one index common with s;.
Then by the Stein’s method based on dependency graphs (see proof of Lemma 1 in [12]), we have

Wass (Z(H, Gn), N(0, 1)) <u R1 + Ry, (3.14)
where
1 2
Zsls““ﬂ) % ZSZENﬁ Z2\\* ZsmAﬁ') E|Zs, | (ZszeNs1 ZSZ)
Ry = | Var , Ry = )
o2 o3

with o2 = Var(T(H, G,)).

https://reader.elsevier.com/reader/sd/pii/S01956698193007947...AA4B76B9F22CA639C33370242334F720DDAC8EFCOF47B17DFE4BOB66EFEG

7/3/19, 1:18 AM

Page 15 of 27



Elsevier Enhanced Reader

B.B. Bhattacharya and S. Mukherjee / European Journal of Combinatorics 81 (2019) 328-353 343

We will bound each of the terms above separately. To begin with, observe

Var(alz Z Z, Z 252)

" s1eA(") $2€Ns,

04 YY) D covizeZ,. 26, Zs,).

51 eA( ) s2€Ns; $3 e.A(") S4€Ns,
Let £ = |U2=1 S| and use Lemma 3.4(a) to conclude that the above covariance vanishes unless
£ < 4|V(H)| — 4. Thus, using Lemma 3.4(b), an upper bound to the RHS above is given by
1 IVGE 1 (VG (G
4 Z -1 ~H 4 [V(H)-1 + AV(H)|-5
On Op Ch

=) Cn Cn

V(G)VE V=2 Vi) V-6
X X
V-1 V(G2 cAlvii-s V(G V=4
CT|IV(H)|—1 1

VG e

where the last inequality uses Lemma 3.2(c). Therefore

|V( =
1
Rl <H Var 51 w + a (3.15)

51 E.A(n) sy ENs

Proceeding to bound R; in (3.14), gives
2

3 Z E|Zs, | Z Zs, = l3 Z Z E|Zs, |Zs,Zs,
On

n) s2€Ns, A(n) s2,53€Ns;

sleA S1€

Again let £ = |Ua=1 S| and use Lemma 3.3(a) to conclude that the above vanishes when £ =
3|V(H)| — 2. Thus, using the bound in Lemma 3.3(b), an upper bound to the RHS above is

3\V(H )
1 Z ? VG < 1 (VG . V(G PV I3
O’,? £—1 0.n3 CrIIV(H)I_l C3|V(H)|_4

3(V(H)-1
an(l (H)-1)

V(G V) 22V

~ C,I1V(H)|—1

[V(G,)PVEHI=3
) V-4 X 3V(H)—3
c [V(Gn)

V(Gy) 2V

r|1V(H ) % 1
=(W(MWWJ +(&>’

where again the last inequality uses Lemma 3.2(c). Therefore,

2
1 CrllV(H)ll 3 1 i
RZ=ES1 o EIZ| )z, < VG +(Z) : (3.16)

€V(Gn)v(H)| $2€Ns;

Nl=

Combining (3.14) with (3.15) and (3.16) completes the proof of (1.10).
To see that the error term in the RHS of (1 10) goes to zero, first note that ET(H,G,) =

hmﬂ}?;,(f f n) (recall (1.7)). Then using W hom;y(H, Gp) — t(H, W), as G, converges

|Aut(H )l
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to the graphon W, it follows that the first term in the RHS of Theorem 1.2 goes to zero whenever
ET(H, G,) — oc. Therefore, Z(H, G,) 3 N(0, 1), whenever ET(H, G,) > oo and ¢, — oco. O

As noted in Remark 1.2, the asymptotic normality of Z(K;, H) holds for all graph sequences
{Gn}n>1, as long as ET(K;,H) — oo and ¢, — oo. However, we cannot expect the normality of
Z(H, G,), for general graphs H, to extend beyond dense graphs, without further assumptions, as
shown below:

Example 4. For n > 1, denote by D, = (V(Dr), E(Dy)) the n-pyramid: V(D,) = {a, b, ¢1,C2, ..., Cn}
and

E(Dy) = {(a, b), (a, c1), (a, c2), .. . (@, cn), (b, €1), (b, C2), ... . (b, )}

In other words, the n-pyramid is the complete 3-partite graph K; 1 ,. (Note that the 1-pyramid is the
triangle (D; = K3) and the 2-pyramid D, is the 4-cycle with a diagonal.) Now, let G, be the disjoint
union of the n-pyramid D, and the complete bipartite graph K, , and H = K; the triangle. Choose
¢, — oo such that ¢, = o(4/n). In this case, ET(Ks, G,;) = C% — 00, but lim,_,, t(K3, G,) = 0,
therefore, Theorem 1.2 does not apply. Moreover, as every tlgiangle in G, must pass through the
base vertices a, b of the pyramid D,

B(T(K3, Gn) > 0) < P(Xy = Xp) = LY

Cn

This implies, T(Ks, G;) A 0, and hence, Z(K3, G,) A 0, that is, Z(K3, G,) does not converge to a
non-degenerate limiting distribution.

4. Limiting distribution for fixed number of colors

In this section we derive the limiting distribution for the number of monochromatic subgraphs
when the number of colors is fixed. The proof of Theorem 1.3 is given in Section 4.1. Examples are
discussed in Section 4.2.

4.1. Proof of Theorem 1.3

We begin with the following observation:

Observation 4.1. For s € V(Gp)v), let Zs = 1{X=s} — | 7. Then
53 > mn(uxs]-a}——) (a)
a=1 ICV H) jel

Proof. To begin with note that

c |V(H)
C|V(H)I 1 Z Z 1_[ (”XS =a} - ) C|V(H| -1 Z Z (1{X =a}— —) =0,

a=1 JCV(H) jeJ a=1 v=1

since, for every v € V(Gy), Zf,:] (l{XU =a}— %) = 0. Therefore, denoting the RHS of (4.1) by Ze,
we get

1
Z = Z Z CIV(H)I Ul H(I{XSJ =a} - ) clVH)-1" (4.2)

a=1JCV(H) i€l
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where the W adjustment cancels with the term corresponding to taking ] = @ in the sum.
Here, we use the convention that ]—[jej (1{ij =a} — %) = 1if ] = ¢. Now, expanding the product
[Ty (1X; = a} — }) in the RHS above gives,

1 1 U=l
Z cVH)=UI H (1{ij =a- E) = Z |V(H)| Ul Z m Ul nl{x% =4a
JSV(H) jel JSVH jer
1)UI u'
= ZZ cIVH)- Ulnl{ij=a}
JEVH) g jel’
V(H)| -
(—1y V1
= > el (43)
s=0 JTIY_(H J'qy

where X,(J') =[],y 1{ij = a}. The RHS of (4.3) can be rewritten as the weighted sum over subsets
J' € V(H). Note that the coefficient of X(J’) in the above sum is

& - VH)-U'|
Z ( s—=1'l )c'V(”)I—U’I = cVEIU Z ( ¢ )(—1)‘ =0,

s=|J’| t=0

whenever |V(H)| # |J’|. This follows by noting that there is ('V(SH_)MUI') ways of completing the given

set ]’ to a s-element subset of |V(H)|. Therefore, the only term in (4.3) which is non-zero corresponds
to taking J = V(H), and (4.2) simplifies to

c c [|V(H)
Bi= LX)~ s = 2 [ 1%y =i -
a=1 a=1 j=1
- 1{X=s} - = ZS,

[V(H)|-1

as required. O

Using this observation, T(H, G,) can be written as a polynomial in the i.i.d. color vectors {(1{X, =
a})ae[c] 1v e V(Gp))

T(H, Gp) — E(T(H, Gp)) = Z Mg, (s, H)Zs (recall (3.2))

seV(Gn)vn)

= Y Y Y e [ (105 =a- )
seV(Gn)va)) a=1 JlC”‘;(g jel

= ) TH.Gy), (4.4)
Jev)
Ui=2

where
Cc 1 1
Tj(H, Gp) = Z Mg, (s, H)m l_[ X, =a} — 7)) (45)
a=1 seV(Gn)v(r)) jel

Lemma 4.1. For every ] C V(H) such that |J| > 3, T(H, G,) = 0p(|V(Gy)|"V#)I=1),
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Proof. Fix ] C V(H) such that |J| > 3. To begin with note that

ETj(H, G,) = Z > Mg, H)ilmIE Hl{ijza}—% =0, (4.6)

a=1 seV(Gn)|v(H) jel

since

E|[]1x _a}— - HE(I{XSJ =a} — —) =0,

jel jel

since {(I{X =a} — —) j €]} is a collection of independent random variables.
The second moment of Tj(H, G,) equals

M, (s, H)Mc, (s, H 1
> X Gn(§2|v(3ﬂ| G;m )En (1{ij =a- _) (I{X% == E> ' @)

a,a’e[c] 5,8’V (Gn)v(n) jel

Now, if there exists sp € {s; : j e]}\{sj’- :j €]}, then

1 1
E]] (1{xs,. =a}— E) (1{xsj< =d}— E)

Jjel
1 1 )
=E [1 (I{ij =a} - E) ]_[ (1{ij< =d}- E) E (1{xs0 —a) - E) _o.
Jj€l.si#so el

Similarly, the expectation vanishes if sp € {s]( jeJN\si:jel)
Now, consider s, s’ € V(Gp)vuy such that {s;: j € J} = {sj’. : j € J}. Define

1 1
Wya,d)=E[] (1{xs,. =a} - E) (1{st< —d)- E) .

jel
Note that |Wj(a, d’)| < 1, for all a, d’ € [c]. Therefore, (4.7) gives

W,
ET;(H, Gn Z Z M, (s, H)MGH(SI H) ZI\i(aIGZl)II

a,d'€[c] s,5'eV(Cn)vm)
(Sj:jEJ}=(SJ’-:J'EJ)

Se ). Mg(s, H)M,(s, H)
s,s’eV(Gn)|v(H)|
{spiel)={s]el)

= O(|V(Gp)| =1y = o(|V(Gy )2V HI=2), (4.8)

whenever |J| > 3.
Combining (4.6) and (4.8) it follows that T;(H, G,) = 0p(|V(G,)|'"V"I=1), whenever |J| > 3. O

Definition 4.1. Let H be a labeled finite simple graph. Then, for 1 <u # v < |V(H)|and 1 <i #
j < |V(Gy)|, define M, (i, j, H, G,) as the number of injective homomorphism ¢ : V(H) — V(G)
such that ¢(u) = i and ¢(v) = j. More formally,

My, (i, j, H, Gn)

a, uv(Gn) Z ]_[ Qis,(Gn) 1_[ ajsy(Gn) l_[ anSy(Gn)s

s\{su,sv}  xeNg(u)\{v} yeNy (v)\{u} (x,y)eE(H\{u,v})
sEV(Gn)W(H)

with a; uU(G ) = a;(Gy) if (u,v) € E(H) and 1 otherwise, and the sum is over indices s\{s,, s,},

with s € V(Gp)vy, which are distinct and belong to [|V(G,)|]\{i, j}. Note that My (i, j, H, G) is,
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in general, not symmetric in i, j, but satisfies M, (i, j, H, Gn) = My,(j, i, H, Gn).7 Finally, define the
symmetric scaled 2-point homomorphism matrix as ((Bu(Gn)ij))ijervic) With

1
2|Aut(H)| - [V(Gy)|"

By (Gy)j = Y Myu(ij H, G, (49)

1<u#v<|V(H))
for 1 <i#j<|V(Gy)l.

The following lemma shows that I"(H, G,) is a sum of ¢ quadratic forms in terms of the scaled
2-point homomorphism matrix, up to op(1) terms.

Lemma 4.2. Recall I'(H, G,) from (1.12) and define,
— 1 1
Iy(H, Gp) = IV(HI - Z > BulGay <1{x,- =a} - E) (1{x,~ =a} - E) :
a=1 1<iA<|V(Gn)|
where By(G,) is the 2-point homomorphism matrix as defined in (4.9). Then, I'(H, G,) = I3(H, G,) +
Op(l).

Proof. Recalling (4.5), note that

clVH)I-2 i Z T](H, G,)

a=1 JSV(H)
Ul=2

— : Mu,v(slhsva’ G”) — — 1 = —_ 1
=) > Aut(H)| (1{st =a C) (1{x5v =4 C) ’

a=1 1=u<v<|V(H)| 1<su#sy <[V(Gn)l

C MaslidHG) (o0 1\ (a1
=2 X X W(1{>@_a}—z)(w§_a}_z>,

a=1 1<u<v<|V(H)| 1<i;éj<lv Gn)l

1 1
= |V(Gy)| "¢ Z > )BH(Gn),-j (‘{Xf=“}‘z) (1{xj=a}—z),

a=1 1<i#j<|V(Gn)|

where BH(Gn) = (( H( n)ij))i,je[lV(Gn)l] is a matrix with

1 1

By (Gn)j = :
" V(G VEIT | Aut(H))|

Y My(ijH, Gy,

1<u<v=|V(H)|

Now, from (4.9) it is easy to see that EH(Gn)ij = w

the desired conclusion. O

, which along with Lemma 4.1 gives

Next, define the analogous random variable for I;(H, G,), where the centered color vectors
{R, : v € V(G,)}, where R, = (1{X, = a} — 1)4¢(}, are replaced by a collection of i.i.d. Gaussian
vectors with the same mean and covariance structure. More formally,

Q(H, Gn) = g Z > Byi(Gn)UiaUso- (4.10)
a=1 1<i#<|V(Gp)|

with l}v,a = Uv,a—UU, where {U,q : v € V(Gy), a € [c]} are i.i.d. Gaussians with mean 0 and variance
1/c random variables and U, = %2221 U,,q«. Note that for each v € V(G,) the random vector

7 For example, when H = K, is the 2-star with the central vertex labeled 1, then M13(i, j, K1,2, Ga) = M,3(i, j, K1,2, Gn)
= a;j(Gn)(dg, (i) — a;i(Gn)), where dg, (i) is the degree of the vertex i in Gn, and My 3(i, j, K12, Gn) = Zk#m ik(Gn)ajx(Gn),
the number of common neighbors of i, j.
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(Uv 1L Up2, ..., ﬁv,c) has mean 0 and the same covariance matrix as R,. Also, {ﬁv, v € V(Gp)}
are mdependent and identically distributed random vectors. Finally, define
_ Qu(H,Gy)

The next lemma shows that the moments of I;(H, G,) and A,(H, G,;) are asymptotically close.

Lemma 4.3. For every integerr > 1,

lim IIEFZ(H, Ga) — EAy(H, cn)’] —o. (4.12)

Proof. Fix an integer r > 1. Using the bound |V(G,)| maxi,jev(G")EH(Gn),-j <y 1, a direct expansion
gives

CrIvVD—2r |1EF2(H, Gn) — EAz(H, Gy) |

Z Z ]El_[ (1{Xi5 =as} — %) (I{st =as} — %)

ayq,...,ar€[c] 1=iq#1<IV(Gn)l s=1
1<ir #ir <|V(Gn)]
r
- El_[UiSyasUjsyas .
s=1
Now, fix an index set J := {i1, ..., 1, j1,...,Jr}, Where 1 < i #]S < |V(Gy)|, for s € [r]. If an

index in J appears exactly once, then using E (I{X, =a} — E) ]EU, « =0, for every i € V(G,) and
a € [c], it is easy to see that both the moments inside the absolute value vanish. Therefore, we
can assume that every index in J appears at least twice. Moreover, as the total number of terms
with at most r — 1 distinct indices from J is bounded above by |V(G,)|""!, it suffices to consider the
terms where the number of distinct indices from J is exactly r, up to a o(1)-term. But in this case
every index in J appears exactly twice, and to prove (4.12) it suffices to show for any such index
set (i, j1), ..., (ir, jr) we have

r T
1 1 A oA
]El_[ (I{XiS =as} — E) (I{st = a5} — E) - E]_[ Ui, a5 Ujs s
s=1

s=1

=0.

Indeed, in this case both the moments factorize over the distinct indices, and to show equality of
moments it suffices to check that for all a, b € [c] we have

1 1 A A
E (1{Xi =a} — E) (1{Xi =b} — E) = EU; qUi p.

This follows by noting that both sides equal %(1 - %) ifa=b, and —Ciz otherwise. O

From Lemmas 4.2 and 4.3, to derive the limiting distribution of I'(H, G,) it suffices to derive the
limiting distribution of A,(H, G,), which is the sum of c-quadratic forms in By(Gy). To this end, we
need to understand the spectrum of the matrix By(G,). We begin by defining the notion of cycles
formed by H, which arise in the analysis of the power-sum of the eigenvalues of By(G,).

Definition 4.2. Fix an integer g > 2, and let Hy, Hy, ..., H; be g isomorphic copies of H, where
the image of the vertex z € V(H) in H, will be denoted by Z@, for a € [g]. Then fixing indices
J = {(ug, vg) : 1 < ug # vg < |V(H)|, a € [g]}, define the r- cycle ofH with pivots at | as the graph
obtained by the union of Hy, Hs, ... where the vertex va € V(H,) identified with the vertex

a"j}” € V(Hgy1), for a € [g], with ugfl]% := u{") and Hg41 = Hj. Denote this graph by H&)(J). From
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Fig. 1. A 5-cycle of K;, with pivots {(1, 3), (1, 3), (2, 3), (2, 3), (1, 3)}, (b) a 6-cycle of C4 with pivots {(3, 4), (2, 4), (2, 3),
(1,3),(1,2), (4, 1)}

Definition 1.2, it is easy to see that

g g
t(HE), W) = f [T e e %ar1, H, W) [ ] da. (4.13)
0,118 =1 a=1

Fig. 1 shows a 5-cycle of K; ; and a 6-cycle of C4, and the associated pivots.

Equipped with the above definitions and recalling the function Wy from (1.13), we proceed to
prove the convergence of the spectrum of By(Gy).

Lemma 44. Let {A(By(G,)), A2(By(G, )) , Mv(Gn)I(Bu(Gr))} be the multi-set of eigenvalues of

By (G,). Then, for every g > 2, limy_ o0 Zr f" Ar(Bu(Gn)f = Y o) Ar(H, W), where {A1(H, W),
A2(H, W), ..., }is the multi-set of eigenvalues of Wy. Moreover, the assumption t(H, W) > 0 ensures
that the spectrum of Wy is non-trivial, that is, Wy has at least one (non-zero) eigenvalue.

Proof. Fix g > 2. Define K, AR E Then

= 2% |Aut
|V(Gn)l

D M(Bu(Ga)¥

r=1

= tr(By(Gy )

g
> T1Bu(Gadigiays  (wWhere jgi1 =ji)
JjeV(Gn)8 a=1

=k e )lgw, > H > Myyliosdast, H, Gy) (recall (4.9))

JeV(Gn)E a=1 1<uzv<|V(H)|
g
1 ..
=% iGnEr )BT S > [ IMusiliasjess, H, Ga).
n 1=ug£v1=|V(H)| 1<ug#vg <|V(H)| jeV(Gn ) a=1

Now, fix | = {(ug, vg) : 1 < ug # vy < |V(H)|,a € [g]}. Recalling Definition 4.1, note that
Myg,v,Uas Jat+1, H, Gy) is the sum over s\{sy,, Sy}, where s € V(Gp)vu), that is, the sum ranges over
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|V(H)| — 2 indices taking values in {1, 2, ..., |V(G,)|}. This implies, the product
g
> [ Muvelier josa, H, Ga), (4.14)
JeV(Gn)E a=1

can be expanded to obtain a sum over at most g +g(|V(H)| —2) = g|V(H)| — g indices taking values
in{1,2,...,|V(G,)|}. However, if any two of the indices are the same, then the corresponding term
in the sum is o(|V(G,)|#"V*)8). (Here, we bound each a;(G,) by 1 and the sum over each distinct
index by |V(G,)|.) This shows that the leading term in (4.14) is a sum over g|V(H)| — g distinct
indices ranging in V(G,), which counts the number of injective homomorphisms of H®)(J) in G,,
where H®)(J) is the g-cycle of H with pivots at J, as in Definition 4.2. Therefore,

1 g
IV(G)IW Z l_[Mua,vaUa,ja+1,H,Gn)=t(H(g)U),Gn)+o(1)_)t(H(g)U),W)_

jeV(Gn)s a=1

Next, recall that A;(H, W), A,(H, W), ... are the eigenvalues of the function Wy, as defined in
Theorem 1.3. Then by the spectral theorem [24, Section 7.5],

(o]
3 AE(H, W) = t(Cy, W)
r=1
g g
= / l_[ Wh(Xq, Xa+1) l_[dxa (Xg+1 = X1)
(0.13¢ a=1

g
=K /0 1_[ D (e Xap, H, W)]_[dxa (by (1.13))
1 —

a=1 1<u#v<|V(H)|

=K, Z . ‘/[0 e l—[t”ﬂ vaXas Xax1, H, W)l_[dxa

1<u; #vq <|V(H)| 1<ug;evg<|v

=Kz > Y. HHEQ),w), (4.15)

1=uy#vi<|V(H)] 1<ug #vg <|V(H)|

where the last step uses (4.13). Therefore, (4.15) implies that the gth power sum of the eigenvalues
of By(G;,) converge to the gth power sum of eigenvalues of Wy, for every g > 2.

Finally, note that for g = 2 and any set of pivots of the form | = {(a, b), (b, a)}, where
1<a#b<|VH)H?J) = (ab (recall Definition 3.1) and by Lemma 3.1, t(H€)(J), W) > 0.
Therefore, Z A%(H, W) > 0, which implies that the spectrum of Wy, is non-trivial. O

Having established the convergence of the spectrum of By(G,), it remains to derive the asymp-
totic distribution of A,(H, G,), and hence I'(H, G,). This follows from the lemma below, which can
be easily proved by computing the moment generating function of A,(H, G,) using the spectral
decomposition, as in [7, Lemma 7.3].

Lemma 4.5 ([7, Lemma 7.3]). Let Q, = ((Qu(i,J)))ijenvic,)n be a sequence of symmetric |V(Gy)| x
|V(Gr)| matrices with zeros on the diagonal. If there exist constants A1, Az, . .. such that lim,_, « tr(Q})
=Y 72 AS < oo, for every s > 2, then

Z Y Qi ialie > - Zxrnr,

a=1 1<iAj<|V(Gn)|

where {n;},>1 is a collection of i.i.d. X(2c_1) — (c — 1) random variables. O
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4.2. Examples

To begin with, we consider monochromatic edges, that is, H = K. In this case, the 2-point
homomorphism matrix is just the scaled adjacency matrix of G,, and we re-derive [7, Theorem 1.4].

Example 5 (Monochromatic Edges). Let G, be a sequence of graphs converging to the graphon W
and H = K. Then |Aut(H)| = 2 and Wi, (x,y) = jW(x,y), and A (Wk,) = 3A(W), where
A1(W), Ao(W), ... are the eigenvalues of the operator Ty : L,[0, 1] — L,[0, 1], defined as (Twf)(x) =
fol W(x, y)f (y)dy. Then Theorem 1.3 shows

o0
p 1
I(Kp, Go) > ;Ar(wm,,

where {7, };en are independent X(Z,_-_l) — (c — 1) random variables, as in [7, Theorem 1.4].

As before, Theorem 1.3 applies to convergent sequence of dense random graphs, when the limit
in (1.5) holds in probability.

Example 6 (Erdés-Rényi Random Graph). Let G, ~ G(n, p) be the Erdés-Rényi random graph and H
be any finite simple graph. In this case, G, converges to the constant graphon W = p, the constant

IV(H)|
function p, and, from (1. 13) W (x y)= |€;ut (@) p'E ) 1t is easy to see that Wy P) has only 1 non-zero

eigenvalue kl(Wg’)) Y )p|E )l Therefore, by Theorem 1.3,

|Aut(H)|
D OH,
FH Ky W)Tﬁ (X —(c—1). (4.16)
IV(H)])
where oy = jimpH

As another example, consider the limiting distribution in a non-symmetric example: number of
monochromatic 2-stars in a complete bipartite graph.

Example 7. Let G, = Kr e and H = Kj 2. Then |Aut(H)| = 2, and G, converges to the graphon
W=1{x-— —)(y - —) < 0} Thls implies dy (x) = % for all x € [0, 1] and

W(x, y)dw(x) + W(x, y)dw () + [io 1y WX, 20)W(y, 21)dz:

WK1,2(xay)= 2
[ w-ly-b<o
S R i

This function has two non-zero eigenvalues % and —% and by Theorem 1.3

p 1
(K12, Koy rp) = 3c2 Bm —mn2),
where 77 and 7, are independent x(zc_l) — (¢ — 1) random variables.

As a final example of Theorem 1.3, consider the limiting distribution of the number of monochro-
matic triangles in a complete tripartite graph.

Example 8. Let G, = K[ NEINES and H = K. Then |Aut(H)| = 3, and G, converges to the graphon
= 1{(x,y) € 7Y}, where 5” [0, 3]2 U[ U[ 1]2. A direct computation gives that for all
(u, v) € V(K3), with u # v,

1
tup(X,y, K3, W) = W(x,y) / W(x, z2)W(y, z)dz = %1{(& y) € 7Y,
0
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which implies Wy, (x, y) = 11{(x, y) € #}. Now, since Wk, has eigenvalues 2, —1, —1 Theorem 1.3
gives

p 1
(K3, Kpngrogrng) = 92 2n1 —n2 —mn3),

where 11, 112, n3 are independent X(Zc_n — (c — 1) random variables.

We conclude with an example, which shows, as before, that the condition t(H, W) > 0 is
necessary for I'(H, G,) to have a non-degenerate limit as an infinite sum of chi-squared random
variables.

Example 9. Let G, = K; ,, be the complete 3-partite graph, with partitions {z}, B, C, and H = K.
Given the color of the vertex z is a, using the same notations as in Example 3, both L,(a) and R,(a)
are independent Bin(n, 1/c), and consequently
2
(K3, Gp) — ET(K3, Gy)  La(@Ra(@) — % p 2 1
= 5 —->N{0,-{1—--]]).

VnI'(H,Gy) = r

3 =
n2

Therefore, unconditionally «/nI"(H, G,) converges to a Gaussian as well, which cannot be expressed
as an infinite sum of chi-squared random variables.

Remark 4.1. A similar thing happens in Example 4, where G, is the disjoint union of the n-pyramid
Dn and the complete bipartite graph K, , and H = K3 is the triangle. In this case, it is easy to see
that T(K3, G,) = 1Bin(n, 1) 4 (1 — 1)8o, a mixture of a Bin(n, 1) and a point mass at zero. This
implies, I'(H, G,) does not have a non-degenerate limiting distribution.

Acknowledgment

The authors thank the anonymous referees for providing many careful comments, which greatly
improved the quality and presentation of the paper.

References

[1] N.L Akhiezer, The Classical Problem of Moments and Some Related Questions of Analysis, Oliver & Boyd, Edinburgh,
1965.
[2] R. Arratia, L. Goldstein, L. Gordon, Poisson approximation and the Chen-Stein method, Statist. Sci. 5 (4) (1990)
403-424.
[3] A.D. Barbour, L. Holst, S. Janson, Poisson Approximations, Oxford University Press, Oxford, 1992.
[4] A. Basak, S. Mukherjee, Universality of the mean-field for the Potts model, Probab. Theory Related Fields 168 (3-4)
(2017) 557-600.
[5] T. Batu, L. Fortnow, R. Rubinfeld, W.D. Smith, P. White, Testing closeness of discrete distributions, ]. ACM 60 (1)
(2013) Article 4.
[6] B.B. Bhattacharya, Collision times in multicolor urn models and sequential graph coloring with applications to
discrete logarithms, Ann. Appl. Probab. 26 (6) (2016) 3286-3318.
[7] B.B. Bhattacharya, P. Diaconis, S. Mukherjee, Universal poisson and normal limit theorems in graph coloring problems
with connections to extremal combinatorics, Ann. Appl. Probab. 27 (1) (2017) 337-394.
[8] B.B. Bhattacharya, S. Mukherjee, Inference in Ising models, Bernoulli 24 (1) (2018) 493-525.
[9] C. Borgs, J.T. Chayes, L. Lovdsz, V.T. Sés, K. Vesztergombi, Convergent sequences of dense graphs I: subgraph
frequencies, metric properties and testing, Adv. Math. 219 (2009) 1801-1851.
[10] C. Borgs, J.T. Chayes, L. Lovész, V.T. S6s, K. Vesztergombi, Convergent sequences of dense graphs II. multiway cuts
and statistical physics, Ann. of Math. 176 (2012) 151-219.
[11] A. Cerquetti, S. Fortini, A poisson approximation for coloured graphs under exchangeability, Sankhya 68 (2) (2006)
183-197.
[12] S. Chatterjee, Stein’s method and applications, UC Berkeley STAT C206A Lecture Notes, 2007, https://statweb.stanfo
rd.edu/~souravc/Lecture6pdf.
[13] S. Chatterjee, P. Diaconis, Estimating and understanding exponential random graph models, Ann. Statist. 41 (5) (2013)
2428-2461.
[14] S. Chatterjee, P. Diaconis, E. Meckes, Exchangeable pairs and Poisson approximation, Electron. Encyclopedia Probab.
(2004).

https://reader.elsevier.com/reader/sd/pii/S01956698193007947...A4B76B9F22CA639C33370242334F720DDAC8EFCOF47B17DFE4ABOBGGEFE6G Page 25 of 27



Elsevier Enhanced Reader

[15]
[16]

[17]
[18]

[19]
[20]
[21]
[22]
[23]

[24]
[25]

https://reader.elsevier.com/reader/sd/pii/S01956698193007947...A4B76B9F22CA639C33370242334F720DDAC8EFCOF47B17DFE4BOBGGEFEG

B.B. Bhattacharya and S. Mukherjee / European Journal of Combinatorics 81 (2019) 328-353 353

S. Chatterjee, S.R.S. Varadhan, The large deviation principle for the Erdds-Rényi random graph, European J. Combin.
32 (7) (2011) 1000-1017.

A. DasGupta, The matching birthday and the strong birthday problm: a contemporary review, J. Statist. Plann.
Inference 130 (2005) 377-389.

P. Diaconis, F. Mosteller, Methods for studying coincidences, ]. Amer. Statist. Assoc. 84 (408) (1989) 853-861.

F.M. Dong, KM. Koh, K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific, Publishing
Company, 2005.

X. Fang, A universal error bound in the CLT for counting monochromatic edges in uniformly colored graphs, Electron.
Commun. Probab. 20 (2015) 1-6, Article 21.

J.H. Friedman, L.C. Rafsky, Multivariate generalizations of the Wolfowitz and Smirnov two-sample tests, Ann. Statist.
7 (1979) 697-717.

S.D. Galbraith, M. Holmes, A non-uniform birthday problem with applications to discrete logarithms, Discrete Appl.
Math. 160 (10-11) (2012) 1547-1560.

T.R. Jensen, B. Toft, Graph Coloring Problems, in: Wiley-Interscience Series in Discrete Mathematics and Optimization,
1995.

T.R. Jensen, B. Toft, Unsolved graph coloring problems, in: L. Beineke, R. Wilson (Eds.), Topics in Chromatic Graph
Theory, in: Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2015, pp. 327-357.

L. Lovasz, Large Networks and Graph Limits, in: Colloquium Publications, vol. 60, 2012.

M. Nandi, D.R. Stinson, Multicollision attacks on some generalized sequential hash functions, IEEE Trans. Inform.
Theory 53 (2) (2007) 759-767.

7/3/19, 1:18 AM

Page 26 of 27



Elsevier Enhanced Reader 7/3/19, 1:18 AM

https://reader.elsevier.com/reader/sd/pii/S01956698193007947...AA4B76B9F22CA639C33370242334F720DDAC8EFCOF47B17DFE4BOB66EFEG Page 27 of 27



