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Degeneracy in sparse ERGMs with functions
of degrees as sufficient statistics
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A sufficient criterion for “non-degeneracy” is given for Exponential Random Graph Models on sparse
graphs with sufficient statistics which are functions of the degree sequence. This criterion explains why
statistics such as alternating k-star are non-degenerate, whereas subgraph counts are degenerate. It is fur-
ther shown that this criterion is “almost” tight. Existence of consistent estimates is then proved for non-
degenerate Exponential Random Graph Models.
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1. Introduction

Exponential families are frequently used in social science literature to model social networks
(see [11,12,14,15,18,22,24–27] and the references within). Such models are usually referred to
as Exponential Random Graph Models, commonly abbreviated as ERGMs, in the social science
community. Starting with [12] in 2003, it has been noted in the social science literature that
ERGMs with subgraph counts do not behave in a nice manner in terms of sampling and esti-
mation procedures. This phenomenon is typically referred to as degeneracy. Attempts have been
made to characterize degeneracy (see, e.g., [21,23]) but there is no universally accepted defini-
tion for degeneracy. This paper will adopt a notion similar to [12,24], where the degeneracy of
a model is attributed to the sufficient statistics of the model. That is, the model will be deemed
non-degenerate if the model behaves “nicely” for all choices of the parameter values. Thus under
this notion, a degenerate model is caused by one or more degenerate statistics, and so the term
degenerate will be used for both the model as well as the statistic.

One of the features of degeneracy is that such models place most of their mass on a very small
sub-collection of graphs. The intuitive idea behind their reasoning is that in such models the
neighboring edges are highly correlated. This causes a cascading effect through the graph, and
so the model ends up putting most of its mass on very sparse or very dense graphs. In a sense,
such models capture “too much interaction”. Thus, an MCMC sample from such a model almost
invariably gives either a very sparse graph, or a very dense graph. Another feature of such models
is that small changes in the parameter can cause a large change in the underlying model. As such
parameter estimates obtained from such models are usually not stable.

It has been subsequently noted in [24] in 2006 that not all ERGMs exhibit degeneracy in
empirical studies. In fact, in this paper the authors argue that using modified versions of subgraph
counts can reduce this problem to a large extent. The modifications are specifically aimed at
reducing correlations between edges, and simulations seem to confirm this intuition. This raises
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the question of whether we can justify this empirical non degeneracy in a more rigorous setting,
and whether we can develop an Inferential Framework for such models.

1.1. Outline of the paper

Section 1.2 describes some examples of concrete interest and introduces the theoretical set up,
and Section 1.3 outlines the main results of this paper. Section 2 explains how one can use the
results of this paper to compute normalizing constants using four examples.

The main tool for proving the results of this paper is a large deviation principle for the em-
pirical degree distribution μG

n for a sparse Erdös–Renyi graph G with respect to weak topology,
studied in [8], Corollary 2.2, and [2], Corollary 1.9. Their result is outlined in Section 3. Sec-
tion 3.1 carries out the proofs of the main results of the paper (Theorem 1.4, Corollary 1.5,
and Theorem 1.7), using auxiliary lemmas which are proved in Section 3.2. Finally, Section 3.3
proves existence of consistence estimates for the ERGMs proposed in this paper (cf. Theorem 1.9
and 1.11).

1.2. Examples

The following definition gives the necessary notations for introducing some of the examples from
[24] which are non degenerate at an empirical level.

Definition 1.1. Let Gn denote the space of all simple labelled undirected graphs on n vertices.
For any G ∈ Gn let d(G) = (d1(G), . . . , dn(G)) denote the labeled degree sequence of G, i.e.
dj (G) is the degree of vertex j . Also let E(G) := 1

2

∑n
j=1 dj (G) denote the number of edges

in G.
For 0 ≤ i ≤ n − 1, let hi(G) := #{1 ≤ j ≤ n : dj (G) = i} denote the number of vertices of

degree i. Summing over i gives
∑n−1

i=0 hi(G) = n, since the sum is over all the vertices of G. The
quantity h(G) := {hi(G)}n−1

i=0 will be referred to as the degree frequency vector.
Recall that a k-star has k edges and k + 1 vertices. For any k ≥ 2, let Tk(G) denote the number

of copies of k-stars in G. The counting scheme is such that all copies of the k-star are considered,
and not just the induced ones. This counting scheme gives the following simple formula for
Tk(G) in terms of its degrees d(G), as well as the degree frequency vector h(G):

Tk(G) =
n∑

j=1

(
dj (G)

k

)
=

n−1∑
i=0

hi(G)

(
i

k

)
.

This is because for any vertex j , there are
( dj (G)

k

)
k-stars with j as the center vertex, and so

adding over j gives the total number of k-stars. The second equality follows by rearranging the
first sum.

We will now introduce some of the non-degenerate statistics defined in [24].
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(a) Geometrically weighted degree statistic
The geometrically weighted degree statistic has the form

gwdα(G) :=
n−1∑
i=0

e−αihi(G),

where α > 0 is known. The geometrically decaying weights ensure that the contribution
of vertices with large degree is negligible. Thus as the degrees of the graph increase, the
statistic does not grow too fast, and cascading effect of this statistic is reduced.

(b) The alternating k-star
For a fixed parameter λ > 1, the alternating k-star is defined as

aksλ(G) :=
n−1∑
k=2

(−1)k

λk−2
Tk(G),

where Tk’s are the k-star counts defined above. In this case again the geometrically de-
caying weights ensure that the cascading effects of higher star counts is reduced. Also
because of the alternate signs the cascading effect of consecutive terms is cancelled to a
large extent.

The authors in [24] note that using the formula for Tk(G) in terms of the degree fre-
quency vector h(G), the alternating k-star statistic can be written as

aksλ(G) = λ2
n−1∑
i=0

[(
1 − 1

λ

)i

− 1 + i

λ

]
hi(G) = λ2gwdα(G) − nλ2 + 2λE(G)

with e−α = 1 − 1/λ. Thus the two statistics gwdα and aksλ are connected by a simple
formula, and both these statistics are functions of the degree frequency vector h.

(c) The number of isolated nodes
The statistic h0(G) which is the number of isolated vertices in the graph G. This statistic

is obtained from the gwdα statistic by letting α → ∞, or equivalently from the aksλ by
letting λ → 1.

(d) The Yule distribution statistic
Another statistic which penalizes high degrees is the Yule distribution statistic, given by

yu(G) :=
n∑

j=1

1

(dj + c)r
=

n−1∑
i=0

1

(i + c)r
hi(G), (d)r := d(d + 1) · · · (d + r − 1),

where r and c are both positive integers. In this case the penalty is polynomial as opposed
to geometric as in gwdα , but a similar non-degenerative effect is achieved.

In all the four examples above the statistic under consideration can be written as
∑n−1

i=0 f (i) ×
hi(G) for some function f : N0 �→ R, where N0 := N ∪ {0}. As an illustration, the gwdα , aksλ,
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the number of isolated vertices and the Yule distribution statistic fit this framework with

f (i) = e−αi, f (i) = λ2
[(

1 − 1

λ

)i

− 1 + i

λ

]
, f (i) = 1i=0, f (i) = 1

(i + c)r

respectively. Restricting attention to statistics of this form, one can ask when is this statistic well
behaved. The results of this paper gives a sufficient condition for this which is easy to check:

lim
i→∞

|f (i)|
i log i

= 0. (1)

This will be made precise in Theorem 1.4 and Corollary 1.5.
In particular, (1) holds for gwdα for α > 0, and the number of isolated vertices, and the Yule

distribution statistic, as in all these cases the function f is bounded. For aksλ with λ > 1 the
function

f (i) = λ2
[(

1 − 1

λ

)i

− 1 + i

λ

]
is unbounded, but dominated by the linear term. On the other hand, the number of k-stars also
equals

∑n−1
i=0 f (i)hi(G) for the choice f (i) = (

i
k

)
which does not satisfy (1), as in this case f (i)

grows at a polynomial rate. Also in the alternating k-star statistic if the signs do not alternate,
then one has

n−1∑
k=2

1

λk−2
Tk(G) =

n−1∑
i=0

f (i)hi(G)

with f (i) = λ2[(1 + 1
λ
)i − 1 − i

λ
] which does not satisfy (1), as in this case the exponential

term dominates. Thus it is crucial that the signs in the alternating k-star statistic do alternate. It
follows from Theorem 1.7 that both the number of k-stars and the non-alternating k-star statistics
are degenerate, in a sense which is again made precise in Theorem 1.7.

The main tool for these results is the analysis of sparse graphs, as opposed to dense graphs
as in [1,3,19]. Recall that in a dense graph on n vertices the number of edges is O(n2) and the
degrees are O(n). Here and henceforth in this paper, we use the notation an = O(bn) for two
positive real sequences {an}n≥1 and {bn}n≥1, if there exists a constant C free of n such that
an ≤ Cbn for all n ≥ 1. With this notation, the term sparse graphs will refer to graphs which have
O(n) edges and the degrees of the vertices are O(1). One reason it is interesting to model sparse
graphs is that most real life networks seem to be sparse. Another reason is that the dense graph
theory does not provide a good explanation for why the modified versions of subgraph counts
mentioned above (such as aksλ) are non-degenerate, whereas the subgraph count statistics (such
as star counts) are.

For a unified treatment of these and other examples, consider an exponential family on Gn of
the form

Qn,β,f (G) :=
(

β

n

)E(G)(
1 − β

n

)(n
2

)
−E(G)

e
∑n−1

i=0 hi(G)f (i)−Zn(β,f ), (2)
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where f : N0 �→ R, β is a positive real valued parameter, and Zn(β,f ) is the log normalizing
constant. If f is either identically 0 or exactly linear, this model reduces to a sparse Erdös–Renyi
model which puts most of its mass on sparse graphs. Thus the same should be true for functions
f (·) which do not grow too fast. Since the model does not change if f (·) is replaced by f (·) + c

for some constant c, without loss of generality we will assume f (0) = 0.
It should be noted at this point that Qn,β,f is not the same as the β model studied in [4].

The β model is an exponential family on Gn whose probability mass function is proportional
to exp{∑n

j=1 βjdj (G)} where β = (β1, . . . , βn) is an n dimensional parameter. In the β model,
the labeled degree sequence (d1(G), . . . , dn(G)) is minimal sufficient. On the other hand in the
model of (2) if the function f is assumed to be unknown the minimal sufficient statistics are
the unlabeled degree sequence (d(1)(G) ≥ d(2)(G) ≥ · · · ≥ d(n)(G)), or equivalently the degree
frequency vector (h0(G),h1(G), . . . , hn−1(G)). More importantly, model (2) introduces non-
trivial dependence among the edges of the graph G, whereas under the β model the edges are
mutually independent. In [4], the authors worked in the dense graph regime and showed that if
the components of the parameter vector β stays uniformly bounded, then all entries of β can be
simultaneously estimated consistently. In a similar manner, Theorem 1.11 shows that if the true
function f is unknown and treated as a parameter, one can estimate the value of the function f

consistently at every fixed i, under the assumption that f satisfies (1).

1.3. Statement of main results

For analyzing model (2) it suffices to study the degree sequence. The following definition encodes
the entire degree sequence as one probability measure on non-negative integers.

Definition 1.2. Given the labelled degrees of a graph (d1(G), . . . , dn(G)), the empirical distribu-
tion of the degree sequence is defined by μG

n := 1
n

∑n
j=1 δdj (G) i.e. μG

n is the measure which puts
mass 1/n at each of the observed degree dj (G), and is a probability measure on N0. An equiv-
alent definition of μG

n in terms of the degree frequency vector h(G) is the probability measure
which puts mass hi(G)/n at i, for 0 ≤ i ≤ n − 1.

With this definition, any statistic of the form
∑n−1

i=0 f (i)hi(G) can be written as nμG
n [f ],

where μ[f ] denotes the mean of f with respect to the measure μ (when it exists), i.e.

μ[f ] :=
∞∑
i=0

μ(i)f (i).

In particular if f (i) = i is the identity function, then define μ := ∑∞
i=1 iμ(i) to be the mean of

the measure μ.

The next definition gives all the necessary ingredients for expressing the asymptotic log nor-
malizing constant as a one dimensional optimization problem.

Definition 1.3. Suppose the function f : N0 �→ R satisfies

lim sup
i→∞

f (i)

i log i
= 0, (3)
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which is a slightly weaker condition than (1). For u ≥ 0 define an exponential family on N0 with
probability mass function

σu,f (i) = 1

i!u
ief (i)−Z(u,f ),

where Z(u,f ) is the log normalizing constant, i.e.

Z(u,f ) := log

( ∞∑
i=0

1

i!u
ief (i)

)
.

Since f satisfies (3) we have that Z(u,f ) < ∞. Let �f denote the set of all probability measures
of the form σu,f for u ≥ 0. Also let m(u,f ) := σu,f denote the mean of σu,f . Finally, for β > 0
let J (β,f ) denote the solution to the following optimization problem

J (β,f ) := sup
u≥0

{
Z(u,f ) − m(u,f ) logu + m(u,f )

2
log

(
m(u,f )β

)− m(u,f ) + β

2

}
. (4)

The definition of J (β,f ) involves an optimization over the scalar non-negative variable u which
can be computed numerically.

The first main result of this paper is the following theorem, which gives the asymptotics of
the log normalizing constant for the model Qn,β,f under assumptions on the growth rate of f .
Existence of limiting log normalizing constant for a dependent system with growing number of
variables governed by a Gibbs measure has attained considerable interest in Statistical Physics,
where this is typically referred to as existence of the thermodynamic limit. Typically the limit-
ing normalizing constant is expressed in terms of an optimization problem, and the optimizers
represent the steady states of the distribution. See [20] for more on existence of thermodynamic
limits and its properties in general.

Theorem 1.4. Suppose either of these two conditions hold:

(i) f :N0 �→ R satisfies (1),
or

(ii) f :N0 �→ R is non increasing.

Let G be a random graph from the exponential family Qn,β,f as defined in (2).

(a) Then as n → ∞, the asymptotics of the log normalizing constant is given by

lim
n→∞

1

n
Zn(β,f ) = J (β,f ),

with J (β,f ) as in definition 1.3.
(b) The supremum in the definition of J (β,f ) is attained on a finite set of positive reals

{u1, u2 · · · , uk} satisfying the equation u2
l = βσ̄ul,f for 1 ≤ l ≤ k, with σu,f as in Defini-
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tion 1.3. Further, for any function ψ satisfying (1) one has

k

min
i=1

∣∣μG
n (ψ) − σui,f (ψ)

∣∣ p→ 0.

where μG
n is the empirical degree distribution of G.

Note that both the conditions (i) and (ii) considered in part (a) of Theorem 1.4 are sub-cases
of the assumption (3), which is used to ensure that J (β,f ) introduced in (4) is well defined and
finite. It is possible that the conclusion of Theorem 1.4 holds for all f satisfying (3).

An immediate application of the above theorem gives the following corollary.

Corollary 1.5. Suppose f : N0 �→ R satisfy (1), and let G be a random graph from the exponen-
tial family Qn,β,θf , where Qn,β,f is as defined in (2). Then the following conclusions hold:

(a) Both part (a) and part (b) of Theorem 1.4 hold with f replaced by θf , for all θ ∈R. Also,
the limiting log partition function

J (β, θf ) = lim
n→∞

1

n
Zn(β, θf )

is finite and continuous in θ .
(b) There exists positive reals m < M depending on (f,β, θ) such that

lim
n→∞Qn,β,θf

(
E(G)

n
∈ [m,M]

)
= 1.

Remark 1.6. Part (a) of Corollary 1.5 says that if |f | grows at a rate smaller than i log i, then the
corresponding model Qn,β,θf is well behaved for both positive and negative θ , in the sense that
the limiting log partition function is finite and continuous in θ . It also shows that the empirical
degree distribution μG

n roughly behaves like a mixture of {σui,θf }ki=1 for large n. In particular if
there is a unique optimizer u0 to the optimization problem J (β, θf ), then the empirical degree
distribution μG

n converges weakly to σu0,θf , and μ̄G
n converges to σ̄u0,θf .

Part (b) shows that irrespective of whether there is a “phase transition”, the number of edges is
linear in the number of vertices for all parameter values θ (cf. [20] for details on phase transitions
in models of Statistical Mechanics). Thus the level of sparsity of the graph does not change with
the parameter.

Also, none of the limit points of the degree distribution is a Poisson, as σu,θf is not a Poisson
distribution unless f is identically 0 or linear, in which case the model Qn,β,θf itself is a sparse
Erdös–Renyi graph. On the other hand, the empirical degree distribution of a sparse Erdös–Renyi
graph converges to Poisson. Thus unlike ERGMs on dense graphs as studied in [3], ERGMs on
sparse graphs do not behave like mixture of Erdös–Renyi graphs. Also, in the case of sparse
ERGMs, it is possible to estimate multiple parameters consistently from a large single graph. In
particular, see Theorem 1.9 which constructs consistent estimates for (β, θ) when f is known,
and Theorem 1.11 which constructs consistent estimates for the function f if f is unknown. It
should be noted here that consistent estimation of parameters in ERGMs was achieved in [23], but
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under the assumption that the ERGM restricted to n vertices is a projection of the corresponding
ERGM on n+1 vertices. Consistency results have also been obtained for sparse ERGMs in [16],
but here the authors assume dyadic independence. In contrast, the models presented in this paper
are neither projective nor have dyadic independence, and yet consistent estimation is possible in
this case.

Since choosing a function f is equivalent in spirit to specifying the degree distribution of the
graph, one can fit a wide class of degree distributions by choosing a corresponding function f . Of
course restriction (1) ensures that the degree distribution will have a finite exponential moment,
which rules out degree distribution with power law tails. Power law tails correspond to the case
when f (i) grows at the rate i log i, which require a more delicate analysis and is not carried out
in this paper.

The next theorem shows that some growth condition on f needs to satisfied for the model
Qn,β,θf to be well behaved for all values of θ .

Theorem 1.7. Suppose f : N0 �→ R is a non-decreasing function, and G be a random graph
from the exponential family Qn,β,θf (·), where Qn,β,f is as defined in (2).

(a) If θ < 0, then both parts (a) and part (b) of Theorem 1.4 hold with f replaced by θf . Also,
the asymptotic log normalizing constant

J (β, θf ) = lim
n→∞

1

n
Zn(β, θf )

is finite and continuous in θ . Further, there exists positive constants m < M depending on
(θ,β,f ) such that

lim
n→∞Qn,β,θf

(
E(G)

n
∈ [m,M]

)
= 1.

(b) If f further satisfies

lim inf
i→∞

f (i) − f (i − 1)

log i
> 4, (5)

then for θ > 0 we have

lim
n→∞

1

nf (n)
Zn(β, θf ) = θ,

and limn→∞ Qn,β,θf (G = Kn) = 1.

Remark 1.8. Note that the assumption (5) automatically implies f (i) is at least of order i log i,
that is, (1) does not hold. Under this assumption, Theorem 1.7 demonstrates degeneracy in the
sense of [12,24] in two ways. First, in this case the behavior of the model Qn,β,θf changes
drastically at the origin. For θ < 0 the model puts all its mass on sparse graphs with O(n) edges,
whereas for θ > 0 the model suddenly shifts all its mass to the complete graph where number

of edges is
( n

2

) ∼ n2

2 . Also, for θ > 0 the model puts most of its mass on a very small subset
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of Gn (namely a subset of size 1). Thus model (2) can indeed be degenerate without any growth
conditions on f .

In particular this happens for the choice f (i) = (
i
k

)
for any k fixed, for which the statistic∑n−1

i=0 f (i)hi(G) becomes the number of k-stars, and for the choice f (i) = λ2[(1+ 1
λ
)i −1− i

λ
],

for which the statistic
∑n−1

i=0 f (i)hi(G) is the non alternating k-star. Note that in both these cases,
the function f is indeed non-decreasing, and satisfies (5).

1.4. Identifiability and estimating parameters

Since model Qn,β,θf is well behaved for all θ when f satisfies (1), this subsection explores
the estimation of parameters of the model, under the assumption that f satisfies (1). Assuming
that f is known, one can focus on estimating the parameters (β, θ) in the model Qn,β,θf from
one sample G from this model. If f is exactly linear, that is, there exists a constant b such that
f (i) = bi, then the model Qn,β,θf is same as Erdös–Renyi with parameter

1

1 + n−β
β

e−θb
≈ βeθb

n
.

This model is asymptotically not identifiable along the curve where βeθb is constant, and so joint
estimation of both parameters (β, θ) is not possible. If f is not linear, consistent estimation of
both the parameters is possible under this model.

In order to motivate our proposed estimates, recall the prediction of part (b) of Corollary 1.5,
that for large n we have

hi(G)

n
≈ ui

i! eθf (i)−Z(u,θf ),

if f satisfies (1). Taking this to be an exact equality, multiplying both sides by i! and taking log
gives

log
i!hi(G)

n
= −Z(u, θf ) + θf (i) + i logu.

Thus taking x1(i) = f (i), x2(i) = i, y(i) = log i!hi(G)
n

, we get a linear equation of the form

y(i) = −Z(u, θf ) + θx1(i) + (logu)x2(i),

and so by fitting a multiple linear regression model using least squares with y as response and
{x1, x2} as explanatory variables we can estimate θ and logu. Finally, note that u, θ , β are
connected by the equation u2 = βσ̄u,θf , as shown in part (b) of Corollary 1.5. Since the empirical
average of degrees d̄(G) = 2E(G)

n
converge to σ̄u,θf in probability, one can use the approximate

equation nu2 = 2βE(G) along with the least squares estimate of logu to get an estimate of β .
We will now show that the estimates of (θ,β) outlined above are indeed consistent.



Degeneracy in sparse ERGMs 1025

Theorem 1.9. Let f : N0 �→ R be a known function which satisfies (1), and θ0 ∈ R, β0 > 0 be
the true unknown parameters. Let L be a fixed positive integer free of n such that f (i)/i is not
constant for all i ∈ [0,L]. Let (θ̂n, ûn) be the least square estimates of (θ, u) defined via the
following optimization problem:

(θ̂n, ûn) := arg inf
c,θ∈R,u>0

L∑
i=0

{
log

i!hi(G)

n
− c − θf (i) − i logu

}2

.

Then as n → ∞, one has θ̂n
p→ θ0. Further, the estimator β̂n := nû2

n

2E(G)

p→ β0.

Remark 1.10. The estimates (θ̂ , β̂) of the previous theorem are motivated by the fact that

hi(G)

n
≈ 1

eZ(u,θf )
eθf (i)ui,

as predicted in Corollary 1.5 under the assumption that f satisfies (1).
Even though one can use a larger value of L (for e.g. L = n − 1), estimates of f (i) for large

i are not as reliable. In particular, for large i it is possible to have hi(G) = 0 which will give
undefined values for (θ̂n, ûn). This is the reason for choosing L fixed, free of n. Given a graph
G, any valid choice of L must satisfy L ≤ Ln(G) := max1≤j≤n dj (G). Indeed this is because
hi(G) = 0 for i > Ln(G), and so the least square optimization problem in Theorem 1.9 is not
defined. A natural choice of L is the maximum i such that hi(G) is non zero for all i ∈ [0,L].

Frequently it is the case that an observed graph G has no isolated vertices. For example, any
person in a social network has at least one friend. A natural model in this case is the same ex-
ponential family, but conditioned to have no isolated vertices. Since h0(G) = 0, the estimator
defined in Theorem 1.9 becomes undefined. In such cases, instead of starting at 0 one can con-
sider the values i ∈ [1,L] for the least squares procedure. The same proof shows that the resulting
estimator is consistent, whenever f satisfies (1).

If there is no reasonable guess for the function f , then one can think of estimating the whole
function f in the model Qn,β,f using one large graph G. For any f the two models Qn,β,f and
Q

n,1,f̃
are asymptotically unidentifiable, where

f̃ (i) = f (i) + (i/2) logβ,

and so without loss of generality one may further assume β = 1. Under these assumptions, the
next theorem reconstructs the whole function f .

Theorem 1.11. Let f :N0 �→ R be such that f satisfy (1), and consider the model Qn,1,f where

Qn,β,f is as defined in (2). Setting ûn :=
√

2E(G)
n

the function f̂n : N0 �→R defined by

f̂n(i) = log

[
i!hi(G)

h0(G)

]
− i log ûn
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satisfies

f̂n(i)
p→ f (i)

for i ≥ 1, as n → ∞.

1.5. Scope for future work

The statistics considered in this paper are functions of the degree sequence, or equivalently func-
tions of 1 neighborhoods of the graph. The literature has also focused on statistics which can-
not be expressed in terms of the degrees, for example the alternating k-triangle statistic (for
more details on this statistic refer to [12,15,24]). The alternating k-triangle statistic depends on
2 neighborhoods of a vertex and not 1. The large deviation result of [2] applies for any finite
neighborhood, and so it seems plausible that the two neighborhood can be dealt with a modified
version of the strategy of this paper. Of course, for 2 (and general) neighborhoods the involved
rate function will be more complicated.

2. Some examples

This section uses the results of this paper to analyze four ERGMs on sparse graphs from the
probability mass function Qn,β,θf of (2). To specify the model it suffices to choose the func-
tion f . Note that in none of these models a closed form expression for the normalizing constant
Zn(β, θf ) seems available. Using Corollary 1.5, one can get numerical approximations for the
asymptotic normalizing constant.

2.1. Geometrically weighted degree

In this case, we have gwdα = ∑n−1
i=0 hi(G)f (i) with f (i) = e−αi for some α > 0. An application

of Corollary 1.5 gives the asymptotics of the log normalizing constant as

lim
n→∞

1

n
Zn(β, θf )

= sup
u≥0

{
Z(u, θf ) − m(u, θf ) logu + m(u, θf )

2
log

(
m(u, θf )β

)− m(u, θf ) + β

2

}
,

where Z(u, θf ) and m(u, θf ) are the log normalizing constant and mean respectively, of the
probability mass function σu,θf on non-negative integers given by

σu,θf (i) ∝ 1

i!u
ieθf (i).
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Setting γ := e−α one has

eZ(u,θf ) =
∞∑
i=0

ui

i! exp
{
θγ i

} =
∞∑
i=0

ui

i!
∞∑

j=0

θj γ ij

j ! = eu+θ
∞∑

i,j=0

e−uui

i!
e−θ θj

j ! γ ij = eu+θEγ XY ,

where X, Y are mutually independent and X ∼ Pois(u), Y ∼ Pois(θ). By a similar calculation
one has

m(u, θf ) =
∑∞

i=1 i ui

i! exp{θγ i}∑∞
i=0

ui

i! exp{θγ i}
= u

∑∞
i=0

ui

i! exp{θγ γ i}∑∞
i=0

ui

i! exp{θγ i}
= u

eu+θγ Eγ XZ

eu+θEγ XY
= ueθ(γ−1)Eγ XZ

Eγ XY
,

where Z ∼ Poisson(θγ ) independent of X.
Since closed form expressions are not known for moment generating function of products of

independent Poissons, further simplification is not possible in this case. Of course one can use
numerical approximations by simulating an i.i.d. sample of products of Poissons, and then using
strong law of large numbers to estimate the moment generating function.

2.2. Logarithmic model

For this model set

f (i) = − log(i + 1)r = − log(i + 1)(i + 2) · · · (i + r),

where r is a positive integer. In this case |f (i)| grows logarithmically, and so by Corollary 1.5 the
asymptotics of the normalizing constant requires only the knowledge of Z(u, θf ) and m(u, θf ).
For the special case θ = 1, a direct computation shows that

eZ(u,f ) = 1

ur

[
eu −

r−1∑
i=0

ui

i!

]
, m(u,f ) = u − r +

ur

(r−1)!
eu −∑r−1

i=0
ui

i!
Thus in this case both Z(u,f ) and m(u,f ) are explicit, and numerical optimization of J (β,f )

is easy to carry out. No such simple formula exists for Z(u, θf ) and m(u, θf ) for θ �= 1.

2.3. Sparse penalty model

For this model set f (i) = 1i=0, for which the corresponding model Qn,β,θf has sufficient statistic
h0(G), the number of isolated vertices. This can be viewed as a penalty term which prefers
or dislikes isolated vertices depending on whether θ > 0 or θ < 0. Since f is bounded, the
asymptotics of the log normalizing constant follows from Corollary 1.5. For this particular choice
of f , a direct calculation reveals that

eZ(u,θf ) = eu + eθ − 1, m(u, θf ) = ueu

eu + eθ − 1
.

Computation of J (β, θf ) can then be carried out numerically in a straightforward manner.
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2.4. Polynomial decay model

For this model set f (i) = iα for some known α ∈ [0,1]. In this case the decay is at most linear
by assumption, and so Corollary 1.5 applies. Proceeding to compute Z(u, θf ), we have

eZ(u,θf ) =
∞∑
i=0

ui

i! eθiα =
∞∑
i=0

ui

i!
∞∑

j=0

θj iαj

j ! = eu+θ

∞∑
i,j=0

e−uui

i!
e−θ θj

j ! iαj = eu+θEXαY ,

where X ∼ Poisson(u) and Y ∼ Poisson(θ) are mutually independent. A similar computation
gives

m(u, θf ) =
∑∞

i=1
ui

(i−1)!e
θiα∑∞

i=0
ui

i! eθiα
= u

∑∞
i=0

ui

i! e
θ(i+1)α∑∞

i=0
ui

i! eθiα
= u

eu+θE(X + 1)αY

eu+θEXαY
= u

E(X + 1)αY

EXαY
.

Further simplification is not possible in general, and one has to use numerical methods to
compute both Z(u, θf ) and m(u, θf ).

3. Proofs of main results

The main tool for proving our results is a large deviation principle for the empirical degree
distribution μG

n . To see how large deviation comes into the picture, note that the log normalizing
constant of the model Qn,β,f can be written as

Zn(β,f ) = logEPn,β
enμG

n [f ],

where Pn,β is the Erdös–Renyi model with parameter (β/n). By Varadhan’s lemma, this equates
the problem to studying the large deviation of μG

n under the Erdös–Renyi (β/n) model. A large
deviation for the whole graph G with respect to local weak convergence has recently been derived
in [2], Theorem 1.8), which in particular gives a large deviation principle for μG

n with respect
to the weak topology, as pointed out in [2], Corollary 1.9. The same large deviation was also
obtained in [8], Corollary 2.2, while studying large deviation for colored random graphs.

The following definition introduces the rate function for this large deviation principle.

Definition 3.1. Let S ⊂ P(N0) denote the set of all probability measures μ such that μ̄ =∑∞
i=1 iμ(i) < ∞. Set the function Iβ : P(N0) �→ [0,∞] to be +∞ if μ /∈ S , and for μ ∈ S

set

Iβ(μ) :=
∞∑
i=0

μ(i) log
(
i!μ(i)

) − μ

2
log(μβ) + μ + β

2

= D(μ ‖ pβ) + 1

2
(μ − β) + μ

2
logβ − μ

2
logμ

where D(· ‖ ·) is the Kullback Leibler divergence, and pβ is the Poisson distribution with pa-
rameter β .
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The following large deviation follows from [2,8].

Theorem 3.2. If G is an Erdös–Renyi random graph with parameter β/n, then μG
n satisfies a

large deviation principle on P(N0) with respect to weak topology, with speed n and the good rate
function Iβ(·).

A direct application of the above large deviations result can be used to prove that

lim
n→∞

1

n
Zn(β,f ) = sup

μ∈S
{
μ[f ] − Iβ(μ)

}
when f is a bounded function. We now state three lemmas which will be used to extend this to
all functions satisfying the conditions of Theorem 1.4.

Lemma 3.3. For any function f :N0 �→ R satisfying (3) and any set B ⊂ P(N0) one has

lim
n→∞

1

n
logEPn,β

e
∑n−1

i=0 hi(G)f (i)1
{
μn(G) ∈ B

} ≤ sup
μ∈B∩S

{
μ[f ] − Iβ(μ)

}
.

Lemma 3.4. For finite positive real α and f : N0 �→R satisfying (3) we have

sup
μ:Iβ(μ)−μ[f ]≤α

∞∑
i=0

i log iμ(i) ≤ C,

where C = C(α,f,β) is a finite positive constant.

Lemma 3.5. Let f : N0 �→R satisfy (3).

(a) We have

sup
μ∈S

{
μ[f ] − Iβ(μ)

} = J (β,f ),

where J (β,f ) is as defined in (4). The supremum in this definition is finite, and is at-
tained over a finite set of positive reals {u1, . . . , uk}. Further, any optimizing u satisfies
the relation u = √

βσu,f .
(b) For any ε > 0 and ψ satisfying (1) we have

sup
μ∈Uc

{
μ[f ] − Iβ(μ)

}
< sup

μ∈S
{
μ[f ] − Iβ(μ)

}
,

where U := {μ ∈ P(N0) : min1≤l≤k |μ(ψ) − σul
(ψ)| < ε}.

3.1. Proofs of Theorem 1.4, Corollary 1.5, and Theorem 1.7

We now complete the proof of the main results of this paper, deferring the proof of the lemmas
stated above to Section 3.2.
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Proof of Theorem 1.4.

(a) To begin note that

eZn(β,f ) = EPn,β
e
∑n−1

i=0 hi(G)f (i), (6)

which on taking log, dividing by n and letting n → ∞ along with Lemma 3.3 gives

lim sup
n→∞

1

n
Zn(β,f ) ≤ sup

μ∈S
{
μ[f ] − Iβ(μ)

}
,

and so we have verified the upper bound. The proof of the lower bound is split into two
cases, depending on whether we are in case (i) or case (ii).
(i) Define a function T : P(N0) �→R by

T (μ) = μ[f ] if Iβ(μ) < ∞,

= 0 otherwise,

and use Lemma 3.4 to note that Iβ(μ) < ∞ implies
∑∞

i=0 i log iμ(i) < ∞. Also,
since f satisfies (1), there exists C0 < ∞ such that |f (i)| ≤ C0i log i for all i ≥ 0.
This immediately gives

∣∣T (μ)
∣∣ = ∣∣μ(f )

∣∣ ≤ C0

∞∑
i=0

i log iμ(i) < ∞.

Also for every m ≥ 1 define the function Tm : P(N0) �→ R by setting Tm(μ) =∑m
i=0 f (i)μ(i), and note that Tm is continuous with respect to weak topology. We

claim that for every positive real α and δ > 0 we have

lim
m→∞ sup

μ:Iβ(μ)≤α

∣∣Tm(μ) − T (μ)
∣∣ = 0. (7)

To see this, fixing δ > 0 and invoking (1) we have |f (i)| ≤ δi log i for all i > M(δ).
Thus for all m ≥ M(δ) we have

∣∣Tm(μ) − T (μ)
∣∣ =

∣∣∣∣∣
∞∑

i=m+1

f (i)μ(i)

∣∣∣∣∣ ≤ δ

∞∑
i=M(δ)+1

i log iμ(i)

≤ δ

∞∑
i=0

i log iμ(i) ≤ δC(α,0, β),

where the existence of C(α,0, β) follows from invoking Lemma 3.4 with f ≡ 0. Since
δ > 0 is arbitrary, this verifies (7).
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We further claim that for every δ > 0 we have

lim
m→∞ lim sup

n→∞
1

n
logPn,β

(∣∣Tm

(
μG

n

)− T
(
μG

n

)∣∣ > δ
) = −∞. (8)

Indeed, with ψ(i) := √
i log i|f (i)| we have∣∣f (i)

∣∣ � ψ(i) � i log i,

and so there exists M(δ) such that for all i ≥ M(δ) we have |f (i)| ≤ δ2ψ(i). Thus for
m ≥ M(δ) we have∣∣Tm(μ) − T (μ)

∣∣ ≤ δ2
∑

i=M(δ)+1

ψ(i)μ(i) ≤ δ2μ[ψ],

and so Markov’s inequality gives

Pn,β

(∣∣Tm

(
μG

n

)− T
(
μG

n

)∣∣ > δ
) ≤ P

(
μG

n [ψ] >
1

δ

)
≤ e− n

δ EPn,β
enμG

n [ψ].

On taking log, dividing by n and letting n → ∞ along with Lemma 3.3 we get

lim sup
n→∞

1

n
logPn,β

(∣∣Tm

(
μG

n

)− T
(
μG

n

)∣∣ > δ
) ≤ −1

δ
+ J (ψ,β).

Since J (ψ,β) is finite and δ is arbitrary, (8) follows.
Given (7) and (8), it follows by [7], Theorem 4.2.23, and Theorem 3.2 that T (μG

n ) =
μG

n [f ] satisfies a large deviation principle on R with the good rate function

Ĩ (x) := inf
μ∈P(N0):μ[f ]=x

Iβ(μ).

Also Lemma 3.3 gives

1

n
logEPn,β

e2n
∑n−1

i=0 hi(G)f (i) = 1

n
logEPn,β

e2nT (μG
n )

≤ sup
μ∈S

{
2μ[f ] − Iβ(μ)

} = J (β,2f ).

The right hand side above is finite by part (a) of Lemma 3.5, as 2f (·) satisfies (1).
This verifies [7], (4.3.3.), with γ = 2, and so by [7], Theorem 4.3.1, with φ(x) = x

we have

1

n
logEPn,β

en
∑n−1

i=0 hi(G)f (i) = 1

n
logEPn,β

enT (μG
n ) = sup

x∈R
{
θx − Ĩ (x)

}
= sup

μ∈S
{
μ(f ) − Iβ(μ)

} = J (β,f ),
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where the last equality again uses part (a) of Lemma 3.5. This completes the proof of
part (a).

(ii) Fixing m ∈ N one has

EPn,β
enμG

n [f ] ≥ EPn,β
enμG

n [f ]1max1≤j≤n dj (G)≤m

= EPn,β
e
∑m

i=0 hi(G)f (i)1max1≤j≤n dj (G)≤m

≥ EPn,β
e
∑m

i=0 hi(G)f (i)+f (m)
∑n−1

i=m+1 hi(G)1max1≤j≤n dj (G)≤m,

where the last inequality uses the fact that f (i) ≤ f (0) = 0 for all i, as f is non-
increasing. This, along with an application of FKG inequality [10], Prop. 1, gives

EPn,β
enμG

n [f ] ≥ EPn,β
e
∑m

i=0 hi(G)f (i)+f (m)
∑n−1

i=m+1 hi(G)Pn,β(d1 ≤ m)n,

where we use the fact that the function

G �→
n−1∑
i=0

hi(G)f̃m(i), f̃m(i) = max
(
f (i), f (m)

)
is non-increasing on the space of graphs Gn, as f̃m is non-increasing. Since f (0) ≤
f̃m(i) ≤ f (m), it follows that f̃m is bounded, and so an application of part (i) gives

lim inf
n→∞

1

n
logEPn,β

enμG
n [f̃m] ≥ sup

μ∈S

{ ∞∑
i=0

μ(i)f̃m(i) − Iβ(μ)

}
+ logpβ [0,m]

≥ sup
μ∈S

{ ∞∑
i=0

μ(i)f (i) − Iβ(μ)

}
+ logpβ [0,m],

where the last inequality uses the fact that f̃m ≥ f , and pβ [0,m] is the probability that
a Poisson random variable with parameter β is at most m. The lower bound follows on
letting m → ∞ and noting that pβ [0,m] → 1. Combining the upper and lower bound
gives

lim
n→∞

1

n
Zn(β,f ) = sup

μ∈S
{
μ[f ] − I (μ)

}
.

(b) By part (a) of Lemma 3.5, the supremum in the right-hand side above is finite and equals
J (β,f ) of (4), and the set of optimizing u in the definition of J (β,f ) has finite cardinality.
Denoting this set by {u1, u2, . . . , uk}, let

U :=
{
μ ∈ P(N0) : k

min
i=1

∣∣μ[ψ] − σui,f [ψ]∣∣ < ε
}
,
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where ε > 0 is fixed. Thus we have

lim sup
n→∞

1

n
logQn,β,f

(
μG

n ∈ Uc
)

≤ lim sup
n→∞

1

n
logEPn,β

enμG
n [f ]1μG

n ∈Uc − lim inf
n→∞

1

n
logZn(β,f )

≤ sup
μ∈Uc∩S

{
μ[f ] − Iβ(μ)

}− sup
μ∈S

{
μ[f ] − Iβ(μ)

}
,

where the last line uses Lemma 3.3 with B = Uc , and part (a). The last quantity above is
negative by part (b) of Lemma 3.5, and so the conclusion follows. �

Proof of Corollary 1.5. Part(a) follows trivially from part (a) of Theorem 1.4 on noting that
the function θf (·) satisfies (1) for all θ ∈ R. The continuity of the limiting log partition function
follows from the fact that limit of convex functions is convex.

For part (b), setting m := 1
4 mink

i=1 σ̄ui ,θf , M := maxk
i=1 σ̄ui ,θf , the desired conclusion follows

from part (b) of Theorem 1.4. �

Proof of Theorem 1.7.

(a) Since f is non-decreasing and θ < 0, the function θf is non-increasing and non-positive,
and so an application of Theorem 1.4 proves part (a).

(b) It suffices to show that Qn,β,θf (G = Kn) converges to 1, as the desired conclusion about
the log normalizing constant immediately follows.

To this effect, using (5) there exists M > 4 such that f (i) − f (i − 1) ≥ M log i for all
i ≥ kn := �n/2�, for all n large enough. We now claim that for all r ∈ [0, n − 1] we have

f (n − 1) − f (n − 1 − r) ≥ 1

4
Mr logn (9)

Indeed, if r ≤ kn, then we have

f (n − 1) − f (n − 1 − r) =
r∑

i=1

(
f (n − i) − f (n − i − 1)

)
≥ M

r∑
i=1

log(n − i) ≥ Mr log(n/2). (10)

On the other hand if r > kn, using the monotonicity of f along with (9) gives

f (n − 1) − f (n − 1 − r) ≥ f (n − 1) − f (n − 1 − kn) ≥ Mkn log(n/2). (11)

Combining (10) and (11), (9) follows.
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Thus if G ∈ Gn is a graph with degree sequence (d1(G), . . . , dn(G)), then setting
rj (G) := n − 1 − dj (G) for G ∈ Gn we have

n∑
j=1

f (n − 1) −
n∑

j=1

f
(
dj (G)

) ≥ M logn

4

n∑
j=1

rj (G) = M logn

2

(
n(n − 1)

2
− E(G)

)
,

which immediately gives

Qn,β,θf (G)

Qn,β,θf (Kn)
≤

(
n

β

)R(G)

e− MR logn
2 R(G),

where R(G) := (
n
2 ) − E(G) for G ∈ Gn. This on summing gives

Qn,β,θf

(
R(G) ≥ 1

) ≤

(
n
2

)∑
r=1

⎛⎝(
n

2

)
r

⎞⎠ e− Mr logn
2 ≤

(
n
2

)∑
r=1

n2r e− Mr logn
2 ≤

∞∑
r=1

(
n2e− M logn

2
)r

,

which converges to 0 as n → ∞, as M > 4. �

3.2. Proofs of Lemmas 3.3, 3.4 and 3.5

Proof of Lemma 3.3. Let Hn to be the set of all degree frequency vectors h(G) = (h0(G), . . . ,

hn−1(G)) on n vertices as the graph G varies in Gn. Fixing δ > 0 arbitrary we have

EPn,β
e
∑n−1

i=0 hi(G)f (i)1
{
μn(G) ∈ B

}
= EPn,β

e
∑n−1

i=0 hi(G)f (i)1
{
μn(G) ∈ B,E(G) ≤ δan

}
+EPn,β

e
∑n−1

i=0 hi(G)f (i)1
{
μG

n ∈ B,E(G) > δan

}
, (12)

By (1) there exists N = N(δ) such that f (i) ≤ δ
4 i log i for all i > N(δ), and so with M :=

M(δ) = max0≤i≤N f (i) and an := n(n−1)
2 the second term in the right-hand side of (12) can be

bounded by

enM+ δ
4 n2 lognPn,β

(
E(G) > δan

) ≤ enM+ δ
4 n2 logn

an∑
r=δan

(
an

r

)(
β

n

)r

≤ enM+ δ
4 n2 logn × an2an

(
β

n

)δan

,
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which on taking log, dividing by n, and letting n → ∞ gives −∞, and so we can ignore this
term. The first term on the right-hand side of (12) can be written as

=
∑

h∈Hn

Nn(h)e
∑n−1

i=0 hi(G)f (i)

(
β

n

)E(G)(
1 − β

n

)(n
2

)
−E(G)

1
{
μG

n ∈ B,E(G) ≤ δan

}
,

where Nn(h) is the number of labeled graphs in Gn whose degree frequency vector is h. It follows
from [17] that

Nn(h) ≤ (2r)!
r!2r

∏n−1
i=0 i!hi

× n!∏n−1
i=0 hi !

,

where the extra factor n!∏n−1
i=0 hi ! accounts for the fact that for labeled graphs any relabeling between

vertices with the same degree needs to be taken into account. Thus one has the following bound
on the first term of the right-hand side of (12):

EPn,β
e
∑n−1

i=0 hi(G)f (i)1
{
μn(G) ∈ B,E(G) ≤ δan

}
≤

∑
h∈Hn

Nn(h)1
{
μn(G) ∈ B,E(G) ≤ δan

}
, (13)

where

Nn(h) := e
∑n−1

i=0 hif (i)

(
β

n

)r(
1 − β

n

)(n
2

)
−r

(2r)!
r!2r

∏n−1
i=0 i!hi

× n!∏n−1
i=0 hi !

with r = ∑n−1
i=0 ihi . Using Stirling’s approximation one has

C2e
−nnn+1/2 ≤ n! ≤ C1e

−nnn+1/2

for all n ≥ 1, for some positive constants C1, C2 free of n. Using this, a direct computation gives

Nn(h) ≤ en(1+on(1)){μG
n [f ]−Iβ (μG

n )},

which along with (13) gives∑
h∈Hn

Nn(h)1
{
μn(G) ∈ B,E(G) ≤ δan

}

≤ en(1+on(1)) supμ∈B∩S {μ[f ]−Iβ (μ)}
δan∑
r=0

∣∣∣∣∣h ∈Hn :
n−1∑
i=0

ihi = r

∣∣∣∣∣. (14)

Letting p(r) denote the number of un-ordered partitions of r , we have the upper bound∣∣∣∣∣h ∈ Hn :
n−1∑
i=0

ihi = r

∣∣∣∣∣ ≤ p(2r).
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This is because given any such degree frequency vector h, the corresponding unordered degree
sequence sums up to 2r , and so one can get a partition of 2r by dropping the vertices with
degree 0. Since

lim
r→∞

1√
r

logp(r) = π

√
2

3
,

(for a proof of this classical result see [9] or [13]), taking logs, dividing by n and taking n → ∞
gives

lim sup
n→∞

1

n
log

(
δan∑
r=0

∣∣∣∣∣h ∈ Hn :
n−1∑
i=0

ihi = r

∣∣∣∣∣
)

≤ π

√
2δ

3
.

This, along with (12) and (14) gives

lim sup
n→∞

1

n
logEPn,β

e
∑n−1

i=0 hi(G)f (i)1
{
μG

n ∈ B
} ≤ sup

μ∈B∩S
{
μ[f ] − I (μ)

}+ π

√
2δ

3
,

from which the desired conclusion follows since δ > 0 is arbitrary. �

Proof of Lemma 3.4. Since log(i!) = ∑i
k=1 logk ≥ ∫ i

x=0 logx dx = i log i − i, we have

∞∑
i=0

log(i!)μ(i) ≥
∞∑
i=0

i log iμ(i) − μ (15)

Also define σ ∈ S by σ(i) := 2−(i+1) for i ∈N0 and note that

∞∑
i=0

μ(i) logμ(i) = D(μ ‖ σ) +
∞∑
i=0

μ(i) logσ(i) ≥ −(μ + 1) log 2. (16)

Finally by (1) there exists M < ∞ such that f (i) ≤ M + 1
4 i log i for all i ≥ 0. This gives

∞∑
i=0

i log iμ(i) − μ[f ] ≥ −M + 3

4

∞∑
i=0

i log iμ(i) ≥ −M + 3

4
μ̄ log μ̄, (17)

where the last step uses Jensen’s inequality. Combining (15), (16) and (17) gives

Iβ(μ) − μ[f ] =
∞∑
i=0

log(i!)μ(i) − μ[f ] +
∞∑
i=0

μ(i) logμ(i) − μ̄

2
log(μ̄β) + μ̄ + β

2

≥
∞∑
i=0

i log iμ(i) − μ̄ − μ[f ] − (μ̄ + 1) log 2 − μ̄

2
log(μ̄β) + μ̄ + β

2

≥ −M + 3

4
μ̄ log μ̄ − μ̄ − (μ̄ + 1) log 2 − μ̄

2
log(μ̄β) + μ̄ + β

2
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= −M + 1

4
μ̄ log μ̄ − μ

(
log 2 + 3 + logβ

2

)
+ β

2
− log 2 = φ1(μ), (18)

where

φ1(x) := −M + 1

4
x logx − x

(
log 2 + 3 + logβ

2

)
+ β

2
− log 2.

Since φ1(x) is continuous and diverges to ∞ as x → ∞, it follows that φ1(μ) ≤ α implies
μ ≤ K(α) for some K(α) < ∞. Thus, we have

α ≥ Iβ(μ) − μ[f ] =
∞∑
i=0

log(i!)μ(i) − μ[f ] +
∞∑
i=0

μ(i) logμ(i) − μ̄

2
log(μ̄β) + μ̄ + β

2

≥
∞∑
i=0

i log iμ(i) − μ̄ − μ[f ] − (μ̄ + 1) log 2 − μ̄

2
log(μ̄β) + μ̄ + β

2

≥ −M + 3

4

∞∑
i=0

i log iμ(i) − μ̄ − (μ̄ + 1) log 2 − μ̄

2
log(μ̄β) + μ̄ + β

2

= 3

4

∞∑
i=0

i log iμ(i) − φ2(x),

where φ2(x) := M + x + (x + 1) log 2 + x
2 log(xβ) − x+β

2 . Thus, we have

3

4
sup

μ:Iβ(μ)−μ[f ]≤α

∞∑
i=0

i log iμ(i) ≤ α + sup
0≤x≤K(α)

φ2(x),

from which the conclusion of the lemma follows. �

Proof of Lemma 3.5.

(a) It suffices to consider the minimization of μ �→ {Iβ(μ)−μ[f ]} over S . To this effect, first
note that

α := inf
μ∈S

{
Iβ(δ0) − δ0[f ]}+ 1 < ∞.

Indeed, taking μ = δ0 gives

Iβ(δ0) − δ0[f ] = β/2 − f (0) < ∞.

Thus it suffices to minimize μ �→ {Iβ(μ) − μ[f ]} over the set Bα := {μ : Iβ(μ) − μ[f ] ≤
α}. By Lemma 3.4 we have

sup
μ∈Bα

∞∑
i=0

i log iμ(i) ≤ C(α) < ∞, (19)
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and so by Markov’s inequality the set Bα is tight with respect to weak topology. Let
{νk}k≥1 be a sequence of measures in Bα such that

lim
k→∞

{
Iβ(νk) − νk[f ]} = inf

μ∈Bα∩Uc

{
Iβ(μ) − μ[f ]}.

Then by tightness of Bα , there exists a subsequence which converges weakly to ν, say.
Without loss of generality, assume the original sequence {νk}k≥1 converges weakly to ν.
Since f satisfies (1), invoking uniform integrability implied by (19) it follows that νk(f )

converges to ν(f ). This, along with the observation that Iβ(·) is lower semi continuous
gives

inf
μ∈S

{
Iβ(μ) − μ[f ]} = lim

k→∞
{
Iβ(νk) − νk[f ]} ≥ {

Iβ(ν) − ν[f ]},
and so ν attains the infimum. Let A ⊂ S be the set of all probability measures where the
infimum is attained. Then for any μ ∈ S and ν ∈ A, by convexity of S we have (1 − t)ν +
tμ ∈ S for any t ∈ [0,1]. Thus with u := √

μβ we have

∂

∂t

[
Iβ

(
(1 − t)ν + tμ

)− (1 − t)ν[f ] − tμ[f ]]
t=0 ≥ 0

⇔
∞∑
i=0

(
1 + logν(i) + log i! − i

2
(1 + logν) − i

2
logβ + i

2
− f (i)

)
× (

μ(i) − ν(i)
) ≥ 0

⇔
∞∑
i=0

(
logν(i) + log i! − i logu − f (i)

)(
μ(i) − ν(i)

) ≥ 0

⇔ D(ν ‖ σu,f ) + D(μ ‖ ν) ≤ D(μ ‖ σu,f ).

where σu,f is as defined in definition (1.3). Since this holds for all μ ∈ S , setting μ = σu,f

gives D(σu,f ‖ ν) = 0, and so ν = σu,f . Thus A ⊂ �f , and consequently

sup
μ∈S

{
μ[f ] − Iβ(μ)

} = sup
u≥0

{
σu,f [f ] − Iβ(σu,f )

} = J (β,f ),

where the last equality follows by a simple algebra. It also follows from the proof that any
σu,f ∈ A must satisfy u = √

βσu,f .
Finally, to solve the optimization u �→ φ1(u) := σu,f [f ] − Iβ(σu,f ) over u ≥ 0, differ-

entiating with respect to u gives

φ′
1(u) = −m′(u,f ) log

u√
m(u,f )β

.
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Also setting φ2(u) := ∑∞
i=0

ef (i)

i! ui = eZ(u,f ) we have m(u,f ) = u
φ′

2(u)

φ2(u)
, which on differ-

entiating with respect to u gives

m′(u,f ) = φ2(u)φ′
2(u) + uφ2(u)φ′′

2 (u) − uφ′
2(u)2

φ2(u)2
,

and so

lim
u→0

m′(u,f ) = lim
u→0

m(u,f )

u
= φ′

2(0)

φ2(0)
= ef (1)−f (0) > 0.

This gives limu→0 φ′
1(u) = +∞, and so u = 0 is not a local maxima of φ1(·). Also it

follows from (19) that optimizing measure μ satisfies

μ̄ log μ̄ ≤
∞∑
i=0

i log iμ(i) ≤ C(α),

and so m(u,f ) ≤ C′ for some finite constant C′. This along with the relation u2 =
m(u,f )β implies any optimizing u is at most

√
C′β . Thus, denoting Ã denote the subset

of all positive reals u which are global maximizers of the function u �→ φ1(u), it follows
that the set Ã is compact. Since an analytic non constant function on a bounded domain
cannot have infinitely many minimizers, the set Ã must have finite cardinality. This com-
pletes the proof of part (a).

(b) If infμ∈Uc{Iβ(μ) − μ[f ]} = ∞ then there is nothing to show. Assuming that

α′ := inf
μ∈Uc

{
Iβ(μ) − μ[f ]}+ 1 < ∞,

it suffices to minimize μ �→ {Iβ(μ)−μ[f ]} over Bα′ ∩Uc . Letting {νk}k≥1 be a sequence
of measures in Bα′ ∩ Uc such that

lim
k→∞

{
Iβ(νk) − νk[f ]} = inf

μ∈Bα′∩Uc

{
Iβ(μ) − μ[f ]},

by a similar tightness and uniform integrability argument as in part (a) it follows that there
exists a measure ν ∈ S such that {νk}k≥1 converges to ν weakly, and

lim
k→∞νk(f ) = ν(f ), lim

k→∞νk[ψ] = ν[ψ].

Since νk ∈ Uc and νk(ψ) converges to ν(ψ), we have ν ∈ Uc. Since U contains all the
global minimizers of μ �→ {Iβ(μ) − μ[f ]}, we have

inf
μ∈Uc

{
Iβ(μ) − μ[f ]} = lim

k→∞
{
Iβ(νk) − νk(f )

} [
By choice of {νk}k≥1

]
≥ Iβ(ν) − ν[f ] [

By lower semi continuity of Iβ(·)]
> inf

μ∈S
{
Iβ(μ) − μ[f ]},



1040 S. Mukherjee

where the last step uses the fact that ν ∈ Uc is not in a global minimizer of μ �→ {Iβ(μ) −
μ[f ]}. This completes the proof of part (b). �

3.3. Proof of Theorems 1.9 and 1.11

Proof of Theorem 1.9. Differentiating with respect to θ , logu, c and eliminating c gives the
least square equations

θ

L∑
i=0

(
f (i) − f̄

)2 + logu

L∑
i=0

(
i − L

2

)(
f (i) − f̄

) =
L∑

i=0

(
f (i) − f̄

)
log

i!hi(G)

n

θ

L∑
i=0

(
i − L

2

)(
f (i) − f̄

)+ logu

L∑
i=0

(
i − L

2

)2

=
L∑

i=0

(
i − L

2

)
log

i!hi(G)

n
,

where f̄ := 1
L+1

∑L
i=0 f (i). Thus, we have the following matrix equation for the least square

estimates:

(θ̂n, log ûn)A =
[

L∑
i=0

(
f (i) − f̄

)
log

i!hi(G)

n
,

L∑
i=0

(
i − L

2

)
log

i!hi(G)

n

]
, (20)

where A is a 2 × 2 matrix defined by

A =:

⎡⎢⎢⎢⎢⎣
L∑

i=0

(
f (i) − f̄

)2
L∑

i=0

(
i − L

2

)(
f (i) − f̄

)
L∑

i=0

(
i − L

2

)(
f (i) − f̄

) L∑
i=0

(
i − L

2

)2

⎤⎥⎥⎥⎥⎦ .

Now, by part (b) of Theorem 1.4 it follows that there exists a finite set {u1, u2, . . . uk} with
ul > 0 such that any limit point of the measure μG

n is of the form σul,θf for some l,1 ≤ l ≤ k.
This implies that there exists a random variable Un taking values in {u1, u2, . . . , uk} such that for
all i ∈ [0,L] we have

hi(G)

n
− Ui

n

i! eθf (i)−Z(Un,θf ) = oP (1). (21)

Plugging this estimate, Slutsky’s theorem implies

L∑
i=0

(
f (i) − f̄

)
log

i!hi(G)

n
= θ

L∑
i=0

(
f (i) − f̄

)2 + logUn

L∑
i=0

i
(
f (i) − f̄

)+ oP (1),

L∑
i=0

(
i − L

2

)
log

i!hi(G)

n
= θ

L∑
i=0

(
i − L

2

)
f (i) + logUn

L∑
i=0

(
i − L

2

)
i + oP (1),
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which along with (20) gives

(θ̂n − θ, log ûn − logUn)A = oP (1). (22)

We now claim that the minimum eigenvalue λmin(A) is not 0. Deferring the proof of the claim,
let us first complete the proof of the theorem. Given this claim, (22) implies

‖θ̂n − θ, log ûn − logUn‖2 ≤ 1

λmin(A)

∥∥(θ̂n − θ, log ûn − logUn)A
∥∥

2 = oP (1),

thus proving that θ̂n is consistent for θ , and ûn = Un + oP (1).
Since part (b) of Theorem 1.4 with ψ(i) = i implies

m(Un, θf ) − 2E(G)

n
= oP (1),

we have

nû2
n

2E(G)
= U2

n

m(Un, θf )
+ oP (1) = β + oP (1).

where the last equality invokes the relation U2
n = βm(Un, θf ). This shows consistency of β̂n for

β as well.
It thus remains to verify the claim that λmin(A) is not 0. To see this, note that if λmin(A) = 0,

then |A| = 0, which gives

L∑
i=0

(
f (i) − f̄

)2
L∑

i=0

(
i − L

2

)2

=
[

L∑
i=0

(
i − L

2

)(
f (i) − f̄

)]2

.

Thus equality holds in the Cauchy–Schwarz inequality, which implies f (i) − f̄ = b(i − L
2 ) for

some b ∈ R. But then f (0) = 0 forces f (i) = bi for all i ≥ 0, a contradiction. This completes
the proof of the theorem. �

Proof of Theorem 1.11. As before there exists a random variable Un taking values in a finite
set {u1, . . . , uk} such that (21) holds, which gives

i!hi(G)

h0(G)
− ef (i)U i

n = oP (1).

On taking log and using the definition of f̂n(i) as in the theorem, this gives

f̂n(i) + i log ûn = log

[
i!hi(G)

h0(G)

]
= f (i) + i logUn + oP (1).

Thus to complete the proof it suffices to show that ûn −Un = oP (1). To prove this, first note that
part (b) of Theorem 1.7 gives

2E(G)

n
− m(Un,f ) = oP (1).
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Since one has U2
n = m(Un,f ) as well, it readily follows that

ûn =
√

2E(G)

n
= √

m(Un,f ) + oP (1) = Un + oP (1),

thus completing the proof of the theorem. �
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