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JOINT ESTIMATION OF PARAMETERS IN ISING MODEL
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We study joint estimation of the inverse temperature and magnetization
parameters (β,B) of an Ising model with a nonnegative coupling matrix An

of size n×n, given one sample from the Ising model. We give a general bound
on the rate of consistency of the bi-variate pseudo-likelihood estimator. Using
this, we show that estimation at rate n−1/2 is always possible if An is the
adjacency matrix of a bounded degree graph. If An is the scaled adjacency
matrix of a graph whose average degree goes to +∞, the situation is a bit
more delicate. In this case, estimation at rate n−1/2 is still possible if the
graph is not regular (in an asymptotic sense). Finally, we show that consistent
estimation of both parameters is impossible if the graph is Erdős–Renyi with
parameter p > 0 independent of n, thus confirming that estimation is harder
on approximately regular graphs with large degree.

1. Introduction. Suppose β > 0, B �= 0 are unknown parameters, and An is an n × n

symmetric matrix with nonnegative entries with 0 on the diagonal. For x := (x1, . . . , xn) ∈
{−1,1}n, define a p.m.f. Pn,β,B(·) by setting

Pn,β,B(X = x) = 1

Zn(β,B)
e

β
2 x′Anx+B

∑n
i=1 xi .(1.1)

This is the Ising model with coupling matrix An, and inverse temperature parameter β

and magnetization parameter B . Study of Ising models is a growing area which has received
significant attention in statistics and machine learning in recent years. In this paper, we focus
on estimation in Ising models, the existing literature on which can be broadly classified into
two categories. One of the branches assumes that the matrix An is the unknown parameter of
interest, and focuses on estimating An under the assumption that i.i.d. copies X(1), . . . ,X(p)

are available from the model described in (1.1) (cf. [1, 7, 20, 21] and references therein). An-
other branch works under the assumption that only one observation X is available from the
model in (1.1) (cf. [5, 8, 10, 11, 16, 17] and references therein). In this setting, estimation of
the whole matrix An (which has n2 entries) is impossible from a vector X of size n (without
making “strong” assumptions on An). As such, the standard assumption is that the matrix An

is completely specified, and the focus is on estimating the parameters (β,B). In this direction,
the behavior of the MLE for the Curie–Weiss model (when An is the scaled adjacency ma-
trix of the complete graph) was studied in [11], where the authors showed that in the regime
β > 0, B �= 0, the MLE of β is

√
n consistent for β if B is known, and vice versa. They also

show that if both (β,B) are unknown, then the joint MLE for the model does not exist with
probability 1. This raises the natural question as to whether there are other estimators which
work in this case. Focusing on the case when B = 0 is known, [8] gave general sufficient
conditions under which the pseudo-likelihood estimator (defined below) is a

√
n consistent

estimator. The pseudo-likelihood estimator is a natural estimator for such models, as com-
puting the pseudo-likelihood estimator does not require knowledge of the partition function
Zn(β,B), as opposed to computing the Maximum Likelihood Estimate (MLE). Extending
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the ideas of [5, 8] studies the behavior of the rate of consistency of the pseudo-likelihood
estimator at all values of β , demonstrating interesting phase transition properties in the rate
of the pseudo-likelihood estimator. The question of joint estimation of (β,B) for a general
matrix An was raised in [8]. To the best of our knowledge, this question has not been ad-
dressed in the literature. The introduction and study of the second parameter B is natural,
as B controls the expected value of

∑n
i=1 Xi , and allows for more flexible modeling of data.

The problem of inference of both parameters simultaneously turns out to be significantly
more challenging. The strong dependence of the variables in Ising models ensure that there
is no independence to exploit. Even getting estimates of the means and the variances of the
random variables is not an easy task. As such, understanding the criterion obtained for consis-
tency and relating it to easily verifiable properties of the graph sequence require a sequence
of technical arguments. In this process, we discover an interesting dichotomy for hardness
of the estimation problem, depending on whether the graph is “regular” and/or “dense” (cf.
Section 1.2). Such a dichotomy was not present in the one parameter problem.

1.1. Main results. Throughout this paper, we will assume that (β,B) are unknown pa-
rameters of interest. Let us begin by introducing the bivariate pseudo-likelihood estimator for
(β,B).

DEFINITION. For any i ∈ [n], we have

Pn,β,B(Xi = 1|Xj, j �= i) = eβmi(x)+B

eβmi(x)+B + e−βmi(x)−B
,

where mi(x) := ∑n
j=1 An(i, j)xj . Define the pseudo-likelihood as the product of the one-

dimensional conditional distributions (see [3, 4]):

n∏
i=1

Pn,β,B(Xi = xi |Xj, j �= i)

= 2−n exp

{
n∑

i=1

(
βximi(x) + Bxi − log cosh

(
βmi(x) + B

))}
.

On taking log and differentiating this with respect to (β,B), we get the vector (Qn(β,B|x),

Rn(β,B|x)), where

Qn(β,B|x) :=
n∑

i=1

mi(x)
(
xi − tanh

(
βmi(x) + B

))
,

Rn(β,B|x) :=
n∑

i=1

(
xi − tanh

(
βmi(x) + B

))
.

The bivariate equation

PLn(β,B|x) := (
Qn(β,B|x),Rn(β,B|x)

) = (0,0)

will be referred to as the pseudo-likelihood equation in this paper. If the pseudo-likelihood
equation has a unique root in (β,B) ∈R2, denote it by (β̂n, B̂n). This is the pseudo-likelihood
estimator for the parameter vector (β,B).

We will need some assumptions on the coupling matrix An for the analysis of the pseudo-
likelihood estimator. Throughout this paper, we assume that An has nonnegative entries and
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is completely known. For any i ∈ [n], let Rn(i) := ∑n
j=1 An(i, j) denote the ith row sum of

An, and let R̄n := 1
n

∑n
i=1 Rn(i) denote the average of the row sums. Assume further that

max
i∈[n]Rn(i) ≤ γ,(1.2)

lim inf
n→∞ R̄n > 0.(1.3)

Here, γ is a finite constant independent of n. Note that (1.2) implies that An satisfies the
following condition:

sup
x∈[0,1]n

n∑
i=1

∣∣∣∣∣
n∑

j=1

A(i, j)xj

∣∣∣∣∣ = O(n)(1.4)

of [2], equation (1.10), as well as ‖An‖2 ≤ γ ([8], Condition (a), Theorem 1.1), where ‖An‖2
is the operator norm of An. If (1.4) does not hold, the log-partition function logZn(β,B)

grows super linearly, thus giving limn→∞ 1
n

logZn(β,B) = +∞ via mean field lower bound.
On the other hand, the condition ‖An‖2 ≤ γ is a regularity condition which ensures that
no eigenvalue has an unduly large effect on the corresponding Ising model. Both (1.4) and
‖An‖2 ≤ γ are satisfied by “almost all” Ising models studied in the literature. Condition (1.3)
is of a different spirit, which ensures that the resulting Ising model is nontrivial to rule out
cases when An is close to the 0 matrix.

Stating our results requires the following definition.

DEFINITION. Suppose Un and Vn are two nonnegative random variables on the proba-
bility space ({−1,1}n,Pn,β,B), where Pn,β,B is the Ising p.m.f. given in (1.1). We will say
Un = Op(Vn) if the sequence Un

Vn
is tight. In particular, this implies that

lim
n→∞Pn,β,B(Un > 0,Vn = 0) = 0.

We will say Un = �p(Vn), if both Un = Op(Vn) and Vn = Op(Un). We will say Un = op(Vn)

if Un

Vn

p→ 0. We remove the subscript p from �p , Op and op if Un and Vn are deterministic
sequences of positive reals.

DEFINITION 1.1. Set m̄(x) := 1
n

∑n
i=1 mi(x) and Tn(x) := 1

n

∑n
i=1(mi(x) − m̄(x))2.

Our first result gives a general upper bound on the error of the pseudo-likelihood estimator.

THEOREM 1.2. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model (1.1),
where the coupling matrix An satisfies (1.2) and (1.3), and β > 0, B �= 0.

(a) For every x ∈ {−1,1}n, the pseudo-likelihood estimator (β̂n, B̂n) exists iff x ∈ Ac
1,n ∩

Ac
2,n ∩ Ac

3,n ∩ Ac
4,n, where

A1,n := {
x ∈ {−1,1}n : Tn(x) = 0

}
,

A2,n := {
x ∈ {−1,1}n : mi(x)xi = ∣∣mi(x)

∣∣ for all i ∈ [n]},
A3,n := {

x ∈ {−1,1}n : mi(x)xi = −∣∣mi(x)
∣∣ for all i ∈ [n]},

A4,n := {1,−1}.
(b) If the true parameter is (β0,B0), then we have

lim
n→∞Pn,β0,B0

(
X ∈ Ac

2,n ∩ Ac
3,n ∩ Ac

4,n

) = 1.
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(c) Further, if 1
Tn(X)

= op(
√

n), then

‖β̂n − β0, B̂n − B0‖2 = Op

(
1√

nTn(X)

)
.

In particular, (β̂n, B̂n) is jointly consistent for (β,B).

An immediate corollary of Theorem 1.2 is the following corollary.

COROLLARY 1.3. In the setting of Theorem 1.2, if we further have

Tn(X) = �p(1),(1.5)

then ‖β̂n − β0, B̂n − B0‖2 = Op( 1√
n
) under Pn,β0,B0 , that is, the joint pseudo-likelihood

estimator is jointly
√

n consistent.

Corollary 1.3 shows that (1.5) is a sufficient condition for
√

n consistency of the pseudo-
likelihood estimate. However, the condition (1.5) is an implicit condition, and it is not
straightforward to verify (1.5) directly in most examples. To understand (1.5), we separate
our analysis into two cases, depending on whether the matrix An is “mean field” or not.

DEFINITION. We say that a sequence of matrices {An}n≥1 satisfies the mean field con-
dition if

lim
n→∞

1

n

n∑
i,j=1

An(i, j)2 = 0.(1.6)

Condition (1.6) was first introduced in [2] to study the limiting behavior of normalizing
constant of Ising and Potts models. For examples of matrices which are mean field, we refer
the reader to Section 1.2. Our first result of this section now gives a simple sufficient condition
for joint

√
n consistency of the pseudo-likelihood estimator for mean field matrices. Note that

(1.7) and (1.2) together imply (1.3), and so it need not be assumed separately.

THEOREM 1.4. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model (1.1),
where the coupling matrix An satisfies (1.2) and (1.6), and β > 0, B �= 0. If

lim inf
n→∞

1

n

n∑
i=1

(
Rn(i) − R̄n

)2
> 0,(1.7)

then we have Tn(X) = �p(1) under Pn,β,B . Consequently, the pseudo-likelihood estimator is
jointly

√
n consistent.

This raises the natural question as to what happens for mean field matrices when (1.7) does
not hold, that is, An is asymptotically regular (cf. (1.8)). The following theorem addresses this
question by showing that whenever the coupling matrix An is mean field and asymptotically
regular, the random variable Tn(X) is op(1).

THEOREM 1.5. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model (1.1),
where the coupling matrix An satisfies (1.2) and (1.6), and β > 0, B �= 0, If

lim
n→∞

1

n

n∑
i=1

(
Rn(i) − R̄n

)2 = 0,(1.8)

then we have Tn(X) = op(1) under Pn,β,B .
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The notion of asymptotic regularity captures those matrices for which the empirical distri-
bution of the row sums Rn(i) converges in probability to 1. For examples of matrices which
are asymptotically regular, we refer the reader to Section 1.2. Theorem 1.5 along with the
upper bound of Theorem 1.2 together suggest that

√
n consistency may not be attained by

the pseudo-likelihood estimator for asymptotically regular matrices which satisfies the mean
field condition (1.6). In particular, if An is the scaled adjacency matrix of an Erdős–Renyi
graph with parameter pn, then the mean field condition (1.6) holds if npn → ∞, and asymp-
totic regularity (1.8) holds if pn ≥ (1 + δ)

logn
n

with δ > 0 independent of n (cf. Section 1.2).
Under the assumption that the parameter pn = p ∈ (0,1] of the Erdős–Renyi graph is inde-
pendent of n, the following theorem shows the much stronger result that there does not exist
any consistent sequence of estimators for (β,B). Of course, this rules out the possibility of
any

√
n-consistent estimators as well in this setting.

THEOREM 1.6. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model (1.1),
where the coupling matrix is An(i, j) = 1

(n−1)p
Gn(i, j), where Gn is a random graph from

G(n,p), the Erdős–Renyi graph with parameter p > 0, independent of n. Let t ∈ (0,1) be
fixed, and let

�t := {
(β,B) ∈ (0,∞)2 : t = tanh(βt + B)

}
.

Let Per
n,β,B denote the joint law of (X,Gn) on {−1,1}n × {0,1}(n

2). Then, setting Qn to be
product measure on {−1,1}n under which

Qn(Xi = 1) = 1

1 + e−2 tanh−1(t)
,

we have that Qn × G(n,p) is contiguous to Per
n,β,B for every (β,B) ∈ �t . Consequently,

under Per
n,β,B there does not exist any sequence of estimates (functions of (X,Gn)) which is

consistent for (β,B) in �t .

REMARK 1.7. It was pointed out in [11] that the MLE for (β,B) does not exist for the
Curie– Weiss model. The above theorem extends this by showing that consistent estimates do
not exist when the underlying graph of the Ising model is Erdős–Renyi. Note that if we set
p = 1 in the Erdős–Renyi model we get a complete graph on n vertices, which corresponds
to the Curie–Weiss model. More generally, we conjecture that there are no

√
n consistent

estimates for both parameters, for a sequence of regular graphs with degree going to +∞.

If (1.6) does not hold, joint estimation of both parameters at rate
√

n is always possible
irrespective of whether the matrix An is regular or not, as shown in the following theorem.
Note that (1.2) and (1.9) together imply (1.3), so it is not assumed separately.

THEOREM 1.8. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model (1.1),
where the coupling matrix An satisfies (1.2) and

lim inf
n→∞

1

n

n∑
i,j=1

A2
n(i, j) > 0.(1.9)

Then for any β > 0, B �= 0 we have Tn(X) = �p(1) under Pn,β,B , and consequently the
pseudo-likelihood estimator is jointly

√
n consistent.

Figure 1 gives a gist of our results on a summary tree.
To complete the picture, we show that if one of the two parameters are known, then the

pseudo-likelihood estimator for the other parameter is
√

n consistent, for all β > 0, B �= 0.
Thus joint estimation is indeed a much harder problem than estimation of the individual
parameters. The proof of this proposition appears in Supplement A [15].
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FIG. 1. Summary tree of our results.

PROPOSITION 1.9. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model
(1.1), where the coupling matrix An satisfies (1.2) and (1.3), and β0 > 0, B0 �= 0.

(a) If B0 is known, then the equation Qn(β,B|X) = 0 has a unique root β̂n with proba-
bility tending to 1, which satisfies

√
n(β̂n − β0) = Op(1) under Pn,β0,B .

(b) If β0 is known, then the equation Rn(β,B|X) = 0 has a unique root B̂n with probability
tending to 1 which satisfies

√
n(B̂n − B0) = Op(1) under Pn,β,B0 .

We would like to point out here that all our arguments are robust enough go through if
the true configuration (β0,n,B0,n) is assumed to depend on n, and converge at any rate to
(β0,B0) with β0 > 0, B0 �= 0. We avoid doing this case for the sake of notational simplicity,
and because no new ideas are needed in this process.

1.2. Interpretation of results for graphs. Even though all our results apply for general
matrices with nonnegative entries, the most interesting examples for our theorems are the
cases when An is the scaled adjacency matrix of a simple graph Gn, as defined below.

DEFINITION 1.10. For a graph Gn with vertices labeled by [n] := {1,2, . . . , n}, define
the coupling matrix An by setting

An(i, j) := n

2e(Gn)
1{vertices i and j are connected in Gn},

where e(Gn) is the number of edges in the graph Gn. Note that this scaling gives∑n
i,j=1 An(i, j)2 = n2

2e(Gn)
. Also let (d1(Gn), . . . , dn(Gn)) denote the labeled degrees of Gn,

and let d̄(Gn) denote the average degree of Gn.

This scaling of the adjacency matrix ensures that the resulting Ising model has nontrivial
phase transition properties (see, e.g., [2]), which is of much interest in statistical physics
and applied probability. The influence of phase transition on inference has received recent
attention (cf. [5, 19]). Under this scaling, (1.3) holds trivially, as

∑n
i,j=1 An(i, j) = n, and

condition (1.2) demands that maxi∈[n] di(Gn) = O(d̄(Gn)). Below we give some common
examples of graph sequences:

(a) Gn is a bounded degree graph with maxi∈[n] di(Gn) ≤ M , and e(Gn) ≥ nδ, where

M , δ are independent of n. In this case, n2

2e(Gn)
≥ n

M
= �(n), which verifies (1.9). Also

maxi∈[n] di(Gn) ≤ M and d̄(Gn) ≥ 2δ, and so (1.2) holds. Thus Theorem 1.8 concludes that
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both the parameters (β,B) can be estimated at rate
√

n. In particular, this holds if Gn is a d

regular graph with d independent of n. One important example is a sequence of growing k

dimensional cubes in Zk for some k ∈ N, whence d = 2k.
(b) Let Gn be a sequence of dn regular graphs with dn → ∞. In this case, n2

2e(Gn)
= n

dn
=

o(n), and Rn(i) = 1 for all i ∈ [n]. This verifies (1.2), (1.6) and (1.8). Theorems 1.2 and 1.5
together then suggest that

√
n consistency may be impossible. Theorem 1.6 confirms this in

the special case when dn = n − 1, which corresponds to the complete graph.
(c) Let Gn be an Erdős–Renyi graph with parameter pn = p ∈ (0,1] independent of n.

Theorem 1.6 concludes that there are no consistent estimators for (β,B), let alone
√

n con-
sistency.

(d) More generally, let Gn be an Erdős–Renyi graph with parameter pn ≥ (1 + δ)
logn

n
,

where δ > 0 is fixed. In this case, n2

2e(Gn)
= �p( 1

pn
) = o(n), and

n∑
i=1

(
Rn(i) − R̄n

)2 ≤ 1

d̄(Gn)2

n∑
i=1

(
di(Gn) − (n − 1)pn

)2 = �p

(
1

pn

)
= o(n).

Thus we have verified (1.6) and (1.8). Since maxi∈[n] di(Gn) and d̄(Gn) are both �p(npn)

for pn in this range, (1.2) holds, and so Theorems 1.2 and 1.5 together suggest that
√

n

consistency may be impossible. Theorem 1.6 confirms this in the special case when pn =
p ∈ (0,1] is independent of n.

(e) Gn is a convergent sequence of dense graph converging to the graphon W which is not
identically 0 (see [18] for a survey on the literature on graphons/graph limits). If the function
R(x) := ∫ 1

0 W(x,y) dy is not constant almost surely Lebesgue measure, we have

lim
n→∞

1

n

(
Rn(i) − R̄n

)2 =
∫ 1

0 (R(x) − ∫ 1
0 R(y) dy)2 dx∫

[0,1]2 R(x, y) dx dy
> 0,

and so (1.7) holds. Also (1.2) and (1.6) are easy to verify for dense graphs, and so Theo-
rem 1.4 shows that estimation of both parameters at rate

√
n is possible. On the other hand,

if R(x) is a constant almost surely, (1.8) holds. Theorems 1.2 and 1.5 together suggest that√
n consistency may be impossible. Theorem 1.6 confirms this in the special case when Gn

is an Erdős–Renyi graph, for which W(·, ·) ≡ p and R(·) ≡ p.
(f) Gn is a biregular, bipartite graph with bipartition sets Gn,1 and Gn,2, with sizes an and

bn respectively, and each vertex in Gn1 has degree cn, and each vertex in Gn2 has degree dn.
Also assume that

lim
n→∞

an

n
= p ∈ (0,1).

In this case, (1.2) is easy to verify. If lim supn→∞(cn + dn) < ∞, (1.9) holds, and so The-
orem 1.8 concludes that estimation at rate

√
n is possible. If limn→∞(cn + dn) = ∞, then

(1.6) holds, and so there are two cases depending on the value of p. If p �= 1
2 , we have

Rn(i) = n
an

∼ 1
2p

for i ∈ Gn1, and Rn(i) ∼ 1
2(1−p)

for i ∈ Gn2. This gives

1

n

n∑
i=1

(
Rn(i) − R̄n

)2 ∼ an

n

(
1

2p
− 1

)2
+ bn

n

(
1

2(1 − p)
− 1

)2

→ (2p − 1)2

4p(1 − p)
> 0.

Thus (1.7) holds, and so the pseudo-likelihood estimator is
√

n consistent by Theorem 1.4.
On the other hand, if if p = 1

2 the graph Gn is asymptotically regular, and so Theorems 1.2
and 1.5 together then suggest that

√
n consistency may be impossible.
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1.3. Heuristic and proof overview. To understand the heuristic idea behind Theorem 1.2,
recall that the estimating equation for the pseudo-likelihood estimator is (Qn(β,B),Rn(β,

B)) = (0,0). Both the quantities on the RHS above are shown to be Op(
√

n) by existing
estimates in the literature. Thus a sufficient criterion for

√
n consistency is that both the

eigenvalues of the Hessian matrix are at least Cn with high probability for some C > 0.
A direct calculation using the determinant of the Hessian shows that the eigenvalues of the
Hessian are at least Cn iff Tn(X) = �p(1), where Tn(x) = 1

n

∑n
i=1(mi(x)− m̄(x))2 as before.

It thus suffices to focus our attention on understanding the behavior of Tn(X), for which we
give the following simple condition:

Tn(X) = op(1) iff the graph is approximately regular,

with average degree going to ∞.

This implies that for any other class of graphs the pseudo-likelihood estimator is
√

n consis-
tent. To understand why Tn(X) is expected to be small for dense regular graphs, consider the
following heuristic:

If the coupling matrix An is the adjacency matrix (modulo some scaling) of a regular graph
with degree d large, by the weak law of large numbers, one can expect

mi(X) = 1

d

∑
j∼i

Xj ≈ En,β,B

1

d

∑
j∼i

Xj = En,β,Bmi(X)

with high probability. One the other hand, owing to regularity of the graph it is also expected
that En,β,Bmi(X) is the same for all i. Thus for regular graphs with large degree, one expects
that the vector {mi(X),1 ≤ i ≤ n} is nearly constant with high probability, or equivalently the
random variable Tn(X) is small.

To make the above arguments rigorous, we take recourse to the mean field approach de-
veloped in [2] to prove a concentration result for the vector (m1(X), . . . ,mn(X)) for graphs
with large average degree in the Appendix (see Supplement A). Essentially, the concentra-
tion result shows that the vector m(x) (or equivalently, b(x) = tanh(βm(x)+B)) concentrates
around the optimizers of an optimization problem over [−1,1]n. Analyzing this optimization
problem (cf. Lemma 3.3), we show in Theorem 1.5 that for approximately regular graphs any
optimizers must be nearly constant, and so Tn(X) = op(1). On the other hand, if the graph
is not regular, then it is shown in Theorem 1.4 that none of the optimizers can be close to
a constant vector, and so Tn(X) = �p(1). Thus combining Theorems 1.4 and 1.5 we have
Tn(X) = op(1) iff the coupling matrix is asymptotically regular.

The mean field approach of [2] works only for graphs whose average degree goes to ∞,
and it breaks down for graphs of bounded degree. We now claim that for graphs of bounded
degree, we always have Tn(X) = �p(1) (cf. Theorem 1.8), irrespective of whether the graph
is regular or not. Here, Tn(X) is computed using the coupling matrix An which is now the
adjacency matrix (modulo some scaling) of a bounded degree graph. The proof of Theo-
rem 1.8 uses a change of measure argument, by showing that if Tn(X) = op(1) under the
Ising model on a bounded degree graph, then the corresponding Ising model must be close
to the Curie–Weiss model (via Lemmas 2.1 and 4.2), and so Tn(X) = op(1) under the Curie–
Weiss model as well. But expressing the Curie–Weiss model as a mixture of i.i.d. models
(owing to [19], Lemma 3), a direct argument using the bounded degree assumption shows
that Tn(X) = �p(1) under the Curie–Weiss model (cf. Lemma 4.3), which contradicts the
assumption. Thus for bounded degree graphs we always have Tn(X) = �p(1) irrespective of
whether the graph is regular or not.

The combination of Theorems 1.4, 1.5 and 1.8 concludes that
√

n consistency is always
attained by the bivariate pseudo-likelihood estimator whenever the sequence of graphs is



JOINT ESTIMATION OF PARAMETERS IN ISING MODEL 793

either not asymptotically regular, or the average degree diverges. To confirm that joint esti-
mation is indeed hard on regular graphs of large degree, we consider Ising models on Erdős–
Renyi graphs, and show that they are asymptotically unidentifiable along the parameter set
�t := {(β,B) ⊂ (0,∞)2 : t = tanh(βt +B)}. To get an intuitive explanation of why this is so,
suppose we want to approximate an Ising model on a regular graph by an i.i.d. model. Then
one reasonable guess is to choose the mean of this i.i.d. model to be the same as En,β0,B0X̄

under the Ising model, where (β0,B0) is the true configuration. It follows from [2] that for
B0 > 0 the quantity En,β0,B0X̄ converges to t , where t is the unique positive root of the equa-
tion t = tanh(β0t + B0). By construction, for any (β,B) ∈ �t we have t = tanh(βt + B),
for the same t . Thus the i.i.d. approximation is the same for all (β,B) ∈ �t , and so it seems
reasonable that all Ising model Pn,β,B for (β,B) ∈ �t are asymptotically close. Theorem 1.6
confirms this heuristic for Ising model on dense Erdős–Renyi graphs.

1.4. Simulation. Our results demonstrate the failure of
√

n consistency for the joint es-
timation of the parameter (β,B) when the coupling matrix An is a scaled adjacency matrix
of a regular graph of large degree. In what follows, we address this phenomenon using sim-
ulation. Theorem 1.6 suggests that estimation for regular matrices is the hardest along the
sub parameter space �t := {(β,B) ∈ (0,∞)2 : t = tanh(βt + B)}, where t is a fixed positive
number. Setting t = tanh(1

3), we choose two different values of the pair (β,B) in �t , namely,
(β,B) = (0.5,0.17) and (β,B) = (0.8,0.08). Next, we draw one random d-regular graph Gn

with degree d = 400, with n = 500 nodes. For each values of (β,B), we generate 1000 sam-
ples from the Ising model with An being the scaled adjacency matrices for the graph Gn. On
each of 2000 different samples (1000 for each (β,B)), we estimate (β,B) by solving the bi-
variate pseudo-likelihood equation. In Figure 2, we plot the corresponding pseudo-likelihood
estimates (β̂n, B̂n) for (β,B) = (0.5,0.17) and (0.8,0.08), colored in green and blue, respec-
tively. Notice that the fit of the estimates are spread along the line of nonidentifiability. This
agrees with our results, which shows that joint estimation for both parameters is harder on
regular graphs of large degree.

1.5. Main contributions and future scope. In this paper, we provide the first rigorous re-
sults for

√
n consistent estimation of both the parameters (β,B) in an Ising model, using

the pseudo-likelihood estimate. Prior to this work, only estimation of the parameter β was
well understood, under the assumption that B = 0 is known. One of the main challenges
in understanding the behavior of bivariate pseudo-likelihood estimator is to understand the
eigenvalues of the Hessian of the estimating equation. Theorem 1.2 takes care of this by
connecting the eigenvalues of the Hessian to the statistic Tn(·) (see Definition 1.1), which
in particular shows that if Tn(X) = �p(1) (does not converge to 0 in probability), the joint
pseudo-likelihood estimator is

√
n consistent (cf. Corollary 1.3). Understanding the behavior

of the random variable Tn(X) itself is a nontrivial task. To achieve this, we develop con-
centration results for the vector (m1(X), . . . ,mn(X) for graphs of large average degree in
Theorem 3.2 in the Appendix, using the mean field set up of [2]. This is the main ingredient
for proving Theorems 1.4 and 1.5, which shows that Tn(X) = op(1) iff the graph sequence
is dense and asymptotically regular. Since the mean field approach of [2] fails for bounded
degree graphs, a different argument is needed to show Tn(X) = �p(1) always for bounded
degree graphs, irrespective of whether the graph sequence is regular or not. This is carried
out in Theorem 1.8 by a change of measure to Curie–Weiss, along with the observation that a
Curie–Weiss model is a mixture of i.i.d. models. To confirm the intuition that the estimation
is supposed to be hard on regular graphs of large degree, Theorem 1.6 gives a lower bound
result, showing that consistent estimation at rate

√
n is impossible by any estimator, if the

underlying graph is Erdős–Renyi with parameter p fixed.
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FIG. 2. Plots of the pseudo-likelihood estimates (β̂n, B̂n) for 1000 samples of the Ising model on a d-regular
random graph G with nodes n = 500 and d = 400. We have considered the Ising model with (β,B) = (0.5,0.17)

in the first figure and (β,B) = (0.8,0.08) in the second figure. In both of these two figures, the true (β,B)

are shown as black triangle-shaped points which are lying on the line tanh−1(t) = tβ + B (shown in red) for
t = tanh( 1

3 ).

As part of future work, it would be interesting if one can extend Theorem 1.6 to show
that consistent estimation is indeed impossible for Ising models on all asymptotically dense
regular graphs, and not just Erdős–Renyi graphs. In fact, more generally we conjecture that

the best rate of estimation possible on d regular graphs is
√

d
n

. When the pseudo-likelihood
estimator is consistent, it is natural to ask whether there is a CLT for the estimator as well.
In a different direction, one can study the behavior of the MLE, and compare its perfor-
mance with the pseudo-likelihood estimator. Even though it is not usually expected that the
pseudo-likelihood estimator will out perform the MLE, the computational efficiency of the
pseudo-likelihood estimator makes it attractive. Thus it remains to be seen whether there is a
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significant gain in accuracy by using the MLE. Finally, most (if not all) of our results depend
crucially on the assumption that the coupling matrix is nonnegative. It is of interest to see if
one can generalize our results to matrices with both positive and negative entries, such as the
Sherrington–Kirkpatrick model and the Hopfield model.

The rest of the paper is outlined as follows: Section 2 details the proof of Theorem 1.2.
Section 3 proves Theorem 1.4 and Theorem 1.5 with the help of Theorem 3.2, the proof of
which is deferred to the Appendix. Finally, Section 4 gives the proof of Theorem 1.6 and
Theorem 1.8. The proof of Proposition 1.9 is also deferred to the Appendix.

2. Proof of Theorem 1.2. The following lemma is a collection of estimates to be used
throughout the rest of this paper.

LEMMA 2.1. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model (1.1),
where the coupling matrix An satisfies (1.2) and (1.6).

Then, for any x = (x1, . . . , xn) ∈ [−1,1]n, setting

fn(x) := β

2
x′Anx + B

n∑
i=1

xi

and

bi(x) := E(Xi |Xj = xj , j �= i) = tanh
(
βmi(x) + B

)
,

the following hold:

lim sup
n→∞

1

n2E
[
fn(X) − fn

(
b(X)

)]2 = 0,(2.1)

lim sup
n→∞

1

n
E

[
n∑

i=1

(
Xi − bi(X)

)
mi(X)

]2

< ∞,(2.2)

lim sup
n→∞

1

n
E

[
n∑

i=1

(
Xi − bi(X)

)]2

< ∞.(2.3)

PROOF OF LEMMA 2.1. Various versions of these estimates exist already in the literature.
In particular, (2.1) follows on invoking [9], Lemma 3.1, or [2], Lemma 3.2, along with the
assumption that An satisfies (1.6), and (2.2) follows on invoking [9], Lemma 3.2, along with
the assumption that An satisfies (1.2). Finally, (2.3) follows as an easy consequence of [19],
Lemma 1. �

We also need the following lemma for proving Theorem 1.2 and Proposition 1.9. The proof
of the lemma is deferred to Supplement A.

LEMMA 2.2. Suppose X = (X1, . . . ,Xn) is an observation from Ising model as in (1.1)
such that (1.2) and (1.3) holds. If the true parameter is β0 > 0, B0 �= 0, then there exists δ > 0
such that

lim sup
n→∞

1

n
logPn,β0,B0

(∣∣∣∣∣
n∑

i=1

Ximi(X)

∣∣∣∣∣ < nδ

)
< 0.
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2.1. Proof of Theorem 1.2.

(a) Setting

(2.4) P̃Ln(β,B|x) :=
n∑

i=1

(
βximi(x) + Bxi − log cosh

(
βmi(x) + B

))
note that PLn(β,B|x) = ∇P̃Ln(β,B|x). Differentiating the function (β,B) �→ P̃Ln(β,B|x)

twice we get the negative Hessian matrix given by

Hn(β,B|x) =

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

mi(x)2θi(β,B|x)

n∑
i=1

mi(x)θi(β,B|x)

n∑
i=1

mi(x)θi(β,B|x)

n∑
i=1

θi(β,B|x)

⎤⎥⎥⎥⎥⎥⎦ ,(2.5)

where θi(β,B|x) := sech2(βmi(x) + B). The determinant of the Hessian is given by[
n∑

i=1

mi(x)2θi(β,B|x)

]
×

[
n∑

i=1

θi(β,B|x)

]
−

[
n∑

i=1

mi(x)θi(β,B|x)

]2

= 1

2

n∑
i,j=1

θi(β,B|x)θi(β,B|x)
(
mi(x) − mj(x)

)2

≥ 1

2
sech4(βγ + |B|) n∑

i,j=1

(
mi(x) − mj(x)

)2 = sech4(βγ + |B|)n2Tn(x),

which gives ∣∣Hn(β,B|x)
∣∣ = λn(β,B|X)μn(x) ≥ sech4(βγ + |B|)n2Tn(x).(2.6)

Since on Ac
1,n we have Tn(x) > 0 it follows that the Hessian is negative definite, and so

the function P̃Ln(β,B|x) is strictly concave. To show that there exists a global maximizer
(β̂n, B̂n), it thus suffices to show that

lim
β→+±∞ P̃Ln(β,B|x) = −∞, lim

B→±∞ P̃Ln(β,B|x) = −∞.

To see this, note that x ∈ Ac
2,n implies there exists i ∈ [n] such that ximi(x) = −|mi(x)|, and

mi(x) �= 0. Since we have

P̃Ln(β,B|x) ≤ βximi(x) − log
(
eβmi(x)xi+B + e−βmi(x)+B),

on letting β → ∞ gives limβ→+∞ P̃Ln(β,B|x) = −∞. A similar argument shows that if x ∈
Ac

3,n, then limβ→−∞ P̃Ln(β,B|x) = −∞. Finally, it is immediate that limB→±∞ P̃Ln(β,B|
x) = −∞, for any x /∈ A4,n. Thus there exists a unique global maximum (β̂n, B̂n) for the
function (β,B) �→ P̃Ln(β,B|x) ∈ R2, and so (β̂n, B̂n) is the unique root of PLn(β,B|x).

We will now show that if x ∈ Aj,n for some j = 1,2,3,4, then the pseudo-likelihood
estimator is not defined.

• x ∈ A1,n

On this set, we have Tn(x) = 0 which implies mi(x) = m̄(x) for all i ∈ [n]. This implies
that Qn(β,B|x) = m̄(x)Rn(β,B|x), and so the equation PLn(β,B|x) = (0,0) is equivalent
to

Rn(β,B|x) = 0 ⇔ x̄ = tanh
(
βm̄(x) + B

)
.
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Since the function (β,B) �→ P̃Ln(β,B|x) is convex, it follows that any (β,B) satisfying
this equation is a global maximizer, and hence in this case the set of maximizers is a line
in the two-dimensional plane, and hence not unique. Thus the pseudo-likelihood estimator
is not defined.

• x ∈ A2,n

On this set, we have

Qn(β,B|x) =
n∑

i=1

∣∣mi(x)
∣∣− n∑

i=1

mi(x) tanh
(
βmi(x) + B

)
> 0,

and so the equation Qn(β,B|x) = 0 has no roots in R2, and so the pseudo-likelihood
estimator is not defined.

• x ∈ A3,n

Similarly, on this set Qn(β,B|x) < 0 for all (β,B) ∈ R2, and so the pseudo-likelihood
estimator is not defined.

• x ∈ A4,n

If x = 1, then we have

Rn(β,B|x) =
n∑

i=1

(
1 − tanh

(
βmi(x) + B

))
> 0,

and so the equation Rn(β,B|x) = 0 has no roots in R2, and so the pseudo-likelihood esti-
mator is not defined.

Similarly, if x = −1, then Rn(β,B|x) < 0 for all (β,B) ∈ R2.

(b) Note that if x ∈ A2,n we have

Qn(β0,B0|x) ≥ (1 − tanh
(
β0γ + |B0|) n∑

i=1

∣∣mi(x)
∣∣,

which gives ∣∣∣∣∣
n∑

i=1

ximi(x)

∣∣∣∣∣ ≤
n∑

i=1

∣∣mi(x)
∣∣ ≤ 1

1 − tanh(β0γ + |B0|)Qn(β0,B0|x).

Since Qn(β0,B0|X) = Op(
√

n) by (2.2) and
∑n

i=1 Ximi(X) is not op(n) by Lemma 2.2,
Pn,β0,B0(A2,n) converges to 0. A similar proof takes care of A3,n. It thus remains to show
that Pn,β0,B0(A4,n) converges to 0 as well. To this effect, note that if x = ±1, then we
have |Rn(β0,B0|x)| ≥ n(1 − tanh(β0γ + |B0|), the probability of which converges to 0 as
Rn(β0,B0|X) = Op(

√
n) by (2.3).

(c) By part (b), we have x ∈ Ac
2,n ∩ Ac

3,n ∩ Ac
4,n with probability tending to 1. Also by

assumption, we have Tn(X) > 0 with probability tending to 1, and so the pseudo-likelihood
estimator (β̂n, B̂n) is well defined with probability tending to 1.

Recall the 2 × 2 matrix Hn(β,B|x) as defined in (2.5), and denote λn(β,B|x) ≥
μn(β,B|x) to be its eigenvalues. We start by giving a lower bound to the minimum eigenvalue
μn(β,B|x). To this effect, note that

λn(β,B|x) + μn(β,B|x) = tr(Hn(β,B|x) =
n∑

i=1

θi(β,B|x)
(
m2

i (x) + 1
)

≤ n
(
1 + γ 2),
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which along with (2.6) gives

μn(β,B|x) ≥ λn(β,B|x)μn(β,B|x)

λn(β,B|x) + μn(β,B|x)
= |Hn(β,B|x)|

tr(Hn(β,B|x)

≥ sech4(βγ + |B|)
1 + γ 2 nTn(x).

(2.7)

Armed with this estimate, we now complete the proof of the Theorem. To this effect, setting
(βt ,Bt ) = (tβ̂n + (1 − t)β0, tB̂n + (1 − t)B0), define a function gn : [0,1] → R by

gn(t) := (β̂n − β0)Qn(βt ,Bt |x) + (B̂n − B0)Rn(βt ,Bt |x),

and note that

(2.8)

∣∣gn(1) − gn(0)
∣∣ = ∣∣(β̂n − β0)Qn(β0,B0|x) + (B̂n − B0)Rn(β0,B0|x)

∣∣
= Op(

√
nYn),

where Yn := ‖β̂n − β0, B̂n − B0‖2, and we use the Cauchy–Schwarz inequality along with
(2.2) and (2.3) of Lemma 2.1. Also we have

g′
n(t) = (β̂n − β0, B̂n − B0)Hn(βt ,Bt |x)(β̂n − β0, B̂n − B0)

� ≥ μn(βt ,Bt |x)Y 2
n .

In particular, we have g′
n(t) ≥ 0 for all t ∈ (0,1). Further, using (2.7) we get the existence of

r, s > 0 such that

inf
β>−,B �=0,‖β−β0,B−B0‖≤r

μn(β,B|x) ≥ snTn(x).

Noting that ‖βt − β0,Bt − B0‖2 = tYn gives∫ 1

0
g′

n(t) dt ≥
∫ min(1, r

Yn
)

0
g′

n(t) dt ≥ min
(

1,
r

Yn

)
snTn(x)W 2

n ,(2.9)

which along with (2.8) gives min(Yn, r) = Op( 1√
nTn(X). Since r > 0 is fixed, it follows that

Yn = op(1), and so (β̂n, B̂n) converges in probability to (β0,B0). This shows that Yn < r

with probability tending to 1, which on using (2.9) gives
∫ 1

0 g′
n(t) dt ≥ snTn(x)Y 2

n . Along
with (2.8), this gives nTn(X)Yn = Op(

√
n), which is the claimed bound.

3. Proofs of Theorem 1.4 and Theorem 1.5. The main tool required for proving The-
orem 1.4 and Theorem 1.5 is the following theorem, which proves a large deviation estimate
for Ising models that might be of independent interest. The proof of this theorem is very sim-
ilar to the proof of [9], Theorem 1.6, and [2], Theorem 1.1, and is placed in the Appendix.
See also [13], Corollary 12, which proves a similar result for Ising models under identical
conditions (i.e., (1.2) and (1.6)). The main difference is that [13] expresses mean field Ising
models as mixture of i.i.d. laws, whereas we focus on the behavior of m(X) which is more
relevant to the criterion Tn(X) = �p(1) provided in Corollary 1.3.

DEFINITION 3.1. For any y ∈ [−1,1]n, define a vector b(y) ∈ [−1,1]n by setting
bi(y) := tanh(βmi(y) + B) ∈ [−1,1].

The next result gives a crucial large deviation estimate for the random vector b(X). We
defer its proof to Supplement A.

THEOREM 3.2. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model (1.1),
where the coupling matrix An satisfies (1.2) and (1.6).
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(a) Let rn := supy∈[−1,1]n{fn(y) − I (y)} where

fn(y) := β

2
y′Any + B

n∑
i=1

yi,

I (y) :=
n∑

i=1

{
1 + yi

2
log

1 + yi

2
+ 1 − yi

2
log

1 − yi

2

}
.

Then we have

fn

(
b(X)

)− I
(
b(X)

)− rn = op(n).

(b) Further, we have ∥∥∇fn

(
b(X)

)− ∇I
(
b(X)

)∥∥ = op(
√

n).

3.1. Proof of Theorem 1.4. Since Tn = Op(1), it suffices to show that 1
Tn

= Op(1), which
is equivalent to showing that for any sequence {εn}n≥1 converging to 0 we have

lim
n→∞Pn,β,B

(
n∑

i=1

(
mi(X) − m̄(X)

)2 ≤ nεn

)
= 0.(3.1)

Since the set of probability measures on [−γ, γ ] is compact with respect to weak topology,
without loss of generality by passing to subsequence we can assume the sequence of empirical
measures 1

n

∑n
i=1 δRn(i) converge weakly to μ, where μ is a probability measure on [−γ, γ ].

This along with the dominated convergence theorem and (1.7) gives

lim
n→∞

1

n

n∑
i=1

(
Rn(i) − R̄n

)2 =
∫
[−γ,γ ]

(θ −Eμθ)2 dμ(θ) > 0.(3.2)

Proceeding to show (3.1), first note that

max
i∈[n]

∣∣bi(x)
∣∣ = max

i∈[n]
∣∣tanh

(
βmi(x) + B

)∣∣ ≤ tanh
(
βγ + |B|) =: p < 1,(3.3)

and so bi(x) ∈ [−p,p]. Also use (1.2) to note that there exists a finite positive constant
C(β,B,γ ) such that

n∑
i=1

(
mi(x) − m̄(x)

)2 = 1

2n

n∑
i,j=1

(
mi(x) − mj(x)

)2

≥ C(β,B,γ )

2n

n∑
i,j=1

(
bi(x) − bj (x)

)2

= C(β,B,γ )

n∑
i=1

(
bi(x) − b̄(x)

)2
,

and so changing variables to δn := εn/C(β,B,γ ) for verifying (3.1) it suffices to check that

lim
n→∞Pn,β,B

(
n∑

i=1

(
bi(X) − b̄(X)

)2 ≤ nδn,max
i∈[n]

∣∣bi(X)
∣∣ ≤ p

)
= 0.(3.4)

To show this, note that

∇fn(y) − ∇I (y) = βAny + B1 − arctanh(y).
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Thus if y is such that
∑n

i=1(yi − ȳ)2 ≤ nδn and maxi∈[n] |yi | ≤ p, then with ỹ := ȳ1 Triangle
inequality gives∥∥∇fn(y) − ∇I (y)

∥∥ ≥ ∥∥∇fn(ỹ) − ∇I (ỹ)
∥∥− ‖y − ỹ‖

(
β‖An‖2 + 1

1 − p2

)

≥ ∥∥∇fn(ỹ) − ∇I (ỹ)
∥∥−√

nδn

(
βγ + 1

1 − p2

)
= ∥∥∇fn(ỹ) − ∇I (ỹ)

∥∥− o(
√

n).

Finally, we have

∥∥∇fn(ỹ) − ∇I (ỹ)
∥∥2 =

n∑
i=1

(
βȳRn(i) + B − arctanh(ȳ)

)2

≥ inf
t∈[−p,p]

n∑
i=1

(
βtRn(i) + B − arctanh(t)

)2

= n inf
t∈[−p,p]

∫ γ

−γ

(
βtθ + B − arctanh(t)

)2
dμ(θ) + o(n).

Combining these estimates, on the set
∑n

i=1(bi(x) − b̄(x))2 ≤ nδn we have

1√
n

∥∥fn

(
b(x)

)− I
(
b(x)

)∥∥ ≥
√

inf
t∈[−p,p]

∫ γ

−γ

(
βtθ + B − arctanh(t)

)2
dμ(θ) − o(1),

from which the desired conclusion follows via part (b) of Lemma 3.2, if we can show that

inf
t∈[−p,p]

∫ γ

−γ

(
βtθ + B − arctanh(t)

)2
dμ(θ) > 0.

If not, then there exists t ∈ [−p,p] such that
∫ γ
−γ (βtθ +B −arctanh(t))2 dμ(θ) = 0. If t = 0,

then we have

0 =
∫ γ

−γ

(
βtθ + B − arctanh(t)

)2
dμ(θ) = B2

∫ γ

−γ
μ(dθ) = B2 �= 0,

a contradiction. Finally, if t �= 0, then we have θ
a.s.= arctanh(t)−B

βt
is a degenerate random vari-

able, a contradiction to (3.2). This completes the proof of the theorem.

3.2. Proof of Theorem 1.5. For proving Theorem 1.5, we need the following lemma, the
proof of which follows by simple analysis and can be found, for example, in [12], page 10.

LEMMA 3.3. Fix β > 0, B �= 0, and define the function

φ(y) := β

2
y2 + By − I (y), y ∈ [−1,1].

Then the function φ(·) has a unique global maximum at some m0 ∈ (−1,1).

PROOF OF THEOREM 1.5. Fixing ε > 0, it suffices to show that

lim
n→∞Pn,β,B

(
n∑

i=1

(
mi(x) − m̄(x)

)2
> nε

)
= 0.

To this effect, note that R̄n is a bounded sequence of real numbers by (1.2), and so without
loss of generality by passing to a subsequence, we can assume that R̄n converges to θ , say.
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Note that this also gives
n∑

i=1

(
Rn(i) − θ

)2 = o(n).(3.5)

Now, use (1.2) to note that there exists a finite positive constant C(β,B,γ ) such that
n∑

i=1

(
mi(x) − m̄(x)

)2 = 1

2n

n∑
i,j=1

(
mi(x) − mj(x)

)2

≤ C(β,B,γ )

2n

n∑
i,j=1

(
bi(x) − bj (x)

)2

= C(β,B,γ )

n∑
i=1

(
bi(x) − b̄(x)

)2
,

and so with δ := ε/C(β,B,γ ) it suffices to check that

lim
n→∞Pn,β,B

(
n∑

i=1

(
bi(x) − b̄(x)

)2
> nδ

)
= 0.

Let y ∈ [−1,1]n be any vector such that
∑n

i=1(yi − ȳ)2 ≥ nδ, and define a matrix A
(t)
n by

setting

A(t)
n (i, j) :=

{
An(i, j) if max

(∣∣Rn(i) − θ
∣∣, ∣∣Rn(j) − θ

∣∣) ≤ t,

0 otherwise.

Then we have
n∑

i,j=1

An(i, j)yiyj ≤
n∑

i,j=1

A(t)
n (i, j)yiyj + 2

∑
i:|Rn(i)−θ |>t

n∑
j=1

An(i, j)yiyj

≤
n∑

i,j=1

A(t)
n (i, j)yiyj + 2γ |{i ∈ [n] : ∣∣Rn(i) − θ

∣∣ > t
}

(3.6)

=
n∑

i,j=1

A(t)
n (i, j)yiyj + o(n),

where the last equality uses (3.5). Since
∑n

j=1 A
(t)
n (i, j) ≤ θ + t , it follows all eigenvalues of

A
(t)
n are bounded above by θ + t , and so

n∑
i,j=1

A(t)
n yiyj = y′A(t)

n y ≤ (θ + t)

n∑
i=1

y2
i ,

which along with (3.6) gives

fn(y) − I (y) = β

2
y′Any + B

n∑
i=1

yi −
n∑

i=1

I (yi)

≤ β

2
(θ + t)

n∑
i=1

y2
i + B

n∑
i=1

yi −
n∑

i=1

I (yi) + o(n)(3.7)

≤ nβt +
n∑

i=1

φ(yi) + o(n),
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where φ(y) := βθ
2 y2 + By − I (y). By Lemma 3.3, it follows that φ(·) has a unique global

maximum in [−1,1] at some point m0 ∈ (−1,1). Define another function � : [−1,1] �→
[0,∞) by setting

�(y) := φ(m) − φ(y)

(y − m0)2 for y �= m0,

and note that �(·) is strictly positive for all y ∈ [−1,1] other than m0 and satisfies

lim
y→m0

�(y) = −2φ′′(m0) > 0.

Consequently, �(y) extends to a strictly positive continuous function on [−1,1], and so
α := infy∈[−1,1] �(y) > 0, which in turn implies

φ(y) ≤ φ(m0) − α(y − m0)
2

for all y ∈ [−1,1]. This, along with (3.7) gives

sup
y:∑n

i=1(yi−ȳ)2>nδ

{
fn(y) − I (y)

} ≤ o(n) + nβt + nφ(m0) − nαδ,(3.8)

where the last inequality also uses the fact that

n∑
i=1

(yi − m0)
2 ≥

n∑
i=1

(yi − ȳ)2 ≥ nδ.

To complete the proof, restricting the sup over all vector y which are constant we get

sup
y∈[−1,1]n

{
fn(y) − I (y)

} ≥ n sup
y∈[−1,1]

{
β

2n
y21′An1 + By − I (y)

}

= o(n) + n sup
y∈[−1,1]

{
β

2
θy2 + By − I (y)

}
(3.9)

= o(n) + nφ(m0),

where the intermediate step uses (3.5) to note that

1′An1 =
n∑

i=1

Rn(i) = nθ +
n∑

i=1

(
Rn(i) − θ

) = nθ + o(n).

Thus combining (3.8) and (3.9) gives

sup
y∈[−1,1]n

{
fn(y) − I (y)

}− sup
y:∑n

i=1(yi−ȳ)2>nδ

{
fn(y) − I (y)

} ≥ nαδ − nβt + o(n),

from which the desired conclusion follows on using Theorem 3.2, since t > 0 is arbitrary.
�

4. Proof of Theorem 1.6 and Theorem 1.8.

4.1. Proof of Theorem 1.6. To see why the fact that Qn ×G(n,p) is contiguous to Per
n,β,B

implies nonexistence of consistent estimators, suppose there exists a consistent estimator
(β̃n, B̃n) on �t . Now fixing (β1,B1) and (β2,B2) in �t , there exists disjoint open balls B1,
B2 in R2 such that (βi,Bi) ∈ Bi for i = 1,2. Consistency implies

lim
n→∞Per

n,βi ,Bi

(
(β̃n, B̃n) ∈ Bi

) = 1,



JOINT ESTIMATION OF PARAMETERS IN ISING MODEL 803

which along with contiguity gives

lim
n→∞

(
Qn × G(n,p)

)(
(β̃n, B̃n) ∈ Bi

)
) = 1.

But this is a contradiction, as B1 and B2 are disjoint, thus completing the proof of the theorem.
The rest of the proof is broken into two parts: Part (a) shows that the probability sequence

Qn is contiguous to the Curie–Weiss model Pcw
n,β,B (Ising model on the complete graph); Part

(b) then shows that Pcw
n,β,B × G(n,p) is contiguous to Per

n,β,B .

(a) By [19], Lemma 3, we have the existence of a random variable Wn with density pro-
portional to e−nf (w), where f (w) := βw2/2 + Bw − log cosh(w). Also given Wn = w we
have X1, . . . ,Xn are i.i.d. random variables on {−1,1} such that

Pcw
n,β,B(Xi = 1|Wn = w) = eβw+B

eβw+B + e−βw−B
= 1 − Pcw

n,β,B(Xi = −1).

Finally, the conditional distribution of Wn given X1 = x1, . . . ,Xn = xn is N(x̄, 1
nβ

). By a
slight abuse of notation, we use Pcw

n,β,B to denote the joint law of (X1, . . . ,Xn) and Wn on
{−1,1}n × R. Similarly, extend Qn to {−1,1}n × R by setting Wn to be independent of
(X1, . . . ,Xn) with a density proportional to e−nf (w). Thus under both Pcw

n,β,B and Qn the
marginal distribution of Wn is the same.

We now show that Pcw
n,β,B is contiguous to Qn. To this effect, using [14] under Pcw

n,β,B we
have

√
n(X̄n − t)

d→ N

(
0,

1 − t2

1 − β(1 − t2)

)
.

This implies

√
n(Wn − t)

d→ N

(
0,

1

β[1 − β(1 − t2)]
)

under both Pcw
n,β,B and Qn, as the marginal law of Wn is the same under both measures. Using

this along with a one term Taylor’s expansion gives

Pcw
n,β,B(Xi = 1|Wn) = 1

1 + e−2βWn−2B
= 1

1 + e−2βt−2B
+ W̃n√

n
= α + W̃n√

n
,

where W̃n := ξn

√
n(Wn − t) for some bounded random variable ξn, and α := 1

1+e−2βt−2B .

Since
√

n(Wn − t) is Op(1) under Qn, it follows that W̃n = Op(1) as well. Also, setting
Sn := |i ∈ [n] : Xi = 1| we have Sn−nα√

n
= Op(1) under Qn. On the set |W̃n| ≤ K and |Sn −

nα| ≤ K
√

n, we have

log
Qn(X1 = x1, . . . ,Xn = xn|Wn = w)

Pcw
n,β1,B1

(X1 = x1, . . . ,Xn = xn|Wn = w)

= −Sn log
α + W̃n√

n

α
− (n − Sn) log

1 − α − W̃n√
n

1 − α

= −Sn

[
W̃n

α
√

n
+ O

(
K2

n

)]
+ (n − Sn)

[
W̃n

(1 − α)
√

n
+ O

(
K2

n

)]

= − W̃n√
n

[
Sn

α
− n − Sn

1 − α

]
+ O

(
K2)
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= − W̃n√
n

[
Sn − nα

α(1 − α)

]
+ O

(
K2)

≤ K2

α(1 − α)
+ O

(
K2) =: zK.

Thus if An ⊂ {−1,1}n is any sequence of sets such that limn→∞ Pcw
n,β,B(X ∈ An) = 0, then

denoting Cn := (
∫
R e−fn(w) dw)−1 we have

Qn

(
X ∈ An, |W̃n| ≤ K, |Sn − np| ≤ K

√
n
)

= Cn

∫
R
Qn

(
X ∈ An, |W̃n| ≤ K, |Sn − np| ≤ K

√
n|Wn = w

)
e−fn(w) dw

≤ CnzK

∫
R
Pcw

n,β,B

(
An, |W̃n| ≤ K, |Sn − np| ≤ K

√
n|Wn = w

)
e−fn(w) dw

= zKPcw
n,β,B

(
X ∈ An, |W̃n| ≤ K, |Sn − np| ≤ K

√
n
)

≤ zKP cw
n,β,B(X ∈ An).

This gives

Qn(X ∈ An) ≤ zKPcw
n,β,B(X ∈ An) +Qn

(|W̃n| > K
)+Qn

(|Sn − np| > K
√

n
)
,

which on letting n → ∞ followed by K → ∞ gives

lim sup
n→∞

Qn(X ∈ An) = 0,

and so Qn is contiguous to Pcw
n,β,B and the proof is complete. Even though we do not need

it, we note that in this case a symmetric proof gives the reverse conclusion as well, that is,
Pcw

n,β,B and Qn are mutually contiguous.
(b) We now show that Pcw

n,β,B ×G(n,p) is contiguous to Per
n,β,B , for which invoking Propo-

sition 6.1 of [5] it further suffices to show that D(Pcw
n,β,B × G(n,p)||Per

n,β,B) = O(1), where
D(·||·) is the Kullback–Leibler divergence. A direct computation shows that D(Pcw

n,β,B ×
G(n,p)||Per

n,β,B) equals

EG(n,p)

∑
x∈{−1,1}n

Pcw
n,β,B(x)

(
β

n − 1

n∑
i,j=1

[
1 − Gn(i, j)

p

]
xixj + log

Zer
n (β,B)

Zcw
n (β,B)

)

= EG(n,p) logZer
n (β,B) − logZcw

n (β,B)

≤ logEG(n,p)Z
er
n (β,B) − logZcw

n (β,B),

where the last inequality is by Jensen’s inequality, and Zcw
n (β,B) and Zer

n (β,B) denote the
normalizing constants for the corresponding Ising models. Finally, note that

EG(n,p)Z
er
n (β,B) = ∑

x∈{−1,1}n

n∏
1≤i<j≤n

EG(n,p)e
β

(n−1)p
Gn(i,j)xixj+B

∑n
i=1 xi

≤ ∑
x∈{−1,1}n

∏
1≤i<j≤n

exp
(

β

n − 1
xixj + β2

8(n − 1)2p2

)
eB

∑n
i=1 xi ,
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where we use Hoeffding’s lemma to get Eet(Bin(1,p)−p) ≤ e
t2
8 for t ∈ R and p ∈ (0,1). Com-

bining we have

EG(n,p)Z
er
n (β,B) ≤ e

β2

8p2
∑

�x∈{−1,1}n
exp

{
β

n − 1

∑
1≤i<j≤n

xixj + B

n∑
i=1

xi

}

= e
β2

8p2 Zcw
n (β,B),

which gives an upper bound to the Kullback–Leibler divergence which is independent of n,
and hence completes the proof of the theorem.

REMARK 4.1. To show a similar impossibility result for general dense regular graphs,
we need to get exact upper bounds on Zn(β,B). More precisely, we need to show that
Zn(β,B) ≤ O(1)Zcw

n (β,B).

4.2. Proof of Theorem 1.8. For proving Theorem 1.8, we need the following two lemmas.
The proofs of the lemmas are deferred to the end of the section. The first lemma gives an
estimate similar to Lemma 2.1.

LEMMA 4.2. Suppose X = (X1, . . . ,Xn) is an observation from the Ising model (1.1),
where the coupling matrix An satisfies (1.2) and (1.3), and β > 0, B �= 0. Then we have

lim sup
n→∞

1

n
E

[
n∑

i=1

(
mi(X) −

n∑
j=1

An(i, j) tanh
(
βmj(X) + B

))]2

< ∞.

The second lemma proves an estimate for the Curie–Weiss model, which is necessary for
completing the proof of Theorem 1.8.

LEMMA 4.3. Let βn be a sequence of positive reals bounded away from 0 and +∞, and
An be a matrix satisfying (1.2) and (1.9). Then for any B ∈ R there exists δ > 0 such that
under the Curie–Weiss model Pcw

n,βn,B we have

lim sup
n→∞

1

n
logPcw

n,βn,B

(
n∑

i=1

(
mi(X) − m̄(X)

)2 ≤ nδ

)
< 0,

where m(X) := AnX.

PROOF OF THEOREM 1.8. It suffices to show that given an arbitrary sequence of positive
reals {εn}n≥1 we have

lim
n→∞Pn,β,B

(
n∑

i=1

(
mi(X) − m̄(X)

)2 ≤ nεn

)
= 0.

Assume by way of contradiction that

lim sup
n→∞

Pn,β,B(En) > 0, En :=
{

n∑
i=1

(
mi(X) − m̄(X)

)2 ≤ nεn

}
.
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Using (2.3) and Lemma 4.2 and increasing the value of εn if necessary, we have
limn→∞ Pn,β,B(Cn ∩ Dn) = 1, where

Cn :=
{

n∑
i=1

(
Xi − tanh

(
βmi(X) + B

)) ≤ nεn

}
,

Dn :=
{

n∑
i=1

(
mi(X) −

n∑
j=1

An(i, j) tanh
(
βmj(X) + B

)) ≤ nεn

}
.

Combining this gives lim supn→∞Pn,β,B(Cn ∩ Dn ∩ En) > 0, and so there is a subsequence
along which Pn,β,B(Cn ∩ Dn ∩ En) ≥ δ for some δ > 0. Restricting ourself to this subse-
quence, on the set Cn ∩ Dn ∩ En we have

n∑
i=1

Xi
Cn=

n∑
i=1

tanh
(
βmi(X) + B

)+ o(n)

En= n tanh
(
βm̄(X) + B

)+ o(n),

nR̄n tanh
(
βm̄(X) + B

) En=
n∑

i=1

n∑
j=1

An(i, j) tanh
(
βmi(X) + B

)+ o(n)

Dn=
n∑

i=1

mi(X) + o(n).

In the above sequence of equations, the o(n) terms are uniform nonrandom bounds over the
set Cn ∩ Dn ∩ En which on dividing by n go to 0 as n → ∞, and are not made explicit for
the sake of clarity. On combining the above two equations, we get R̄n

∑n
i=1 Xi = ∑n

i=1 mi +
o(n), using which gives

n∑
i=1

Ximi(X)
En= m̄

n∑
i=1

xi = nR̄nX̄
2 + o(n).

Thus, we have

δ ≤ Pn,β,B(Cn ∩ Dn ∩ En)

= 1

Zn(β,B)

∑
x∈Cn∩Dn∩En

e
β
2 x′Anx+B

∑n
i=1 xi

≤ eo(n)

Zn(β,B)

∑
x∈Cn∩Dn∩En

e
βR̄n

2 x̄2+nBx̄

= eo(n) Z
cw
n (βn,B)

Zn(β,B)
Pcw

n,βn,B(Cn ∩ Dn ∩ En),

where βn := βR̄n is a sequence of positive real bounded away from ∞ and 0 by (1.2) and
(1.9) respectively, and Pcw

n,βn,B is the Curie–Weiss model with parameters (βn,B). Now, using
[2], (1.8), and [2], (2.3), we get

logZn(β,B) ≥ n sup
t∈[−1,1]

{
β

2
R̄nt

2 + Bt − I (t)

}
,

logZcw
n (βn,B) = n sup

t∈[−1,1]

{
β

2
R̄nt

2 + Bt − I (t)

}
+ o(n)
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respectively, which readily gives

δ ≥ eo(n)Pcw
n,βn,B(Cn ∩ Dn ∩ En) ≤ eo(n)Pcw

n,βn,B(En),

which on taking log, dividing by n and letting n → ∞ gives

lim inf
n→∞

1

n
logPcw

n,βn,B(En) = 0.

But this is a contradiction to Lemma 4.3, which completes the proof of the theorem. �

PROOF OF LEMMA 4.2. To begin, note that

n∑
i=1

(
mi(X) −

n∑
j=1

An(i, j) tanh
(
βmj(X) + B

)) =
n∑

j=1

Rn(j)(
(
Xj − bj (X)

)
,

where bj (x) = tanh(βmi(x) + B) as in Lemma 2.1. This on squaring and expanding gives

E

[
n∑

i=1

(
mi(X) −

n∑
j=1

An(i, j) tanh
(
βmj(X) + B

))]2

=
n∑

j=1

Rn(j)2E
(
Xj − bj (X)

)2

+ ∑
j �=k

Rn(j)Rn(k)E
(
Xj − bj (X)

)(
Xk − bk(X)

)
,

(4.1)

where the first term in (4.1) is bounded by nγ 2 by (1.2). Proceeding to bound the second
term, setting m

(i)
j (X) = ∑

k �=i A(j, k)xk we have

E
(
Xi − tanh

(
βmi(X) + B

))(
Xj − tanh

(
βm

(i)
j (X) + B

))
= E

{
E
(
Xi − tanh

(
βmi(X) + B

))|{Xk, k �= i})(Xj − tanh
(
βm

(i)
j (X) + B

))}
= 0,

which gives∣∣E(Xi − tanh
(
βmi(X) + B

))(
Xj − tanh

(
βmj(X) + B

))∣∣
= ∣∣E(Xi − tanh

(
βmi(X) + B

))(
tanh

(
βm

(i)
j (X) + B

)− tanh
(
βmj(X) + B

))∣∣
≤ βAn(i, j).

Summing over i �= j , the second term in (4.1) is bounded by∑
i �=j

Rn(i)Rn(j)βAn(i, j) ≤ nβγ 3.

Using (4.1) and combining we get

E

[
n∑

i=1

(
mi(X) −

n∑
j=1

An(i, j) tanh
(
βmj(X) + B

))]2

≤ nγ 2 + nβγ 3.(4.2)

This completes the proof of the lemma. �
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PROOF OF LEMMA 4.3. To begin, use [19], Lemma 3, to note that there exists a random
variable Wn, such that given Wn = w we have (X1, . . . ,Xn) are i.i.d. with

Pcw
n,βn,B(Xi = 1) = eβnw+B

eβnw+B + e−βnw−B
= 1 − Pcw

n,βn,B(Xi = −1).

Also note that

Yn(x) :=
√√√√ n∑

i=1

(
mi(x) − m̄(x)

)2 = sup
‖a‖2≤1

ai

(
mi(x) − m̄(x)

)
= sup

‖a‖2≤1
a′
(

I − 1

n
11�

)
Anx

and so Yn(x) is a convex function of x. Furthermore, for any y and z, using the Cauchy–
Schwarz inequality we get |Yn(y) − Yn(z)| ≤ γ ‖y − z‖, where we use the bound ‖An‖2 ≤ γ .
Therefore, Yn(x) is a γ -Lipschitz function of x on [−1,1]n, and so invoking [6], Theo-
rem 7.12, gives

P
(
Yn(X) ≤ E

(
Yn(X)|Wn

)− 2γ
√

t |Wn

) ≤ 2e− t
4 .(4.3)

In order to invoke (4.3), we need to first estimate E(Yn|Wn). To this effect, a direct computa-
tion gives

E
(
Yn(X)|Wn

)
= E

(√√√√√(
n∑

i=1

mi(X) − m̄(X)

)2∣∣∣Wn

)

≥ 1√
n
E

(
n∑

i=1

∣∣mi(X) − m̄(X)
∣∣∣∣∣Wn

)
[By Cauchy–Schwarz]

≥ 1

2γ
√

n
E

(
n∑

i=1

(
mi(X) − m̄(X)

)2
∣∣∣Wn

) [
Since

∣∣mi(x) − m̄(x)
∣∣ ≤ 2γ

]

≥ 1

2γ
√

n

n∑
i=1

Var
(
mi(X) − m̄(X)|Wn

)

= 1

2γ
√

n
Var(X1|Wn)

n∑
i,j=1

(
An(i, j) − 1

n
Rn(i)

)2
.

Finally, we have

n∑
i,j=1

(
An(i, j) − 1

n
Rn(i)

)2
=

n∑
i,j=1

A2
n(i, j) − 1

n

n∑
i=1

Rn(i)
2 ≥

n∑
i,j=1

A2
n(i, j) − γ 2,

where the last inequality follows by (1.2). Since Var(X1|Wn) = sech2(βnWn + B), on the set
|Wn| ≤ 2 we have

E(Yn|Wn) ≥ 1

2γ
√

n
sech2(βnWn + B)

(
n∑

i,j=1

A2
n(i, j) − γ

)
≥ 2c

√
n
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for some constant c > 0 by invoking (1.9). Thus on the set |Wn| ≤ 2 invoking (4.3) with
t = nc2

4γ 2 gives

P
(
Yn(X) ≤ c

√
n|Wn

) ≤ P
(
Yn(X) ≤ 2c

√
n − 2γ

√
t |Wn

) ≤ 2e− t
4 = 2e

− nc2

16γ 2 .

With δ = c2, this gives

Pcw
n,βn,B

(
n∑

i=1

(
mi(X) − m̄(X)

)2 ≤ nδ

)

≤ Pcw
n,βn,B

(|Wn| > 2
)+Ecw

n,βn,B

(
Pcw

n,βn,B

(
Yn(X) ≤ c

√
n|Wn

)
1
{|Wn| ≤ 2

})
≤ Pcw

n,βn,B

(|Wn| > 2
)+ 2e

− nc2

16γ 2 ,

from which the desired conclusion follows on using [19], Lemma 3, to note that the first term
in the RHS above decays exponentially, as (Wn|X1, . . . ,Xn) ∼ N(X̄, 1

nβn
). �
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SUPPLEMENTARY MATERIAL
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tains the proofs of Theorem 3.2, Lemma 2.2 and Proposition 1.9.
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