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This paper proves limit theorems for the number of monochromatic
edges in uniform random colorings of general random graphs. These can be
seen as generalizations of the birthday problem (what is the chance that there
are two friends with the same birthday?). It is shown that if the number of col-
ors grows to infinity, the asymptotic distribution is either a Poisson mixture or
a Normal depending solely on the limiting behavior of the ratio of the number
of edges in the graph and the number of colors. This result holds for any graph
sequence, deterministic or random. On the other hand, when the number of
colors is fixed, a necessary and sufficient condition for asymptotic normality
is determined. Finally, using some results from the emerging theory of dense
graph limits, the asymptotic (nonnormal) distribution is characterized for any
converging sequence of dense graphs. The proofs are based on moment cal-
culations which relate to the results of Erdős and Alon on extremal subgraph
counts. As a consequence, a simpler proof of a result of Alon, estimating the
number of isomorphic copies of a cycle of given length in graphs with a fixed
number of edges, is presented.
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1. Introduction. Suppose the vertices of a finite graph G are colored inde-
pendently and uniformly at random with c colors. The probability that the re-
sulting coloring has no monochromatic edge, that is, it is a proper coloring, is
χG(c)/c|V (G)|, where χG(c) denotes the number of proper colorings of G using
c-colors and |V (G)| is the number of vertices in G. The function χG is the chro-
matic polynomial of G, and is a central object in graph theory [22, 34, 35]. This
paper studies the limiting distribution of the number of monochromatic edges in
uniform random colorings of general random graphs.

1.1. Universal limit theorems for monochromatic edges. Let Gn denote the
space of all simple undirected graphs on n vertices labeled by [n] := {1,2, . . . , n}.
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Given a graph Gn ∈ Gn with adjacency matrix A(Gn) = ((Aij (Gn)))1≤i,j≤n, de-
note by V (Gn) the set of vertices, and by E(Gn) the set of edges of Gn, respec-
tively. The vertices of Gn are colored with c = cn colors as follows:

(1.1) P
(
v ∈ V (Gn) is colored with color a ∈ {1,2, . . . , c} | Gn

) = 1

c
,

independent from the other vertices. If Yi is the color of vertex i, then

(1.2) N(Gn) := ∑
1≤i<j≤n

Aij (Gn)111{Yi = Yj } = ∑
(i,j)∈E(Gn)

111{Yi = Yj },

denotes the number of monochromatic edges in the graph Gn. Note that
P(N(Gn) = 0) is the probability that Gn is properly colored. When c = 365
and Gn = Kn is a complete graph this reduces to the classical birthday prob-
lem: P(N(Kn) ≥ 1) is the probability that there are two people with the same
birthday in a room with n people. We study the limiting behavior of N(Gn) as
the size of the graph becomes large, allowing the graph itself to be random, under
the assumption that the joint distribution of (A(Gn),Yn) is mutually independent,
where Yn = (Y1, Y2, . . . , Yn) are i.i.d. random variables with P(Y1 = a) = 1/c, for
all a ∈ [c]. Note that this setup includes the case where {G1,G2, . . .} is a deter-
ministic (nonrandom) graph sequence, as well.

An application of the easily available version of Stein’s method gives a gen-
eral limit theorem for N(Gn) that works for all color distributions [5, 11]. For the
uniform coloring scheme, using the fact that the random variables are pairwise in-
dependent, Barbour, Holst and Janson [5] proved a Poisson approximation for the
number of monochromatic edges which works for any sequence of deterministic
graphs. The following theorem gives a new proof and slightly extends this result
by showing that the same is true for random graphs. Unlike Stein’s method, our
proof, which is based on the method of moments, does not give convergence rates.
However, it illustrates the connections to extremal combinatorics, and builds up to
our later results.

THEOREM 1.1. Let Gn ∈ Gn be a random graph sampled according to some
probability distribution over Gn and cn → ∞. Then under the uniform coloring
distribution, the following is true:

N(Gn)
D→

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if
1

cn

· ∣∣E(Gn)
∣∣ P→ 0,

∞ if
1

cn

· ∣∣E(Gn)
∣∣ P→ ∞,

W if
1

cn

· ∣∣E(Gn)
∣∣ D→ Z;

where P(W = k) = 1
k!E(e−ZZk). In other words, W is distributed as a mixture of

Poisson random variables mixed over the random variable Z.
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Theorem 1.1 is universal because it only depends on the limiting behavior of
|E(Gn)|/cn and it works for any graph sequence {Gn}n≥1, deterministic or ran-
dom. The theorem is proved using the method of moments, that is, the conditional
moments of N(Gn) are compared with conditional moments of the random vari-
able

(1.3) M(Gn) := ∑
1≤i<j≤n

Aij (Gn)Zij ,

where {Zij }(i,j)∈E(Gn) are independent Ber(1/c). The combinatorial quantity that
needs to be bounded during the moment calculations is the number of isomorphic
copies of a graph H in another graph G, to be denoted by N(G,H). Using spectral
properties of the adjacency matrix of G, we estimate N(G,H), when H = Cg is
a g-cycle. This result is then used to show the asymptotic closeness of the condi-
tional moments of N(Gn) and M(Gn).

Theorem 1.1 asserts that if 1
cn

|E(Gn)| P→ ∞, then N(Gn) goes to infinity in
probability. Since a Poisson random variable with mean growing to infinity con-
verges to a standard normal distribution after centering by the mean and scaling by
the standard deviation, it is natural to wonder whether the same is true for N(Gn).
This is not true in general if |E(Gn)|/cn goes to infinity, with cn = c fixed as indi-
cated in Example 6.1 and Example 7.1. On the other hand, if cn → ∞, an off-the-
shelf version of Stein’s method can be used to show the normality of N(Gn) under
some extra condition on the structure of the graph. However, under the uniform
coloring scheme, using the method of moments argument and extremal combina-
torics estimates from Alon [2], it can be shown that the normality for N(Gn) is
universal whenever cn → ∞.

THEOREM 1.2. Let Gn ∈ Gn be a random graph sampled according to some
probability distribution over Gn. Then for any uniform cn-coloring of Gn, with

cn → ∞ and |E(Gn)|/cn
P→ ∞,

1√|E(Gn)|/cn

(
N(Gn) − |E(Gn)|

cn

)
D→ N(0,1).

In the proof of Theorem 1.2, the conditional central moments of N(Gn) are
compared with the conditional central moments of M(Gn). In this case, a combina-
torial quantity involving the number of multi-subgraphs of Gn shows up. Bounding
this quantity requires extensions of Alon’s [2, 3] results to multi-graphs and leads
to some other results in graph theory which may be of independent interest. Error
rates for the above CLT were proved recently by Fang [26].

1.2. Normality for fixed number of colors. The limiting distribution of N(Gn)

might not be asymptotically normal if |E(Gn)| → ∞, but the number of colors
cn = c is fixed. In fact, in Example 6.1, we construct a graph sequence {Gn}n≥1,
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which if uniformly colored with c = 2 colors, the limiting distribution of N(Gn)

is a mixture of a standard normal and point mass at 0.
However, for many graph sequences the limiting distribution is asymptotically

normal. To characterize graph sequences for which asymptotic normality holds,
we introduce the following definition.

DEFINITION 1.1. A deterministic sequence of graphs {Gn}n≥1 is said to sat-
isfy the asymptotic 4-cycle free (ACF4) condition if

(1.4) N(Gn,C4) = o
(∣∣E(Gn)

∣∣2)
.

A sequence of random graphs {Gn}n≥1 is said to satisfy the ACF4 condition in
probability if

(1.5) N(Gn,C4) = oP

(∣∣E(Gn)
∣∣2)

.

[The notation Xn = oP (an) means that Xn/an converges to zero in probability as
n → ∞.]

The following theorem shows that the ACF4 condition is necessary and suffi-
cient for the normality of N(Gn) when the number of colors c is fixed. The proof
proceeds along similar lines as in Theorem 1.2. However, in this case, more careful
estimates are required to bound the number of multi-subgraphs of Gn.

THEOREM 1.3. Let Gn ∈ Gn be a random graph sampled according to some
probability distribution over Gn. Then for any uniform c-coloring of Gn, with c ≥
2, fixed and |E(Gn)| P→ ∞,

(1.6)
1√|E(Gn)|/c

(
N(Gn) − |E(Gn)|

c

)
D→ N

(
0,1 − 1

c

)
,

if and only if {Gn}n≥1 satisfies the ACF4 condition in probability.

For the case c = 2, the random variable N(Gn) − |E(Gn)|/c can be rewritten
as a quadratic form as follows: Let X = (X1,X2, . . . ,X|V (Gn)|)′ be a vector of
independent Rademacher random variables, then

N(Gn) − |E(Gn)|
c

D= 1

2

∑
i≤j

Aij (Gn)XiXj .

The asymptotic normality of Vn := ∑
i≤j aijXiXj for a general sequence of sym-

metric matrices {AAAn = ((aij ))} and i.i.d. real-valued random variables X1,X2,

. . . ,Xn with zero mean, unit variance and finite fourth moment, is a well-studied
problem. The classical sufficient condition for asymptotic normality is (refer to
Rotar [43], Hall [32], de Jong [19] for further details)

(1.7) lim
n→∞σ−4

n E
(
Vn −E(Vn)

)4 = 3 and lim
n→∞σ−2

n max
i∈[n]

n∑
j=1

a2
ij = 0,
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where σ 2
n = 1

2 tr(AAA2
n) = Var(Vn). This condition is also necessary when X1,X2,

. . . ,Xn are i.i.d. N(0, τ 2), for some τ > 0. Error bounds were obtained by Götze
and Tikhomirov [29, 30]. Recently, Nourdin et al. [40] showed that the first con-
dition in (1.7) is sufficient for asymptotic normality whenever E(X4

1) ≥ 3. This is
an example of the Fourth Moment Phenomenon which asserts that for many se-
quences of nonlinear functionals of random fields, a CLT is simply implied by the
convergence of the corresponding sequence of fourth moments (refer to Nourdin,
Peccati and Reinert [42] and the references therein for further details).

For the case where X1,X2, . . . ,Xn are Rademacher variables, error bounds
were also proved by Chatterjee [12]. Later, Nourdin, Peccati and Reinert [41]
showed that in this case, the first condition in (1.7) is necessary and sufficient for
asymptotic normality. For the special case where the matrix AAAn is the adjacency
matrix of a graph, it is easy to see that the fourth moment condition in (1.7) is
equivalent to the ACF4 condition, making Theorem 1.3 an instance of the Fourth
Moment Phenomenon. For the case of graphs, Theorem 1.3 reconstructs the result
about quadratic forms for c = 2, and extends it for general c ≥ 3 when N(Gn) can
no longer be written as a single quadratic form.

1.3. Limiting distribution for converging sequence of dense graphs. As dis-
cussed above, asymptotic normality of the number of monochromatic edges, for
a fixed number of colors, does not hold when the ACF4 condition is not satis-
fied. In particular, no sequence of dense graphs Gn with �(n2) edges satisfies the
ACF4 condition and hence the limiting distribution of N(Gn) is not normal. This
raises the question of characterizing the limiting distribution of N(Gn) for dense
graphs. Recently, Lovász and coauthors [8, 9, 38] developed a limit theory for
dense graphs. Using results from this theory, we obtain the limiting distribution of
N(Gn) for any converging sequence of dense graphs.

1.3.1. Graph limit theory. Graph limit theory connects various topics such as
graph homomorphisms, Szemerédi regularity lemma, quasirandom graphs, graph
testing and extremal graph theory, and has even found applications in statistics and
related areas [13]. For a detailed exposition of the theory of graph limits refer to
Lovász [38]. In the following, we mention the basic definitions about convergence
of graph sequences. If F and G are two graphs, then

t (F,G) := |hom(F,G)|
|V (G)||V (F)| ,

where |hom(F,G)| denotes the number of homomorphisms of F into G. In fact,
t (F,G) denotes the probability that a random mapping φ : V (F) → V (G) de-
fines a graph homomorphism. The basic definition is that a sequence Gn of graphs
converges if t (F,Gn) converges for every graph F .

There is a natural limit object in the form of a function W ∈ W , where
W is the space of all measurable functions from [0,1]2 into [0,1] that satisfy
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W(x,y) = W(y,x) for all x, y. Conversely, every such function arises as the limit
of an appropriate graph sequence. This limit object determines all the limits of
subgraph densities: if H is a simple graph with V (H) = {1,2, . . . , |V (H)|}, let

t (H,W) =
∫
[0,1]|V (H)|

∏
(i,j)∈E(H)

W(xi, xj )dx1 dx2 · · · dx|V (H)|.

A sequence of graphs {Gn}n≥1 is said to converge to W if for every finite simple
graph H ,

(1.8) lim
n→∞ t (H,Gn) = t (H,W).

The limit objects, that is, the elements of W , are called graph limits or graphons.
A finite simple graph G on [n] can also be represented as a graph limit in a natural
way: Define f G(x, y) := 1{(
nx�, 
ny�) ∈ E(G)}, that is, partition [0,1]2 into n2

squares of side length 1/n, and define f G(x, y) = 1 in the (i, j)th square if (i, j) ∈
E(G) and 0 otherwise. Observe that t (H,f G) = t (H,G) for every simple graph
H and therefore the constant sequence G converges to the graph limit f G. It turns
out that the notion of convergence in terms of subgraph densities outlined above
can be suitably metrized using the so-called cut distance (refer to [38], Chapter 8).

Every function W ∈ W defines an operator TW : L2[0,1] → L2[0,1], by

(1.9) (TWf )(x) =
∫ 1

0
W(x,y)f (y)dy.

TW is a Hilbert–Schmidt operator, which is compact and has a discrete spectrum,
that is, a countable multiset of nonzero real eigenvalues {λi(W)}i∈N. In particular,
every nonzero eigenvalue has finite multiplicity and

(1.10)
∞∑
i=1

λ2
i (W) =

∫
[0,1]2

W(x,y)2 dx dy := ‖W‖2
2.

1.3.2. Limiting distribution of N(Gn) for dense graphs. A sequence of ran-
dom graphs {Gn}n≥1 is said to converge to a random graphon W in distribution, if
the sequence

{
t (H,Gn) : H is a finite simple graph

} D→ {
t (H,W) : H is a finite simple graph

}
.

The above convergence is defined by the convergence of finite dimensional distri-
butions, that is, for any finite collection of simple graphs H we have

{
t (H,Gn) : H ∈ H

} D→ {
t (H,W) : H ∈H

}
.

Under the assumption that the sequence of random graphs Gn converges to a ran-
dom graphon W in distribution, one can derive the limiting distribution of N(Gn)
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in terms of the eigenvalues of TW , whenever
∫
[0,1]2 W(x,y)dx dy > 0 almost

surely. Since convergence in cut metric implies

1

n2

∣∣E(Gn)
∣∣ P→ 1

2

∫
[0,1]2

W(x,y)dx dy,(1.11)

the positivity condition just ensures that the random graph sequence Gn has �(n2)

edges with high probability, that is, it is dense.

THEOREM 1.4. Let {Gn}n≥1 be a sequence of random graphs converg-
ing in distribution to a random graphon W ∈ W , such that almost surely∫
[0,1]2 W(x,y)dx dy > 0. Then for any uniform c-coloring of Gn, with c ≥ 2 fixed

and |E(Gn)| P→ ∞,

(1.12)
1√

2|E(Gn)|
(
N(Gn) − |E(Gn)|

c

)
D→ 1

2c

∞∑
i=1

(
λi(W)

(
∑∞

j=1 λ2
j (W))

1
2

)
ξi,

where {ξi}i∈N are i.i.d. χ2
(c−1) − (c − 1) random variables independent of W .

This theorem gives a characterization of the limiting distribution of the num-
ber of monochromatic edges for all converging sequences of dense graphs. As
before, the main idea of the proof of Theorem 1.4 is moment comparison. How-
ever, in this case, the conditional central moments of N(Gn) are compared with
the conditional moments of a random variable obtained by replacing the color at
every vertex with an independent and appropriately chosen c-dimensional normal,
which is then shown to converge in distribution to a weighted sum of independent
centered chi-square χ2

(c−1) random variables. Refer to Beran [6] for more about
such distributions.

1.4. Connections to extremal combinatorics. The combinatorial quantity that
shows up in moment computations for the above theorems is N(G,H), the
number of isomorphic copies of a graph H in another graph G. The quantity
N(	,H) := supG:|E(G)|=	 N(G,H) is a well-known object in extremal graph the-
ory that was first studied by Erdős [24] and later by Alon [2, 3]. Alon [2] showed
that for any simple graph H there exists a graph parameter γ (H) such that
N(	,H) = �(	γ (H)). Friedgut and Kahn [27] extended this result to hypergraphs1

and identified the exponent γ (H) as the fractional stable number of the hypergraph
H . Alon’s result can be used to obtain a slightly more direct proof of Theorem 1.1.
However, our estimates of N(G,Cg) using the spectral properties of G lead to a
new and elementary proof of the following result of Alon [2]:

1A hypergraph is a pair H = (V (H),E(H)), where V (H) is a set of vertices, and E(H) is a set of
nonempty subsets of V (H) called hyperedges. If E(H) consists only of 2-element subsets of V (H),
then H is a graph.
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THEOREM 1.5 (Theorem B, Alon [2]). If H has a spanning subgraph which
is a disjoint union of cycles and isolated edges, then

N(	,H) = (
1 + O

(
	−1/2)) · 1

|Aut(H)| · (2	)|V (H)|/2,

where |Aut(H)| denotes the number of automorphisms of H .

The above theorem calculates the exact asymptotic behavior of N(	,H) for
graphs H that have a spanning subgraph consisting of a disjoint union of cycles
and isolated edges. There are only a handful of graphs for which such exact asymp-
totics are known [2, 3]. Alon’s proof in [2] uses a series of combinatorial lemmas.
We hope the short new proof presented in this paper is of independent interest.

The quantity γ (H) is a well-studied object in graph theory and discrete opti-
mization and is related to the fractional stable set polytope [44]. For a graph with
no isolated vertex, Alon [3] showed that γ (H) ≤ |E(H)|, and the equality holds if
and only if H is a disjoint union of stars. In Observation 4.1, it will be shown that
γ (H) ≤ |V (H)| − ν(H), where ν(H) is the number of connected components
of H and the condition for equality remains the same. This is used later to give
an alternative proof of Theorem 1.1. In fact, the universality of the Poisson limit
necessitates γ (H) < |V (H)| − ν(H) for all graphs with a cycle.

In a similar manner, the universal normal limit for c → ∞ leads to the follow-
ing interesting observation about γ (H). Suppose H has no isolated vertices: if
γ (H) > 1

2 |E(H)|, then H has a vertex of degree 1. This result is true for simple
graphs as well as for multi-graphs (with a similar definition of γ for multi-graphs).
This result is sharp, in the sense that there are simple graphs with no leaves such
that γ (H) = |E(H)|/2. Even though this result follows easily from the definition
of γ (H), it is a fortunate coincidence, as it is exactly what is needed in the proof
of universal normality.

The role of cycle counts is crucial for the asymptotic normality when the num-
ber of colors is fixed. As the sequence N(Gn) is uniformly integrable, the fourth
moment condition and Theorem 1.3 imply the convergence of all other moments.
In the language of graphs, this is equivalent to saying that the ACF4 condition im-
plies that N(Gn,Cg) = o(|E(Gn)|g/2), for all g ≥ 3. This means that if number
of 4-cycles in a graph is sub-extremal, then the counts of all other cycles are also
sub-extremal. A combinatorial proof of this result and the similarities to results in
pseudo-random graphs [15, 17], where the 4-cycle count plays a central role, are
discussed in Section 6.1.

1.5. Other monochromatic subgraphs. The above theorems determine the uni-
versal asymptotic behavior of the number of monochromatic edges under indepen-
dent and uniform coloring of the vertices. However, the situation for the number of
other monochromatic subgraphs is quite different. Even under uniform coloring,
the limit need not be a Poisson mixture. To this end, for r ≥ 1, denote by K1,r the
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complete bipartite graph with one vertex on one side and r vertices on the other
side. This will be referred to as the r-star. The following proposition shows that
the number of monochromatic r-stars in a uniform vertex-coloring of an n-star
converges to a polynomial in Poissons, which is not a Poisson mixture.

PROPOSITION 1.6. Let Gn = K1,n, be the star graph with n + 1 vertices.
Under the uniform coloring distribution, the random variable Tr,n that counts the
number of monochromatic r-stars in Gn satisfies

Tr,n
D→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if
n

cn

→ 0,

∞ if
n

cn

→ ∞,

X(X − 1) · · · (X − r + 1)

r! if
n

cn

→ λ,

where X ∼ Poisson(λ).

A few examples with other monochromatic subgraphs are also considered and
several interesting observations are reported. We construct a graph Gn where
the number of monochromatic g-cycles (g ≥ 3) in a uniform cn-coloring of Gn

converges in distribution to a nontrivial mixture of Poisson variables even when
|N(Gn,Cg)|/cg−1

n converges to a fixed number λ. This is in contrast to the situa-
tion for edges, where the number of monochromatic edges converges to Poisson(λ)

whenever |E(Gn)|/cn → λ. We believe that some sort of Poisson-mixture univer-
sality holds for cycles as well, that is, the number of monochromatic g-cycles in a
uniform random coloring of any graph sequence Gn converges in distribution to a
random variable which is a mixture of Poissons, whenever |N(Gn,Cg)|/cg−1

n →
λ > 0.

1.6. Literature review on nonuniform colorings. A natural generalization of
the uniform coloring distribution (1.1) is to consider a general coloring distribu-
tion p = (p1,p2, . . . , pc), that is, the probability a vertex is colored with color
a ∈ [c] is pa independent from the colors of the other vertices, where pa ≥ 0,
and

∑c
a=1 pa = 1. Define PG(p) to be the probability that G is properly col-

ored. PG(p) is related to Stanley’s generalized chromatic polynomial [46], and
under the uniform coloring distribution it is precisely the proportion of proper
c-colorings of G. Recently, Fadnavis [25] proved that PG(p) is Schur-concave for
every fixed c, whenever the graph G is claw-free, that is, G has no induced K1,3.
This implies that for claw-free graphs, the probability that it is properly colored is
maximized under the uniform distribution, that is, pa = 1/c for all a ∈ [c].

Poisson limit theorems for the number of monochromatic subgraphs in a ran-
dom coloring of a graph sequence Gn are applicable when the number of col-
ors grows in an appropriate way compared to the number of certain specific sub-
graphs in Gn. Arratia, Goldstein and Gordon [4] used Stein’s method based on
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dependency graphs to prove Poisson approximation theorems for the number of
monochromatic cliques in a uniform coloring of a complete graph (see also Chat-
terjee, Diaconis and Meckes [14]). Poisson limit theorems for the number of gen-
eral monochromatic subgraphs in a random coloring of a graph sequence are also
given in Cerquetti and Fortini [11]. They assumed that the distribution of col-
ors was exchangeable and proved that the number of copies of any particular
monochromatic subgraph converges in distribution to a mixture of Poissons.

However, most of these results need conditions on the number of certain sub-
graphs in Gn and the coloring distribution. Moreover, Poisson approximation holds
only in the regime where the number of colors c goes to infinity with n. Under
the uniform coloring distribution, the random variables in (1.2) have more inde-
pendence, and using the method of moments and estimates from extremal com-
binatorics, we show that nice universal limit theorems hold for the number of
monochromatic edges.

1.7. Organization of the paper. The rest of the paper is organized as follows:
Section 2 proves Theorem 1.1 and Section 3 illustrates it with various examples.
Section 4 discusses the connections with extremal combinatorics, fractional stable
set polytope, and includes a new proof of Theorem 1.5. The proofs of Theorem 1.2
and Theorem 1.3 are in Section 5 and Section 6, respectively. The characterization
of the limiting distribution for dense graphs (Theorem 1.4) is detailed in Section 7.
Finally, Section 8 proves Proposition 1.6, considers other examples on counting
monochromatic cycles, and discusses possible directions for future research. An
appendix provides the details on conditional and unconditional convergence of
random variables, and proofs of some technical lemmas.

2. Universal Poisson approximation under uniform coloring: Proof of The-
orem 1.1. In this section, we determine the limiting behavior of P(N(Gn) = 0)

under minimal conditions. Using the method of moments, we show that N(Gn) has
a universal threshold, which depends only on the limiting behavior of |E(Gn)|/cn,
and a Poisson limit theorem holds at the threshold.

Let Gn ∈ Gn be a random graph sampled according to some probability dis-
tribution. Recall the definition of M(Gn) in (1.3). The proof of Theorem 1.1 is
given in two parts: The first part compares the conditional moments of N(Gn)

and M(Gn) given the graphs Gn, showing that they are asymptotically close

when |E(Gn)|/cn
D→ Z. The second part uses this result to complete the proof

of Theorem 1.1 using some technical properties of conditional convergence (see
Lemma C.1).

2.1. Computing and comparing moments. This section is devoted to the com-
putation of conditional moments of N(Gn) and M(Gn), and their comparison.
To this end, define for any fixed number k, A �k B as A ≤ C(k)B , where C(k)
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is a constant that depends only on k. Let Gn ∈ Gn be a random graph sampled
according to some probability distribution. For any fixed subgraph H of Gn, let
N(Gn,H) be the number of isomorphic copies of H in Gn, that is,

N(Gn,H) := ∑
S⊂E(Gn):|S|=|E(H)|

111
{
Gn[S] ∼= H

}
,

where the sum is over subsets S of E(Gn) with |S| = |E(H)|, and Gn[S] is the
subgraph of Gn induced by the edges of S.

LEMMA 2.1. Let Gn ∈ Gn be a random graph sampled according to some
probability distribution. For any k ≥ 1, let Hk be the collection of all unlabeled
graphs with at most k edges and no isolated vertices. Then∣∣E(

N(Gn)
k | Gn

) −E
(
M(Gn)

k | Gn

)∣∣
�k

∑
H∈Hk,

H has a cycle

N(Gn,H) · 1

c
|V (H)|−ν(H)
n

,(2.1)

where ν(H) is the number of connected components of H .

PROOF. Using the multinomial expansion, we have

(2.2)

E
(
N(Gn)

k | Gn

)

= ∑
(i1,j1)∈E(Gn)

∑
(i2,j2)∈E(Gn)

· · · ∑
(ik,jk)∈E(Gn)

E

(
k∏

r=1

111{Yir = Yjr }
∣∣∣ Gn

)

and

(2.3)

E
(
M(Gn)

k | Gn

)

= ∑
(i1,j1)∈E(Gn)

∑
(i2,j2)∈E(Gn)

· · · ∑
(ik,jk)∈E(Gn)

E

(
k∏

r=1

Zirjr

)
.

If H is the simple unlabeled subgraph of Gn induced by the edges (i1, j1),
(i2, j2), . . . , (ik, jk), then

E

(
k∏

r=1

111{Yir = Yjr }
∣∣∣ Gn

)
= 1

c
|V (H)|−ν(H)
n

and E

(
k∏

r=1

Zirjr

)
= 1

c
|E(H)|
n

.

Note that in any graph H , |E(H)| ≥ |V (H)|−ν(H) and equality holds if and only
if H is a forest. The result now follows by taking the difference of (2.2) and (2.3)
and recalling the definition of Hk . �

Lemma 2.1 shows that bounding the difference of the conditional moments of
N(Gn) and M(Gn) entails bounding N(Gn,H), for all graphs H with a cycle.
The next lemma estimates the number of copies of a cycle Cg in Gn.
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LEMMA 2.2. For any positive integer g ≥ 3 and Gn ∈ Gn let N(Gn,Cg) be
the number of g-cycles in Gn. Then

N(Gn,Cg) ≤ 1

2g
· (

2
∣∣E(Gn)

∣∣)g/2
.

PROOF. Let A := A(Gn) be the adjacency matrix of Gn. Note that∑n
i=1 λ2

i (Gn) = tr(A2) = 2|E(Gn)|, where λ(Gn) = (λ1(Gn), . . . , λn(Gn))
′ is the

vector of eigenvalues of A(Gn). Also tr(Ag) counts the number of walks of length
g in Gn, and so each cycle in Gn is counted 2g times. Thus, for any g ≥ 3,

(2.4)

N(Gn,Cg) ≤ 1

2g
· tr

(
Ag) = 1

2g
·

n∑
i=1

λ
g
i (Gn)

≤ 1

2g

(
n∑

i=1

λ2
i (Gn)

)g/2

= 1

2g
· (

2
∣∣E(Gn)

∣∣)g/2
.

This completes the proof of the lemma. �

For a, b ∈ R, a � b, a � b, and a � b means a ≤ C1b, a ≥ C2b and C2b ≤
a ≤ C1b for some universal constants C1,C2 ∈ (0,∞), respectively. For a given
simple graph H , the notation A �H B will mean A ≤ C(H) · B , where C(H)

is a constant that depends only on H . The following lemma gives a bound on
N(Gn,H) in terms of |E(Gn)| for arbitrary subgraphs H of Gn.

LEMMA 2.3. For any fixed connected subgraph H , let N(Gn,H) be the set
of copies of H in Gn. Then

(2.5) N(Gn,H)�H

∣∣E(Gn)
∣∣|V (H)|−1

.

Furthermore, if H has a cycle of length g ≥ 3, then

(2.6) N(Gn,H)�H

∣∣E(Gn)
∣∣|V (H)|−g/2

.

PROOF. The first bound on N(Gn,H) can be obtained by a crude counting
argument as follows: First, choose an edge of Gn in E(Gn) which fixes 2 vertices
of H . Then the remaining |V (H)| − 2 vertices are chosen arbitrarily from V (Gn),
giving the bound

N(Gn,H)�H

∣∣E(Gn)
∣∣( ∣∣V (Gn)

∣∣∣∣V (H)
∣∣ − 2

)
≤ ∣∣E(Gn)

∣∣( 2
∣∣E(Gn)

∣∣∣∣V (H)
∣∣ − 2

)

�H

∣∣E(Gn)
∣∣|V (H)|−1

,

where we have used the fact that the number of graphs on |V (H)| vertices is at

most 2(|V (H)|
2 ).
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Next, suppose that H has a cycle of length g ≥ 3. Choosing a cycle of length
g arbitrarily from Gn, there are |V (Gn)| vertices from which the remaining
|V (H)| − g vertices are chosen arbitrarily. Since the edges among these vertices
are also chosen arbitrarily, the following crude upper bound holds

N(Gn,H)�H N(Gn,Cg)

(
2
∣∣E(Gn)

∣∣∣∣V (H)
∣∣ − g

)

�H N(Gn,Cg)
∣∣E(Gn)

∣∣|V (H)|−g

�H

∣∣E(Gn)
∣∣|V (H)|−g/2

,

(2.7)

where the last step uses Lemma 2.2. �

The girth of a graph G, to be denoted by gir(G), is the length of its shortest
cycle. A graph with no cycles has infinite girth. If the graph has a cycle, then
gir(G) ∈ [3,∞). The above lemmas now imply that the conditional moments of

M(Gn) and N(Gn) are asymptotically close, whenever |E(Gn)|/c D→ Z.

LEMMA 2.4. Let M(Gn) and N(Gn) be as defined in (1.2) and (1.3), with

|E(Gn)|/c D→ Z, then for every fixed k ≥ 1,∣∣E(
N(Gn)

k | Gn

) −E
(
M(Gn)

k | Gn

)∣∣ P→ 0.

PROOF. By Lemma 2.1
∣∣E(

N(Gn)
k | Gn

) −E
(
M(Gn)

k | Gn

)∣∣ �k

∑
H∈Hk,

H has a cycle

N(Gn,H) · 1

c
|V (H)|−ν(H)
n

,

where ν(H) is the number of connected components of H . As the sum over
H ∈ Hk is a finite sum, it suffices to show that for a given H ∈ Hk with a cy-
cle N(Gn,H) = oP (c

|V (H)|−ν(H)
n ).

To this end, fix H ∈Hk and let H1,H2, . . . ,Hν(H) be the connected components
of H . Since g := gir(H) ≥ 3, assume without loss of generality that H1 has a cycle
of length g. Lemma 2.3 then implies that

N(Gn,H) ≤
ν(H)∏
i=1

N(Gn,Hi)

�H

∣∣E(Gn)
∣∣|V (H1)|−g/2

ν(H)∏
i=2

E(Gn)
V (Hi)−1

�H

∣∣E(Gn)
∣∣|V (H)|−ν(H)+1−g/2

(2.8)

which is op(c
|V (H)|−ν(H)
n ) since g/2 − 1 > 0. �
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2.2. Completing the proof of Theorem 1.1. The results from the previous sec-
tion are used here to complete the proof of Theorem 1.1. The three different
regimes of |E(Gn)|/cn are treated separately as follows:

2.2.1. 1
cn

· |E(Gn)| P→ 0. In this case,

P
(
N(Gn) > 0 | Gn

) ≤ E
(
N(Gn) | Gn

) = ∣∣E(Gn)
∣∣/cn

P→ 0,

and the result follows.

2.2.2. 1
cn

· |E(Gn)| P→ ∞. Using pairwise independence of the collection of
random variables (1{Yi = Yj },1 ≤ i < j ≤ n) gives

E
(
N(Gn)

2 | Gn

) = |E(Gn)|2
c2
n

+ |E(Gn)|
cn

(
1 − 1

cn

)
,

and so

E(N(Gn)
2 | Gn)

E(N(Gn) | Gn)2
P→ 1.

This implies that N(Gn)/E(N(Gn) | Gn) converges in probability to 1, and so

N(Gn) converges to ∞ in probability, as E(N(Gn) | Gn) = 1
cn

· |E(Gn)| P→ ∞.

2.2.3. 1
cn

· |E(Gn)| D→ Z, where Z is some random variable. In this regime,
the limiting distribution of N(Gn) is a mixture of Poissons. As the Poisson dis-
tribution can be uniquely identified by moments, from Lemma 2.4 it follows
that conditional on {|E(Gn)|/cn → λ}, N(Gn) converges to Poisson(λ) for every
λ > 0. However, this does not immediately imply the unconditional convergence of
N(Gn) to a mixture of Poissons. In fact, a technical result, detailed in Lemma C.1,
and convergence of M(Gn) to a Poisson mixture is necessary to complete the
proof.

To begin with, recall that a random variable X is a Poisson with mean Z, to be
denoted as Poisson(Z), if there exists a nonnegative random variable Z such that

(2.9) P(X = k) = E

(
1

k!e
−ZZk

)
.

The following lemma shows that M(Gn) converges to Poisson(Z) and satisfies the
technical condition needed to apply Lemma C.1.

LEMMA 2.5. Let M(Gn) be as defined in (1.3) and 1
cn

· |E(Gn)| D→ Z. Then

M(Gn)
D→ Poisson(Z), and further for any ε > 0, t ∈ R,

lim sup
k→∞

lim sup
n→∞

P

(∣∣∣∣ t
k

k!E
(
M(Gn)

k | Gn

)∣∣∣∣ > ε

)
= 0.
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PROOF. For any t ∈R,

EeitM(Gn) = EE
(
eitM(Gn) | Gn

) = E

(
1 − 1

cn

+ eit

cn

)|E(Gn)|
= ERn,

where Rn := (1 − 1
cn

+ eit

cn
)|E(Gn)| satisfies |Rn| ≤ 1. Since

logRn = ∣∣E(Gn)
∣∣ log

(
1 − 1

cn

+ eit

cn

)

= ∣∣E(Gn)
∣∣(eit − 1

cn

+ O

(
1

c2
n

))

D→ (
eit − 1

)
Z,

by the dominated convergence theorem EeitM(Gn) = ERn → Ee(eit−1)Z , which
can be easily checked to be the generating function of a random variable with

distribution Poisson(Z). Thus, it follows that M(Gn)
D→ Poisson(Z).

Proceeding to check the second conclusion, recall the standard identity zk =∑k
j=0 S(k, j)(z)j , where S(·, ·) are Stirling numbers of the second kind and

(z)j = z(z−1) · · · (z−j +1). In the above identity, setting z = M(Gn), taking ex-
pectation on both sides conditional on Gn, and using the formula for the Binomial
factorial moments,

E
(
M(Gn)

k | Gn

) =
k∑

j=0

S(k, j)
(∣∣E(Gn)

∣∣)
j c

−j .

The right-hand side converges weakly to
∑k

j=0 S(k, j)Zj . This is the kth mean of
a Poisson random variable with parameter Z. Using the formula for the Poisson
moment generating function, for any Z ≥ 0 and any t ∈ R, we have

∞∑
k=0

tk

k!
k∑

j=0

S(k, j)Zj = eZ(et−1) < ∞ =⇒ tk

k!
k∑

j=0

S(k, j)Zj a.s.→ 0,

as k → ∞. Now applying Fatou’s lemma gives

lim sup
n→∞

P

(∣∣∣∣ t
k

k!E
(
M(Gn)

k | Gn

)∣∣∣∣> ε

)
≤ P

(∣∣∣∣∣ t
k

k!
k∑

r=0

S(k, r)Zr

∣∣∣∣∣ > ε

)
,

from which the lemma follows by taking limit as k → ∞ on both sides. �

Now, take Xn = M(Gn) and Yn = N(Gn), and observe that (C.1) and (C.2) hold
by Lemma 2.4 and Lemma 2.5, respectively. As M(Gn) converges to Poisson(Z),
this implies that N(Gn) converges to Poisson(Z), and the proof of Theorem 1.1 is
completed.



UNIVERSAL LIMIT THEOREMS IN GRAPH COLORING PROBLEMS 353

REMARK 2.1. Theorem 1.1 shows that the limiting distribution of the number
of monochromatic edges converges to a Poisson mixture. In fact, Poisson mixtures
arise quite naturally in several contexts. It is known that the Negative Binomial
distribution is distributed as Poisson(Z), where Z is a Gamma random variable
with integer values for the shape parameter. Greenwood and Yule [31] showed that
certain empirical distributions of accidents are well-approximated by a Poisson
mixture. Le-Cam and Traxler [37] proved asymptotic properties of random vari-
ables distributed as a mixture of Poissons. Poisson mixtures are widely used in
modeling count panel data (refer to the recent paper of Burda, Harding and Haus-
man [10] and the references therein), and have appeared in other applied problems
as well [16].

3. Examples: Applications of Theorem 1.1. In this section, we apply The-
orem 1.1 to different deterministic and random graph models, and determine the
specific nature of the limiting Poisson distribution.

EXAMPLE 3.1 (Birthday problem). When the underlying graph G is the com-
plete graph Kn on n vertices, the above coloring problem reduces to the well-
known birthday problem. By replacing the c colors by birthdays, each occurring
with probability 1/c, the birthday problem can be seen as coloring the vertices of
a complete graph independently with c colors. The event that two people share the
same birthday is the event of having a monochromatic edge in the colored graph.
In birthday terms, P(N(Kn) = 0) is precisely the probability that no two people
have the same birthday. Theorem 1.1 says that under the uniform coloring for the
complete graph P(N(Kn) = 0) ≈ e−n2/2c. Therefore, the maximum n for which
P(N(Kn) = 0) ≤ 1/2 is approximately 23, whenever c = 365. This reconstructs
the classical birthday problem which can also be easily proved by elementary cal-
culations. For a detailed discussion on the birthday problem and its various gener-
alizations and applications, refer to [1, 5, 18, 20, 21] and the references therein.

EXAMPLE 3.2 (Birthday coincidences in the US population). Consider the
following question: What is the chance that there are two people in the United
States who (a) know each other, (b) have the same birthday, (c) their fathers have
the same birthday, (d) their grandfathers have the same birthday, and (e) their great
grandfathers have the same birthdays. We will argue that this seemingly impossible
coincidence actually happens with almost absolute certainty.

The population of the US is about n = 400 million and it is claimed that a
typical person knows about 600 people [28, 36]. If the network Gn of “who
knows who” is modeled as an Erdős–Renyi graph, this gives p = 150 × 10−8

and E(|E(Gn)|) = 300 × 4 × 108 = 1.2 × 1011. The 4-fold birthday coincidence
amounts to c = (365)4 “colors” and λ = E(N(Gn)) = E(|E(Gn)|)/c ≈ 6.76, and

using the bound P(N(Gn) > 0) ≥ E(N(Gn))2

E(N(Gn)2)
, the probability of a match is at least



354 B. B. BHATTACHARYA, P. DIACONIS AND S. MUKHERJEE

1− 1
λ

= 85%. Note that this bound only uses an estimate on the number of edges in
the graph. Moreover, assuming the Poisson approximation, the chance of a match
is approximately 1 − e−λ ≈ 99.8%, which means that with high probability there
are two friends in the US who have a 4-fold birthday match among their ancestors.

Going back one more generation, we now calculate the probability that there
are two friends who have a 5-fold birthday coincidence between their respective
ancestors. This amounts to c = (365)5 and Poisson approximation shows that the
chance of a match is approximately 1 − e−λ ≈ 1.8%. This implies that even a
miraculous 5-fold coincidence of birthdays is actually likely to happen among the
people of the US.

This is an example of the law of truly large numbers [21], which says that when
enormous numbers of events and people and their interactions cumulate over time,
almost any outrageous event is bound to occur. The point is that truly rare events
are bound to be plentiful in a population of 400 million people. If a coincidence
occurs to one person in a million each day, then we expect 400 occurrences a day
and close to 140,000 such occurrences a year.

EXAMPLE 3.3 (Galton–Watson trees). An example where the limiting distri-
bution of N(Gn) is indeed a Poisson mixture arises in the uniform coloring of
Galton–Watson trees with general offspring distribution. Let G be the Galton Wat-
son tree with offspring distribution , and Gn be the tree obtained by truncating
G at height n. Assuming μ := ∫

x d > 1, ensures that the Galton Watson tree G

is infinite with positive probability.
For i ≥ 0, let Si denote the size of the ith generation, and the total progeny up to

time n by Yn := ∑n
i=0 Si . Assuming that the population starts with one off-spring

at time 0, that is, S0 ≡ 1, it is well known that Sn/μ
n is a nonnegative martingale

([23], Lemma 4.3.6). It converges almost surely to a finite valued random variable
S∞, by [23], Theorem 4.2.9, which readily implies Yn/μ

n+1 converges almost
surely to S∞/(μ − 1). If the graph G is infinite, Theorem 1.1 applies:2

N(Gn)
D→

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if
μn

cn

→ 0,

∞ if
μn

cn

→ ∞,

Poisson
(

bμ

μ − 1
S∞

)
if

μn

cn

→ b,

where Poisson(
bμ

μ−1S∞) is a Poisson distribution with the random mean bμ
μ−1S∞

as defined in (2.9). Note that this also includes the case where G is finite and
cn → ∞: In this case, S∞ = 0 and N(Gn) → 0 in probability. It is worth noting

2In this case, the number of vertices in Gn is also random. However, the proof of Theorem 1.1
goes through as long as |V (Gn)| goes to +∞ in probability, which happens whenever G is infinite.
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that S∞ ≡ 0 if and only if E(ξ log ξ) = ∞ ([23], Theorem 4.3.10). Thus, to get a
nontrivial limit the necessary and sufficient condition is E(ξ log ξ) < ∞.

4. Connections to extremal graph theory. In the method of moment calcu-
lations of Lemma 2.1, we encounter the quantity N(G,H), the number of isomor-
phic copies of H in G. More formally, given two graphs G = (V (G),E(G)) and
H = (V (H),E(H)), we have

N(G,H) = ∑
S⊂E(G):|S|=|E(H)|

111
{
G[S] ∼= H

}
,

where the sum is over subsets S of E(G) with |S| = |E(H)|, and G[S] is the
subgraph of G induced by the edges of S.

For a positive integer 	 ≥ |E(H)|, define

N(	,H) := sup
G:|E(G)|=	

N(G,H).

For the complete graph Kh, Erdős [24] determined N(	,Kh), which is also a spe-
cial case of the Kruskal–Katona theorem, and posed the problem of estimating
N(	,H) for other graphs H . This was addressed by Alon [2] in 1981 in his first
published paper. Alon studied the asymptotic behavior of N(	,H) for fixed H , as
	 tends to infinity. He identified the correct order of N(	,H), for every fixed H .
To state his result requires the following definition.

DEFINITION 4.1. For any graph H , denote the neighborhood of a set S ⊆
V (H) by NH(S) = {v ∈ V (H) : ∃u ∈ S and (u, v) ∈ E(H)}. Note that elements
of S may or may not be in NH(S): an element a ∈ S is in NH(S) if and only if
there exists b ∈ S such that (a, b) ∈ E(H).

THEOREM 4.1 (Alon [2]). For a fixed graph H , there exist two positive con-
stants C1 = C1(H) and C2 = C2(H) such that for all 	 ≥ |E(H)|,
(4.1) C1	

γ (H) ≤ N(	,H) ≤ C2	
γ (H),

where γ (H) = 1
2(|V (H)| + δ(H)), and δ(H) = max{|S| − |NH(S)| : S ⊂ V (H)}.

Hereafter, unless mentioned otherwise, we shall only consider graphs H with
no isolated vertex. Using the above theorem or the definition of γ (H) it is easy
to show that γ (H) ≤ |E(H)|, and the equality holds if and only if H is a disjoint
union of stars (Theorem 1, Alon [3]). The following observation gives a slight
strengthening of Theorem 1 of [3].

OBSERVATION 4.1. For any graph H with no isolated vertex,

γ (H) ≤ ∣∣V (H)
∣∣ − ν(H),

where ν(H) is the number of connected components of H . Moreover, the equality
holds if and only if H is a disjoint union of stars.
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PROOF. Suppose H1,H2, . . . ,Hν(H) are the connected components of H .
Fix i ∈ {1,2, . . . , ν(H)}. Since Hi is connected, for every S ⊂ V (Hi), |S| −
|NHi

(S)| ≤ |V (Hi)| − 2. This implies that δ(H) = ∑ν(H)
i=1 δ(Hi) ≤ |V (H)| −

2ν(H), and γ (H) ≤ |V (H)| − ν(H).
Now, if H is a disjoint union of stars with ν(H) connected components, then

by Theorem 1 of Alon [3], γ (H) = |E(H)| = |V (H)| − ν(H).
Conversely, suppose that γ (H) = |V (H)| − ν(H). If H has a cycle of length

g ≥ 3, then from (2.8) and Theorem 4.1 γ (H) ≤ |V (H)| − ν(H) + 1 − g/2 <

|V (H)| − ν(H). Therefore, H has no cycle, that is, it is a disjoint union of trees.
This implies that γ (H) = |V (H)|−ν(H) = |E(H)|, and from Theorem 1 of Alon
[3], H is a disjoint union of stars. �

4.1. Another proof of Theorem 1.1. The main step in the proof of Theorem 1.1
is the moment comparison in Lemma 2.4. In fact, Theorem 4.1 and Observation 4.1
give a direct proof of Lemma 2.4, which does not require the subgraph counting
Lemmas 2.2 and 2.3.

With N(Gn) and M(Gn) as defined in (1.2) and (1.3), and |E(Gn)|/cn
D→ Z,

for every fixed k ≥ 1, we have∣∣E(
N(Gn)

k | Gn

) −E
(
M(Gn)

k | Gn

)∣∣
�k

∑
H∈Hk,

H has a cycle

N(Gn,H) · 1

c
|V (H)|−ν(H)
n

�k

∑
H∈Hk,

H has a cycle

|E(Gn)|γ (H)

c
|V (H)|−ν(H)
n

,

where the last inequality follows from Theorem 4.1. As the sum is over all graphs
H that are not a forest, it follows from Observation 4.1 that γ (H) < |V (H)| −
ν(H). Therefore, every term in the sum goes to zero in probability as n → ∞,
and, since H ∈ Hk is a finite sum, Lemma 2.4 follows. The proof of Theorem 1.1
can now be completed as in Section 2.2.

4.2. A new proof of Theorem 1.5 using Lemma2.2. This section gives a short
proof of Theorem 1.5 using Lemma 2.2.

4.2.1. Proof of Theorem 1.5. Let F be the spanning subgraph H , and let
F1,F2, . . . ,Fq , be the connected components of F , where each Fi is a cycle or
an isolated edge, for i ∈ {1,2, . . . , q}. Consider the following two cases:

Case 1. Fi is an isolated edge. Then for any graph G with |E(G)| = 	,

(4.2) N(G,Fi) = 	 = 1

|Aut(Fi)| · (2	)|V (Fi)|/2.
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Case 2. Fi is a cycle of length g ≥ 3. Then by Lemma 2.2

(4.3) N(G,Fi) ≤ 1

2g
· (2	)g/2 = 1

|Aut(Fi)| · (2	)|V (Fi)|/2,

for any graph G with |E(G)| = 	.

Now, (4.2) and (4.3) imply that

(4.4)

N(G,F) ≤
q∏

i=1

N(G,Fi) ≤ 1∏q
i=1 |Aut(Fi)| · (2	)|V (H)|/2

= 1

|Aut(F )| · (2	)|V (H)|/2,

for all graphs G with |E(G)| = 	.
Let v = |V (H)| = |V (F)| and define x(H,F ) to be the number of subgraphs of

Kv , isomorphic to H , that contain a fixed copy of F in Kv . Given a graph G with
|E(G)| = 	, every F in G can be completed (by adding edges) to an H in G, in at
most x(H,F ) ways, and in this fashion each H in G is obtained exactly N(H,F)

times (see [2], Lemma 3). This implies that

(4.5) N(	,H) ≤ x(H,F )

N(H,F )
N(	,F ).

Similarly, N(Kv,H) = x(H,F )
N(H,F)

N(Kv,F ) (see [2], Lemma 6) and it follows from
(4.5) that,

N(	,H) ≤ N(Kv,H)

N(Kv,F )
N(	,F ) = |Aut(F )|

|Aut(H)|N(	,F )

≤ 1

|Aut(H)|(2	)|V (H)|/2,

where the last inequality follows from (4.4).
For the lower bound, let s = �√2	� and note that,

N(	,H) ≥ N(Ks,H) =
(

s∣∣V (H)
∣∣
)
N(K|V (H)|,H)

= s|V (H)| + O(s|V (H)|−1)

|V (H)|! N(K|V (H)|,H)

= (2	)|V (H)|/2

|Aut(H)| + O
(
	|V (H)|/2−1/2)

,

thus completing the proof. �
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4.3. Connections to fractional stable set and a structural lemma. A multi-
graph G is a graph with no self-loops, where there might be more than one edge
between two vertices. In this case, the set of edges E(G) is a multi-set where
the edges are counted with their multiplicities. Friedgut and Kahn [27] extended
Alon’s result to hypergraphs, and identified the exponent γ (H) as the fractional
stable number of the hypergraph H , which is the defined as the solution of a linear
programming problem. Using this alternative definition, we can define γ (H) for
any multi-graph as follows:

(4.6) γ (H) = arg max
φ∈VH [0,1],

φ(x)+φ(y)≤1 for (x,y)∈E(H)

∑
v∈V (H)

φ(v),

where VH [0,1] is the collection of all functions φ : V (H) → [0,1]. It is clear that
γ (H) = γ (HS), where HS is the simple graph obtained from H by replacing the
edges between the vertices which occur more than once by a single edge.

The polytope PH defined by the constraint set of this linear program is called the
fractional stable set polytope [44] (for more on the fractional stable number refer
to [33]). The following lemma, which is an easy consequence of the definitions,
relates γ (H) to the minimum degree of H , to be denoted by dmin(H). As before,
we will only be considering multi-graphs with no isolated vertex.

LEMMA 4.1. Let H = (V (H),E(H)) be a multi-graph with no isolated ver-
tex and dmin(H) ≥ 2, and let ϕ : V (H) → [0,1] be an optimal solution of the
linear program (4.6). Then γ (H) ≤ 1

2 |E(H)|. Moreover, if there exists v ∈ V (H)

such that ϕ(v) �= 0 and d(v) ≥ 3 then γ (H) < 1
2 |E(H)|.

PROOF. If dmin(H) ≥ 2, we have

∑
x∈V (H)

ϕ(x) ≤ 1

dmin(H)

∑
(x,y)∈E(H)

{
ϕ(x) + ϕ(y)

} ≤ 1

2

∣∣E(H)
∣∣,

which gives γ (H) ≤ 1
2 |E(H)|.

Now, suppose there exists v ∈ V (H) such that ϕ(v) �= 0 and d(v) ≥ 3. Then∣∣E(H)
∣∣ ≥ ∑

(x,y)∈E(H)

{
ϕ(x) + ϕ(y)

} = ∑
x∈V (H)

d(x)ϕ(x)

≥ 3ϕ(v) + 2
∑

x∈V (H)\{v}
ϕ(x) = 2γ (H) + ϕ(v),

and the result follows since ϕ(v) > 0. �

Another important property of the fractional stable set polytope is the following
proposition.



UNIVERSAL LIMIT THEOREMS IN GRAPH COLORING PROBLEMS 359

PROPOSITION 4.2 ([39]). Let ϕ : V (H) → [0,1] be any extreme point of the
fractional stable set polytope P(H). Then ϕ(v) ∈ {0, 1

2 ,1}, for all v ∈ V (H).

Let H be any multi-graph with no isolated vertex, and ϕ : V (H) → [0,1] be an
extreme point of P(H) that is an optimal solution to the linear program defined
in (4.6). If ϕ(v) = 1/2 for all v ∈ V (H), then γ (H) = |V (H)|/2 and by Alon [2],
Lemma 7, HS , and hence H , has a spanning subgraph which is a disjoint union of
cycles or isolated edges. When γ (H) > |V (H)|/2, the above proposition can be
used to prove a structural result for the multi-graph H , depending on the chosen
optimal function ϕ. To this end, partition V (H) = V0(H) ∪ V1/2(H) ∪ V1(H),
where Va(H) = {v ∈ V (H) : ϕ(v) = a}, for a ∈ {0,1/2,1}.

The following lemma gives structural properties of the subgraphs of H induced
by this partition of the vertex set. The proof, which is given in Appendix A, closely
follows the proof of Lemma 9 of Alon [2], but is re-formulated here in terms of
the function ϕ. The lemma will be used later to prove the normality of N(Gn) in
Theorem 1.3.

LEMMA 4.2. Let H be a multi-graph with no isolated vertex and γ (H) >

|V (H)|/2. If ϕ : V (H) → [0,1] is an optimal solution to the linear program (4.6),
then the following holds:

(i) The bipartite graph H01 = (V0(H)∪V1(H),E(H01)), where E(H01) is the
set of edges from V0(H) to V1(H), has a matching which saturates every vertex in
V0(H).3

(ii) The subgraph of H induced by the vertices of V1/2(H) has a spanning
subgraph which is a disjoint union of cycles and isolated edges.

5. Universal normal approximation for uniform coloring. Theorem 1.1

says that if 1
cn

|E(Gn)| P→ ∞, then N(Gn) converges to infinity as well. Since a
Poisson random variable with mean growing to ∞ converges to a standard nor-
mal distribution after standardizing (centering by mean and scaling by standard
deviation), one possible question of interest is whether N(Gn) properly standard-
ized converges to a standard normal distribution. It turns out, as in the Poisson
limit theorem, the normality of the standardized random variable N(Gn) is uni-
versal whenever both cn and |E(Gn)|/cn go to infinity. This will be proved by
a similar method of moments argument. For this proof, without loss of general-
ity we can assume that |E(Gn)| ≥ cn almost surely, for every n. This is because
P(|E(Gn)| < cn) converges to 0 as n → ∞, and so replacing the law of Gn by
the conditional law of (Gn | {|E(Gn)| ≥ cn}) does not affect any of the limiting
distribution results.

3A matching M in a graph H = (V (H),E(H)) is subset of edges of E(H) without common
vertices. The matching M is said to saturate A ⊂ V (H), if, for every vertex a ∈ A, there exists an
edge in the matching M incident on a.
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5.1. Proof of Theorem 1.2. Let Gn ∈ Gn be a random graph sampled accord-
ing to some probability distribution. This section proves a universal normal limit
theorem for

(5.1)

Zn :=
( |E(Gn)|

cn

)− 1
2 ∑

(i,j)∈E(Gn)

{
111{Yi = Yj } − 1

cn

}

=
( |E(Gn)|

cn

)− 1
2
(
N(Gn) − |E(Gn)|

cn

)
.

Associated with every edge of Gn define the collection of random variables
{Xij , (i, j) ∈ E(Gn)}, where Xij are i.i.d. Ber(1/cn), and set

(5.2)

Wn :=
( |E(Gn)|

cn

)− 1
2 ∑

(i,j)∈E(Gn)

{
X(i,j) − 1

cn

}

=
( |E(Gn)|

cn

)− 1
2
(
M(Gn) − |E(Gn)|

cn

)
.

5.1.1. Comparing conditional moments. A multi-graph H is said to be a
multi-subgraph of a simple graph G if the simple graph HS is a subgraph of G.
Recall that for multi-graph F = (V (F ),E(F )), ν(F ) denotes the number of con-
nected components of F .

OBSERVATION 5.1. Let H = (V (H),E(H)) be a multi-graph with no iso-
lated vertex. Let F be a multi-graph obtained by removing one edge from H and
removing all isolated vertices formed. Then |V (F)|− ν(F ) ≥ |V (H)|− ν(H)−1.

PROOF. Observe that ν(F ) ≤ ν(H) + 1 and |V (H)| − 2 ≤ |V (F)| ≤ |V (H)|.
If |V (F)| = |V (H)| the result is immediate.

Now, if |V (F)| = |V (H)| − 1, then the vertex removed must have degree 1 and
so ν(F ) = ν(H), and the inequality still holds.

Finally, if |V (F)| = |V (H)| − 2, the edge removed must be an isolated edge, in
which case the number of vertices decreases by two and the number of connected
components decreases by one and the result holds. �

The above observation helps to determine the leading order of the expected cen-
tral moments for multi-subgraphs of Gn. For any multi-graph H = (V (H),E(H)),
define

(5.3)

Z(H) = ∏
(i,j)∈E(H)

{
111{Yi = Yj } − 1

cn

}
,

W(H) = ∏
(i,j)∈E(H)

{
X(i,j) − 1

cn

}
,
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where duplicate edges (i, j) in the multi-graph H have the same random variable
X(i,j). Note if the graph H does not have multiple edges, that is, it is a simple
graph, then E(W(H)) = 0.

LEMMA 5.1. For any multi-graph H = (V (H),E(H)),

E
(
Z(H)

)
�H

1

c
|V (H)|−ν(H)
n

and E
(
W(H)

)
�H

1

c
|E(HS)|
n

.

PROOF. That both Z(H) and W(H) are independent of the labeling of the ver-
tices is trivial, and so they are well defined. Fixing a labeling of H and expanding
the product we have

(5.4) Z(H) =
|E(H)|∑
b=0

(−1)b

cb
n

∑
(is ,js )∈E(H),
s∈[|E(H)|−b]

|E(H)|−b∏
s=1

111{Yis = Yjs },

where the second sum is over all possible choices of |E(H)| − b distinct edges
(i1, j1), (i2, j2), . . . , (i|E(H)|−b, j|E(H)|−b) from the multiset E(H).

Let F be the multi-subgraph of H formed by the edges (i1, j1), (i2, j2), . . . ,

(i|E(H)|−b, j|E(H)|−b). Then by Observation 5.1, |V (F)| − ν(F ) ≥ |V (H)| −
ν(H) − b, and

(5.5)
1

cb
n

E

(|E(H)|−b∏
s=1

111{Yis = Yjs }
)

= 1

c
|V (F)|−ν(F )+b
n

≤ 1

c
|V (H)|−ν(H)
n

.

As the number of terms in (5.4) depends only on H , and for every term (5.5) holds,
the result follows.

The result for W(H) follows similarly, on noting that EW(H) = 0 if H is a
simple graph. The leading order of the expectation comes from the first term

E

( ∏
(i,j)∈E(H)

X(i,j)

)
= 1

c
|E(HS)|
n

,

and the number of terms depends only on H . �

Expanding the product also shows that the expected central moments of Z(H)

and W(H) are equal when the underlying simple graph is a tree.

LEMMA 5.2. For any multi-graph H = (V (H),E(H)) such that the underly-
ing simple graph HS is a forest we have E(Z(H)) = E(W(H)).

PROOF. Recall the definitions of Z(H) and W(H) from (5.3). Since both
products factorize over connected components of H , without loss of generality
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we may assume that H is connected, and the underlying simple graph HS is a tree.
By (5.4)

(5.6)

E
(
Z(H)

) =
|E(H)|∑
b=0

(−1)b

cb
n

∑
(is ,js )∈E(H),
s∈[|E(H)|−b]

E

(|E(H)|−b∏
s=1

111{Yis = Yjs }
)

=
|E(H)|∑
b=0

(−1)b

cb
n

∑
(is ,js )∈E(H),
s∈[|E(H)|−b]

1

c
|V (F)|−ν(F )
n

=
|E(H)|∑
b=0

(−1)b

cb
n

∑
(is ,js )∈E(H),
s∈[|E(H)|−b]

1

c
|V (FS)|−ν(FS)
n

=
|E(H)|∑
b=0

(−1)b

cb
n

∑
(is ,js )∈E(H),
s∈[|E(H)|−b]

1

c
|E(FS)|
n

,

where F is the multi-subgraph of H formed by the edges (i1, j1), (i2, j2), . . . ,

(i|E(H)|−b, j|E(H)|−b), and FS is a forest. The last equality uses |V (F)| − ν(F ) =
|V (FS)| − ν(FS) = |E(FS)|, because FS is a forest, since HS is a tree. The result
now follows because every term in (5.6) is equal to every term in the expansion of
E(W(H)). �

Using the above lemmas and results about the fractional independence number
γ (H) from the previous section, the conditional moments of Zn and Wn can be
compared. For a simple graph G and a multi-graph H define

M(G,H) = ∑
e1∈E(G)

∑
e2∈E(G)

· · · ∑
e|E(H)|∈E(G)

111
{
G[e1, e2, . . . , e|E(H)|] ∼= H

}
,

where G[e1, e2, . . . , e|E(H)|] is the multi-subgraph of G formed by the edges
e1, e2, . . . , e|E(H)|. In other words, M(G,H) is the number of multi-subgraphs of
G isomorphic to the multi-graph H . It is easy to see that M(G,H)�H N(G,HS).

LEMMA 5.3. Let Zn and Wn be as defined in (5.1) and (5.2), respectively.
Let Mk be the set of all unlabeled multi-graphs H with exactly k edges (counting
multiplicity) and dmin(H) ≥ 2 and γ (H) = |E(H)|/2. Then for every k ≥ 1,∣∣∣∣E(

Zk
n − Wk

n | Gn

) −
∑

H∈Mk
M(Gn,H)(E(Z(H)) −E(W(H)))

(
|E(Gn)|

cn
)

k
2

∣∣∣∣ P→ 0,

whenever |E(Gn)|/cn
P→ ∞, irrespective of whether cn → ∞ or cn = c is fixed.
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PROOF. By the multinomial expansion,

(5.7)

E
(
Zk

n

∣∣Gn

) −E
(
Wk

n

∣∣Gn

)

=
( |E(Gn)|

cn

)− k
2 ∑

H∈Ak

M(Gn,H)
(
E

(
Z(H)

) −E
(
W(H)

))
,

where Ak is the set of all unlabeled multi-graphs with exactly k edges (counting
multiplicity) and no isolated vertex.

For H ∈ Ak such that γ (H) < |E(H)|/2, using Lemma 4.1 and Theorem 4.1,
we get

(5.8)

( |E(Gn)|
cn

)−|E(H)|
2

M(Gn,H) ·E(
Z(H)

)

�H

( |E(Gn)|
cn

)−|E(H)|
2 N(Gn,HS)

c|V (H)|−ν(H)

�H

|E(Gn)|γ (H)− 1
2 |E(H)|

c
|V (H)|−ν(H)− 1

2 |E(H)|
n

�H

ωγ (H)− 1
2 |E(H)|

c
|V (H)|−ν(H)−γ (H)
n

P→ 0,

whenever ω = |E(Gn)|/cn
P→ ∞, since γ (H) ≤ |V (H)| − ν(H) by Observa-

tion 4.1.
Similarly, for H ∈ Ak such that γ (H) < |E(H)|/2,( |E(Gn)|

cn

)−|E(H)|
2

M(Gn,H) ·E(
W(H)

)

�H

( |E(Gn)|
cn

)−|E(H)|
2 N(Gn,HS)

c
|E(HS)|
n

�H

( |E(Gn)|
cn

)−|E(H)|
2 N(Gn,HS)

c
|V (H)|−ν(H)
n

P→ 0,

(5.9)

whenever ω = |E(Gn)|/c P→ ∞. Here we have used the observation∣∣E(HS)
∣∣ ≥ ∣∣V (HS)

∣∣ − ν(HS) = ∣∣V (HS)
∣∣ − ν(H) = ∣∣V (H)

∣∣ − ν(H)

in the second line.
Combining (5.8) and (5.9) it follows that the contribution of the sum in the RHS

of (5.7) over H ∈Ak such that γ (H) < |E(H)|/2 is oP (1).
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If H ∈ Ak is such that γ (H) > |E(H)|/2, Lemma 4.1 implies that dmin(H) = 1.
We will now show that dmin(H) = 1 implies EZ(H) = EW(H) = 0. Label the
vertices of H arbitrarily, and without loss of generality assume that the labeled
vertex 1 has degree 1, and vertex 2 is the only neighbor of 1. Therefore,

E
(
Z(H) | Y2, . . . , Y|V (H)|

)
=

(
E

(
111{Y1 = Y2} | Y2, . . . , Y|V (H)|

) − 1

cn

)

× ∏
(i,j)∈E(H),
(i,j) �=(1,2)

{
111{Yi = Yj } − 1

cn

}

= 0,

which implies E(Z(H)) = 0. Similarly, E(W(H)) = 0.
Therefore, the sum on the RHS of (5.7) reduces to the set of all H ∈ Ak such

that γ (H) = |E(H)|/2 and dmin(H) ≥ 2. Since this set is precisely Mk , the proof
of the lemma is complete. �

A consequence of the proof of the above lemma, is that the moments E(Zk
n | Gn)

are bounded.

COROLLARY 5.1. Let Zn be as defined in (5.1). Then for any k ≥ 1 fixed there

exists a constant Ck such that E(Zk
n | Gn) ≤ Ck , if |E(Gn)|/cn

P→ ∞, irrespective
of whether cn → ∞ or cn = c is fixed.

PROOF. By the multinomial expansion, we have

(5.10) E
(
Zk

n | Gn

) =
( |E(Gn)|

cn

)− k
2 ∑

H∈Ak

M(Gn,H)E
(
Z(H)

)
,

where Ak is the set of all unlabeled multi-graphs with exactly k edges (counting
multiplicity) and no isolated vertex.

Now, as in the proof of Lemma 5.3, if H ∈ Ak is such that γ (H) > |E(H)|/2,
then E(Z(H)) = 0. Therefore, the sum on the RHS of (5.10) reduces to the set
of all H ∈ Ak such that γ (H) ≤ |E(H)|/2 and dmin(H) ≥ 2. For such H , using
Lemma 5.1 and Theorem 4.1, we get

( |E(Gn)|
cn

)−|E(H)|
2

M(Gn,H) ·E(
Z(H)

)

�H

( |E(Gn)|
cn

)−|E(H)|
2 N(Gn,HS)

c
|V (H)|−ν(H)
n



UNIVERSAL LIMIT THEOREMS IN GRAPH COLORING PROBLEMS 365

�H

|E(Gn)|γ (H)− 1
2 |E(H)|

c
|V (H)|−ν(H)− 1

2 |E(H)|
n

�H

1

c
|V (H)|−ν(H)−γ (H)
n

,

if |E(Gn)|/c P→ ∞. Since γ (H) ≤ |V (H)| − ν(H) by Observation 4.1, the proof
is complete. �

Note that the above lemmas are true irrespective of whether cn → ∞ or cn = c

is fixed. Hence, they will be relevant even when we are dealing with the case c is
fixed. In the following lemma, it is shown that the remaining terms in (5.7) are also
negligible when c → ∞.

LEMMA 5.4. Let Zn and Wn be as defined in (5.1) and (5.2), respectively. If

cn → ∞ and |E(Gn)|/cn
P→ ∞, then for every fixed k ≥ 1∣∣E(
Zk

n | Gn

) −E
(
Wk

n | Gn

)∣∣ P→ 0.

PROOF. Let Mk be as defined in part (b) of Lemma 5.3, and Sk ⊂ Mk be the
set of all multi-graphs H with dmin(H) ≥ 2, |E(H)| = k and γ (H) = |E(H)|/2 =
|V (H)| − ν(H). By part (b) of Lemma 5.3 and using cn → ∞ in (5.8) and (5.9) it
follows that only the multi-subgraphs of Gn which are in Sk need to be considered.
Now, for H ∈ Sk ,

γ (HS) = γ (H) = ∣∣V (H)
∣∣ − ν(H) = ∣∣V (HS)

∣∣ − ν(HS).

Therefore, HS is a disjoint union of stars by Observation 4.1. Moreover,∣∣E(HS)
∣∣ = ∣∣V (HS)

∣∣ − ν(HS) = ∣∣V (H)
∣∣ − ν(H) = ∣∣E(H)

∣∣/2.

This, along with the fact that H cannot have any vertex of degree 1 gives that any
H ∈ Sk is a disjoint union of stars, where every edge is repeated twice. Now, for
any such graph H , E(Z(H)) = E(W(H)) by Lemma 5.2, and the result follows.

�

5.1.2. Completing the proof of Theorem 1.2. To complete the proof, it remains
to show that Wn satisfies the conditions of Lemma C.1. This is verified in the
following lemma.

LEMMA 5.5. Let Wn be as defined in (5.2). Under the assumption c → ∞ we

have Wn
D→ N(0,1), and for any ε > 0 and t ∈ R,

lim sup
k→∞

lim sup
n→∞

P

(∣∣∣∣ t
k

k!E
(
Wk

n | Gn

)∣∣∣∣ > ε

)
= 0.(5.11)
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PROOF. To prove the first conclusion, let

Wn := M(Gn) − |E(Gn)|
cn√

|E(Gn)|
cn

− |E(Gn)|
c2
n

.

By the Berry–Esseen theorem

∣∣P(Wn ≤ x | Gn) − �(x)
∣∣ ≤ K

√
cn

|E(Gn)| ,

where �(x) is the standard normal density and K < ∞ is some universal constant.
Now, the RHS converges to 0 in probability, and so Wn converges to N(0,1) by
the Dominated Convergence theorem, giving

Wn = Wn

(
1 − 1

cn

)1/2
D→ N(0,1).

For the second conclusion, it suffices to show that

(5.12) sup
n≥1

E
(
etWn

)
< ∞

for all t ∈R. This is because (5.12) implies {W 2m
n }n≥1 is uniformly integrable and

limn→∞E(W 2m
n ) = (2m)!

2mm! for all m ≥ 1. Therefore, by Markov’s inequality,

lim sup
k→∞

lim sup
n→∞

P

(∣∣∣∣ t
k

k!E
(
Wk

n | Gn

)∣∣∣∣ > ε

)
≤ lim sup

k→∞
lim sup
n→∞

1

ε
E

(
tk

k! |Wn|k
)

≤ lim sup
k→∞

lim sup
n→∞

1

ε

tk

k!E
(|Wn|2k) 1

2

= 0,

which verifies (C.2).
It remains to verify (5.12). Define σ 2

n := |E(Gn)|/cn, and so

E
(
etWn | Gn

) = e
− t |E(Gn)|

σncn

(
1 − 1

cn

+ et

cn

)|E(Gn)|
:= Rn.

Therefore, for any t ∈ R we have

logRn = − t |E(Gn)|
σncn

+ ∣∣E(Gn)
∣∣ log

(
1 − 1

cn

+ e
t

σn

cn

)

≤ − t |E(Gn)|
σncn

+ ∣∣E(Gn)
∣∣(e

t
σn − 1

cn

)

≤ |E(Gn)|
cn

(
t2

2σ 2
n

+ et |t |3
6σ 3

n

)
≤ t2

2
+ et |t |3

6
,
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where the last two inequalities follows from Taylor’s series and the fact that
|E(Gn)| ≥ cn. This implies that E(Rn) < ∞, as desired. �

6. Normal limit theorem for fixed number of colors. The condition c =
cn → ∞ in Theorem 1.2 is necessary for the universal normality. The following
example demonstrates that N(Gn) is not asymptotically normal, when the number
of colors c remains fixed. Recall that, for r, s ≥ 1, the complete bipartite graph
Kr,s consists of two disjoint sets of vertices of sizes r and s, with every vertex of
the first set is connected to every vertex of the second set.

EXAMPLE 6.1. Consider coloring the complete bi-partite graph Gn = K2,n

with c = 2 colors. It is easy to see that N(Gn) is 2nUn or n with probability 1
2

each, where nUn ∼ Bin(n,1/2). This implies that

n− 1
2
(
N(Gn) − n

) D→ 1

2
N(0,1) + 1

2
δ0,

a mixture of a standard normal and point mass at 0.

Note that in the previous example the ACF4 condition is not satisfied:
N(Gn,C4) = (n

2

)
, and limn→∞ N(Gn,C4)

|E(Gn)|2 = 1/8.

6.1. The ACF4 condition. Recall the ACF4 condition N(Gn,C4) =
oP (|E(Gn)|2), that is, the number of copies of the 4-cycle C4 in Gn is sub-
extremal. The following theorem shows this implies that the number of copies
of the g-cycle Cg in Gn is also sub-extremal, for all g ≥ 3.

THEOREM 6.1. The ACF4 condition (1.5) is equivalent to the condition that
N(Gn,Cg) = oP (|E(Gn)|g/2), for all g ≥ 3.

PROOF. Let A(Gn) = ((aij )) be the adjacency matrix of the graph Gn. For
any two vertices a, b ∈ V (Gn), let s2(a, b) be the number of common neighbors
of a, b. It is easy to see that

(6.1)

∑
a,b∈V (Gn)
s2(a,b)≥2

s2(a, b)2 �
∑

a,b∈V (Gn)
s2(a,b)≥2

(
s2(a, b)

2

)
� N(Gn,C4) = oP

(∣∣E(Gn)
∣∣2)

.

Moreover,
∑

a,b∈V (Gn) s2(a, b) � N(Gn,K1,2) = O(|E(Gn)|2). Finally, observe
that for any m ≥ 2

(6.2)
∑

a,b∈V (Gn)
s2(a,b)≥m

s2(a, b) ≤ ∑
a,b∈V (Gn)
s2(a,b)≥m

s2(a, b)2/m = oP

(∣∣E(Gn)
∣∣2)

/m,

where the last step uses (6.1).
Now fix ε > 0 and consider the following two cases depending on whether the

length of the cycle is even or odd.
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1. Suppose g = 2h + 1 ≥ 3. It is easy to see that

(6.3) N(Gn,Cg)�
∑

i2,i3,...,ig∈V (Gn)

s2(i2, ig)

g−1∏
j=2

aij ij+1 .

Note that for a path P2b−1 with 2b − 1 edges we have N(Gn,P2b−1) =
O(|E(Gn)|b), as γ (P2b−1) = b (see Alon [2], Corollary 1). Then

∑
i2,i3,...,ig∈V (Gn),

s2(i2,ig)≤ε(|E(Gn)|)1/2

s2(i2, ig)

g−1∏
j=2

aij ij+1

� ε
(∣∣E(Gn)

∣∣)1/2
N(Gn,P2h−1)�g ε

∣∣E(Gn)
∣∣g/2

.

(6.4)

Also, using (6.2)

(6.5)

∑
i2,i3,...,ig∈V (Gn),

s2(i2,ig)>ε(|E(Gn)|)1/2

s2(i2, ig)

g−1∏
j=2

aij ij+1

≤ ∑
i2,ig

s2(i2,ig)≥ε|E(Gn)|1/2

s2(i2, ig)
∑

i3,i4,...,ig−1∈V (Gn)

g−2∏
j=3

aij ij+1

= ε−1oP

(∣∣E(Gn)
∣∣3/2)

N(Gn,P2h−3)

= ε−1oP

(∣∣E(Gn)
∣∣g/2)

,

where N(Gn,P−1) := 1 by definition. Combining (6.4) and (6.5) with (6.3) it fol-
lows that there exists a finite constant C(g), depending only on g, such that

(6.6)
N(Gn,Cg)

|E(Gn)|g/2 ≤ C(g)ε + ε−1oP (1).

On letting n → ∞ followed by ε → 0 the RHS above converges to 0 in distribu-
tion, thus proving N(Gn,Cg) = oP (|E(Gn)|g/2), for g odd.

2. Suppose g = 2h ≥ 4. The result will be proved by induction on h. The
base case h = 2 is true by assumption. Now, suppose h ≥ 2 and N(Gn,C2h) =
oP (|E(Gn)|h). For vertices a, b ∈ V (G), let sh(a, b) be the number of paths with
h edges in Gn with one end point at a and another at b. Therefore, as in (6.1)

(6.7)
∑

a,b∈V (Gn)
sh(a,b)≥2

sh(a, b)2 �h N(Gn,C2h) = oP

(∣∣E(Gn)
∣∣h)

.

Moreover,
∑

a,b∈V (Gn) sh(a, b) � N(Gn,Ph) = O(|E(Gn)|h). Finally, as in (6.2),
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for any m ≥ 2

(6.8)
∑

a,b∈V (Gn)
sh(a,b)≥m

sh(a, b) ≤ ∑
a,b∈V (Gn)

sh(a, b)2/m = oP

(∣∣E(Gn)
∣∣h)

/m,

where the last step uses (6.7).
Now, it is easy to see that

(6.9) N(Gn,C2h+2)�h

∑
x,y,u,v∈V (Gn)

sh(x, y)sh(u, v)axuayv.

Let S = {x, y,u, v ∈ V (Gn) : sh(x, y)sh(u, v) ≤ ε|E(Gn)|h−1}. Note that

(6.10)

∑
S

sh(x, y)sh(u, v)axuayv ≤ ε
∣∣E(Gn)

∣∣h−1 ∑
x,y,u,v∈V (Gn)

axuayv

� ε
∣∣E(Gn)

∣∣h+1
.

Also, using (6.8) and letting Sc denote the complement of S,

(6.11)

∑
Sc

sh(x, y)sh(u, v)axuayv

≤ ∑
Sc

∑
r

r111
{
r = sh(x, y)

}
sh(u, v)111{sh(u,v)>

ε|E(Gn)|h−1
r

}

≤ ∑
x,y

∑
r

r111
{
r = sh(x, y)

}∑
u,v

sh(u, v)111{sh(u,v)>
ε|E(Gn)|h−1

r
}

≤ ∑
x,y

∑
r

r111
{
r = sh(x, y)

}( ∑
u,v s2

h(u, v)

ε|E(Gn)|h−1/r

)

=
(∑

u,v s2
h(u, v)

εE(Gn)h−1

)∑
x,y

∑
r

r2111
{
r = sh(x, y)

}

=
(

oP (|E(Gn)|)
ε

)∑
x,y

sh(x, y)2 = oP (|E(Gn)|h+1)

ε
.

Combining (6.10) and (6.11) with (6.9) it follows that there exists a finite constant
C(h), depending only on h, such that

(6.12)
N(Gn,C2h+2)

|E(Gn)|h+1 ≤ C(h)ε + ε−1oP (1),

from which letting n → ∞ followed by ε → 0 gives

N(Gn,C2h+2)

|E(Gn)|h+1
P→ 0

as before. This completes the induction step, and hence completes the proof. �
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REMARK 6.1. The above theorem shows that if the number of 4-cycles in
a graph is sub-extremal, then the number of copies of any cycle graph is also
sub-extremal. This is an illustration of the fourth moment phenomenon: the con-
vergence of all moments of N(Gn) is implied solely by the convergence of the
fourth moment of N(Gn). In extremal combinatorics of pseudo-random graphs,
4-cycles play a similar role: the classic result of Chung, Graham and Wilson [15]
asserts that if the edge and 4-cycle densities of a graph are as in a binomial random
graph, then the graph is essentially pseudo-random and the density of any other
subgraph is like that in a binomial random graph. Recently, Conlon, Fox and Zhao
[17] proved similar results in the sparse regime.

Cycle counts in graphs are closely related to the sum of powers of eigenvalues
of the adjacency matrix. If λ(Gn) = (λ1(Gn), λ2(Gn), . . . , λn(Gn))

′ is the vector
eigenvalues of the adjacency matrix A(Gn), then

∑n
i=1 λ

g
i (Gn) counts the number

of closed walks of length g in the graph Gn. Analogous to the ACF4 condition,
a sequence of random graphs {Gn}n≥1 is said to satisfy the uniform spectral negli-
gibility (USN) condition in probability if

(6.13)
maxi∈[n] |λi(Gn)|
(
∑n

j=1 λ2
j (Gn))

1
2

= oP (1).

If λλλ(Gn) = λ(Gn)
‖λ(Gn)‖2

, is the vector of normalized eigenvalues, then USN condition

can be rewritten as ‖λλλ(Gn)‖∞
P→ 0.

OBSERVATION 6.1. If a sequence of graphs satisfies the USN condition in
probability, then it also satisfies the ACF4 condition in probability.

PROOF. If a sequence of graphs satisfies the USN condition, then for every
g ≥ 3

N(Gn,Cg)�g

n∑
i=1

λ
g
i (Gn) ≤

(
n∑

i=1

λ2
i (Gn)

)∥∥λ(Gn)
∥∥g−2
∞

= oP

(∥∥λ(Gn)
∥∥g

2

)
= oP

(∣∣E(Gn)
∣∣g/2)

,

as ‖λ(Gn)‖2
2 = 2|E(Gn)|. �

More details about the differences between the ACF4 and USN conditions are
presented in Section 6.3.
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6.2. Proof of Theorem 1.3. We begin with the following lemma, which shows
that the ACF4 condition ensures that the count of any graph H with γ (H) =
|E(H)|/2 and a cycle, is sub-extremal. The proof uses the structural Lemma 4.2
to extract the cycle from the graph, which is then controlled using the ACF4 con-
dition. The details of the proof are given in Appendix B.

LEMMA 6.1. Let H be a multi-graph with no isolated vertex, dmin(H) ≥ 2,
γ (H) = |E(H)|/2, and at least 3 vertices in one of its connected components. If
the ACF4 condition in probability holds for Gn, then

M(Gn,H) = oP

(∣∣E(Gn)
∣∣|E(H)|/2)

,

whenever the girth gir(H) ≥ 3.

The above result combined with part (b) of Lemma 5.3 shows that the condi-
tional moments of Zn and Wn, as defined in (5.1) and (5.2), are close whenever the
ACF4 condition holds in probability.

LEMMA 6.2. Let c be fixed and {Gn}n≥1 be sequence of random graphs for
which the ACF4 condition in probability holds. With Zn and Wn as defined in (5.1)
and (5.2), for every fixed k ≥ 1∣∣E(

Zk
n | Gn

) −E
(
Wk

n | Gn

)∣∣ P→ 0.

PROOF. By part (b) of Lemma 5.3,

E
(
Zk

n | Gn

) −E
(
Wk

n | Gn

)

=
( |E(Gn)|

c

)− k
2 ∑

H∈Mk

M(Gn,H)
(
E

(
Z(H)

) −E
(
W(H)

)) + oP (1),

where Mk is the set of all multi-graphs with exactly k edges (counting multiplic-
ity), no isolated vertex, dmin(H) ≥ 2, and γ (H) = |E(H)|/2.

If H ∈ Mk is such that the girth gir(H) ≥ 3, then by Lemma 6.1 M(Gn,H) =
oP (|E(Gn)|k/2). Therefore, the only multi-subgraphs H ∈Mk which remain must
be such that HS is a forest. But, by Lemma 5.2, E(Z(H)) = E(W(H)) for all such
multi-subgraphs, and the result follows. �

6.2.1. Completing the proof of Theorem 1.3. As in the proof of Lemma 5.5, it

follows that Wn
D→ N(0,1 − 1

c
), and

lim sup
k→∞

lim sup
n→∞

P

(∣∣∣∣ t
k

k!E
(
Wk

n | Gn

)∣∣∣∣ > ε

)
= 0,

for some t > 0. Therefore, Zn
D→ N(0,1 − 1

c
) by Lemma C.1.
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To prove the necessity, assume that N(Gn,C4)

|E(Gn)|2
P
� 0. Therefore,

lim sup
n→∞

E

(
N(Gn,C4)

|E(Gn)|2
)

> 0.

By part (b) of Lemma 5.3,

(6.14)

E
(
Z4

n | Gn

) −E
(
W 4

n

∣∣Gn

)
=

( |E(Gn)|
c

)−2

× ∑
H∈M4

M(Gn,H)
(
E

(
Z(H)

) −E
(
W(H)

)) + oP (1),

where M4 be the collection of all multi-graphs with 4 edges such dmin ≥ 2 and
γ (H) = 2. Also if HS is a forest then we have EZ(H) = EW(H). Now, it is easy
to see that the only multi-graph H ∈ M4 such that HS is not a forest is C4.

By a direct calculation, we have

E
(
W 4

n | Gn

) = 3
(

1 − 1

c

)2
+ oP (1),

E
(
Z(C4)

) −E
(
W(C4)

) = 1

c3

(
1 − 1

c

)
,

which on substituting in (6.14) gives

E
(
Z4

n | Gn

) = 3
(

1 − 1

c

)2
+ 1

c

(
1 − 1

c

)(
N(Gn,C4)

|E(Gn)|2
)

+ oP (1).(6.15)

Note that the oP (1)-term above is bounded, as E(Z4
n | Gn) is bounded by Corol-

lary 5.1. Therefore, by taking expectation and limit in (6.15),

(6.16) lim sup
n→∞

E
(
Z4

n

)
> 3

(
1 − 1

c

)2
.

Again invoking Corollary 5.1 it follows that supn≥1 E(Z8
n | Gn) < ∞, and

so supn≥1 EZ8
n < ∞. Now, suppose Zn

D→ Z ∼ N(0,1 − 1/c). Therefore, since
supn≥1 EZ8

n < ∞, Z4
n is uniformly integrable, and the convergence in law implies

that EZ4
n converges to EZ4 = 3(1 − 1/c)2, which contradicts (6.16).

6.3. Connections between the ACF4 and USN conditions. Recall that for the
case c = 2, N(Gn) can be rewritten as a quadratic form in terms of the adjacency
matrix A(Gn). Note that when A(Gn) = ((aij )), then

∑n
j=1 a2

ij = ∑n
j=1 aij is the

degree of the vertex i in Gn. Therefore,

max
i∈[n]

n∑
j=1

a2
ij = �(Gn),
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the maximum degree of a vertex in Gn. Moreover, tr(A(Gn)) = ∑
i,j a2

ij =
2|E(Gn)|, and σ 2

n = 1
2 tr(A(Gn)) = |E(Gn)|. Therefore, in this case, the clas-

sical sufficient condition (1.7) for asymptotic normality of he statistic Vn =∑
i≤j aijXiXj , for X1,X2, . . . ,Xn i.i.d. with zero mean and finite fourth moment,

can be rewritten as

(6.17)

lim
n→∞σ−4

n E
(
Vn −E(Vn)

)4 = 3,

lim
n→∞σ−2

n max
i∈[n]

n∑
j=1

a2
ij = lim

n→∞
�(Gn)

|E(Gn)| = 0.

From the proof of the necessity part of Theorem 1.3 in the previous section, it
can be seen that the ACF4 condition is equivalent to the first condition in (1.7).

For the case when X1,X2, . . . ,Xn are i.i.d. Rademacher variables, Nourdin,
Peccati and Reinert [41] showed that the second condition in (6.17) is not needed
for asymptotic normality. Error bounds were also proved by Chatterjee [12] using
Stein’s method, under the slightly stronger conditions

(6.18) lim
n→∞

∥∥λλλ(
A(Gn)

)∥∥4
4 = 0 and lim

n→∞σ−2
n max

i∈[n]

n∑
j=1

a2
ij = 0.

It is easy to see the first condition in (6.18) is equivalent to the USN condition
limn→∞ ‖λλλ(A(Gn))‖∞ = 0.

Even though the number of cycles in a graph is closely related to the power sum
of eigenvalues, there are subtle differences between ACF4 and USN conditions.
To this end, consider the following example.

EXAMPLE 6.2. Consider the star graph K1,n with vertices indexed by
{0,1, . . . , n}, with the central vertex labeled 0. It is easy to see that K1,n does
not satisfy the USN condition:

λ
(
A(K1,n)

) = (
n

1
2 ,0, . . . ,0,−n

1
2
)′ and lim

n→∞
∥∥λλλ(

A(K1,n)
)∥∥∞ = 1√

2
�= 0.

Moreover, �(K1,n)/|E(K1,n)| = 1, that is, the second condition in (1.7) and (6.18)
is also not satisfied by K1,n. Therefore, asymptotic normality of N(K1,n) does not
follow from results of de Jong [19] or Chatterjee [12].

However, K1,n has no cycles and so the ACF4 condition is satisfied. Therefore,
by Theorem 1.3 (also by Nourdin, Peccati and Reinert [41]) it follows that N(K1,n)

is asymptotically normal. In fact, for X = (X0,X1,X2, . . . ,Xn)
′ i.i.d. Rademacher

n− 1
2 X′A(K1,n)X = X0

(∑n
i=1 Xi√

n

)
D→ X0 · Z ∼ N(0,1),

where Z ∼ N(0,1).
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Consider on the other hand, Z = (Z0,Z1,Z2, . . . ,Zn)
′ i.i.d. N(0,1). Then

n− 1
2 ZA(K1,n)Z = Z0

(∑n
i=1 Zi√

n

)
D= Z0S0,

where Z0, S0 ∼ N(0,1), which is not normally distributed. This is expected be-
cause (1.7) is necessary and sufficient when each vertex in the graph is assigned
an independent normal random variable.

6.4. Examples. Some examples where the ACF4 condition is satisfied and
asymptotic normality holds are illustrated below.

EXAMPLE 6.3 (Random regular graphs). Gn consists of the set all d-regular
graphs on n vertices and sampling is done uniformly on this space. In this case,
|E(Gn)| = nd/2, for all Gn ∈ Gn. Theorem 1.2 gives

(6.19)
N(Gn) − 1

c
(nd

2 )√
nd
2c

(1 − 1
c
)

D→ N(0,1) when
nd

c
→ ∞ and c → ∞.

Moreover, for all Gn ∈ Gn, λmax(Gn) = d and
∑n

i=1 λi(Gn)
2 = 2|E(Gn)| = nd .

This implies that ‖λλλn‖∞ = O(
√

d/n) = o(1), whenever d = o(n). Therefore, by
Observation 6.1 and Theorem 1.3, (6.19) holds even when c is fixed and d = o(n).

EXAMPLE 6.4 (Hypercube). An important d-regular graph, which is nei-
ther sparse nor dense, is the hypercube Qn = (V (Qn),E(Qn)), where V (Qn) =
{0,1}log2 n, where n = 2s for some s ≥ 2, and there exists an edge between two
vertices if the corresponding binary vectors have Hammimg distance 1. This is a
d-regular graph with d = log2 n and |E(Qn)| = 1

2n log2 n. Therefore, ‖λλλn‖∞ =
O(

√
d/n) = o(1) and by the previous example,

(6.20)
N(Gn) − 1

c
(
n log2 n

2 )√
n log2 n

2c
(1 − 1

c
)

D→ N(0,1) when
n log2 n

c
→ ∞,

irrespective of whether c → ∞ or c is fixed.

EXAMPLE 6.5 (Sparse inhomogeneous random graphs). Consider the follow-
ing general model for sparse random graphs: every edge (i, j), with i < j , is
present independently with probability 1

n
· f ( i

n
,

j
n
), for some symmetric contin-

uous function f : [0,1]2 → [0,1] (see Bollobas, Janson and Riordan [7]). By the
law of large numbers,

1

n

∣∣E(Gn)
∣∣ P→ 1

2

∫ 1

0

∫ 1

0
f (x, y)dx dy,
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and it is easy to see that

lim
n→∞EN(Gn,C4) = 1

2

∫
[0,1]4

f (w,x)f (x, y)f (y, z)f (z, x)dw dx dy dz.

Therefore by Markov’s inequality

N(Gn,C4)

|E(Gn)|2
P→ 0

and so by Theorem 1.2 and Theorem 1.3 we have

(6.21)
N(Gn) − |E(Gn)|

c√
n
c
(1 − 1

c
)

D→ N

(
0,

1

2

∫ 1

0

∫ 1

0
f (x, y)dx dy

)
when

n

c
→ ∞,

irrespective of whether c → ∞ or c is fixed. Note that this model includes as a
special case the Erdős–Renyi random graphs G(n,λ/n), by taking the function
f (x, y) = λ.

7. Universal nonnormal limit for dense graphs. The precise conditions re-
quired for the normality of the number of monochromatic edges N(Gn) have been
determined in the previous sections. It is also shown in Example 6.1 that when
these conditions are not met, N(Gn) might have nonstandard limiting distribu-
tions. However, in this section it will be shown that there is a universal character-
ization of the limiting distribution of N(Gn) for a converging sequence of dense
graphs Gn.

To this end, consider the following example where the limiting distribution of
the number of monochromatic edges is determined for a complete graph.

EXAMPLE 7.1 (Complete graph). Consider coloring the complete graph Kn

with c = 2 colors under the uniform distribution, where c is fixed. Let N(Kn) be
the number of monochromatic edges of the complete graph Kn. Let Un be the
proportion of vertices of Kn with color 1. Then

nUn ∼ Binomial(n,1/2) and n1/2(Un − 1/2)
D→ N(0,1/4).

In this case, we have N(Kn) = (nUn

2

) + (n−nUn

2

) = n2

2 (U2
n + (1 −Un)

2)− n
2 , and so

1

n

(
N(Kn) − 1

2

(
n

2

))
= n

2

(
U2

n + (1 − Un)
2 − 1

2

)
− 1

4
D→ 1

4

(
χ2

(1) − 1
)
,

where the last convergence follows by an application of Delta method to the func-
tion f (x) = x2 + (1 − x)2, and noting that f ′(1/2) = 0, f ′′(1/2) = 4.

This example motivates the characterization of the limiting distribution for any
converging sequence of dense graphs. The limit theory of dense graphs was de-
veloped recently by Lovász and coauthors [8, 9, 38]. Using results from this limit
theory, the limiting distribution of N(Gn) can be characterized for any dense graph
sequence Gn converging to a limit W ∈ W .
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7.1. Proof of Theorem 1.4. Write

N(Gn) − |E(Gn)|
c

= ∑
(i,j)∈E(Gn)

c∑
a=1

(
111{Yi = a} − 1

c

)(
111{Yj = a} − 1

c

)
.

As before, Theorem 1.4 will be proved by comparing the conditional moments of

(7.1) n = N(Gn) − |E(Gn)|
c√

2|E(Gn)|
with another random variable for which the asymptotic distribution can be obtained
much easily. To this end, define the random variable

Q(Gn) := ∑
(i,j)∈E(Gn)

c∑
a=1

SiaSja,

with Sva = Xva − Xv·, where {Xva : v ∈ V (Gn), a ∈ [c]} is a collection of inde-
pendent N(0,1/c) random variables and Xv· = 1

c

∑c
a=1 Xva . Note that for each

v ∈ V (Gn) the random vector Sv := (Sv1, Sv2, . . . , Svc)
′ is a multivariate normal

N(0, 1
c
I) conditioned on

∑c
a=1 Sva = 0. Also, {Sv, v ∈ V (Gn)} are independent

and identically distributed random vectors.
Finally, define

(7.2) �n := Q(Gn)√
2|E(Gn)| .

7.2. Comparing conditional moments. The moments of n and �n involve
sums over multi-subgraphs of Gn. We begin with a simple observation about gen-
eral multi-graphs.

OBSERVATION 7.1. Let H = (V (H),E(H)) be any finite multi-graph with
dmin(H) ≥ 2 and |V (H)| = |E(H)|. Then H is a disjoint union of cycles and
isolated doubled edges.

PROOF. Let H1,H2, . . . ,Hν be the connected components of H . Note that if
there exists i ∈ [ν] such that |E(Hi)| < |V (Hi)|, then Hi must be a tree, which has
a vertex of degree 1. Therefore, |E(Hi)| = |V (Hi)| for all i ∈ [ν].

Now, let F be any connected component of H , and FS be the underlying sim-
ple graph. Since F is connected either |E(FS)| = |V (F)| = |E(F)| or |E(FS)| =
|V (F)| − 1 = |E(F)| − 1.

If |E(FS)| = |V (F)| = |E(F)|, then F itself is a simple graph with dmin(F ) ≥
2, which implies that F is a cycle of length |V (F)|.

On the other hand, if |E(FS)| = |V (F)| − 1 = |E(F)| − 1, then FS is a tree.
But any tree has at least two degree one vertices, and one extra edge cannot add to
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both their degrees unless the tree is just an isolated edge. This implies that FS is
an isolated edge, and F is an isolated doubled edge. �

As in part (b) of Lemma 5.3, the following lemma identifies the set of multi-
graphs for which the moments are equal.

LEMMA 7.1. For any multi-subgraph H = (V (H),E(H)) of Gn define

Z(H) = ∏
(i,j)∈E(H)

c∑
a=1

(
111{Yi = a} − 1

c

)(
1{Yj = a} − 1

c

)
,

T (H) = ∏
(i,j)∈E(H)

c∑
a=1

SiaSja.

If |V (H)| = |E(H)|, then E(Z(H)) = E(T (H)).

PROOF. If dmin(H) = 1, by arguments similar to Lemma 4.1, E(Z(H)) =
E(T (H)) = 0. Therefore, it suffices to assume dmin(H) ≥ 2 and |V (H)| =
|E(H)|. By Observation 7.1, H is a disjoint union of cycles and isolated doubled
edges. Since both Z(H) and T (H) factorize over connected components, w.l.o.g.
H can be assumed to be either an isolated doubled edge or a cycle. More gen-
erally, it suffices to show that E(T (H)) = E(Z(H)) for any multi-graph H with
each vertex having degree 2. Now, it is easy to see that since the random variables
corresponding to each vertex are independent in both the cases, it suffices to prove

E

(
111{Yi = a} − 1

c

)(
111{Yi = b} − 1

c

)
= ESiaSib,

for any a, b ∈ [c]. This follows on noting that if a = b both sides above equal
1
c
(1 − 1

c
), whereas for a �= b both sides above equal − 1

c2 . �

Using this lemma it can now be shown that the conditional moments of n and
�n are asymptotically close, whenever the random graph sequence Gn converges
in distribution to W ∈ W such that

∫
[0,1]2 W(x,y)dx dy > 0 almost surely, that is,

Gn is dense.

LEMMA 7.2. Suppose the sequence of random graphs {Gn}∞n=1 converges in
distribution to a limit W ∈ W with

∫
[0,1]2 W(x,y)dx dy > 0 almost surely. Then

for n and �n as defined in (7.1) and (7.2), and for every fixed k ≥ 1,

∣∣E(
�k

n | Gn

) −E
(
k

n | Gn

)∣∣ P→ 0.
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PROOF. By Equation (5.7),

(7.3)

∣∣E(
�k

n | Gn

) −E
(
k

n | Gn

)∣∣
≤ ∑

H∈Ak

M(Gn,H)

(2|E(Gn)|) k
2

∣∣E(
T (H)

) −E
(
Z(H)

)∣∣,
where Ak is the collection of all unlabeled multi-subgraphs of Gn with exactly
k edges and no isolated vertex. If H ∈ Ak is such that |V (H)| > |E(H)|, then
H must have a vertex of degree 1, and E(T (H)) = E(Z(H)) = 0. Moreover, if
H ∈Ak is such that |V (H)| = |E(H)|, then by Lemma 7.1 E(T (H)) = E(Z(H)).
Therefore, (7.3) simplifies to

∣∣E(
�k

n | Gn

) −E
(
k

n | Gn

)∣∣ �k

∑
H∈Ak|V (H)|<|E(H)|

N(Gn,H)

(2|E(Gn)|) k
2

�k

∑
H∈Ak|V (H)|<|E(H)|

n|V (H)|

(2|E(Gn)|) |E(H)|
2

,

where the last term follows from noting that N(Gn,H)�H n|V (H)| for any H and
Gn. Since

∫
[0,1]2 W(x,y)dx dy > 0 almost surely (1.11) gives

n|V (H)|

(2|E(Gn)|) |E(H)|
2

= OP

(
n|V (H)|−|E(H)|),

which goes to zero in probability for all H ∈ Ak such that |V (H)| < |E(H)|. This
completes the proof of the lemma. �

7.2.1. Completing the proof of Theorem 1.4. As the conditional moments of
n and �n are asymptotically close, it remains to analyze the limiting distribution
of �n. In this section, it will be shown that �n converges to 1

2c
χ2

c−1(W), where

(7.4) χ2
c−1(W) :=

∞∑
i=1

(
λ2

i (W)

(
∑∞

j=1 λ2
j (W))

1
2

)
ξi :=

∞∑
j=1

λ̃2
j (W)ξi,

where {ξi}i∈N are independent χ2
(c−1) − (c − 1) random variables, and

λ̃j (W) := λj (W)

(
∑∞

i=1 λi(W))
1
2

.

The first step is to show that the random variable χ2
c−1(W), which is a infinite sum

of centered chi-square random variables, is well defined.
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PROPOSITION 7.1. Let (a1, a2, . . .) be an infinite sequence of random vari-
ables such that

∑∞
j=1 a2

j

a.s.= 1. Given (ξ1, ξ2, . . .) independent χ2
c − c random vari-

ables independent of the sequence (a1, a2, . . .), the sum S := ∑∞
j=1 aj ξj converges

almost surely and in L1. Further, for |t | < 1/8 the moment generating function of
S is finite, and is given by

EetS = E

( ∞∏
j=1

e−ctaj

(1 − 2taj )
c
2

)
.

PROOF. By defining G := σ({aj }j∈N) and Sn := ∑n
j=1 aj ξj and Fn :=

σ(σ({ξj }nj=1),G ), it follows that (Sn,Fn) is a martingale, with

lim sup
n

ES2
n = 2c

(
E

∞∑
j=1

a2
j

)
= 2c < ∞,

and Sn converges almost surely and in L1 [23].
To compute the moment generating function, note that h : [−1/2,1/2] �→ R

given by h(z) = − log(1 − z) − z − z2 has a unique global maxima at z = 0, and
so − log(1 − z) − z ≤ z2 for |z| ≤ 1/2. Therefore, for any |t | < 1/8,

logE
(
e2tSn | G ) = c

n∑
j=1

(− log(1 − 4taj ) − 4taj

2

)
≤ 8ct2,

and so E(e2tSn | G ) ≤ e8ct2
< ∞. It follows that etSn and E(etSn | G ) are both

uniformly integrable, and

EetS = lim
n→∞E

(
E

(
etSn | G ))

= lim
n→∞E

(
n∏

j=1

e−ctaj

(1 − 2taj )
c
2

)
= E

( ∞∏
j=1

e−ctaj

(1 − 2taj )
c
2

)
< ∞.

�

To prove Theorem 1.4 we now invoke Lemma C.1 with n and �n. Lemma 7.2
shows that (C.1) holds. The following lemma takes the first step towards (C.2)
by showing that the limiting distribution of �n is a weighted sum of chi-square
random variables.

LEMMA 7.3. If a sequence of random graphs {Gn}∞n=1 converges in the cut-
metric in distribution to a limit W ∈ W , then for |t | < c/4

lim
n→∞Eet�n = E

(
et

χ2
c−1(W)

2c
)
.
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PROOF. Let {λj (W)}j∈N be the eigenvalues of the operator W as in (1.9), and

{λ̃j (W)}j∈N as defined in (7.4). By Proposition 7.1, Eet
χ2
c−1(W)

2c < ∞ for |t | < c/4,
which implies that

E (W) := E
(
et

χ2
c−1(W)

2c | W ) =
( ∞∏

j=1

e− λ̃j (W)t (c−1)

2c

(1 − λ̃j (W)t

c
)

c−1
2

)
a.s.
< ∞.

Now, by Fubini’s theorem,

(7.5)

logE (W) =
∞∑

j=1

{
1 − c

2
log

(
1 − λ̃j (W)t

c

)
− λ̃j (W)t (c − 1)

2c

}

= c − 1

2

∞∑
x=2

tx

xcx

∞∑
j=1

λj (W)x

(
∑∞

j=1 λj (W))
x
2

= c − 1

2

∞∑
x=2

tx

xcx

t (Cx,W)

t (C2,W)x/2

a.s.
< ∞,

where the last step uses t (Cg,W) = ∑∞
j=1 λ

g
j (W) for g ≥ 2 (see [38], Section 7.5).

This implies that

(7.6)
lim

N→∞

N∑
x=2

c − 1

2

tx

xcx

t (Cx,W)

t (C2,W)x/2
a.s.=

∞∑
x=2

c − 1

2

tx

xcx

t (Cx,W)

t (C2,W)x/2

= logE
(
et

χ2
c−1(W)

2c | W )
.

Using the spectral decomposition, write the adjacency matrix A(Gn) as∑n
j=1 λj (Gn)pj

p′
j
. For a ∈ [c] and j ∈ [n], set SSSa := (S1a, S2a, . . . , S|V (Gn)|a)′

and yaj = p′
j
SSSa . Then

c∑
a=1

SSS′
aA(Gn)SSSa =

n∑
j=1

λj (Gn)

c∑
a=1

y2
aj .

Since Cov(yaj , ybj ) = −1/c2 for 1 ≤ a < b ≤ c, it follows that Aj := ∑c
a=1 y2

aj ∼
1
c
χ2

c−1. Also, since Cov(yai, yaj ) = 0 for i �= j , it follows that {Aj }nj=1 are i.i.d.,
and

(7.7)

E
(
et�n | Gn

) = E

(
exp

{
t
∑n

j=1 λj (Gn)Aj

2
√∑n

j=1 λ2
j (Gn)

} ∣∣∣ Gn

)

=
n∏

j=1

(
1 − λ̃j (Gn)

t

c

) 1−c
2

,
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where λ̃j (Gn) = λj (Gn)√∑n
j=1 λ2

j (Gn)
. Therefore, using

∑n
j=1 λ̃j (Gn) = 0,

(7.8)

log
n∏

j=1

(
1 − λ̃j (Gn)

t

c

) 1−c
2

=
(

c − 1

2

) ∞∑
x=2

tx

xcx
· t (Cg,Gn)

t (C2,Gn)
x
2

=
(

c − 1

2

) N∑
x=2

tx

xcx
· t (Cg,Gn)

t (C2,Gn)
x
2

+
(

c − 1

2

) ∞∑
x=N+1

tx

xcx
· t (Cg,Gn)

t (C2,Gn)
x
2
.

Now, since Gn
D⇒ W , fixing a positive integer N ≥ 3, {t (Cg,Gn), g ∈ [3,N]} D→

{t (Cg,W), g ∈ [3,N]}. This and (7.6) implies that

lim
N→∞ lim

n→∞

(
c − 1

2

) N∑
x=2

tx

xcx
· t (Cg,Gn)

t (C2,Gn)
x
2

D→ logE
(
et

χ2
c−1(W)

2c | W )
.(7.9)

Moreover, since t (Cg,Gn) ≤ t (C2,Gn)
x
2 and |t | < c/4, the second term in the

RHS of (7.8) is bounded by
∑∞

x=N+1
1

x4x , which converges to 0 as N → ∞. Com-
bining (7.7), (7.8), and (7.9), it follows that

(7.10) E
(
et�n | Gn

) =
n∏

j=1

(
1 − λ̃j (Gn)

t

c

) 1−c
2 D→ E

(
et

χ2
c−1(W)

2c | W )
.

Finally, using the fact that − log(1 − x) ≤ x + x2 for |x| ≤ 1/2 we have

logE
(
e2t�n | Gn

) = 1 − c

2

n∑
j=1

log
(

1 − λ̃j (Gn)
2t

c

)

≤ 2t2(c − 1)

c2 < ∞.

This implies et�n and E(et�n | Gn) are both uniformly integrable. Therefore,
from (7.10)

lim
n→∞E

(
et�n

) = E
(
et

χ2
c−1(W)

2c
)
.(7.11)

By Proposition 7.1, the RHS of (7.11) is the moment generating function of
χ2

c−1(W)

2c
, and the proof is complete. �
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Finally, to complete the proof of Theorem 1.4 using Lemma C.1, observe: since

Eet�n converges to Eet
χ2
c−1(W)

2c , for some t > 0, the arguments identical to those
used in (5.12) imply condition (C.2) for �n.

7.3. More examples. The limiting chi-square distribution of the complete
graph was illustrated before in Example 7.1. A few other simple examples where
Theorem 1.4 can be used to determine the limiting distributions are given below.

EXAMPLE 7.2 (Complete bipartite graph). Consider the complete bipartite
graph Kn

2 , n
2
, which converges to the limit W(x,y) = 111{(x − 1/2)(y − 1/2) < 0}.

It is easy to see that the only nonzero eigenvalues of W are ±1
2 . Therefore, by

Theorem 1.4 it follows that

1

n

(
N(Kn

2 , n
2
) − n2

4c

)
D→ 1

4c
(ξ1 − ξ2),

where ξ1 and ξ2 are independent χ2
(c−1) random variables.

EXAMPLE 7.3 (Inhomogeneous random graphs). Let f : [0,1]2 → [0,1] be
a symmetric continuous function. Consider the random graph model where an
edge (i, j) is present with probability f ( i

n
,

j
n
). Therefore, whenever

∫
[0,1]2 f (x,

y)dx dy > 0 the limit theorem in (1.12) holds. In particular, the Erdős–Renyi ran-
dom graph G(n,p) can be obtained by taking the function f (x, y) = p. In this
case, p is the only nonzero eigenvalue of the operator f and

1

n

(
N

(
G(n,p)

) − |E(Gn)|
c

)
D→ p

1
2

2c
· (

χ2
(c−1) − (c − 1)

)
.

Note that this reduces to Example 7.1, for c = 2 and p = 1.

8. Extremal examples: Stars and cycles. Another relevant question is
whether it is possible to expect a similar Poisson universality result for other
subgraphs, under the uniform coloring scheme? This section begins by proving
Proposition 1.6 which shows that we may not get Poisson mixtures in the limit
while counting monochromatic r-stars, in a uniform c-coloring of an n-star.

8.1. Monochromatic stars. Consider the n-star, K1,n with vertices labeled by
[n], with the central vertex labeled 0. Color the vertices of K1,n, uniformly from
[c], independently. Consider the limiting distribution of the number of monochro-
matic r-stars K1,r generated by this random coloring, where r is a fixed constant.
If Yi denotes the color of vertex i, the random variable is

Tr,n = ∑
S⊆[n]

|S|=r−1

∏
j∈S

{{{Y0 = Yj }.
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Proposition 1.6 shows that the limiting behavior of Tr,n cannot converge to a
mixture of Poissons. This illustrates that the phenomenon of universality of the
Poisson approximation that holds for the number of monochromatic edges, does
not extend to arbitrary subgraphs. In particular, it is not even true for the 2-star,
which is the simplest extension of an edge.

8.1.1. Proof of Proposition 1.6. Note that if the number of monochromatic
edges in Gn = K1,n is N(Gn), then

Tr,n =
(
N(Gn)

r

)
.

If n/cn → 0, then from Theorem 1.1 N(Gn)
P→ 0 and so Tr,n

P→ 0. Similarly, if

n/cn → ∞, Tr,n
P→ ∞.

Finally, if n
cn

→ λ, the number of monochromatic edges N(Gn) in K1,n con-
verges to X ∼ Poisson(λ), by Theorem 1.1. This implies that

Tr,n
D=

(
N(Gn)

r

)
D→

(
X

r

)
= X(X − 1) · · · (X − r + 1)

r! .

This random variable does not assign positive mass at all nonnegative integers, and
so it cannot be a mixture of Poisson variates.

8.2. Monochromatic cycles. Recall that the number of monochromatic edges
N(Gn) converges to Poisson(λ) whenever |E(Gn)|/cn → λ. The limiting distri-
bution of the number of edges can only be a nontrivial mixture of Poissons when
|E(Gn)|/cn → Z, and Z has a nondegenerate distribution. We now construct a
graph Gn where the number of monochromatic g-cycles in a uniform c-coloring
of Gn converges in distribution to a nontrivial mixture of Poissons even when
|N(Gn,Cg)|/cg−1

n converges to a fixed number λ. This phenomenon, which can-
not happen in the case of edges, makes the problem of finding the limiting distri-
bution of the number of monochromatic cycles, much more challenging.

For a, b positive integers and g ≥ 3, define a graph Ga,b,g as follows: Let

V (Ga,b,g) = {v1, v2, . . . , va+1}
a⋃

i=1

b⋃
j=1

{
vijk : k ∈ {1,2, . . . , g − 2}}.

The edges are such that vertices v1, v2, . . . , va+1 form a path of length a, and for
every i ∈ [a] and j ∈ [b], vi, vij1, vij2, . . . , vijg−2, vi+1 form a cycle of length g.
(Figure 1 shows the graph G5,2,5 and its vertex labelings.) Note that graph Ga,b,g

has b(g − 2) + a + 1 vertices, b(g − 1) + a edges, and ab cycles of length g.
We consider a uniform cn-coloring of the vertices of Ga,b,g and count the num-

ber of monochromatic g-cycles. Let Yi be the color of vertex vi and Yijk the color
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FIG. 1. The graph G5,2,5.

of vertex vijk , for i ∈ [a] and j ∈ [b]. The random variable

(8.1) Za,b,g := Z(Ga,b,g) :=
a∑

i=1

b∑
j=1

g−2∏
k=1

111{Yi = Yi+1 = Yijk},

counts the number of monochromatic g-cycles in the graph Ga,b,g . The follow-
ing proposition shows that there exists a choice of parameters a, b, cn such that
|N(Gn,Cg)|/cg−1

n → λ and Za,b,g converges in distribution to a nontrivial mix-
ture of Poissons.

PROPOSITION 8.1. For a = λn and b = ng−2 and cn = n, Za,b,g
D→

Poisson(W), where W ∼ Poisson(λ).

PROOF. Let Y = (Y1, Y2, . . . , Ya+1) and note that
g−2∏
k=1

111{Yi = Yi+1 = Yijk} | Y ∼ Ber
(
1/cg−2

n

)
and

b∑
j=1

g−2∏
k=1

111{Yi = Yi+1 = Yijk} | Y ∼ Bin
(
b,1/cg−2

n

)
.

This implies that

(8.2)

E
(
eitZa,b,g

) = E

(
a∏

i=1

E
(
e
it

∑b
j=1

∏g−2
k=1 111{Yi=Yi+1=Yijk} | Y ))

= E

(
1 − 1

c
g−2
n

+ eit

c
g−2
n

)bNa

,
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where Na = ∑a
i=1 111{Yi = Yi+1}, is the number of monochromatic edges in the path

v1, v2, . . . , va+1.
Substituting a = λn := an and b = ng−2 := bn and cn = n, we have N(G,Cg)/

c
g−1
n = anbn/cn = λ. With this choice an, bn, cn, we have by Theorem 1.1, Nan

converges in distribution to W := Poisson(λ), as an/cn = λ. Therefore,
(

1 − 1

c
g−2
n

+ eit

c
g−2
n

)bnNan = e
bnNan log(1− 1

c
g−2
n

+ eit

c
g−2
n

) D→ e(eit−1)W .

By the dominated convergence theorem, we have

E
(
eitZan,bn,g

) D→ E
(
e(eit−1)W )

,

which the characteristic function of Poisson(W), where W ∼ Poisson(λ). �

REMARK 8.1. We are not aware of any example for which the number of
monochromatic triangles converges to a distribution that is not a mixture of Pois-
sons or a polynomial in Poissons, when N(Gn,C3)/c

2
n → λ. In fact, we believe

that the number of monochromatic triangles in a uniform random coloring of any
graph sequence Gn, converges in distribution to a random variable that is a mixture
of Poissons or a polynomial in Poissons, whenever |N(Gn,C3)|/c2

n → λ, for some
fixed λ > 0.

APPENDIX A: PROOF OF LEMMA 4.2

Recall, from the statement the lemma, that V (H) is partitioned into three
sets V0(H) ∪ V1/2(H) ∪ V1(H), where Va(H) = {v ∈ V (H) : ϕ(v) = a}, for
a ∈ {0,1/2,1} for a fixed optimal solution ϕ of (4.6), and H01 = (V0(H) ∪
V1(H),E(H01)), where E(H01) is set of edges from V0(H) to V1(H).

By Hall’s marriage theorem, the bipartite graph H01 has a matching that satu-
rates every vertex in V0(H), if and only if for all S ⊂ V0(H), |NH01(S)| ≥ |S|.
Suppose this is false and there exists A ⊂ V0(H) such that |NH01(A)| < |A|.
Let B = V1(H) \ NH01(A). By assumption, γ (H) = 1

2 |V1/2(H)| + |V1(H)| >
1
2(|V0(H)| + |V1/2(H)| + |V1(H)|), which implies that |V1(H)| > |V0(H)|, and
so

|B| = ∣∣V1(H)
∣∣ − ∣∣NH01(A)

∣∣ >
∣∣V1(H)

∣∣ − |A| ≥ ∣∣V1(H)
∣∣ − ∣∣V0(H)

∣∣ > 0.

In particular, this implies that the set B is not empty.
Now, define a function ϕ̃ : V (H) → [0,1] such that

ϕ̃(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if v ∈ B,

0 if v ∈ NH(B),
1

2
otherwise.
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Note that ϕ̃ ∈ P(H), and
∑

v∈V ϕ̃(v) = 1
2(|V (H)| + |B| − |NH(B)|). Now, as

NH(B) ⊆ V0(H) \ A,

(A.1)

∑
v∈V

ϕ̃(v) = 1

2

(∣∣V (H)
∣∣ + |B| − ∣∣NH(B)

∣∣)

= 1

2

(∣∣V (H)
∣∣ + ∣∣V1(H)

∣∣ − ∣∣NH01(A)
∣∣ − ∣∣NH(B)

∣∣)

≥ 1

2

(∣∣V (H)
∣∣ + ∣∣V1(H)

∣∣ − ∣∣V0(H)
∣∣ − ∣∣NH01(A)

∣∣ + |A|)

>
1

2

(∣∣V (H)
∣∣ + ∣∣V1(H)

∣∣ − ∣∣V0(H)
∣∣)

= 1

2

∣∣V1/2(H)
∣∣ + ∣∣V1(H)

∣∣ = γ (H).

This contradicts the maximality of γ (H) and proves that H01 has a matching that
saturates every vertex in V0(H).

Next, denote the multi-graph induced by the vertices of V1/2(H) by F . To prove
that F has a spanning subgraph which is a disjoint union of cycles and isolated
edges, it suffices to show that δ(FS) = 0 (Lemma 7, Alon [2]). To this end we
need to show that for all S ⊂ V (F), |NF (S)| ≥ |S|. Assuming this is false, there
exists C ⊂ V (F), such that |NF (C)| < |C|. Define C1 = C \ NF (C). Note that
C1 ∩ NF (C1) = ∅: if there exists x ∈ C1 ∩ NF (C1) then there exists y ∈ C1 such
that (x, y) ∈ E(F), which means x ∈ C1 ∩ NF (C), a contradiction. Moreover,
|NF (C)| ≥ |NF (C) ∩ C| + |NF (C1)|, and

|C1| = |C| − ∣∣C ∩ NF (C)
∣∣

>
∣∣NF (C)

∣∣ − ∣∣C ∩ NF (C)
∣∣

≥ ∣∣NF (C1)
∣∣.

Let D = C1 ∪ V1(H). Note that NH(D) = NH(C1) ∪ NH(V1(H)) = NF (C1) ∪
NH(V1(H)) and D ∩ NH(D) = ∅. Also,

|D| − ∣∣NH(D)
∣∣ ≥ ∣∣V1(H)

∣∣ − ∣∣NH

(
V1(H)

)∣∣ + (|C1| −
∣∣NF (C1)

∣∣)
>

∣∣V1(H)
∣∣ − ∣∣V0(H)

∣∣.
Define ϕ̃ : V (H) → [0,1]

(A.2) ϕ̃(v) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if v ∈ D,

0 if v ∈ NH(D),
1

2
otherwise.

Note that ϕ̃ ∈ P(H), and
∑

v∈V ϕ̃(v) = 1
2(|V (H)|+ |D|− |NH(D)|). Now, a con-

tradiction can be obtained as before.
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APPENDIX B: PROOF OF LEMMA 6.1

Let H be a multigraph with no isolated vertex, dmin(H) ≥ 2, γ (H) = |E(H)|/2,
and at least 3 vertices in one of its connected components. Recall, we need to show
that M(Gn,H) = oP (|E(Gn)||E(H)|/2), whenever the ACF4 condition in probabil-
ity holds for Gn and H contains a cycle Cg , for some g ≥ 3.

To begin with assume that H is connected. If |E(H)| = |V (H)| − 1, the graph
H is a tree and dmin(H) = 1. Also, if |E(H)| = |V (H)|, then since |V (H)| ≥ 3
and dmin(H) ≥ 2, the only possibility is that H = Cg for some g ≥ 3, and
M(Gn,H) = oP (|E(Gn)||E(H)|/2) by the ACF4 condition in probability and The-
orem 6.1.

Therefore, it suffices to consider a subgraph H of Gn such that |E(H)| >

|V (H)|. If γ (H) ≤ |V (H)|/2,

M(Gn,H)�H

∣∣E(Gn)
∣∣γ (H)

�H

∣∣E(Gn)
∣∣|V (H)|/2

= oP

(∣∣E(Gn)
∣∣|E(H)|/2)

.

Therefore, assume that γ (H) > |V (H)|/2. As in the proof of Lemma 4.2, let ϕ :
V (H) → [0,1] be an extreme point of P(H) that is an optimal solution of the lin-
ear program defined in (4.6). Partition V (H) = V0(H)∪V1/2(H)∪V1(H), where
Va(H) = {v ∈ V (H) : ϕ(v) = a}, for a ∈ {0,1/2,1}. Note that γ (H) > |V (H)|/2
implies that ϕ is not identically equal to 1/2. Depending on the size of V1/2(H) the
following cases arise:

|V1/2(H)| �= 0. Let H01 be the graph with vertex set V0(H) ∪ V1(H) and edge
set E(H01), where E(H01) is the set of edges from V0(H) to V1(H). Let H1/2

be the subgraph of H induced by the vertices of V1/2(H). Decompose H into
subgraphs H01 and H1/2. By Lemma 4.2, H01, has a matching which saturates
every vertex in V0(H). Therefore,

(B.1) M(Gn,H01)�H

∣∣E(Gn)
∣∣|V1(H)| �H

∣∣E(Gn)
∣∣|E(H01)|/2

,

since dmin(H) ≥ 2 implies |E(H01)| ≥ 2|V1(H)|. Moreover, the subgraph F of
H induced by the vertices of V1/2(H) has a spanning subgraph which is a disjoint
union of cycles and isolated edges. If F1,F2, . . . ,Fν are the connected components
of F , then by Theorem 4 of Alon [2], γ (Fi) = |V (Fi)|/2 (note that this is true even
if Fi is a multigraph), and

(B.2) M(Gn,Fi)�H

∣∣E(Gn)
∣∣|V (Fi)|/2

.
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Denote by E(V (Fi),V0(H)) the subset of edges in H with one vertex in V (Fi)

and another in V0(H), for i ∈ [ν]. Using estimates (B.1) and (B.2),

(B.3)

M(Gn,H)

|E(Gn)||E(H)|/2 �H

M(Gn,H01)
∏ν

i=1 M(Gn,Fi)

|E(Gn)||E(H)|/2

�H

ν∏
i=1

|E(Gn)||V (Fi)|/2−|E(Fi)|/2

|E(Gn)||E(V (Fi),V0(H))|/2

=
ν∏

i=1

∣∣E(Gn)
∣∣λ(Fi)/2

,

where

(B.4) λ(Fi) := ∣∣V (Fi)
∣∣ − ∣∣E(Fi)

∣∣ − ∣∣E(
V (Fi),V0(H)

)∣∣.
Note that |E(V (Fi),V0(H))| > 0, since H is connected. Therefore,
|E(Gn)|λ(Fi)/2 = oP (1) whenever |V (Fi)| ≤ |E(Fi)|. Otherwise Fi is a tree and
has at least 2 vertices of degree 1. The degree 1 vertices must be connected
to some vertex in H0, which implies that |E(V (Fi),V0(H))| ≥ 2 and again
|E(Gn)|λ(Fi)/2 = oP (1).

|V1/2(H)| = 0. In this case, by Lemma 4.2, V (H) = V0(H) ∪ V1(H), that is,
every vertex is assigned the value 0 or 1 by the chosen optimal function ϕ. By
Lemma 4.1, for every vertex v ∈ V1(H), d(v) = 2. Therefore,

(B.5)
∣∣E(H)

∣∣ = 2γ (H) = 2
∣∣V1(H)

∣∣,
and the graph H is bi-partite. By Lemma 4.2, H then has a matching which satu-
rates every vertex in V0(H). By assumption, the girth g := gir(H) ≥ 3, and so there
exists a subgraph F of H which is isomorphic to Cg . Let H− = (V (H−),E(H−))

be the graph obtained by removing all the vertices of the cycle F and the all the
edges of H incident on these vertices. Note that if V0(H

−) := V0(H) \ V (F)

is empty, then H− is a graph with isolated vertices and no edges.4 Otherwise
V0(H

−) is nonempty, and we will show that, H− also has a matching which
saturates vertices of V0(H

−). To this end, let A ⊂ V0(H
−). By the saturating

matching in H , |NH(A)| ≥ |A|. Also, observe that |NH−(A)| = |NH(A)|, since
removing F from H leaves the vertices in A and its neighbors unchanged. There-
fore, |NH−(A)| ≥ |A| for all A ⊂ V0(H

−), that is, even after removing the cycle F

4For example, when H = K2,t is the complete bi-partite graph with two vertices on one side and t

on the other, then H− consists of t − 2 isolated vertices. In this case, γ (H) = |E(H)|/2 = t and

M(Gn,H)�t M(Gn,C4)
∣∣E(Gn)

∣∣t−2 = oP

(∣∣E(Gn)
∣∣t ),

by the ACF4 condition, as required.
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from H , there is a matching in H− which saturates every vertex in V0(H
−). This

implies, by the ACF4 condition,

M(Gn,H)

|E(Gn)||E(H)|/2 �H

M(Gn,F )|E(Gn)||V (H−)∩V1(H)|

|E(Gn)||E(H)|/2

�H

M(Gn,F )

|E(Gn)|g/2 = oP (1),

because |V (H−) ∩ V1(H)| = |V1(H)| − g/2 = |E(H)|/2 − g/2.

Finally, if H is not connected, let H1,H2, . . . ,Hr be the connected components of
H . There exists j ∈ [r] such that dmin(Hj ) ≥ 2 and gir(Hj ) ≥ 3. By applying the
above argument for Hj , it follows that M(Gn,Hj ) = oP (|E(Gn)||E(Hj )|/2). Also,
for all i ∈ [r], M(Gn,Hi) �H |E(Gn)|γ (Hi) ≤ |E(Gn)||E(Hi)|/2, by Lemma 4.1.
This implies

M(Gn,H)�H

r∏
i=1

M(Gn,Hi)

= oP

(∣∣E(Gn)
∣∣|E(Hj )|/2)

OP

(∣∣E(Gn)
∣∣|E(Hi)|/2)

= oP

(∣∣E(Gn)
∣∣|E(H)|/2)

,

and the result follows.

APPENDIX C: FROM MOMENTS TO DISTRIBUTIONS

In this section, we show how to conclude about convergence in distribution from
the convergence of moments, and the convergence of conditional distributions. The
following lemma shows the convergence in distribution of a sequence of random
variables from the convergence of the conditional moments. The lemma is used in
repeatedly in the paper in the final steps of our proofs of all the main theorems.

LEMMA C.1. Let (�n,Fn,Pn) be a sequence of probability spaces, and An ⊂
Fn be a sequence of sub-sigma fields. Also, let (Xn,Yn) be a sequence of random
variables on (�n,Fn), and assume that for any k ≥ 1 the conditional expectations
Un,k := E(Xk

n | An),Vn,k := E(Y k
n | An) exist as finite random variables, such that

lim sup
n→∞

P
(|Un,k − Vn,k| > ε

) = 0.(C.1)

Moreover, if there exists η > 0 such that

lim sup
k→∞

lim sup
n→∞

P

(∣∣∣∣η
k

k! Un,k

∣∣∣∣ > ε

)
= 0,(C.2)

then for any t ∈ R, EeitXn −EeitYn → 0.
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PROOF. First, note that

P

(∣∣∣∣η
k

k! Vn,k

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣η
k

k! Un,k

∣∣∣∣ >
ε

2

)
+ P

(
|Un,k − Vn,k| > εk!

2|η|k
)
.

Taking limits as n → ∞, and using (C.1) and (C.2), it follows that

(C.3) lim sup
k→∞

lim sup
n→∞

P

(∣∣∣∣η
k

k! Vn,k

∣∣∣∣ > ε

)
= 0.

To prove the lemma it suffices to show that for any t ∈ R and an nonnegative
integer 	,

(C.4)
∣∣E(

eitXnX	
n | An

) −E
(
eitYnY 	

n | An

)∣∣ P→ 0.

Indeed the lemma follows immediately from (C.4), as follows: Setting 	 = 0,
|E(eitXn | An) − E(eitYn | An)| converges to 0 in probability. Since |E(eitXn |
An) − E(eitYn | An)| is also bounded by 2 in absolute value, the dominated con-
vergence theorem gives the desired result.

Therefore, it remains to prove the claim (C.4). For this, first assume |t | ≤ η, and
let 	 be fixed but arbitrary nonnegative integer. By a Taylor’s series expansion, for
any k ∈ N, ∣∣∣∣∣eit −

k−1∑
r=0

(it)r

r!
∣∣∣∣∣ ≤ ηk

k! ,

and so

(C.5)

∣∣E(
eitXnX	

n | An

) −E
(
eitYnY 	

n | An

)∣∣
≤

k−1∑
r=0

|t |r
r! |Un,r+	 − Vn,r+	| + |η|k

k! Un,k + |η|k
k! Vn,k.

From (C.5) taking limits as n → ∞ followed by k → ∞, and using (C.1), (C.2)

and (C.3) gives |E(eitXnX	
n | An) −E(eitYnY 	

n | An)| P→ 0, for |t | ≤ η.
The proof of (C.4) is now completed by induction. Suppose the result holds

for any |t | ≤ pη, for some p ∈ N, and let |t | ∈ (pη, (p + 1)η]. Then setting t0 :=
t − t

|t |η we have that |t − t0| = η, and |t0| ≤ pη. Expanding in a Taylor’s series
around t0 ∣∣E(

eitXnX	
n | An

) −E
(
eitYnY 	

n | An

)∣∣
≤

k−1∑
r=0

ηr

r!
∣∣E(

eit0XnXr+	
n | An

) −E
(
eit0YnY r+	

n | An

)∣∣

+ ηk

k! Un,k + ηk

k! Vn,k.
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Since |t0| ≤ pη, letting n → ∞ followed by k → ∞ it follows by the induction

hypothesis and (C.1) and (C.2) that |E(eitXnX	
n | An) − E(eitYnY 	

n | An)| P→ 0.
This completes the proof of (C.4) by induction. �

REMARK C.1. There are many conditions on modes of convergence which
ensure the convergence of a sequence of joint distributions when it is known that
the associated sequence of marginal and conditional distributions converge [45,
47]. As pointed out by one of the referee, another alternative strategy to prove the
convergence of the number of monochromatic edges N(Gn), for a sequence of
random graphs Gn, is to first prove them for deterministic graphs using method
of moments as done in the paper, and then lift the result to random graphs. Be-
low we explain how this program can be carried out for Poisson approximation
(Theorem 1.1):

For a fixed sequence of graphs Gn ∈ Gn, let N(Gn) be a random variable which
counts the number of monochromatic edges in Gn divided by cn. Using the Poisson
approximation for deterministic graphs, if limn→∞ |E(Gn)|

cn
= λ then

Nn(Gn)
D→ Poisson(λ) =⇒ lim

n→∞EeitNn(Gn) = exp
{
λ
(
eit − 1

)}
.

To show this we would need to invoke Lemma C.1 above for deterministic graphs,
to argue about the convergence in distribution from the comparison of moments.
Now, using the universality of this approximation one can show the stronger state-
ment

sup
Gn∈Gn:E(Gn)≤cnλ

∣∣∣∣EeitNn(Gn) − exp
{ |E(Gn)|

cn

(
eit − 1

)}∣∣∣∣ = 0

for any λ < ∞. Thus if Gn is a random graph independent of the coloring such
that |E(Gn)|

cn
converges to Z, then for λ large,

EeitN(Gn) ≈ E
(
eitN(Gn)1

{∣∣E(Gn)
∣∣ ≤ λcn

})
≈ E

(
exp

{ |E(Gn)|
cn

(
eit − 1

)}
1
{∣∣E(Gn)

∣∣ ≤ λcn

})

≈ E
(
exp

{
Z

(
eit − 1

)}
1{Z ≤ λ})

≈ E
(
exp

{
Z

(
eit − 1

)})
,

thus proving Theorem 1.1. A similar heuristic argument can be made for the other
theorems.
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exchangeability. Sankhyā 68 183–197. MR2303080

[12] CHATTERJEE, S. (2008). A new method of normal approximation. Ann. Probab. 36 1584–
1610. MR2435859

[13] CHATTERJEE, S. and DIACONIS, P. (2013). Estimating and understanding exponential random
graph models. Ann. Statist. 41 2428–2461. MR3127871

[14] CHATTERJEE, S., DIACONIS, P. and MECKES, E. (2005). Exchangeable pairs and Poisson
approximation. Probab. Surv. 2 64–106. MR2121796

[15] CHUNG, F. R. K., GRAHAM, R. L. and WILSON, R. M. (1989). Quasi-random graphs. Com-
binatorica 9 345–362. MR1054011

[16] CHURCH, K. and GALE, W. A. (1995). Poisson mixtures. Nat. Lang. Eng. 1 163–190.
[17] CONLON, D., FOX, J. and ZHAO, Y. (2014). Extremal results in sparse pseudorandom graphs.

Adv. Math. 256 206–290. MR3177293
[18] DASGUPTA, A. (2005). The matching, birthday and the strong birthday problem: A contem-

porary review. J. Statist. Plann. Inference 130 377–389. MR2128015
[19] DE JONG, P. (1987). A central limit theorem for generalized quadratic forms. Probab. Theory

Related Fields 75 261–277. MR0885466
[20] DIACONIS, P. and HOLMES, S. (2002). A Bayesian peek into Feller volume I. Sankhyā Ser. A
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