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Abstract. We prove the existence of the persistence exponent

logλ := lim
n→∞

1

n
logPμ(X0 ∈ S, . . . ,Xn ∈ S)

for a class of time homogeneous Markov chains {Xi}i≥0 taking values in a Polish space, where S is a Borel measurable set and μ is
an initial distribution. Focusing on the case of AR(p) and MA(q) processes with p,q ∈ N and continuous innovation distribution, we
study the existence of λ and its continuity in the parameters of the AR and MA processes, respectively, for S =R≥0. For AR processes
with log-concave innovation distribution, we prove the strict monotonicity of λ. Finally, we compute new explicit exponents in several
concrete examples.

Résumé. Nous démontrons l’existence de l’exposant de persistance

logλ := lim
n→∞

1

n
logPμ(X0 ∈ S, . . . ,Xn ∈ S)

pour une classe de chaines de Markov {Xi}i≥0 homogènes en temps avec valeurs dans un espace Polonais, où S est un ensemble
Borélien et μ est une distribution initiale. En nous concentrant sur le cas de processus de type AR(p) ou MA(q) avec p,q ∈ N et une
distribution d’innovation continue, nous étudions l’existence de l’exposant λ et sa continuité par rapport au paramètres des processus
AR et MA, pour S = R≥0. Pour des processus AR ayant une distribution d’innovations qui est log-concave, nous démontrons la
monotonicité stricte de λ. Finalement, nous calculons explicitement les exposants dans quelques exemples concrets.
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1. Introduction

Let {Xi}i≥0 be a time homogenous Markov chain on a Polish space with transition kernel P(x,dy). For a given Borel
measurable set S, we are interested in the asymptotics of the persistence probability

pn(P,S,μ) := Pμ(Xi ∈ S,0 ≤ i ≤ n) =
∫

Sn+1
P(xi,dxi+1)μ(dx0),

where μ is the initial distribution, i.e. the law of X0. We stress that we shall be particularly interested in non-compact S.
We will be interested in the existence of the persistence exponent λ = λ(P,S,μ), defined as

logλ(P,S,μ) := lim
n→∞

1

n
logpn(P,S,μ) (1.1)

and its continuity and monotonicity properties in parameters of the kernel.
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The asymptotics of persistence probabilities for not necessarily Markov processes has received both classical and
recent interest in probability theory and theoretical physics. For recent surveys on persistence probabilities we refer the
reader to [7] for a theoretical physics point of view and to [4] for a review of the mathematical literature. We note
in passing that outside the literature on Markov processes, a big component of the literature on persistence is that for
Gaussian processes, with links in the stationary case to their spectral properties (see [12,13,15–17] and references therein
for some recent developments in this area).

Our approach exploits the Markovian structure and relates the persistence exponent to an eigenvalue of an appropriate
operator, via the Krein–Rutman theorem. Such ideas have been extensively employed to study general versions of the
persistence problem for Markov processes, under the name of quasi-stationary distributions (see Tweedie [26,27], and for
more recent work, see e.g. [8,9,24]). We work under somewhat different assumptions than is typical in that literature, for
the sake of the applications that we have in mind, which are MA (moving average) processes and AR (auto regressive)
processes of finite order (to be defined later). In particular, we do not assume that the operator is irreducible; and much of
our effort lies in deriving the existence of the persistence exponent and its properties directly in terms of the kernel. The
quasi-stationary approach developed in [26,27] shows, under assumptions that are not always satisfied in the examples
that we consider, the equivalence of the exponent’s existence and properties of the eigenvalue equation determined by PS

(c.f. (1.3) for the definition of PS ). One of our key observations is that, even in very natural examples as in Section 5,
we often need to work not with PS but rather with a modification of it. In addition, the existing literature is focused on
persistence exponents for Dirac initial conditions, whereas we in general require the initial distribution μ to charge all
open sets. If the operator PS is assumed to be irreducible, then all our results apply to degenerate initial distributions.
Even in the irreducible case, the persistence exponent need not exist for general initial distributions; see Proposition 2.5
for an example where the persistence exponent exists and is universal if the initial distribution is an atom, but does not
need to exist for general initial distributions.

A more detailed study of persistence for AR processes of order 1 is provided by the very recent paper [18]. See also
the works [5,6], where the author studies persistence of AR processes for general innovation distributions with orders
{1,2}. Of relevance is the recent work [8], that gives general criteria for convergence in total variation norm to a quasi-
stationary distribution, for continuous time Markov processes. We do note that in our general setup, we cannot verify
their conditions. In general, it is not clear that the existence of the persistence exponent, even under our conditions, would
imply the existence of a Yaglom limit, i.e. of a quasi-limiting distributions. Also related to our persistence problem is
the study of the population size in critical branching processes, see e.g. [2], also see [21] for a recent work concerning
Yaglom limits in this context.

One upshot of our approach is a study of monotonicity and continuity properties of the persistence exponent in pa-
rameters of the kernel P . We illustrate this in the case of MA processes and AR processes, where the kernel (and thus
the persistence exponent) depends on the coefficient vector. In the setting of AR processes, we derive a monotonicity
lemma (Lemma 5.3) that might be of independent interest. As an application, we prove strict monotonicity of the persis-
tence exponent for AR(p) processes with log concave innovation distributions. Finally, we demonstrate the strength of
our approach by computing a number of new persistence exponents in concrete examples by solving the corresponding
eigenvalue equation.

The outline of the paper is as follows: Section 1.1 contains our main abstract existence result. The short and technical
Section 1.2 contains an abstract monotonicity lemma and a continuity lemma. The abstract framework is then applied in
Section 2 to moving-average (MA) processes and auto-regressive (AR), where existence of the exponent, continuity of
the exponent, (strict) monotonicity results, and the question whether the exponent is degenerate are discussed. Finally,
Section 3 contains a number of concrete cases where we are able to solve the eigenvalue equation, i.e. to find the leading
eigenvalue explicitly. Sections 4–6 are devoted to the proofs corresponding to the former three topics, respectively.

1.1. Existence of the exponent

We begin with a definition. Throughout, ‖g‖∞ denotes the sup norm of a function g on S.

Definition 1.1. Let B(S) denote the set of all bounded measurable functions on S, and let Cb(S) ⊂ B(S) denote the space
of continuous bounded functions on S equipped with the sup norm. For a bounded linear operator K mapping B(S) to
itself, define the operator norm

‖K‖ := sup
g∈B(S):‖g‖∞≤1

‖Kg‖∞,

and the spectral radius

λ(K) := lim
n→∞

∥∥Kn
∥∥1/n

. (1.2)
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Note that the limit in (1.2) exists by sub-additivity, and that λ(K) ≤ ‖K‖. Note also that pn(P,S,μ) = ∫
S
P n

S 1(x) ×
μ(dx), where PS is the linear operator on B(S) defined by[

PS(g)
]
(x) :=

∫
S

g(y)P (x,dy), x ∈ S, (1.3)

while, for comparison, the spectral radius satisfies

λ(P,S) := λ(PS) = lim
n→∞

(
sup
x∈S

P n
S 1(x)

)1/n

.

We recall that an operator K from Cb(S) to itself is called compact if for any sequence {gn}n≥1 in Cb(S) with ‖gn‖∞ ≤
1 one finds a subsequence {nk}k≥1 such that {Kgnk

}k≥1 converges in sup norm.

Theorem 1.2. Assume the following conditions:

(i) K is a non-negative linear operator which maps Cb(S) into itself, and Kk is compact for some k ≥ 1.
(ii) μ is a probability measure such that μ(U) > 0 for any non empty open set U ⊆ S.

Then,

lim
n→∞

1

n
log

(∫
S

Kn1(x)μ(dx)

)
= logλ(K). (1.4)

Further, if λ(K) > 0, then λ(K) is the largest eigenvalue of the operator K , the corresponding eigenfunction ψ ∈ Cb(S) is
non-negative, and there exists a bounded, non-negative, finitely additive regular measure m on S which is a left eigenvector
of K corresponding to the eigenvalue λ(K), i.e.∫

S

m(dx)

∫
S

K(x,dy)f (y) = λ(K)m(f ), f ∈ Cb(S).

Remark 1.3.

(a) Replacing K by PS in Theorem 1.2 yields a sufficient condition for the existence of a universal persistence expo-
nent for all initial conditions μ satisfying condition (ii). As we will see in Section 2, this is not always the best choice.

(b) The assumption of compactness of Kk for some k (rather than the compactness of K itself) is, on the one hand,
sufficient for the proof to go through and, on the other hand, necessary for dealing with some concrete examples. For
example, the operator PS related to MA(q) processes is typically not compact, whereas P

q+1
S is compact.

(c) The left eigenvector m in Theorem 1.2 is only finitely additive. This is a consequence of the fact that S can be (and
typically is, in our applications) non-compact. This complicates some of the following arguments. For example, the proof
of Proposition 3.4 would be immediate if m were a measure.

1.2. Properties of exponents

We begin with a definition.

Definition 1.4. Suppose S is equipped with a partial order ≤S . Let B+,>(S) denote the class of bounded, non-negative,
non-decreasing (in the sense of this partial order) measurable functions on S.

A non-negative bounded linear operator K on B(S) is said to be non-decreasing with respect to the partial order ≤S ,
if K maps B+,>(S) to itself.

The following lemma gives a sufficient condition for comparing λ(K1) and λ(K2) for two bounded non-negative linear
operators K1, K2.

Lemma 1.5. Let K1 and K2 be two bounded non-negative linear operators on B(S), such that the following conditions
hold:

(i) There exists a non-negative measurable function h on S such that [K1(g)](x) ≥ h(x)[K2(g)](x) for any x ∈ S,
g ∈ B+,>(S).

(ii) K1 is non-decreasing on S.

Then for any g ∈ B+,>(S) we have Kn
1 (g) ≥ Kn

2,h(g), where [K2,h(g)](x) := h(x)[K2(g)](x).
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The next lemma, relating the continuity of exponents to continuity in operator norm, is useful when studying the
continuity of exponents.

Lemma 1.6. For every 1 ≤ � ≤ ∞ let K� be a bounded linear operator on B(S). If lim�→∞ ‖K� − K∞‖ = 0, then
lim�→∞ λ(K�) = λ(K∞).

2. Results for MA and AR processes

In this section we consider our two main examples, moving-average processes and auto regressive processes.

2.1. Moving average processes

Let {ξi}i≥−q be a sequence of i.i.d. random variables from a continuous distribution function F . For a coefficient vector
a := (a1, . . . , aq) ∈R

q define the moving average (MA(q)) process {Zi}i≥0 by setting

Zi := ξi +
q∑

j=1

aj ξi−j , i = 0,1,2, . . . .

Define the operator K mapping Cb(R
q) to itself by

Kg(x1, . . . , xq) =
∫

y+∑q
j=1 aj xq+1−j >0

g(x2, . . . , xq, y)F (dy). (2.1)

Theorem 2.1. For all MA(q) processes with P(Z0 ≥ 0) < 1, there is a βF (a) ∈ [0,1) so that

lim
n→∞

1

n
logP

(
min

0≤i≤n
Zi ≥ 0

)
= logβF (a). (2.2)

Further, if βF (a) > 0 then βF (a) is the largest eigenvalue of the operator K defined in (2.1), and the corresponding
eigenfunction ψ(·) is non-negative and continuous.

The next theorem establishes the continuity of the MA(q) persistence exponent.

Theorem 2.2. In the setting of Theorem 2.1, the function a 
→ βF (a) is continuous on R
q .

Theorem 2.1 shows that βF (a) ∈ [0,1). As noted in [20,23], for the particular case q = 1 and a1 = −1 and any
innovation distribution with a continuous density, we have

P

(
min

0≤i≤n
Zi ≥ 0

)
= P(ξ−1 < ξ0 < · · · < ξn) = 1

(n + 2)! , (2.3)

and so βF (−1) = 0. The next proposition gives a necessary and sufficient condition for βF (a) > 0.

Proposition 2.3. Suppose that {Zi}i≥0 is a MA(q) process such that P(ξ1 > 0) > 0, P(ξ1 < 0) > 0. Then βF (a) > 0 if
and only if

∑q

j=1 aj �= −1.

2.2. Auto-regressive processes

Let {ξi}i≥p be a sequence of i.i.d. random variables of law F possessing a density function φ(·) with respect to the
Lebesgue measure. Let a := (a1, . . . , ap) ∈ R

p be a vector, called coefficient vector. Given Z0 := (Z0, . . . ,Zp−1) ∈ R
p

independent of the sequence {ξi}, we define an AR(p) process {Zi}i≥p by setting

Zi :=
p∑

j=1

ajZi−j + ξi, i ≥ p.
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The law of Z0 is denoted by μ and called the initial distribution. Furthermore, let K : B([0,∞)p) → B([0,∞)p) be
defined by

Kψ(x1, . . . , xp) :=
∫

y+∑p
j=1 aj xp+1−j >0

ψ

(
x2, . . . , xp, y +

p∑
j=1

ajxp+1−j

)
φ(y)dy. (2.4)

Under the above assumptions, K maps Cb([0,∞)p) to itself.
The behavior of the persistence probabilities of AR processes is surprisingly rich. The recent work [11] studies AR

processes with a Gaussian innovation density, uncovering a rich structure of varying rates of persistence decay from
exponential to stretched exponential, polynomial and constant. On the contrary, our approach is mostly equipped to
handle the case when the persistence decay is exponential, so we concentrate on a part of this spectrum. One advantage
of our approach is that it also gives the existence of a persistence exponent, which, to the best of our understanding, does
not follow from [11].

In this paper we treat two particular sub parameter regimes while studying persistence exponents for the AR(p)

process, namely a ≤ 0 and {a ∈ R
p : {∑p

i=1 |ai | < 1}. The behavior of the operator is somewhat different in these two
regimes, so we have to treat them separately.

Theorem 2.4. Fix p ∈ N, a ≤ 0, an innovation density φ(·), initial distribution μ satisfying μ(U) > 0 for all open
U ∈ R

p
+, and let {Zi}i≥0 be the associated AR(p) process.

(a) There is a θF (a) ∈ [0,1], independent of μ, such that

lim
n→∞

1

n
logPμ

(
min

0≤i≤n
Zi ≥ 0

)
= log θF (a).

Further, if θF (a) > 0, then θF (a) is the largest eigenvalue of the operator K from (2.4), viewed as an operator
mapping Cb([0,∞)p) to itself. The corresponding eigenvector ψ is non-negative and continuous.

(b) If PF (ξ1 > 0) > 0 then θF (a) > 0, and if PF (ξ1 > 0) < 1 then θF (a) < 1.
(c) If a(k) is a sequence of vectors in (−∞,0]p converging to a and ap < 0, then limk→∞ θF (a(k)) = θF (a).

As the next proposition shows, the persistence exponent may not exist for some initial distributions, if the coefficient
vector a in Theorem 2.4 is allowed to have positive entries.

Proposition 2.5. Suppose {Zi} is an AR(1) process with innovation distribution F =N (0,1), and a1 ∈ [0,1).

(a) If the initial distribution is N := N (0,1/(1 − a2
1)), then the exponent θF (a1,N ) defined by

log θF (a1,N ) := lim
n→∞

1

n
logP

(
min

0≤i≤n
Zi ≥ 0

)
exists, belongs to (0,1), and is continuous as a function of a1.

(b) If the initial distribution μ satisfies

lim sup
M→∞

1

logM
logPμ(Z0 > M) = 0, (2.5)

lim inf
M→∞

1

logM
logPμ(Z0 > M) = −∞, (2.6)

then there exist sequences {mk}k≥1 and {nk}k≥1 such that

lim
k→∞

1

mk

logP
(

min
0≤i≤mk

Zi ≥ 0
)

= 0, (2.7)

lim
k→∞

1

nk

logP
(

min
0≤i≤nk

Zi ≥ 0
)

= log θF (a1,N ), (2.8)

where θF (a1,N ) is as in part (a). In particular, the limit

lim
n→∞

1

n
logP

(
min

0≤i≤n
Zi ≥ 0

)
does not exist for any a1 ∈ (0,1).
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(c) If μ = δx0 for some x0 > 0, then the exponent θF (a1, δx0) defined by

log θF (a, δx0) := lim
n→∞

1

n
logP

(
min

0≤i≤n
Zi ≥ 0

)
exists, and equals θF (a1,N ) of part (a).

It follows that the AR(1) operator K = PS with a1 ∈ (0,1) and F = N (0,1) is no longer compact on Cb([0,∞)), as
otherwise Theorem 1.2 would be applicable with K = PS , giving the existence of an exponent in part (b). On the other
hand, there does exist a universal exponent for initial distributions consisting of a single atom. This motivates our focus
in this paper on studying nonatomic initial distributions. It may be possible to weaken the assumption that the initial
distribution puts mass on all open sets. In particular, one may be able to adapt the technique used in the recent work
[8], and work with a weighted sup norm as opposed to the usual sup norm considered in this paper. It is however not
clear whether the Harnack condition used in [8] holds for AR processes, particularly without extra assumptions on the
innovation density.

In order to derive an existence result for situations where the operator PS is not compact, one needs to make a judicious
choice of the operator K in Theorem 1.2. This requires additional assumptions on the initial measure and innovation. We
focus below on the contractive case

∑p

j=1 |aj | < 1.

Theorem 2.6. Fix p ∈ N, parameters a satisfying
∑p

j=1 |aj | < 1, an innovation density φ(·), an initial distribution μ

satisfying μ(U) > 0 for all open U ∈ R
p
+, and let {Zi}i≥0 be the associated AR(p) process. Further assume that there

exists δ > 0 such that

Eμ

[
exp

{
δ

p−1∑
j=0

Zj

}
1{min0≤i≤p−1 Zi≥0}

]
< ∞ (2.9)

and

lim sup
|t |→∞

1

|t | logφ(t) < 0. (2.10)

(a) There is a θF (a) ∈ [0,1], independent of μ, such that

lim
n→∞

1

n
logPμ

(
min

0≤i≤n
Zi ≥ 0

)
= log θF (a).

Further, if θF (a) > 0, then θF (a) is an eigenvalue of the operator K on Cb([0,∞)p) defined by (2.4). The corre-
sponding eigenfunction ψ is non-negative and continuous.

(b) If PF (ξ1 > 0) > 0 then θF (a) > 0, and if PF (ξ1 > 0) < 1 then θF (a) < 1.
(c) The function a 
→ θF (a) is continuous on the set

∑p

j=1 |aj | < 1.

As mentioned before, the proof of Theorem 2.6 employs a modified version of the operator PS , which now turns out
to be compact if

∑p

j=1 |aj | < 1. The motivation behind the modification of the operator borrows from [3,5,22], where a
similar strategy was used to deal with AR(1) processes with Gaussian innovations starting at stationarity. An equivalent
proof of Theorem 2.6 might be obtained by replacing the sup norm topology on Cb([0,∞)p) by a weighted sup norm
with geometrically growing weights, which ensures that PS is compact with respect to this new topology.

We also note that the assumption of existence of a finite exponential moment for the initial distribution is only needed
for the upper bound, in the sense that even if (2.9) is removed, one can still show that

lim inf
n→∞

1

n
logP

(
min

0≤i≤n
Zi > 0

)
≥ log θF (a),

where θF (a) is the universal exponent from Theorem 2.6. Only the upper bound may fail here without (2.9), as shown in
Proposition 2.5.
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2.2.1. Strict monotonicity of the exponent
If we restrict a to the non negative orthant [0,∞)p , a simple coupling argument shows that for any initial distribution
μ the function a 
→ P

a(min0≤i≤n Zi ≥ 0) is monotonically non-decreasing in a. This implies that the exponent θF (a,μ)

with initial distribution μ is non-decreasing in a ∈ [0,∞)p , provided it exists. Note however that if in Proposition 2.5, the
limit in (2.6) equals 0, then the same proof shows that the corresponding exponent θF (a1,μ) equals 0 for all a1 ∈ (0,1),
and consequently the function a1 
→ θF (a1,μ) is not strictly monotone.

Our next theorem shows that if F has a log concave density on R and the initial distribution μ has finite exponential
moment, then the exponent θF (a,μ) is free of μ, and the map a 
→ θF (a) is strictly increasing on the set {a ≥ 0 :∑p

j=1 aj < 1}. The exponential decay of log concave densities ensures that (2.10) holds, and so Theorem 2.6 guarantees
the existence of a non-trivial exponent which is free of the initial distribution μ.

Theorem 2.7. Assume that φ is a strictly positive log concave density over R, that a ≥ 0,
∑p

j=1 aj < 1, and that μ

satisfies (2.9). Then b ≥ a with b �= a implies θF (b) > θF (a).

We complete the picture on the positive orthant through the next proposition, which states that the persistence exponent
θF (a) = 1 for all a ≥ 0 such that

∑p

j=1 aj > 1, for any innovation distribution F .

Proposition 2.8. Assume that a ≥ 0 and
∑p

j=1 aj > 1. If the initial distribution satisfies μ((0,∞)p) > 0, and the inno-
vation density satisfies P(ξ1 > 0) > 0, then θF (a,μ) = θF (a) = 1.

Proposition 2.8, together with Theorems 2.6 and 2.7, gives an almost complete picture in terms of monotonicity on
the positive orthant. The function a 
→ θF (a,μ) is continuous and non-decreasing on {a :∑p

j=1 aj < 1}, and identically

equal to 1 on the set {a :∑p

j=1 aj > 1}. If further the innovation density is log concave and the initial distribution has

finite exponential moment, then the exponent is strictly increasing on {a :∑p

j=1 aj < 1}. In the critical case, the exponent
is usually one, as shown in some specific examples in [6,11].

2.2.2. Positivity of the exponent
Part (b) of Theorem 2.4 and Theorem 2.6 give conditions ensuring that the exponent is non-trivial, i.e. the persistence
probability decays at an exponential rate. The next proposition generalizes this to show that no matter what the coefficient
vector a may be, the exponent can never be 0, i.e. the persistence probability can never decay at a super exponential rate.

Proposition 2.9. Fix p ∈ N, parameters a, an innovation distribution such that 0 is an interior point of its support, and
μ satisfying μ((0, δ)p) > 0 for every δ > 0. Let {Zi}i≥0 be the associated AR(p) process. Then,

lim inf
n→∞

1

n
logP

(
min

0≤i≤n
Zi ≥ 0

)
> −∞.

In particular, if θF (a,μ) exists then it must be positive.

Remark 2.10. One cannot dispense completely of the assumptions in Proposition 2.9. Indeed, concerning the condition
on initial distribution, when p = 1, a1 = − 1

2 , μ((2,4))) = 1 and PF ((0,1)) = 1, one sees that Z0 ≥ 2 forces Z1 =
− 1

2Z0 + ξ1 < 0, and so θF (a1,μ) = 0. On the other hand, concerning the condition on the innovation distribution, if

p = 1, a1 = 1, PF ((−1,−2)) = 1 and μ((x,∞)) = e−x2
for all x > 0, one obtains that P(min0≤i≤n Zi ≥ 0) ≤ P(Z0 ≥

n) = e−n2
, and so again θF (a1,μ) = 0.

3. Exponents for concrete cases

Using our operator approach, we can compute the persistence exponent in a number of concrete examples.

3.1. MA(1) processes

We first consider MA(1) processes, starting with uniform innovation density.

Proposition 3.1. Let {Zi}i≥0 be a MA(1) process with a1 = 1 and innovation density φ = (a + b)−11(−a,b), where
a, b > 0.
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• If a ≥ b then

P

(
min

0≤i≤n
Zi ≥ 0

)
=
(

4b

π(a + b)

)n+o(n)

.

• If a < b then

P

(
min

0≤i≤n
Zi ≥ 0

)
= λn+o(n)

where λ is the largest real solution to the equation

tan

(
a

(a + b)λ

)
= 1 − (1 − 2a/(a + b))/λ

1 + (1 − 2a/(a + b))/λ
. (3.1)

For a = b in Proposition 3.1, one obtains βF (1) = 2/π . The next theorem shows that for continuous symmetric inno-
vation distributions this value is universal.

Theorem 3.2. Let {Zi}i≥0 be a MA(1) process with a1 = 1 and symmetric innovation density. Then

P

(
min

1≤i≤n
Zi ≥ 0

)
= P

(
min

0≤i≤n
ξi + ξi−1 ≥ 0

)
=
∑
k∈Z

2

(π/2 + 2πk)n+2
=
(

2

π

)n+o(n)

.

Theorem 3.2 first appears in [23], where the proof technique is different.
Proposition 3.3 below shows that the universality in Theorem 3.2 does not extend to discrete distributions. In fact, for

discrete innovation distributions F , there can be non-trivial differences between the two quantities

P

(
min

0≤i≤n
Zi > 0

)
and P

(
min

0≤i≤n
Zi ≥ 0

)
.

Indeed, we have the following proposition, whose proof is elementary and left to the reader.

Proposition 3.3. Let {Zi}i≥0 denote an MA(1) process with a1 = 1 and Rademacher innovations, i.e. ξi equal ±1 with
probability 1/2. Then

P

(
min

0≤i≤n
Zi > 0

)
= (1/2)n+2,

while

P

(
min

0≤i≤n
Zi ≥ 0

)
=
(

1

2
+ 1√

5

)(
1 + √

5

4

)n+1

+
(

1

2
− 1√

5

)(
1 − √

5

4

)n+1

.

Our final MA example considers MA(1) processes with exponential innovation distribution.

Proposition 3.4. Let {Zi}i≥0 denote an MA(1) process with a1 ∈ (−1,0) and standard exponential innovations. Then

P

(
min

0≤i≤n
Zi ≥ 0

)
= (1 + a1)

n+o(n).

3.2. AR(1) processes

We now consider persistence exponent for AR(1) processes with uniformly distributed innovations.

Proposition 3.5. Let {Zi}i≥0 be an AR(1) process with a1 = −1, arbitrary initial distribution μ, and with innovation
density φ = (a + b)−11(−a,b), where a, b > 0. Then

P

(
min

0≤i≤n
Zi ≥ 0

)
=
(

2b

π(a + b)

)n+o(n)

.
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Our final example concerns exponential innovations.

Proposition 3.6. Let {Zi}i≥0 be an AR(1) process with a1 < 0, arbitrary initial distribution μ, and standard exponential
innovations. Then

P

(
min

0≤i≤n
Zi ≥ 0

)
=
(

1

1 − a1

)n−1

Eea1Z01{Z0≥0}.

4. Proof of the results of Section 1

Proof of Theorem 1.2. The upper bound is simple: using that 1(·) ∈ Cb(S), we obtain from (1.2) that∫
S

[
Kn(1)

]
(x)μ(dx) ≤ sup

x∈S

[
Kn1

]
(x) = ∥∥Kn(1)

∥∥∞ ≤ λ(K)n+o(n).

We turn to the lower bound. We may and will assume that λ := λ(K) > 0 since otherwise there is nothing left to prove.
Note that Cb(S) equipped with the sup norm ‖g‖∞ := supx∈S |g(x)| is a Banach space (even if S is not compact, see
[14], p. 257). Thus denoting by Kk : Cb(S) 
→ Cb(S) the k-fold composition of K (note that we consider Kk acting on the
smaller space Cb(S)), by assumption (i), Kk is a compact operator. Further,

lim
n→∞

(∥∥(Kk
)n∥∥)1/n =

(
lim

n→∞
(∥∥Knk(1)

∥∥∞
) 1

kn

)k = λ(K)k > 0,

and so an application of the Krein–Rutman theorem (see [10, Theorem 19.2] and [1, Problem 7.1.9]) yields the existence
of a non-negative continuous function ψ̃ ∈ Cb(S), ψ̃ �= 0, such that

Kkψ̃(x) = λkψ̃(x), ∀x ∈ S.

Setting

ψ(x) :=
k−1∑
a=0

λa
[
Kk−1−a(ψ̃)

]
(x),

we note that ψ ∈ Cb(S). Also note that ψ(x) ≥ λk−1ψ̃(x), and so ψ is non-zero and non-negative. Finally, a telescopic
cancellation gives

Kψ − λψ =
k−1∑
a=0

λaKk−a(ψ̃) −
k−1∑
a=0

λa+1Kk−1−a(ψ̃) = Kkψ̃ − λkψ̃ = 0,

and so Kψ = λψ . Thus, setting c := ‖ψ‖∞ > 0, we obtain (using that K preserves the order)

[
Kn(1)

]
(x) ≥ 1

c

[
Kn(ψ)

]
(x) = 1

c
λnψ(x).

Integrating the last inequality with respect to μ gives∫
S

[
Kn(1)

]
(x)μ(dx) ≥

∫
S
ψ(x)μ(dx)

c
λn.

Since
∫
S
ψ(x)μ(dx) > 0 by assumption (ii) on μ, the lower bound in (1.4) follows at once.

Finally, the fact that λ = λ(K) is the largest eigenvalue of K follows from the fact that λk is the largest eigenvalue
of Kk , another consequence of the Krein–Rutman theorem. Also, existence of the left eigenvector m follows from [10,
Exercise 12, p. 236], along with the observation that the dual of Cb(S) is the space of bounded, finitely additive regular
measures on S, see [14, Theorem IV.6.2.2]. �

Proof of Lemma 1.5. Since g ∈ B+,>(S), using assumption (ii) we have Ki
1(g) ∈ B+,>(S) for all 1 ≤ i ≤ n − 1. Using

condition (i) K1(g) ≥ h(x)K2(g) = K2,h(g), which is the desired conclusion for i = 1. To verify the statement for
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general i, we proceed by induction:

Ki
1(g) = K1

(
Ki−1

1 (g)
)≥ h(x)K2

(
Ki−1

1 (g)
)= K2,h

(
Ki−1

1 (g)
)≥ Ki

2,h(g).

In the last display, we use the fact that Ki−1
1 (g) ∈ B+,>(S) along with condition (i) for the first inequality, and the

induction hypothesis along with the fact that K2,h preserves the ordering in the second inequality, which is true of any
non negative operator. �

Proof of Lemma 1.6. Since ‖K� − K∞‖ converges to 0, w.l.o.g. assume ‖K� − K∞‖ ≤ 1. Also w.l.o.g. by scaling all
operators involved if necessary, we can assume that ‖K∞‖ ≤ 1. Thus, for any f ∈ B(S) with ‖f ‖∞ ≤ 1 and δ ∈ (0,1/2)

arbitrary we have∥∥Kn
� f
∥∥∞ = ∥∥(K∞ + K� − K∞)nf

∥∥∞

≤ �nδ�
(

n

�nδ�
)∥∥Kn−�nδ�∞

∥∥+ 2n‖K� − K∞‖�nδ�.

On taking sup over f , invoking (1.2) along with Stirling’s approximation gives

λ(K�) ≤ max
(
δ−δ(1 − δ)1−δλ(K∞)1−δ,2‖K� − K∞‖δ

)
.

Letting � → ∞ followed by δ → 0 gives

lim sup
�→∞

λ(K�) ≤ λ(K∞),

which is the upper bound. The lower bound follows by a symmetric argument, reversing the roles of K� and K∞. �

5. Proofs of the results of Section 2

5.1. Proof of results in Section 2.1

Proof of Theorem 2.1. The MA(q) process is q-dependent, and so with m = � n
q+1� we have

P

(
min

0≤i≤n
Zi ≥ 0

)
≤ P

(
min

0≤i≤m
Zi(q+1) ≥ 0

)
= P(Z0 ≥ 0)m+1,

from which βF (a) < 1 follows.
The sequence {Zi}i≥0 is well defined and stationary. We now show existence of the exponent using Theorem 1.2 with

k = q + 1. Setting X(i) := (ξi−q, . . . , ξi) we have that {X(i)}i≥0 is a time homogenous Markov chain on R
q+1. Thus,

with

S :=
{

x : xq+1 +
q∑

j=1

ajxq+1−j > 0

}
,

the q + 1 fold operator P
q+1
S is given by[

P
q+1
S (g)

]
(x1, . . . , xq+1)

=
∫
Rq+1

g(xq+2, . . . , x2q+2)

2q+2∏
�=q+2

1x�+∑q
j=1 aj x�−j >0 dF(x�),

where F is the distribution function of the innovation distribution. Thus for any sequence {gn}n≥1 such that ‖gn‖∞ ≤ 1
we have∥∥P q+1

S (gn) − P
q+1
S (gm)

∥∥∞ ≤ ‖Hn − Hm‖∞,
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where

Hn(sq+2, . . . , s2q+1)

:=
∫
Rq+1

gn(xq+2, . . . , x2q+2)

2q+2∏
�=q+2

1
x�+s�+∑�−q−2

j=1 aj x�−j >0
dF(x�),

with s� :=∑q

j=�−q−1 ajx�−j for � ∈ [q + 2,2q + 1], and s2q+2 := 0. It thus suffices to show that Hn is Cauchy in sup
norm along a subsequence. To this end, we consider three sub cases depending on the value of s := (sq+2, . . . , s2q+1).

(a) If s� < −L for some � ∈ [q + 2,2q + 1] then

Hn(sq+2, . . . , s2q+1) ≤ P

(
ξ� +

�−q−2∑
j=1

aj ξ�−j > L

)
,

and so given ε > 0 there exists L = L(ε) < ∞ such that

sup
s∈Rq :minq+2≤�≤2q+1 s�<−L

Hn(s) ≤ ε. (5.1)

(b) If s ∈ R
q is such that for some r ∈ {1, . . . , q} the coordinates s�1 , . . . , s�r are in [−L,L], and the other coordinates

s�r+1 , . . . , s�q are larger than L, then setting Hn,�1,...,�r (s�1 , . . . , s�r ) to equal

∫
Rq+1

gn(xq+2, . . . , x2q+2)

r∏
k=0

1
x�k

+s�k +∑�k−q−2
j=1 aj x�k−j >0

2q+2∏
�=q+2

dF(x�)

we have

∣∣Hn(s0, . . . , sq) − Hn,�0,...,�r (s�0 , . . . , s�r )
∣∣≤ P

(
r⋃

k=0

{
ξ�k

+
�k−q−2∑

j=1

aj ξ�k−j < −L

})
,

and so again by choosing L large enough we can ensure that

sup
s∈Rq :s�k ∈[−L,L],1≤k≤r,s�k >L,r+1≤k≤q

∣∣Hn(s) − Hn,�0,...,�r (s�0 , . . . , s�r )
∣∣≤ ε. (5.2)

(c) If s ∈ R
q is such that s� ∈ [−L,L] for all � ∈ [q + 2,2q + 1], then we have

∣∣Hn(s) − Hn(t)
∣∣ ≤ P

({
min

q+2≤�≤2q+1
s� + ξ� +

�−q−2∑
j=1

aj ξ�−j > 0

}
�

{
min

q+2≤�≤2q+1
t� + ξ� +

�−q−2∑
j=1

aj ξ�−j > 0

})
,

where � is the symmetric difference between two sets. Since the right-hand side in the last display is continuous in the
arguments s, t over the compact set [−L,L]2q (due to the assumption of continuity of F ), and vanishes on the set s = t,
it follows that given η > 0 there exists δ = δ(η,L) such that whenever ‖s − t‖∞ < δ, we have |Hn(s) − Hn(t)| < η. In
particular, this means that Hn(·) is uniformly equicontinuous on [−L,L]q . By the Arzelà-Ascoli theorem, we have that
{Hn}n≥1 is compact with respect to sup norm topology on [−L,L]q , and so there exists a subsequence which is Cauchy in
sup norm. A similar argument applies to each of the functions Hn,�0,...,�r for all choices of r ∈ {1, . . . , q} and {�1, . . . , �r}
which are subsets of {q + 2, . . . ,2q + 1} of size r . Thus by going through subsequences, we may assume all the functions
Hn,�1,...,�r are Cauchy in sup norm on [−L,L]q .

Taking limits along the subsequence from step (c) gives and using (5.1) and (5.2) gives

lim sup
m,n→∞

sup
s∈Rq

∣∣Hn(s) − Hm(s)
∣∣≤ 2ε,

and so {Hn}n≥1 is Cauchy in sup norm on R
q . Thus it follows by an application of Theorem 1.2 that the operator PS

has largest eigenvalue βF (a). Finally note that [PS](g)(x0, . . . , xq) is by definition independent of x0, and so w.l.o.g. the
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eigenfunction ψ can be taken to be a function of q variables giving the eigenvalue equation

βF (a)ψ(x1, . . . , xq) =
∫

y+∑q
j=1 aj xq+1−j >0

ψ(x2, . . . , xq, y)dF(y) = [K(ψ)
]
(x1, . . . , xq),

where K is as defined in the theorem. Thus, K satisfies the desired eigenvalue equation.
Finally it remains to check condition (ii) in Theorem 1.2. To this end, setting A to be the support of F , X is a Markov

chain on Aq+1. Since sets of the form{
x ∈ Aq+1 : xj ∈ Uj ∩ A,0 ≤ j ≤ q

}
with {Uj ,0 ≤ j ≤ q} open sets in R form a base of the topology on Aq+1 and since

P(ξj ∈ Uj ∩ A,0 ≤ j ≤ q) =
q∏

j=0

P(ξj ∈ Uj ∩ A),

it suffices to show that P(ξ0 ∈ U ∩ A) > 0 for every open (in R) set U which intersects A; this follows at once from the
assumption of a continuous distribution function.

We have verified that the conditions of Theorem 1.2 hold; an application of the latter yields the existence of βF (a),
and hence completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. We recall the notation X(i) := (ξi−q, . . . , ξi) and set S = S(a) := {(x0, . . . , xq) | xq +∑q

i=1 ajxq−j > 0}.
Let {a(k)}k≥1 be a sequence of vectors in R

q converging to a. Then for any 1 ≤ m ≤ n setting Mn := � n
m+q

� and

Ij := [(j − 1)(m + q) + 1, (j − 1)(m + q) + m
]

for j ≥ 1,

we have

Pa(k) (Zi > 0,0 ≤ i ≤ n) ≤ Pa(k) (Zi > 0, i ∈ Ij ,1 ≤ j ≤ Mn)

=
Mn∏
j=1

Pa(k) (Zi > 0, i ∈ Ij ) = Pa(k) (Zi > 0,1 ≤ i ≤ m)Mn,

which upon taking log, dividing by n, and letting n → ∞ we obtain that

logλ(PS(a(k) )) ≤ 1

m + q
logPa(k) (Zi > 0,1 ≤ i ≤ m).

Letting k → ∞ and noting that the distribution of (Z1, . . . ,Zm) under a(k) converges to the distribution of (Z1, . . . ,Zm)

under a gives

lim sup
k→∞

logλ(PS(a(k) )) ≤ 1

m + q
logPa(Zi > 0,1 ≤ i ≤ m),

which upon letting m → ∞ gives lim supk→∞ λ(PS(a(k))) ≤ logλ(PS(a)), thus giving the upper bound.
We now turn to the lower bound. Fix M > 0, set SM = SM(a) := S(a) ∩ [−M,M]q+1, and invoke Theorem 2.1 to

obtain

Pa(k)

(
X(i) ∈ S,0 ≤ i ≤ n

)≥ Pa(k)

(
X(i) ∈ SM,0 ≤ i ≤ n

)= λ(PSM(a(k)))
n+o(n),

where PSM(·) is viewed as an operator on B([−M,M]q+1) (and not B(Rq+1)). This gives λ(PS(ak)) ≥ λ(PSM(ak)). From
this the lower bound will follow via Lemma 1.6 if we can show the following:

lim
k→∞‖PSM(a(k)) − PSM(a)‖ = 0, (5.3)

lim sup
M→∞

λ(PSM(a)) ≥ λ
(
PS(a)

)
. (5.4)
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To show (5.3), for any f ∈ B([−M,M]q+1) such that ‖f ‖∞ ≤ 1 we have∣∣(PSM(a(k))f − PSM(a)f )(x1, . . . , xq+1)
∣∣≤ P

(
A
(
a(k)

)
�A(a) | ξ� = x�,1 ≤ � ≤ q + 1

)
,

where � denotes symmetric set difference, and

A(a) :=
{

ξ� +
q∑

j=1

aj ξ�−j > 0, q + 2 ≤ � ≤ 2q + 2

}
.

Setting s�(a,x) :=∑q

j=�−q−1 ajx�−j for q + 2 ≤ � ≤ 2q + 2 we have

P
(
A
(
a(k)

)
�A(a) | ξ� = x�,1 ≤ � ≤ q + 1

)
= P

({
ξ� +

�−q−2∑
j=1

a
(k)
j ξ�−j + s�

(
a(k),x

)
> 0

}
�

{
ξ� +

�−q−2∑
j=1

aj ξ�−j + s�(a,x) > 0

})
.

Since a(k) converges to a we have that maxx∈[−M,M]q+1 |s�(a(k),x) − s�(a,x)| = 0, which along with the continuity of
distribution functions gives that the RHS above converges to 0 as k → ∞, uniformly in (x1, . . . , xq+1) ∈ [−M,M]q+1,
and so we have verified (5.3).

Proceeding to verify (5.4), fixing M,ε > 0 and invoking Theorem 2.1 there exists N := N(ε,M) < ∞ such that for
all n ≥ N we have

Pa
(
X(i) ∈ SM,0 ≤ i ≤ n

)≤ (λ(PSM(a)) + ε
)n

.

Thus with δ > 0 and � := �nδ� we have

Pa
(
X(i) ∈ S,0 ≤ i ≤ n

)
≤ Pa

(∃(is) ∈ [0, n]� : X(i) ∈ SM, i /∈ {i1, . . . , i�}
)

+ Pa
(∃(is) ∈ [0, n]n−� : X(is) /∈ SM,1 ≤ s ≤ �

)
, (5.5)

where [0, n]� is the set of all distinct integer tuples of size � with entries in [0, n]. Fixing an increasing sequence
(i1, . . . , i�) ∈ [0, n]� let js := is − is−1 for 1 ≤ s ≤ � with i0 := 0 we have

Pa
(
X(i) ∈ SM, i /∈ {i1, . . . , is}

)≤
∏

1≤s≤�:js−q≥N

Pa
(
X(i) ∈ SM,1 ≤ i ≤ js − q

)
≤ (λ(PSM(a)) + ε

)∑
s:js−q>N (js−q)

.

To estimate the exponent in the RHS above, first note that
∑�

s=1 js = n + 1 − � ≥ n − nδ, whereas
∑

s:js−q≤N js ≤
(q + N)� ≤ (q + N)nδ. Combining these two estimates gives∑

s:js−q>N

(js − q) ≥
∑

s:js−q>N

js − q� ≥ n − nδ − (2q + N)nδ,

which on using (5.5) gives

Pa
(
X(i) ∈ S,0 ≤ i ≤ n

)
≤ �nδ�

(
n + 1
�nδ�

)(
λ(PSM(a)) + ε

)n−nδ−(2q+N)nδ

+ Pa
(∃(is) ∈ [0, n]n−� : X(is) /∈ SM,1 ≤ s ≤ �

)
. (5.6)

To estimate the second term in the right hand side of (5.6) note that X(i) /∈ [−M,M]q+1 implies (q +1)
∑i

j=i−q |ξi | ≥ M ,
and so

P
(
X(is) /∈ SM,1 ≤ s ≤ �

)≤ P

(
n∑

i=−q

1
{|ξi | > M

}≥ M

q + 1

)
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≤ P

(
Bin
(
n + q + 1,P

(|ξ1| > M
))

>
n

q + 1
δ

)
,

which on taking log, dividing by n and letting n → ∞ followed by M → ∞ gives −∞ for every fixed δ > 0, and so does
not contribute. Thus, taking log, dividing by n and letting n → ∞ on both sides of (5.6) gives

lim
n→∞

1

n
logPa

(
X(i) ∈ S,1 ≤ i ≤ n

)≤ (1 − δ(1 + 2q + N)
)

log
(
λ(PSM(a)) + ε

)
.

On letting M → ∞ followed by δ → 0 in the above display gives

logλ(PS,a) ≤ lim inf
M→∞ log

(
λ(PSM(a)) + ε

)
,

which verfies (5.4) as ε > 0 is arbitrary, and hence completes the proof of the theorem. �

Proof of Proposition 2.3. We start with the “if” part. With a0 := 1, we have
∑q

j=0 aj �= 0. Assume
∑q

j=0 aj > 0 (the
case < 0 is analogous), and set

A :=
∑

j∈{0,...,q}:aj >0

aj > B :=
∣∣∣∣ ∑
j∈{0,...,q}:aj <0

aj

∣∣∣∣.
Since the distribution of ξ is continuous and P(ξ0 > 0) > 0, there exist x > 0, δ ∈ (0,

x(A−B)
B

) such that P(ξj ∈ (x, x +
δ)) > 0. This gives

Ax − B(x + δ) = x(A − B) − Bδ > 0,

and so

P

(
min

i∈{0,...,n}Zi > 0
)

≥ P
(
ξi ∈ (x, x + δ),−q ≤ i ≤ n

)
.

Indeed, to see this note that

Zi = ξi +
q∑

j=1

aj ξi−j > x
∑

j∈{0,...,q}:aj >0

|aj | − (x + δ)
∑

j∈{0,...,q}:aj <0

|aj | > 0.

The desired conclusion then follows on noting that P(ξi ∈ (x, x + δ)) > 0.
We continue with the “only if” part of the proposition. Define the numbers bi := −∑q

j=i+1 aj and the MA(q − 1)-

process Z̃i := ∑q−1
j=1 bj ξi−j + ξi for i ≥ −1. A short computation using the assumption

∑q

j=1 aj = −1 shows that

Zi = Z̃i − Z̃i−1 for all i ≥ 0. Thus,

P

(
min

0≤i≤n
Zi > 0

)
= P(Z̃0 < Z̃1 < · · · < Z̃n)

≤ P
(
Z̃kq < Z̃(k+1)q , k ∈ {0, . . . , �n/q�}).

Now note that the random variables {Z̃kq}k≥1 are independent (since {Z̃i}i≥1 is (q − 1)-dependent) and identically dis-
tributed (by the stationarity of Z̃). Thus, (2.3) shows that the last probability equals 1/(�n/q� + 1)! giving βF (a) = 0. �

5.2. Proof of the results of Section 2.2

Proof of Theorem 2.4. The proof is based on Theorem 1.2 with S := [0,∞)p ⊂R
p , K = PS and k = p, and consists in

checking the assumptions there, and in particular the compactness of Kp .
(a) If a = 0 then the process is i.i.d. for which all conclusions are trivial. Thus assume w.l.o.g. that a �= 0, and that

ap < 0 (otherwise we can reduce the value of p). Note that X(i) := (Zi−p+1, . . . ,Zi) is a Markov chain on R
p . Note that

[
P

p
S (g)

]
(x1, . . . , xp) =

∫
(0,∞)p

g(xp+1, . . . , x2p)

2p∏
�=p+1

φ

(
x� −

p∑
j=1

ajx�−j

)
dx�
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=
∫

(0,∞)p
g(xp+1, . . . , x2p)H

(
(x1, . . . , xp), (xp+1, . . . , x2p)

) 2p∏
�=p+1

dx�,

where

H
(
(x1, . . . , xp), (xp+1, . . . , x2p)

) :=
2p∏

�=p+1

φ

(
x� −

p∑
j=1

ajx�−j

)

for (x1, . . . , xp, xp+1, . . . , x2p) ∈ R
2p . If x� > L for some 1 ≤ � ≤ p, then for (x1, . . . , xp, xp+1, . . . , x2p) ∈ [0,∞)2p we

have

xp+� −
p∑

j=1

ajxp+�−j ≥ xp+� − apx� ≥ xp+� − apL,

and so given a sequence of functions {gn}n≥1 such that ‖gn‖∞ ≤ 1 we have

sup
x∈S:‖x‖∞>L

∣∣[P p
S (gn)

]
(x)
∣∣≤ 1 − F(−apL),

where we recall that F is the distribution function of the innovation density φ. Therefore, given ε > 0 there exists
L = L(ε) < ∞ such that

sup
x∈S:‖x‖∞>L

∣∣[P p
S (gn)

]
(x)
∣∣≤ ε. (5.7)

On the other hand, for x(1),x(2) ∈ [0,L]p we have∣∣[P p
S (gn)

](
x(1)

)− [P p
S (gn)

](
x(2)

)∣∣≤ ∫
Rp

∣∣H (x(1),y
)− H

(
x(2),y

)∣∣dy. (5.8)

Now given η > 0 there exists a non negative continuous integrable function φ̃ : R 
→R such that
∫
R

|φ(x)− φ̃(x)|dx < η,
which in particular implies

∫
R

φ̃(x)dx ≤ 1 + η. Using this, setting

H̃
(
(x1, . . . , xp), (xp+1, . . . , x2p)

) :=
2p∏

�=p+1

φ̃

(
x� −

p∑
j=1

ajx�−j

)

and using a telescopic argument we have∫
Rp

∣∣H(x,y) − H̃ (x,y)
∣∣dy

=
∫
Rp

∣∣∣∣∣
2p∏

�=p+1

φ

(
x� −

p∑
j=1

ajx�−j

)
−

2p∏
�=p+1

φ̃

(
x� −

p∑
j=1

ajx�−j

)∣∣∣∣∣
2p∏

�=p+1

dx�

≤
p∑

r=1

∫
Rp

[
p+r−1∏
�=p+1

φ

(
x� −

p∑
j=1

ajx�−j

) 2p∏
�=p+r+1

φ̃

(
x� −

p∑
j=1

ajx�−j

)

×
∣∣∣∣∣φ̃
(

xp+r −
p∑

j=1

ajxp+r−j

)
− φ

(
xp+r −

p∑
j=1

ajxp+r−j

)∣∣∣∣∣
2p∏

�=p+1

]
dx�

≤
p∑

r=1

(1 + η)p−rη

∫
Rr−1

p+r−1∏
�=p+1

φ

(
x� −

p∑
j=1

ajx�−j

)
p+r−1∏
�=p+1

dx�

=
p∑

r=1

(1 + η)p−rη ≤ ηp(1 + η)p. (5.9)
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Finally, using the continuity of φ̃ along with Scheffe’s Lemma, there exists a δ = δ(η,L) such that for all x(1),x(2) ∈
[0,L]p with ‖x(1) − x(2)‖∞ < δ we have∫

Rp

∣∣H̃ (x(1),y
)− H̃

(
x(2),y

)∣∣dy < η. (5.10)

Combining (5.8), (5.9), (5.10), we conclude that for any x(1),x(2) ∈ [0,L]p such that ‖x(1) − x(2)‖∞ < δ, we have∣∣[P p
S (gn)

](
x(1)

)− [P p
S (gn)

](
x(2)

)∣∣≤ η + 2ηp(1 + η)p.

Since η > 0 is arbitrary, it follows that the sequence {P p
S (gn)}n≥1 is uniformly equicontinuous on [0,L]p . Thus by the

Arzelà-Ascoli theorem, there exists a subsequence along which {P p
S (gn)}n≥1 is Cauchy in sup norm on [0,L]p . Taking

limits along this subsequence and using (5.7) gives

lim sup
m,n→∞

∥∥P p
S gn − P

p
S gm

∥∥∞ ≤ 2ε,

and so we have proved the existence of a convergent subsequence in sup norm on [0,∞), and thus the compactness of
Kp . An application of Theorem 1.2 then yields part (a).

(b) The fact that θF (a) > 0 follows from Proposition 2.9 along with the assumption that μ has full support, and
PF (ξ1 > 0) > 0. For the other inequality, for any non-negative function g ∈ B([0,∞)p) such that ‖g‖∞ ≤ 1 we have

PS(g)(x1, . . . , xp)

=
∫

y+∑p
j=1 aj xp+1−j >0

g

(
x2, . . . , xp, y +

p∑
j=1

ajxp+1−j

)
φ(y)dy

≤ P(ξ1 > 0)

and so θF (a) = λ(PS) ≤ ‖PS‖∞ ≤ P(ξ1 > 0) < 1.
(c) By assumption we have limk→∞ a

(k)
p = ap < 0, and so there exists δ > 0 such that a

(k)
p ≤ −δ for all k ≥ 1. Along

with (5.7), this gives∣∣P p

a(k),S
f (x) − P

p
a,Sf (x)

∣∣≤ 2
(
1 − F(δL)

)+ 2 sup
x∈[0,L]p

∥∥P p

a(k) (x, ·) − P
p
a (x, ·)∥∥TV,

which on taking a sup over f such that ‖f ‖ ≤ 1 and letting k → ∞ gives lim supk→∞ ‖P p

a(k),S
−P

p
a,S‖∞ ≤ 2(1−F(δL)).

Upon letting L → ∞ we have limk→∞ ‖P p

a(k),S
− P

p
a,S‖ = 0, which, using Lemma 1.6, gives the desired conclusion. �

The proof of Proposition 2.5 uses the next lemma, which is an adaptation of [12, Theorem 1.6] and [13, Lemma 3.1] for
discrete time Gaussian processes. Because of the discreteness of the involved processes, we are able to verify continuity
of the persistence exponent of any stationary Gaussian process (with non negative correlations) in its levels (c.f. (5.13)),
thereby removing one of the conditions of [12, Theorem 1.6].

Lemma 5.1. For all k ≥ 1 let {Zk(i)}i≥0 be a discrete time centered Gaussian sequence with non negative covariance
function Ak(·, ·), such that

lim
k→∞ sup

i≥0

∣∣Ak(i, i + τ) − A(τ)
∣∣= 0, for all τ ≥ 0, (5.11)

for some function A(·). Suppose further that

lim sup
k,τ→∞

sup
i≥0

logAk(i, i + τ)

log τ
< −1. (5.12)

Then for every r ∈ R we have

lim
k,n→∞

1

n
logP

(
min

0≤i≤n
Zk(i) > r

)
= lim

n→∞
1

n
logP

(
min

0≤i≤n
Z(i) > r

)
,

where {Z(i)}i≥0 is a centered stationary Gaussian sequence with covariance A(i − j).



Persistence exponents in Markov chains 1427

Proof. To begin note that the proof of the continuous case [12, Theorem 1.6] goes through verbatim in the discrete case
under (5.12) and the extra assumptions of [12, Theorem 1.6], namely that for every r ∈R we have

lim
ε↓0

lim
n→0

1

n
logP

(
min

0≤i≤n
Z(i) > r − ε

)
= lim

n→0

1

n
logP

(
min

0≤i≤n
Z(i) > r

)
; (5.13)

and that for every z ∈ R and positive integer M , we have

P

(
sup

0≤τ≤M

Z(τ) < z
)

≤ lim inf
k→∞ inf

i≥0
P

(
sup

0≤τ≤M

Zk(i + τ) < z
)

≤ lim sup
k→∞

sup
i≥0

P

(
sup

0≤τ≤M

Zk(i + τ) < z
)

(5.14)

≤ P

(
sup

0≤τ≤M

Z(τ) ≤ z
)
.

[12, Theorem 1.6] considers the case r = 0, but a similar argument applies for any r ∈ R. It thus remains to verify
these two extra conditions, of which (5.14) follows from (5.11). Proceeding to verify (5.13), fixing ε, δ > 0 and setting
� := �nδ� and intersecting with the set {|i ∈ [0, n] : Z(i) ∈ (r − ε, r]| > nδ} and its complement, we have

P

(
min

0≤i≤n
Z(i) > r − ε

)
(5.15)

≤ P

(
∃(is) ∈ [0, n]n−� : min

1≤s≤�
Z(is) > r

)
(5.16)

+ P(∃(is) ∈ [0, n]� : Z(is) ∈ (r − ε, r],1 ≤ s ≤ �)

≤
∑

(is )∈[0,n]n−�

P
(
Z(is) > r

)+ ∑
(is )∈[0,n]�

P(Z(is) > (r − ε, r],1 ≤ s ≤ �),

where [0, n]� is the set of all integer tuples in [0, n]�+1 with all entries distinct. For estimating the first term in the RHS of
(5.15), on the set {Z(is) ∈ (r − ε, r],0 ≤ s ≤ �} there must be at least �′ indices {j1, . . . , j�′ } with js − js−1 ≥ N , where
�′ ≥ �nδ�

N
, for any N ≥ 1. Thus, if B denotes the covariance matrix of {Z(j1), . . . ,Z(j ′

�)}, we have

�′
max
i=1

∑
j :j �=i

B(i, j) ≤ 2
∞∑

i=N

g(i),

where g is a summable function satisfying

sup
i≥0,k≥1

Ak(i, i + τ) ≤ g(τ)

for all τ ≥ 0, the existence of which is guaranteed by (5.12). By choosing N large enough we can ensure that

max
1≤i≤�′

∑
j :j �=i

B(i, j) ≤ B(i, i)

2
= A(0)

2
.

Consequently, by the Gershgorin Circle Theorem all eigenvalues of B lie within [A(0)/2,3A(0)/2]. This gives

P(Z(js) ∈ (r − ε, r],1 ≤ s ≤ �′)=
∫
(r−ε,r]�′ e

−z′B−1z/2 dz∫
R�′ e−z′B−1z/2 dz

≤
∫
(r−ε,r]�′ e

−z′z/3A(0) dz∫
R�′ e−z′z/A(0) dz

≤ 3�′/2
P(N

(
0,3A(0)/2

) ∈ (r − ε, r])�′

≤ 3
n+1

2 P(N
(
0,3A(0)/2

) ∈ (r − ε, r]) nδ
N .

Plugging this in the first term of the RHS of (5.15) we get the bound

(n + 1)(2
√

3)n+1
P(N

(
0,3A(0)/2

) ∈ (r − ε, r]) nδ
N ,
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which on taking log, dividing by n and letting n → ∞ followed by ε → 0 gives −∞, for every δ > 0 fixed. Thus this
term does not contribute to the limit. For estimating the second term in the RHS of (5.15), using the non negativity of the
correlation function along with Slepian’s inequality, we get

P

(
min

0≤s≤n−�
Z(is) > 0

)
≤ P(min0≤i≤n Z(i) > 0)

P(Z(0) > 0)nδ
.

This gives the bound

(n + 1)

(
n + 1
�nδ�

)
P(min0≤i≤n Z(i) > 0)

P(Z(0) > 0)nδ

for the second term in the RHS of (5.15). Taking log, dividing by n and letting n → ∞ followed by δ → 0, we conclude
that

lim
ε↓0

lim
n→∞

1

n
logP

(
min

0≤i≤n
Z(i) > r − ε

)
≤ lim

n→∞
1

n
logP

(
min

0≤i≤n
Z(i) > r

)
,

verifying (5.13), and hence completing the proof of the lemma. �

Proof of Proposition 2.5. (a) In this case {Zi}i≥0 is a stationary Gaussian sequence with non-negative summable corre-
lations, and the conclusions follow from Slepian’s Lemma along with sub-additivity.

(b) Note that (2.5) implies the existence of a sequence of positive reals {xk} diverging to +∞ such that Pμ(Z0 > xk) ≥
x

−εk

k , where {εk} is a positive sequence converging to 0. W.l.o.g., by replacing εk by max(εk,
1

logxk
) if necessary, we can

also assume that
√

εk logxk diverges to +∞. Setting mk := �√εk logxk� and fixing a1 ∈ (0,1), for any M < ∞, for all k

large enough we have

P

(
min

0≤i≤mk

Zi ≥ 0
)

≥ P
(
Z0 > xk, |ξi | ≤ M,1 ≤ i ≤ mk

)
.

Indeed, this is because on this set we have

Zi = ai
1Z0 +

i−1∑
j=0

a
j

1ξi−j > a
mk

1 xk − M

1 − a1

k→∞−→ ∞.

Therefore, for k large enough (depending on a1 and M)

P

(
min

0≤i≤mk

Zi ≥ 0
)

≥ P(Z0 > xk)P
(|ξ1| ≤ M

)mk ≥ x
−εk

k P
(|ξ1| ≤ M

)mk ,

implying that

lim inf
k→∞

1

mk

logP
(

min
0≤i≤mk

Zi ≥ 0
)

≥ logP
(|ξ1| ≤ M

)
.

Upon letting M → ∞, (2.7) follows.
Proceeding to verifying (2.8), use (2.6) to get the existence of a sequence of positive reals {yk}k≥1 diverging to +∞,

such that Pμ(Z0 > yk) ≤ y
−Nk

k , where {Nk} is a sequence of positive reals diverging to +∞. Set nk := �√Nk logyk�, and

for any δ > 0 set n′
k := � logyk−log δ

log(1/a1)
� to note that

P

(
min

0≤i≤nk

Zi ≥ 0
)

≤ P(Z0 > yk) + P

(
0 ≤ Z0 ≤ yk, min

1≤i≤nk

Zi≥0
)

≤ y
−Nk

k + P

(
min

0≤i≤nk−n′
k

Yi+n′
k
≥ − δ

)
, (5.17)

where Yi :=∑i
�=1 ai−�

1 ξ� for 1 ≤ i ≤ n, and we use the fact that n′
k < nk for all k large enough. Since the first term in the

RHS of (5.17) on taking log, dividing by nk and letting k → ∞ gives −∞, it suffices to consider the second term. To this
effect, note that the sequence {Yi+n′

k
}i≥0 is a Gaussian sequence with non negative covariance

Ak(i, i + τ) := aτ
1

(
1 + a2

1 + · · · + a
2(i+n′

k−1)

1

)
,
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which satisfies (5.11) of Lemma 5.1 with A(τ) := aτ
1 (1 − a2

1)−1. Also, (5.12) is immediate as well, and so by an applica-
tion of Lemma 5.1, for any r ∈ R we have the second term in the RHS of (5.17) satisfies

lim
k→∞

1

nk

logP
(

min
n′

k≤i≤nk

Yi≥r
)

= lim
n→∞

1

n
logPN

(
min

0≤i≤n
Z(i)≥r

)
. (5.18)

Using this with r = −δ along with (5.17) gives the upper bound in (2.8), upon letting δ → 0 and noting that (5.13)
holds for any centered stationary Gaussian process with non negative summable correlations, as shown in the proof of
Lemma 5.1.

To get the lower bound of (2.8), note that

P

(
min

0≤i≤nk

Zi ≥ 0
)

≥ P

(
Z0 ≥ 0, min

1≤i≤n′
k

Yi > 0, min
0≤i≤nk−n′

k

Yi+n′
k
> 0

)
≥ P

(
Z0 ≥ 0, min

1≤i≤n′
k

ξi > 0, min
0≤i≤nk−n′

k

Yi+n′
k
> 0

)
≥ P(Z0 ≥ 0)P(ξ1 > 0)n

′
kP

(
min

0≤i≤nk−n′
k

Yi+n′
k
> 0

)
, (5.19)

where the last inequality uses positive association. The lower bound of (2.8) follows from (5.19), on noting that the the
first two terms in (5.19) do not contribute to the limit, and the third term can be analyzed using (5.18) with r = 0.

(c) The proof of part (c) follows by a similar argument as that of part (b). For the upper bound, fixing x0 ∈R and δ > 0,
setting N := max{1, � log |x0|−log δ

log 1
a1

�} we have

P

(
min

1≤i≤n
Zi ≥ 0

∣∣Z0 = x0

)
≤ P

(
min

N≤i≤n
Yi ≥ −δ

)
where Yi =∑i

�=1 ai−�
1 ξ�. An argument similar to the proof of part (b), using Lemma 5.1 with r = −δ, then gives

lim
δ↓0

lim
n→∞

1

n
logP

(
min

N≤i≤n
Yi ≥ −δ

)
= lim

n→∞
1

n
logPN

(
min

0≤i≤n
Z(i)≥0

)
.

For the lower bound, using Slepian’s Lemma gives

P

(
min

1≤i≤n
Zi ≥ 0

∣∣Z0 = x0

)
≥ P

(
min

1≤i≤N−1
Zi ≥ 0

∣∣Z0 = x0

)
P

(
min

N≤i≤n
Zi ≥ 0

∣∣ Z0 = x0

)
.

Invoking Lemma 5.1 with r = 0 controls the second factor in the RHS of the last display, whereas the first factor remains
bounded away from 0 and therefore does not contribute to the limit. �

Proof of Theorem 2.6. (a) By assumption there exists δ1 > 0 such that Ee
δ1
∑p−1

j=0 Zj 1{min0≤j≤p−1 Zj >0} < ∞. Invoking
(2.10) gives the existence of δ2 > 0 and C2 < ∞ such that φ(t) ≤ C2e

−δ2|t |. Fix δ < min(δ1, δ2/p), and set h(x) :=
e
δ
∑p−1

j=0 xj . For any k ≥ 1, define

F(x1, . . . , x(k+1)p) := h(xkp+1, . . . , x(k+1)p)

h(x1, . . . , xp)

(k+1)p∏
�=p+1

φ

(
x� −

p∑
j=1

ajx�−j

)
.

We have the following lemma, whose proof is deferred.

Lemma 5.2. There exist k ≥ 1 and C,γ > 0 such that for any vector (x1, . . . , x(k+1)p) ∈ [0,∞)(k+1)p we have

F(x1, . . . , x(k+1)p) ≤ Ce
−γ

∑(k+1)p
j=1 xj . (5.20)

Further, the constants C and γ can be chosen uniformly over the parameter space
∑p

j=1 aj ≤ 1 − η for any η > 0.
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Continuing with the proof of Theorem 2.6, define the operator Qδ,k on Cb([0,∞)p) by

Qδ,kg(x1, . . . , xp) =
∫

[0,∞)kp
g(xkp+1,...,(k+1)p)F (x1, . . . , x(k+1)p)

(k+1)p∏
�=p+1

dx�.

Lemma 5.2 ensures that Qδ,k1 is a bounded function, and hence Qδ,k is well defined on B([0,∞)p). Note that gh is
bounded, and Qδ,k(g) = 1

h
P

kp
S (gh) by definition, which on using induction gives Qi

δ,k(g) = 1
h
P

kpi
S (gh) for i ≥ 1. Thus

we have

pn =
∫

P n
S 1 dμ ≤

∫
hQ

� n
kp

�
δ,k

(
1

h

)
dμ ≤ ∥∥Q� n

kp
�

δ,k

∥∥μ(h1[0,∞)p ),

which, because of the assumption μ(h1{[0,∞)p}) < ∞, results in

lim sup
n→∞

1

n
logpn ≤ 1

kp
logλ(Qδ,k). (5.21)

For the lower bound on the persistence probability, fixing M > 0 we have

P n
S 1 ≥ Q

� n
kp

�
δ,k

(
1

h

)
≥ e−pδMQ

� n
kp

�
δ,k,M(1[0,M]p ), (5.22)

where Qδ,k,M is the operator from B([0,∞)p) to itself given by

Qδ,k,Mg(x1, . . . , xp)

= 1{max1≤�≤p x�≤M}
∫

[0,M]kp
g(xkp+1,...,(k+1)p)F (x1, . . . , x(k+1)p)

(k+1)p∏
�=p+1

dx�.

For any f ∈ B([0,∞)p) with ‖f ‖∞ ≤ 1, and max1≤�≤p x� > M we have that∣∣Qδ,k,Mf (x1, . . . , xp) − Qδ,kf (x1, . . . , xp)
∣∣≤ Qδ,k1(x1, . . . , xp)

=
∫

[0,∞)kp
F (x1, . . . , x(k+1)p)

(k+1)p∏
�=p+1

dx� ≤ Ce−γMγ −kp,

where the last inequality is due to (5.20). Similarly, if max1≤�≤p x� ≤ M , then∣∣Qδ,k,Mf (x1, . . . , xp) − Qδ,kf (x1, . . . , xp)
∣∣

≤
∫

maxp+1≤�≤(k+1)p x�>M

F(x1, . . . , x(k+1)p)

(k+1)p∏
�=p+1

dx� ≤ Ckpγ −kpe−γM.

Combining these two estimates gives limM→∞ ‖Qδ,k,M − Qδ,k‖ = 0, and consequently Lemma 1.6 gives

lim
M→∞λ(Qδ,k,M) = λ(Qδ,k). (5.23)

Denoting by Q̃δ,k,M the restriction of the operator Qδ,k,M to B([0,M]p), for any function f ∈ Cb([0,M]p) such that
‖f ‖∞ ≤ 1 we have∣∣Q̃δ,k,Mf (x1, . . . , xp) − Q̃δ,k,Mf (y1, . . . , yp)

∣∣M−kp

≤ sup
z�∈[0,M],p+1≤�≤(k+1)p

∣∣F(x1, . . . , xp, zp+1, . . . , z(k+1)p)

− F(y1, . . . , yp, zp+1, . . . , z(k+1)p

∣∣,
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and so the functions {Q̃δ,k,Mf : f ∈ Cb([0,M]p),‖f ‖∞ ≤ 1} are uniformly equicontinuous on [0,M]p . Consequently,
Arzelà-Ascoli theorem gives that Q̃δ,k,M is compact as an operator on Cb([0,M]p). An application of Theorem 1.2 then
gives ∫

Q
� n

kp
�

δ,k,M(1[0,M]p )dμ = λ(Q̃δ,k,M)
n
kp

+o(n)
,

which along with (5.22) gives

lim inf
n→∞

1

n
logpn ≥ 1

kp
logλ(Q̃k,δ,M). (5.24)

Also note that for any i ≥ 1 we have Qi
δ,k,M(1) = Qi

δ,k,M(1[0,M]p ), which immediately gives λ(Q̃δ,k,M) = λ(Qδ,k,M).
The lower bound follows from this, on invoking (5.23) and (5.24). Thus we have verified that the log persistence exponent
exists and equals λ(Qδ,k)

1/kp , which a priori can depend on δ > 0. However the above argument works for any δ <

min(δ1, δ2/p), and so the persistence exponent does not depend on δ1, and in particular does not depend on the initial
distribution as long as the latter has finite exponential moment.

For relating λ(Qδ,k) to the eigenvalue equation, we will invoke Theorem 1.2, for which we need to show that Qδ,k is
compact on Cb([0,∞)p). Since ‖Qδ,k,M − Qδ,k‖ converges to 0 as M → ∞, it suffices to show that Qδ,k,M is compact
on Cb([0,∞)p). Also as shown for the derivation of (5.23) we have

sup
max1≤�≤p x�>M

∣∣Qδ,k1(x1, . . . , xp)
∣∣≤ Ce−γMγ −kp,

which converges to 0 as M → ∞. This along with the compactness of Q̃δ,k,M on Cb([0,M]p) implies that Qδ,k is
compact on Cb([0,∞)p). If λ(Qδ,k) > 0, Theorem 1.2 implies that there exists ψ̃ ∈ Cb([0,∞)p) such that ‖ψ̃‖∞ = 1,
which is non-negative and satisfies

∫
[0,∞)kp

ψ̃(xkp+1, . . . , x(k+1)p)F (x1, . . . , x(k+1)p)

(k+1)p∏
�=p+1

dx� = λkpψ̃(x1, . . . , xp), (5.25)

where λ := λ(Qδ,k)
1/kp . Using Lemma 5.2 along with (5.25) gives

ψ̃(x1, . . . , xp) ≤ C

λkpγ kp
e−γ

∑p
i=1 xi .

Plugging this bound back in (5.25), another application of Lemma 5.2 gives

λkpψ̃(x1, . . . , xp) =
∫

(0,∞)kp
ψ̃(xkp+1, . . . , x(k+1)p)F (x1, . . . , x(k+1)p)

(k+1)p∏
�=p+1

dx�

≤ C

λkpγ kp

∫
(0,∞)kp

e−γ
∑p

i=1 xkp+i F (x1, . . . , x(k+1)p)

(k+1)p∏
�=p+1

dx�

≤ C2

λkpγ 2kp
e−2γ

∑p
i=1 xi ,

which gives

ψ̃(x1, . . . , xp) ≤ C2

λ2kpγ 2kp
e−2γ

∑p
i=1 xi .

This, via an inductive argument gives that ψ̃(x1, . . . , xp) has super exponential decay, and so the function hψ̃ ∈
Cb([0,∞)p). Thus P

kp
S (hψ̃) is well defined, and (5.25) shows that hψ̃ is an eigenfunction of P

kp
S with eigenvalue λkp .

It then follows by a telescopic argument similar to Theorem 1.2 that PS has an eigenvalue λ, and the corresponding
eigenfunction ψ ∈ Cb([0,∞)p) is non-negative.
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(b) As before, λ > 0 follows from Proposition 2.9. To show that λ < 1, assume by way of contradiction that λ = 1.
Invoking part (a) there exists a non zero non-negative function ψ on [0,∞)p such that ‖ψ‖∞ = 1 and ψ = PSψ . This
implies ψ = P

p
S ψ . By the proof of part (a), it follows that ψ has super exponential tails, and so ψ vanishes at ∞. Letting

A := {(x1, . . . , xp) ∈ [0,∞)p : ψ(x1, . . . , xp) = ‖ψ‖∞ = 1
}
,

we thus have that A is compact, and so max(x1, . . . , xp) has a minimum on A. If the minimum equals 0, then
(x1, . . . , xp) = 0 is a global maximum, and so plugging in (x1, . . . , xp) = 0 we have

1 =
∫

(0,∞)

ψ(0, . . . ,0, y)φ(y)dy ≤ P(ξ1 > 0),

which is a contradiction. Thus w.l.o.g. we may assume that the minimum of max(x1, . . . , xp) over A is m > 0, and fix
(x1, . . . , xp) ∈ A such that max1≤i≤p xi = m. Since

1 = ψ(x1, . . . , xp) = E
(
ψ(Xp+1, . . . ,X2p) | X1 = x1, . . . ,Xp = xp

)
,

we must have

P(Xp+1 > 0, . . . ,X2p > 0 | X1 = x1, . . . ,Xp = xp) = 1, (5.26)

P
(
ψ(Xp+1, . . . ,X2p) = 1 | X1 = x1, . . . ,Xp = xp

)= 1. (5.27)

Since P(ξ1 < 0) > 0, there exists c < 0 such that for every ε > 0 we have P(ξ1 ∈ [c − ε, c + ε]) > 0, which along with
(5.26) gives

P

( 2p⋂
�=p+1

{
X� > 0, |ξ� − c| ≤ ε

} ∣∣∣X1 = x1, . . . ,Xp = xp

)
> 0. (5.28)

Define the tuple (xp+1, . . . , x2p) by inductively setting x� := c +∑p

j=1 ajx�−j for p + 1 ≤ � ≤ 2p, and note that on the

set {⋂2p

�=p+1 |ξ� −c| ≤ ε} we have |X�+1 −x�+1| ≤ ε+maxp+1≤j≤� |X� −x�|, p+1 ≤ � ≤ 2p, which on using induction
gives

max
p+1≤�≤2p

|X� − x�| ≤ pε.

We now claim that (xp+1, . . . , x2p) ∈ [0,∞)p . Indeed, if x� < 0 for some p + 1 ≤ � ≤ 2p, then by choosing ε small we
have x� + pε < 0, and so X� ≤ x� + pε < 0, which is a contradiction to (5.28).

We finally claim that ψ(xp+1, . . . , x2p) = 1. By way of contradiction, if ψ(xp+1, . . . , x2p) < 1, there exists ε > 0 such
that ψ(yp+1, . . . , y2p) < 1 for all (y1, . . . , yp) such that maxp+1≤�≤2p |y� − x�| ≤ pε. But then we have

P
(
ψ(Xp+1, . . . ,X2p) < 1 | X1 = x1, . . . ,Xp = xp

)≥ P

({ 2p⋂
�=p+1

|ξ� − c| ≤ ε

})
> 0,

which is a contradiction to (5.27), verifying (xp+1, . . . , x2p) ∈ A. Finally, using c < 0 gives xp+1 = c+∑p

j=1 ajxp+1−j <

m. Continuing this by induction it is easy to check that max(xp+1, . . . , x2p) < m, which is a contradiction. Thus we have
verified that λ < 1.

(c) Let {a(r)}∞r=1 be a sequence in R
p converging to a(∞) such that

∑p

j=1 |a(∞)
j | < 1, and define Q

(r)
δ,k and Fr accord-

ingly, where k is as in Lemma 5.2. Then there exists η > 0 such that
∑p

j=1 |a(r)
j | ≤ 1 − η for all r large enough. By

Lemma 5.2 the constants C, γ depend only on η, and hence we can choose C, γ which works for all r ≥ 1, and so we
have the bound

sup
r≥1

Fr(x1, . . . , x(k+1)p) ≤ Ce−γ
∑(k+1)p

i=1 xi . (5.29)

Now fix f ∈ B([0,∞)p) such that ‖f ‖∞ ≤ 1, and M > 0. If we have max1≤�≤p x� > M , then invoking (5.29) gives∣∣Q(r)
δ,kf (x1, . . . , xp) − Q

(∞)
δ,k f (x1, . . . , xp)

∣∣≤ 2Ce−γMγ −kp. (5.30)
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If max1≤�≤p x� ≤ M , then splitting the integral depending on whether the integration is over [0,M]kp or not gives∣∣Q(r)
δ,kf (x1, . . . , xp) − Q

(∞)
δ,k f (x1, . . . , xp)

∣∣
≤
∫

(0,∞)kp

∣∣Fr(x1, . . . , x(k+1)p) − F∞(x1, . . . , x(k+1)p)
∣∣ (k+1)p∏
�=p+1

dx�

≤ 2Ckp

γ kp
e−γM + εr,MMkp, (5.31)

where

εr,M := sup
(x1,...,x(k+1)p)∈[0,M](k+1)p

∣∣Fr(x1, . . . , x(k+1)p) − F∞(x1, . . . , x(k+1)p)
∣∣

converges to 0 as r → ∞, with M fixed. Combining (5.30) and (5.31) gives∥∥Q(r)
δ,k − Q

(∞)
δ,k

∥∥≤ 2Ckp

γ kp
e−γM + εr,MMkp.

On letting r → ∞ followed by M → ∞ gives that ‖Q(r)
δ,k − Q

(∞)
δ,k ‖ converges to 0 as r → ∞, and so λ(Q

(r)
δ,k) converges

to λ(Q
(∞)
δ,k ) by Lemma 1.6. This completes the proof of part (c). �

Proof of Lemma 5.2. Let δ > 0 be fixed as in the proof of Theorem 2.6. Recall that we have φ(t) ≤ C2e
−δ2|t |, where

δ2 > pδ. Choose ρ ∈ (0,1) such that
∑p

j=1 |aj |ρ−j = 1. Fix ε > 0 such that pδ(1 + ε) < δ2 and ε < pδ(1 −∑p

j=1 |aj |).
For any positive integer k (the exact choice of which is specified below in (5.34)), define the variables (A1, . . . ,Akp)

inductively by setting

A� −
�−1∑
j=1

|aj |A�−j = δ(1 + ε) if 1 ≤ � ≤ p,

A� −
p∑

j=1

|aj |A�−j = min
(
ρ�, ε

)
if p + 1 ≤ � ≤ kp.

Note that A� > 0 for all 1 ≤ � ≤ kp by definition. We now claim that

max
1≤�≤kp

A� < δ2 for all k ≥ 1, (5.32)

max
kp+1≤�≤(k+1)p

p∑
j=�−kp

|aj |A�−j ≤ (K + kp + p)ρkp+1, for all k ≥ 1, (5.33)

where K := pδ(1 + ε)ρ−p . Note that (5.33) implies in particular that there exists k such that

max
kp+1≤�≤(k+1)p

p∑
j=�−kp

|aj |A�−j < δ. (5.34)

Deferring the proof of (5.32) and (5.33) we will fix such a k, and finish the proof of the lemma. To this end, invoking
(5.32) and using the bound φ(t) ≤ C2e

−A�|t | for all t ∈ R and 1 ≤ � ≤ kp we have

F(x1, . . . , x(k+1)p) ≤ C
kp

2 e
δ
∑p

j=1(xkp+j −xj )
(k+1)p∏
�=p+1

e
−A(k+1)p+1−�|x�−∑p

j=1 aj x�−j |

≤ C
kp

2 e
δ
∑p

j=1(xkp+j −xj )
(k+1)p∏
�=p+1

e
−A(k+1)p+1−�(x�−∑p

j=1 |aj |x�−j )
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= C
kp

2

(k+1)p∏
�=1

e−α(k+1)p+1−�x� ,

where

α� :=

⎧⎪⎨⎪⎩
A� −∑�−1

j=1 A�−j |aj | − δ if 1 ≤ � ≤ p,

A� −∑p

j=1 A�−j |aj | if p + 1 ≤ � ≤ kp,

δ −∑p
j=�−kp |aj |A�−j if kp + 1 ≤ � ≤ (k + 1)p.

By the choice of (A1, . . . ,Akp) we have α� > 0 for 1 ≤ � ≤ (k + 1)p, which on setting C := C
kp

2 and γ :=
min1≤�≤(k+1)p α� > 0 gives the desired conclusion. The uniformity of the choice of C is immediate, and for the uni-
formity of γ , note that

γ ≥ min
(
δε,ρ�, δ − (K + kp + p)ρkp+1),

and these parameters are uniform over the parameter space
∑p

j=1 aj ≤ 1 − η for any η > 0.
It thus remains to prove (5.32) and (5.33), which we break down into a few steps.
First we show by induction on � that

A� ≤ �δ(1 + ε) for 1 ≤ � ≤ p. (5.35)

Indeed, for � = 1 we have A1 = δ(1 + ε) by definition. If (5.35) holds for 1 ≤ j ≤ � − 1, then using the formula for A�

gives

A� = δ(1 + ε) +
�−1∑
j=1

A�−j |aj | ≤ δ(1 + ε) + max
1≤j≤�−1

A�−j

≤ δ(1 + ε) + (� − 1)δ(1 + ε) ≤ �δ(1 + ε),

which completes the induction.
Next we show that

A� ≤ δp(1 + ε) for all 1 ≤ � ≤ kp. (5.36)

Indeeed, note that (5.36) follows from (5.35) for � ≤ p. For larger �, use the definition of A� along with induction to note
that, by the choice of ε,

A� ≤ ε +
(

p∑
j=1

|aj |
)

max
1≤j≤p

A�−j ≤ ε + pδ(1 + ε)

p∑
j=1

|aj | ≤ pδ(1 + ε).

Note that (5.35) and (5.36) together yield (5.32), since pδ(1 + ε) < δ2.
We turn to the proof of (5.33) for which we first show that

A� ≤ (K + �)ρ� for all 1 ≤ � ≤ kp, (5.37)

where K = pδ(1+ε)ρ−p as before. The choice of K and the observation that A� ≤ �δ(1+ε) yields (5.37) for 1 ≤ � ≤ p.
For � > p, we proceed by induction. Assume (5.37) holds for all 1 ≤ �′ ≤ � − 1, and note that

A� ≤ ρ� +
p∑

j=1

|aj |A�−j ≤ ρ� +
p∑

j=1

(K + � − j)|aj |ρ�−j

≤ ρ�

[
1 + (K + � − 1)

p∑
j=1

|aj |ρ−j

]
= (K + �)ρ�.
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This yields (5.37), which for � ∈ [kp + 1, (k + 1)p] gives

p∑
j=�−kp

|aj |A�−j ≤ (K + �)ρ�

p∑
j=1

|aj |ρ−j = (K + �)ρ�,

from which (5.33) follows trivially. �

For the proof of Theorem 2.7, we need the following lemma.

Lemma 5.3. Suppose ξ has a strictly positive log-concave density φ with respect to the Lebesgue measure on R. Then,
for any δ ≥ 0 and any bounded non-decreasing function g on R,

E
[
g(ξ + δ) | ξ + δ > 0

]= E[g(ξ + δ)1{ξ+δ>0}]
P(ξ + δ > 0)

≥ E[g(ξ)1{ξ>0}]
P(ξ > 0)

= E
[
g(ξ) | ξ > 0

]
.

We note that one can construct even unimodal densities for which the conclusion of Lemma 5.3 is false.

Proof. The lemma follows from the inequality in [25, Theorem 3]: one uses

f1(x) :=
(∫ ∞

0
φ(t)dt

)−1

φ(x)1[0,∞)(x),

f2(x) :=
(∫ ∞

−δ

φ(t)dt

)−1

φ(x − δ)1[0,∞)(x).

One can check easily that the log concavity of φ implies the assumptions for f1, f2 required by [25]. �

We further remark that for finite subsets of R, Lemma 5.3 follows from Holley’s inequality for finite lattices [19].

Proof of Theorem 2.7. For proving strict monotonicity we will invoke Lemma 1.5 with P = P b and Q = P a and

h(x) := Pξ (ξ +∑p

j=1 bjxp+1−j ≥ 0)

Pξ (ξ +∑p

j=1 ajxp+1−j ≥ 0)
.

For any g ∈ B+,>(S), we have by Lemma 5.3,

PS(g)

QS(g)
=

Eξ g(x2, . . . , xp, ξ +∑p

j=1 bjxp+1−j )1{ξ+∑p
j=1 bj xp+1−j ≥0}

Eξ g(x2, . . . , xp, ξ +∑p

j=1 ajxp+1−j )1{ξ+∑p
j=1 aj xp+1−j ≥0}

≥ Pξ (ξ +∑p

j=1 bjxp+1−j ≥ 0)

Pξ (ξ +∑p

j=1 ajxp+1−j ≥ 0)
= h(x),

showing that condition (i) holds. Proceeding to checking condition (ii), for any g ∈ B+,>(S) we have

[
PS(g)

]
(x) = Pξ

(
ξ +

p∑
j=1

bjxp+1−j > 0

)[
P̃ (g)

]
(x),

where

[
P̃ (g)

]
(x) :=

∫
y+∑p

j=1 bj xp+1−j ≥0 g(x2, . . . , xp, y +∑p

j=1 bjxp+1−j )dF(y)∫
y+∑p

j=1 bj xp+1−j ≥0 dF(y)
.

Since b ≥ 0 we have that x 
→ P(ξ +∑p

j=1 bjxp+1−j ≥ 0) is non-decreasing in x, and so it suffices to show that P̃ is

non-decreasing. To this end, for any g ∈ B+,>(S) and x,y ∈ S with x ≤ y, write ξx = ξ +∑p

j=1 bjxp+1−j and ξy =
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ξ +∑p

j=1 bjyp+1−j . Then,

[P̃ (g)](y)

[P̃ (g)](x)
= Eξ (g(y2, . . . , yp, ξy)1{ξy≥0}|ξy ≥ 0)

Eξ (g(x2, . . . , xp, ξx)1{ξx≥0}|ξx ≥ 0)

≥ Eξ (g(x2, . . . , xp, ξy)1{ξy≥0}|ξy ≥ 0)

Eξ (g(x2, . . . , xp, ξx)1{ξx≥0}|ξx ≥ 0)
≥ 1,

where the first inequality uses the fact that g is coordinate-wise increasing, and the second inequality uses Lemma 5.3
and the positivity of b.

Having verified that its conditions are satisfied, we apply Lemma 1.5 and get [P n−p
S (1)](x) ≥ [Qn−p

S,h (1)](x), which,
setting Ax := {(Z0, . . . ,Zp−1) = x}, is the same as

P
b
(

min
p≤i≤n

Zi > 0
∣∣Ax

)
≥ E

a

[
n∏

i=p

1{Zi>0}h(Zi−p, . . . ,Zi−1)

∣∣∣Ax

]
.

Let Z+ = {Zi ≥ 0,0 ≤ i ≤ n}. Multiplying both sides of the last display by 1{min0≤j≤p−1 Zj >0}, taking expectations with
respect to μ and rearranging gives

P
b(Z+) ≥ P

a(Z+)Ea

[
n∏

i=p

h(Zi−p, . . . ,Zi−1)

∣∣∣Z+

]
.

By Proposition 2.9 we have θF (a) > 0, and so, given the above inequality, it suffices to show that

lim inf
n→∞

1

n
logEa

[
n∏

i=p

h(Zi−p, . . . ,Zi−1)

∣∣∣Z+

]
> 0. (5.38)

For showing (5.38), we claim the existence of k > 1 such that

lim sup
n→∞

1

n
logPa

(
Ln[k,∞) ≥ 1

4p

∣∣∣Z+
)

< 0, (5.39)

lim sup
n→∞

1

n
logPa

(
Ln[0,1/k] ≥ 1

4p

∣∣∣Z+
)

< 0, (5.40)

where LZ
n := 1

n

∑n
i=p δZi

is an empirical measure of total mass n−p+1
n

. Indeed, given (5.39) and (5.40) we have

E
a

[
n∏

i=p

h(Zi−p, . . . ,Zi−1)

∣∣∣Z+

]

≥ (1 + η)
n

2p
−o(1)

P
a
(

Ln[1/k, k] ≥ n − p + 1

n
− 1

2p

∣∣∣Z+
)

with η := −1 + infx∈[1/k,k]ph(x). Also we have η > 0, since ξ has a strictly positive density on the whole of R, which
implies that the continuous function h is strictly greater than 1 point wise on the compact set [1/k, k]p . (5.38) follows
after applying log, normalizing by n and taking limits.

It thus remains to prove (5.39) and (5.40). For this, recall that the initial distribution μ satisfies, for any λ′ ∈ (0, δ),

1

n
logEμ

(
e
λ′

1
∑p−1

j=0 Zj 1{min0≤i≤p−1 Zi>0}
)
< ∞. (5.41)

Proceeding to showing (5.39), by the log concavity of φ there exist λ0 > 0, λ1 ∈ (0, δ) such that logφ(x) ≤ λ0 − λ1|x|
for all x ∈ R, and so with

L̃ :=
{

x = (xp, . . . , xn) ∈ [0,∞)n−p+1 : ∣∣i ∈ [p,n] : xi ≥ k
∣∣≥ n

4p

}
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we have

P
a
(

Ln[k,∞) ≥ 1

4p
,Z+

∣∣∣ Z0, . . . ,Zp−1

)
≤
∫

L̃

n∏
i=p

φ

(
xi −

p∑
j=0

ajxi−j

)
dxi

≤ enλ0

∫
L̃

n∏
i=p

e
−λ1|xi−∑p

j=0 aj xi−j | dxi

≤ enλ0

∫
L̃

n∏
i=p

e
−λ1xi+λ1

∑p
j=0 aj xi−j dxi

≤ e
nλ0+λ′

1

∑p−1
j=0 xj

∫
L̃

n∏
i=p

e−̃λ1xi dxi,

where λ′
1 := λ1(

∑p

j=1 aj ) < δ, and λ̃1 := λ1 − λ′
1 > 0. Integrating both sides with respect to 1{xi ≥ 0,0 ≤ i ≤ p −

1}dμ(x0, . . . , xp−1) gives

P
a
(

Ln[k,∞) ≥ 1

4p
,Z+

)
≤ enλ0Ee

λ′
1
∑p−1

j=0 Zj 1{min0≤j≤p−1 Zj >0}λ̃1
−n

P

(
LY

n [k,∞) ≥ 1

4p

)
,

where (Yi,p ≤ i ≤ n) are i.i.d. exponential random variables with parameter λ̃1, and LY
n := 1

n

∑n
i=p δYi

. Since

Ee
λ′

1
∑p−1

j=0 Zj 1{min0≤j≤p−1 Zj >0} < ∞ by (5.41), it suffices to show that

lim sup
k→∞

lim sup
n→∞

1

n
logP

(
LY

n [k,∞) ≥ 1

4p

)
= −∞.

But this follows on invoking Sanov’s theorem to note that LY
n satisfies a large deviation principle with a good rate function

on M1(0,∞), the set of probability measures on (0,∞) with respect to the weak topology. Thus (5.39) holds, and a similar
proof shows (5.40). �

Proof of Proposition 2.8. Fix ε > 0 such that P((Z0, . . . ,Zp−1) ∈ (ε,∞)p) > 0. This exists by the choice of the initial
distribution. Define an associated AR process {Z′

i}i≥1 on the same probability space by setting

Z′
i :=

⎧⎪⎨⎪⎩
0 i ∈ {0, . . . , p − 2},
ε i = p − 1,∑p

j=1 ajZ
′
i−j + ξi i ≥ p.

Since ai ≥ 0, on the set {min0≤i≤p−1 Zi > ε} we have Zn ≥ Z′
n for all n ≥ p. Thus,

P

(
min

0≤i≤n
Zi ≥ 0

)
≥ P

(
min

0≤i≤p−1
Zi > ε, min

p≤i≤n
Zi > 0

)
≥ P

(
min

0≤i≤p−1
Zi > ε, min

p≤i≤n
Z′

i > 0
)

= P

(
min

0≤i≤p−1
Zi > ε

)
· P
(

min
p≤i≤n

Z′
i > 0

)
and so it suffices to show that

lim sup
n→∞

1

n
logP

(
min

p≤i≤n
Z′

i > 0
)

= 0. (5.42)
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To this effect, use induction to note that

Z′
i+p−1 =

i∑
j=0

bi−j ξj (5.43)

where ξ0 = ε, b0 := 1 and bi :=∑p

j=1 bi−j aj and bi = 0 for i < 0. Also, we claim that for any a ≥ 0 such that
∑p

j=1 aj >

1 there exists α,β > 0 and a (unique) ρ > 1 such that

αρi ≤ bi ≤ βρi, i ≥ 1. (5.44)

To see this, consider the function f (ρ) := ∑p

j=1 ajρ
−j . This function is strictly decreasing on [1,∞) and satisfies

f (1) =∑p

j=1 aj > 1 and f (∞) = 0. Therefore, there must be a (unique) ρ > 1 with f (ρ) = 1. Using the definition of
{bj }j∈Z, it is easy to see that for this ρ one can find α,β > 0 satisfying (5.44). Proceeding to verify (5.42), set

Sn :=
n⋂

i=1

{
ξi > −min

(
κρii−2,M

)}
,

with some fixed 0 < κ < εα(β
∑∞

k=1 k−2)−1, and M > 0. We will show that on the set Sn we have min0≤i≤n+p−1 Z′
i > 0

for any fixed M . Given this, since P(Sn) ≥ P(ξ1 > −M)n and M is arbitrary, (5.42) follows.
It remains to show that persistence happens on Sn, for which use (5.43) and (5.44) to note that

Z′
i =

i+p−1∑
j=0

bi−j+p−1ξj = bi+p−1ξ0 +
i+p−1∑
j=1

bi+p−1−j ξj

≥ αρi+p−1ε +
i+p−1∑
j=1

−βρi+p−1−j κρj j−2 ≥ ρiρp−1

(
εα − βκ

∞∑
j=1

j−2

)
> 0,

by the choice of κ , and so the proof is complete. �

Proof of Proposition 2.9. Since 0 is in the interior of the support of F , there exists α < 0, β > 0 such that [α,β] is
contained in the support. Then for any (a, b) ∈ (α,β) we have PF (ξ1 ∈ (a, b)) > 0. Indeed, otherwise the complement of
(a, b) is a closed set of probability 1, which implies (a, b) is not in the support of F , a contradiction.

Let N := max(1, �∑p

j=1 |aj |�) be a positive integer, and set

L := min(β/N,−α/N) > 0.

Then we claim that P(Zi ∈ (0,L),0 ≤ i ≤ n) decays slower than some exponential rate. Indeed, setting Yn :=∑p

j=1 ajZn−j on this set, we have |Yn| < NL. Now setting Ik := (−LN + (k−1)L
2 ,−LN + kL

2 ) for k ∈ {1, . . . ,4N}
note that if Yn ∈ Ik , then on the set {Zi ∈ [0,L),0 ≤ i ≤ n − 1} we have

P
(
Yn + ξn ∈ [0,L) | Z0, . . . ,Zn−1

)≥ P(ξn ∈ Jk),

where Jk := (LN − (k−1)L
2 ,LN − (k−2)L

2 ). Also note that Jk ⊂ (α,β) for any k ∈ {1, . . . ,4N} by the choice of L, as
β ≥ LN and α ≤ −LN . An inductive argument then gives

P

(
n⋂

i=0

{
Zi ∈ [0,L)

})≥ P

(
p−1⋂
i=0

{
Zi ∈ [0,L)

})(
min

1≤k≤N
P(ξ1 ∈ Jk)

)n−p

,

from which the desired conclusion follows. �

6. Proofs for the exponents in the concrete examples

We only give hints on how to solve the concrete eigenvalue equations.
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Proof of Proposition 3.1. Recall from Theorem 2.1 that the eigenvalue equation in this case is λg(x) = E[g(ξ)1{ξ>−x}],
x ∈ R.

Let us start with some facts for distributions with bounded support: Assume ξ ∈ (−a, b) almost surely. Then one can
show that g(x) = 0 for x ≤ −b. Further, g is constant on [a,∞). If a > b then g is constant even on [b,∞). If a ≤ b one
finds that g(x) = λ−1g(a)P(ξ > −x) for x ∈ (−b,−a].

Now assume that ξ is uniformly distributed in (−a, b). In this case, the eigenvalue equation becomes

λg(x) =
∫ b

−x

g(y)dy
1

a + b
, x ∈ (−a, b). (6.1)

We split in cases.
(a) a ≤ b: In this case, we already know g on (−a, a)c from the above observations. For the range x ∈ (−a, a), the

functions g(x) = κ(cos(αx) + sin(αx)) can be seen to be the only solutions (e.g. by differentiating (6.1) twice), where
necessarily α = 1

(a+b)λ
. The restrictions of the integral equation are equivalent to (3.1). Since α = 1

(a+b)λ
and a, b are

known, this is a non-linear equation for λ. It has several solutions, but we are interested in the smallest possible value for
λ−1, which corresponds to the unique non-negative eigenfunction, as one can check.

(b) a ≥ b: This case is actually simpler. We already know from the observations on distributions with bounded support
that g is zero left of −b and constant right of b. Thus, it only remains to consider x ∈ (−b, b). One can check that the
functions g(x) = κ(cos(αx) + sin(αx)) are the only solutions to the integral equation for x ∈ (−b, b) with α = 1/(λ(a +
b)) (e.g. by differentiating (6.1) twice). The restrictions from the integral equation are equivalent to cos(αb) = sin(αb),
which holds for αkb = π/4 + kπ , k ∈ Z. Since we are interested in the largest possible value for λ (which corresponds to
the unique non-negative eigenfunction), the solution in this case is α0b = π/4. �

Proof of Theorem 3.2. The first observation is that the persistence probability is in fact distribution-free (for symmetric
densities). This can be seen by representing the i.i.d. (ξi ) with the help of i.i.d. (Ui ) that are uniform on [0,1]: ξi =
F−1(Ui), where F is the distribution function of ξ1. The fact that the (ξi) has a symmetric density is equivalent to
−F−1(u) = F−1(1 − u) for all u ∈ [0,1]. This shows

P

(
min

1≤i≤n
Zi ≥ 0

)
= P

(∀i ∈ {1, . . . , n} : ξi ≥ −ξi−1
)

= P
(∀i ∈ {1, . . . , n} : F−1(Ui) ≥ −F−1(Ui−1)

)
= P

(∀i ∈ {1, . . . , n} : F−1(Ui) ≥ F−1(1 − Ui−1)
)

= P
(∀i ∈ {1, . . . , n} : Ui ≥ 1 − Ui−1

)
= P

(∀i ∈ {1, . . . , n} : 2(Ui − 1/2) + 2(Ui−1 − 1/2) ≥ 0
)
.

This shows that the persistence probability is distribution free and the problem can be reduced to the density φ = 1
2 1[−1,1].

In this case, the eigenvalue equation reads

λg(x) = [Kg](x) :=
∫ 1

−x

g(z)
dz

2
, x ∈ [−1,1].

Differentiating twice yields g′′(x) = −(2λ)−2g(x), whose only solutions (up to constant multiples) are of the form g(x) =
sin(x/(2λ)) + cos(x/(2λ)). In order to satisfy not only the differential equation but also the original eigenvalue equation,
one needs to demand that g(−1) = 0, which gives the set of solutions λ−1

k = π/2+2πk, k ∈ Z. The positive eigenfunction
(or equivalently the largest eigenvalue) is obtained for k = 0. This identifies the persistence exponent.

To see the explicit formula in the statement one easily sees that (gk) is an orthonormal basis of L2[−1,1], 1 =∑
k∈Z(−1)k

√
2λkgk , E[gk(ξ0)] = (−1)k

√
2λk , and that the persistence probability equals E[Kn1(ξ0)], the latter of which

can then be readily computed. �

Proof of Proposition 3.4. By Theorem 2.1, the eigenvalue equation reads:

λg(x) =
∫ ∞

max(0,−a1x)

g(y)e−y dy, x ∈ R.

One checks easily that g(x) := ea1x/(1+a1)1x≥0 +1x≤0 is a non-negative eigenfunction for the eigenvalue λ = 1+a1. Note
however that one needs to verify that λ = 1 + a1 is the largest eigenvalue of this operator. To this effect, let β ≥ λ > 0
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denote the largest eigenvalue of K , and use Theorem 1.2 to get the existence of a non-negative, finitely additive measure
m on R such that m(R) = 1 and for every ψ ∈ Cb(R) we have∫ ∞

−∞
m(dx)

∫
max(0,−a1x)

e−yψ(y)dy = βm(ψ). (6.2)

Thus, setting ψ = g in (6.2) gives

βm(g) =
∫ ∞

−∞
m(dx)

∫
max(0,−a1x)

e−yg(y)dy =
∫ ∞

−∞
Kg(x)m(dx) = λm(g),

where the last equality uses Kg = λg. Thus to conclude β = λ, it suffices to show that m(g) is not zero. If m(g) = 0, using
the fact that g is lower bounded by a positive constant on (−∞,L] gives m(−∞,L] = 0 for all L ∈ R. Consequently by
finite additivity m(L,∞) = 1. But invoking (6.2) with ψ(x) = 1{x>L} gives

βm(L,∞) =
∫ ∞

−∞
m(dx)

∫
y+a1x>0,y>L

e−y dy ≤
∫ ∞

−∞
m(dx)

∫
y>L

e−y dy = e−L,

which on taking limits as L → ∞ gives β = 0, which is a contradiction. �

Proof of Proposition 3.5. Considering the eigenvalue equation in Theorem 2.4 gives the existence of a continuous non-
negative function g : [0,∞) 
→ [0,∞) satisfying (λ = θF (−1) for short)

(a + b)λg(x) =
∫ b

x

g(y − x)dy =
∫ b−x

0
g(y)dy, x ∈ (0, b],

and g(x) = 0 for x > b. It is easy to check that the only solutions to this are given by multiples of g(t) = cos(αkt) with
αkb = π

2 + πk for some k ∈ Z. This gives the corresponding eigenvalues λk = (−1)k(αk(a + b))−1, the largest one of
which is λ0. �

Proof of Proposition 3.6. One can check that PS1 = g with g(x) = ea1x . Therefore, the persistence probability can be
computed as

EP n
S 1(Z0)1{Z0>0} = EP n−1

S g(Z0)1{Z0>0} =
(

1

1 − a1

)n−1

Eg(Z0)1{Z0>0}. �
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