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Abstract

With {ξi }i≥0 being a centered stationary Gaussian sequence with non-negative correlation function
(i) := E [ξ0ξi ] and {σ (i)}i≥1 a sequence of positive reals, we study the asymptotics of the persistence

probability of the weighted sum
∑ℓ

i=1 σ (i)ξi , ℓ ≥ 1. For summable correlations ρ, we show that the
ersistence exponent is universal. On the contrary, for non-summable ρ, even for polynomial weight
unctions σ (i) ∼ i p the persistence exponent depends on the rate of decay of the correlations (encoded
y a parameter H ) and on the polynomial rate p of σ . In this case, we show existence of the persistence
xponent θ (H, p) and study its properties as a function of (p, H ). During the course of our proofs,
e develop several tools for dealing with exit problems for Gaussian processes with non-negative

orrelations – e.g. a continuity result for persistence exponents and a necessary and sufficient criterion
or the persistence exponent to be zero – that might be of independent interest.

2023 Elsevier B.V. All rights reserved.

MS 2020 subject classification: primary 60G22; 60G15; secondary 60G10
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1. Introduction

The study of the tail behavior of the first passage time of a random walk
∑n

i=1 X i with
independent and identically distributed increments {X i } above (or below) a level x ∈ R,

P( max
1≤k≤n

k∑
i=1

X i < x), as n → ∞,
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is a classical topic in probability theory. This type of problems is studied both for discrete and
continuous time [8,15,16,21,32]; and due to its fundamental nature it has numerous applications
in finance, insurance, queueing, and other subjects. In a recent work, Denisov, Sakhanenko and
Wachtel [14] study the case when the increments {X i } are independent, but not necessarily
identically distributed. When the random variables have finite variance, Denisov et al. show
that the properly time-rescaled version of the corresponding random walk (with non-identically
distributed increments) has the same tail behavior of the first passage time as the classical (i.i.d.)
random walk. A particular case is when Xn = σ (n)ξn with i.i.d. {ξn} with E ξ1 = 0, where one

as (cf. Theorem 2 in [14])

P( max
1≤k≤n

k∑
i=1

σ (i)ξi < x) ∼

√
2
π

x
s(n)

, (1)

here s2(n) :=
∑n

i=1 σ
2(n).

The purpose of the present paper is to study the corresponding result in the case of correlated
aussian random variables. The picture is much more diverse, and as we shall see, the type
f behavior of the first passage time (1) strongly depends on the correlations as well as the
eights.
To fix the notation for this paper, let {ξi }i≥0 be a centered stationary Gaussian sequence with
ξ 2

i = 1 and non-negative correlation function ρ(i) := E ξ0ξi . Let {σ (i)}i≥1 be a sequence of
ositive real numbers. Define a centered Gaussian process {Sℓ}ℓ≥0 by setting

Sℓ :=

ℓ∑
i=1

σ (i)ξi , ℓ ≥ 0.

In this paper, we are interested in studying the asymptotics of the persistence probability
or the sequence {Sℓ}ℓ≥0, defined by

qn := P( max
1≤ℓ≤n

Sℓ < 0), as n → ∞,

or a wide class of choices of σ (.) and ρ(.).
We will find that for summable ρ the persistence probability is universally determined only

y σ via the function s2(n) :=
∑n

i=1 σ
2(i) and the behavior resembles the independent case

1). Contrary to this, for non-summable correlations ρ, the picture is significantly richer. Here,
e study the case of polynomial weights σ (i) ∼ i p and polynomial correlations ρ(i) ∼ κi2H−2

ith H ∈ (1/2, 1) and H + p > 1/2. In this case, we show the existence of the persistence
xponent θ (H, p) and its limiting behavior when p or/and H approach the natural boundaries
f their ranges.

Let us briefly comment on the related literature. In the case of i.i.d. random walks,
here is a huge literature on first passage times, both classical (see already [21]) and recent
see [7] for a review). In the independent, but non-identically distributed case, an early work
s [2], before [14] gave an essentially complete solution to the problem. In the correlated
ut unweighted case (σ ≡ 1), one has to mention the works [3,4,26]. To the knowledge of
he authors, no results seem available in the literature when the increments are correlated
nd weighted random variables. For general background on persistence problems and their
ignificance in theoretical physics, we refer to the surveys [10,27,31] (for a theoretical physics
oint of view) and [7] (for a review of the mathematical literature).

This paper is structured as follows. In Section 2, we state our main results, distinguishing

he case of summable and non-summable correlations. Section 3 is devoted to a few tools for
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non-exit problems for stationary Gaussian processes with non-negative correlations that might
be of independent interest. The proof of the universal result in the summable case is given in
Section 4, while the proofs for the results in the non-summable case are given in Section 5.
Finally, Section 6 contains the proofs of the general tools from Section 3.

2. Main results

2.1. A universal result for summable correlations

We first study the case when the correlation ρ(.) is summable, i.e.
∞∑

i=0

ρ(i) < ∞. (2)

e will also make the following three assumptions on the sequence of weights σ (.):

lim
n→∞

s(n) = ∞, (3)

lim
n→∞

σ (n + ℓ)
σ (n)

= 1, for all ℓ ≥ 1, (4)

nd there exists a C < ∞ depending on σ such that for all m ≥ n we have

σ (m)
s(m)

≤ C
σ (n)
s(n)

. (5)

Then we can formulate the main result in the summable case.

Theorem 2.1. Let σ (.) satisfy (3), (4), and (5). Then for any correlation function ρ(.) satisfying
(2) we have

lim
n→∞

log qn

log s(n)
= −1.

Note that the order of log persistence only depends on σ (through the function s(.)), and
s hence independent of ρ(.). The reason for the universality in the above theorem is that the
imiting process which governs the exponent always turns out to be the Ornstein–Uhlenbeck
rocess.

Below we give a list of common choices of weight functions for which Theorem 2.1 holds.
e use the notation f (i) ∼ g(i) to denote limi→∞ f (i)/g(i) = 1. In all cases, (3), (4), and (5)

an be checked relatively easily, possibly using [9].

xamples. (i) Suppose σ (i) ∼ i p where p > −1/2, where one has s2(n) ∼ n2p+1/(2p + 1),
o that Theorem 2.1 gives

lim
n→∞

log qn

log n
= −

(
p +

1
2

)
. (6)

(ii) More generally, suppose σ (.) is a regularly varying function of order p > −1/2. In this
ase one shows that s2(n) ∼ nσ 2(n)/(2p + 1), so that Theorem 2.1 gives again (6).

(iii) Suppose σ (i) ∼ i−1/2 so that s2(n) ∼ log n and by Theorem 2.1

lim
log qn

= −
1
.

n→∞ log log n 2
288
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(iv) Suppose σ (i) ∼ eγ i p
for some p ∈ (0, 1) and γ > 0. In this case s2(n) ∼

1−pσ 2(n)/(2γ p) and Theorem 2.1 then gives

lim
n→∞

log qn

n p
= −γ.

We now turn our attention to the assumptions on the weight sequence σ (.) made in
heorem 2.1. Our first proposition shows that without (3) the conclusion of Theorem 2.1 does
ot hold. In this case the persistence probability does not go to 0 with n, but instead converges
o some number between (0, 1), which is not universal and depends both on ρ(.) and σ (.).

roposition 2.2. If limn→∞ s2(n) =
∑

∞

i=1 σ
2(i) < ∞ (i.e. (3) does not hold), then for ρ(.)

atisfying (2) we have limn→∞ qn = q, for some q ∈ (0, 1), where q depends on both ρ and
.

Our second proposition shows that (4) is necessary for Theorem 2.1, as can be seen from a
ounterexample with exponential weights. In this case the limiting exponent depends on both

and ρ.

Proposition 2.3. Suppose σ (i) = eαi for some α > 0, and let ρ(.) satisfy (2). Then we have
limn→∞

log qn
log n = −θd (Dα,ρ), where

θd (Dα,ρ) := − lim
n→∞

1
n

logP( max
1≤ℓ≤n

Zα(ℓ) < 0) ∈ (0,∞),

where {Zα(ℓ)}ℓ≥1 is a discrete time centered stationary Gaussian sequence with correlation
function

Dα,ρ(τ ) :=

∑
∞

i, j=0 e−(i+ j)αρ(i − j − τ )∑
∞

i, j=0 e−(i+ j)αρ(i − j)
.

emark 2.4. It is unclear whether condition (5) of Theorem 2.1 is actually necessary or
whether it is an artifact of our proof technique. We note that assumptions (3) and (4) already
imply that the sequence {

σ (n)
s(n) } converges to 0; and assumption (5) demands that this sequence

is eventually non-increasing up to a universal constant. Besides being a natural regularity
condition, (5) does hold for a lot of natural choices of weight functions σ , as can be seen
rom the above examples.

.2. The non-summable case

We will now study the case when the correlation function ρ(.) is not summable. In particular,
e will assume that there exist κ > 0 and H ∈ (1/2, 1) such that

lim
i→∞

ρ(i)
i2H−2 = κ. (7)

ote that (7) implies that ρ is not summable. In this case, the persistence exponent is no longer
overned by the Ornstein–Uhlenbeck process as in Theorem 2.1, but instead heavily depends
n the choice of ρ and σ . We will demonstrate this by assuming that σ satisfies

lim
i→∞

σ (i)
i p

= 1, (8)

nd showing that the persistence exponent depends on both p and H . To introduce the limiting
rocess, we need the following definition.
289



F. Aurzada and S. Mukherjee Stochastic Processes and their Applications 159 (2023) 286–319

R

w

c

T
s

w

Definition 2.5. For H ∈ (1/2, 1), p + H > 0 define the function f p,H : (0,∞)2
↦→ (0,∞)

by setting

f p,H (a, b) :=

∫ a

0

∫ b

0
x p y p

|x − y|
2H−2dxdy.

The function f p,H (.) is well defined for (p, H ) with p + H > 0 because

f p,H (a, b) ≤ f p,H (max(a, b),max(a, b)) = max(a, b)2p+2H f p,H (1, 1) < ∞,

by Selberg’s integral formula (cf. [22, (1.2)]).

Definition 2.6. Define the correlation function of a stationary process on [0,∞) by setting

C p,H (τ ) := e−τ (p+H ) f p,H (1, eτ )
f p,H (1, 1)

. (9)

emark 2.7. For a fractional Brownian Motion B H , define:

Z (τ ) = e−(p+H )τ
∫ eτ

0
x pd B H (x), τ ∈ R,

cf. [28] for the definition of a stochastic integral w.r.t. FBM. Then it can be checked that the
function given in (9) is the correlation function of Z . In particular, this shows that C p,H is
indeed a correlation function.

Definition 2.8. Given a non-negative correlation function A(.) on [0,∞), let {Z (t), t ≥ 0} be a
centered stationary Gaussian process with A(.) as its correlation function, and let θ (A) ∈ [0,∞]
be defined as

θ (A) := − lim
T →∞

1
T

logP( sup
t∈[0,T ]

Z (t) < 0),

here the existence of the limit follows by Slepian’s lemma and subadditivity.

We can now formulate the second main result of this paper, which handles the non-summable
ase.

heorem 2.9. Let σ (.) and ρ(.) satisfy (7) and (8), respectively, for some κ > 0, and (p, H )
uch that H ∈ (1/2, 1), p + H > 0. Then we have

lim
n→∞

log qn

log n
= −θ (C p,H ),

here C p,H is as in (9). Further, the exponent θ (p, H ) := θ (C p,H ) lies in (0,∞).

We remark that in the case p = 0, when Sℓ =
∑ℓ

i=1 ξi , the results of [3,4,26] imply
that θ (0, H ) = 1 − H . The limiting process in this case is the (exponentially time-changed)
fractional Brownian motion, for which the exponent was obtained in [29].

There seems to be no way to obtain the exponent θ (p, H ) explicitly for any other (p, H )
presently. This is in contrast to the summable correlation case, where for the choice σ (i) ∼ i p
290
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the exponent equals p + 1/2, see (6). Our next theorem explores some properties of the
persistence exponent θ (p, H ) as p and H vary.

Theorem 2.10. The exponent θ (p, H ) of Theorem 2.9 is continuous jointly in (p, H ) on the
domain H ∈ (1/2, 1), p + H > 0. It further satisfies

lim
H↑1

θ (p, H )
1 − H

= 1 for p > −1, (10)

lim
H↓

1
2

θ (p, H ) = p +
1
2
, for p > −

1
2
, (11)

lim
p→∞

θ (p, H ) = ∞, (12)

lim
p→∞

θ (p, H )
p

= 0, (13)

lim
p↓−H

θ (p, H )
p + H

= 1. (14)

In particular, θ (p, H ) = p +
1
2 is contradicted by (10), (13), or (14) as well as θ (0, H ) =

− H .

Remark 2.11. It would be interesting to see if one can obtain sharper estimates than the ones
provided in (12) and (13). Heuristic calculations suggest that as p → ∞ one has

p2−2H ≲ θ (p, H ) ≲ p2−2H log p.

. General tools

In this section, we state a few general results on persistence of Gaussian processes which
e will apply in the sequel, and some of which may be of independent interest. Almost all our

esults apply for both discrete time and continuous time Gaussian processes, with time index
et N := {1, 2, . . .} and R≥0 := [0,∞) respectively. For unifying the statements, we will denote
he time index set by T, which is either N or R≥0. Also we will use µ to denote the counting

easure if T = N, and the Lebesgue measure if T = R≥0. We will also assume throughout
hat the sample paths of the Gaussian process are continuous almost surely on T, so that the
upremum over compact sets in T is a well defined random variable. If T = N, then continuity
olds vacuously, as any function on N is continuous.

Throughout this section, let A(.) be a non-negative correlation function on T, and let
Z (t), t ∈ T} be a centered stationary Gaussian process with correlation function A(.).

We first state a lemma which gives a necessary and sufficient condition in full generality for
ruly exponential decay of the persistence probability for stationary Gaussian processes with
on-negative correlations. There are sufficient conditions in the literature for truly exponential
ecay (cf. [12,17,18,20]), but in our understanding none of them are both necessary and
ufficient.

efinition 3.1. For any r ∈ R let

θ (A, r ) := − lim
T →∞

1
T

logP( sup
t∈[0,T ]∩T

Z (t) < r ),

As before, existence of the limit follows by Slepian’s lemma and subadditivity.
291
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Lemma 3.2. Assume that Z has continuous sample paths almost surely and that A(.) is
on-negative.

(a) If
∫
T A(t)µ(dt) < ∞, then θ (A, r ) ∈ (0,∞) for every r ∈ R.

(b) If
∫
T A(t)µ(dt) = ∞, then θ (A, r ) = 0 for every r ∈ R.

The second result proves a continuity in levels for processes with non-negative correlations.

heorem 3.3. The function r ↦→ θ (A, r ) is continuous, i.e. the exponent is continuous in its
evels.

A previous result in this direction is that of [25, Theorem 3.1], who showed continuity of
he exponent under the assumption that the correlation function ρ(.) is strictly decreasing. More
ecently, [19, Lemma 1.1] proves a significantly improved version of continuity in levels, which
llows for negative correlations, at the expense of mild integrability assumptions on the spectral
easure. Theorem 3.3 shows that for non-negative correlation functions, no extra assumption

n the spectral measure is necessary for continuity in levels.
We will now focus on comparing persistence of different processes. In this direction, we

rst state a lemma which allows us to compare persistence of two Gaussian vectors in Rn .

emma 3.4. Suppose {Zn(i)}1≤i≤n and {Yn(i)}1≤i≤n are two triangular arrays of centered
aussian processes with positive definite covariance matrices An, Bn respectively, such that

lim sup
n→∞

(
∥An∥2 + ∥A−1

n ∥2 + ∥Bn∥2 + ∥B−1
n ∥2

)
< ∞, (15)

here ∥.∥2 denotes the Euclidian operator norm/largest eigenvalue of a symmetric matrix.
ssume further that limn→∞ ∥An − Bn∥2 = 0. Then we have

lim sup
n→∞

1
n

⏐⏐⏐⏐logP( max
1≤i≤n

Yn(i) < r ) − logP( max
1≤i≤n

Zn(i) < r )
⏐⏐⏐⏐ = 0.

Using this lemma, we first prove a continuity lemma for persistence exponents for discrete
ime Gaussian processes. This significantly improves [6, Lemma 5.1] by getting the same
onclusion under much weaker hypotheses.

emma 3.5. For every positive integer k, let {Zk(t)}t∈N be a discrete time centered Gaussian
rocess with non-negative correlation function Ak(., .). Further, let {Z∞(t)}t∈N be a stationary
entered Gaussian process with non-negative correlation function A∞(.). Assume that Ak(s, s+

) converges to A∞(τ ) as k → ∞, uniformly in s ∈ N0 := N ∪ {0}. Suppose further that with
gk(τ ) := sups∈N0

Ak(s, s + τ ) we have

lim
L→∞

lim sup
k→∞

∞∑
i=L

gk(i) = 0. (16)

hen for every r ∈ R we have

lim sup
k,n→∞

1
n

⏐⏐⏐ logP( sup
1≤i≤n

Zk(i) < r ) − logP( sup
1≤i≤n

Z∞(i) < r )
⏐⏐⏐ = 0. (17)

Lifting the last result to the continuous setting, we prove the following lemma, which we
ill use in the sequel to prove all the main results of this paper.
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Theorem 3.6. For every positive integer k, let {Zk(t)}t∈R≥0 be a continuous time centered
aussian process with non-negative correlation function Ak(., .) and continuous sample paths.
urther, let {Z∞(t)}t∈R≥0 be a stationary centered Gaussian process with continuous sample
aths and non-negative correlation function A∞(.). Assume that Ak(s, s + τ ) converges to

A∞(τ ) as k → ∞, uniformly in s ≥ 0. Suppose further that the following conditions hold.

(a) Setting gk(τ ) := sups≥0 Ak(s, s + τ ), for every positive integer ℓ we have

lim
L→∞

lim sup
k→∞

∞∑
i=L

gk(i/ℓ) = 0. (18)

(b) There exists an η > 1 such that

lim sup
ε→0

| log ε|η sup
1≤k≤∞,s≥0,τ∈[0,ε]

(1 − Ak(s, s + τ )) < ∞. (19)

(c) The limiting process {Z∞(t)}t∈R≥0 has a persistence exponent which is sampling contin-
uous, i.e.

lim sup
ℓ→∞

lim sup
T →∞

1
T

⏐⏐⏐ logP( sup
t∈[0,T ]

Z∞(t) < r ) − logP( max
1≤i≤⌈T ℓ⌉

Z∞(i/ℓ) < r )
⏐⏐⏐ = 0.

(20)

Then for every r ∈ R we have

lim sup
k,T →∞

1
T

⏐⏐⏐ logP( sup
t∈[0,T ]

Zk(t) < r ) − logP( sup
t∈[0,T ]

Z∞(t) < r )
⏐⏐⏐ = 0. (21)

The above lemma is a significant generalization of previous versions of similar continuity
esults in [12, Lemma 3.1] and [11, Theorem 1.6]. While the previous lemmas required a
upremum decay control over Ak(s, s + τ ), the current lemma replaces this by a summability
ondition, cf. (18). In particular, none of the previous results can be used to prove Theorem 2.1
n this generality. Below we comment on sufficient conditions for verifying (18) and (20),
espectively.

emark 3.7. A sufficient condition for (18) is that sups≥0,k∈N Ak(s, s + τ ) ≤ g(τ ), where g
atisfies one of the following conditions:

(i) lim supτ→∞

log g(τ )
log τ < −1 (thus implying [11, Theorem 1.6]);

(ii) g is regularly varying and integrable (thus implying [12, Lemma 3.1]);
(iii) g is non-increasing and integrable.

e do note that neither of these sufficient conditions, (i)–(iii), is enough to prove Theorem 2.1
n full generality, and we do need the full strength of Theorem 3.6. For all other results in this
aper, the above sufficient conditions are enough.

emark 3.8. Condition (20) essentially demands that for the limiting Gaussian process, the
ersistence exponents obtained by discrete sampling in finer and finer grids converge to the
ersistence exponent of the continuous process. A sufficient condition for (20) is that any of
he conditions (i)–(iii) of Remark 3.7 holds with g(τ ) = A∞(τ ), which can be verified by an
pplication of [11, Theorem 1.6] or [12, Lemma 3.1].
293



F. Aurzada and S. Mukherjee Stochastic Processes and their Applications 159 (2023) 286–319

f
p

c
c

L
o

4

D∫

D

I

o

L

D

C
p
f

Remark 3.9. It is easy to verify that the scaled Ornstein–Uhlenbeck process with correlation
function A∞(τ ) = e−α|τ | satisfies all the conditions (i)–(iii) of Remark 3.7, for any α > 0. A
act that we will repeatedly use in this paper is that the scaled Ornstein–Uhlenbeck process has
ersistence exponent α (cf. e.g. the proof of [13, Lem 2.5]).

The following lemma is a modification of Theorem 3.6 to the case where the limiting
orrelation is either non-integrable or degenerate, to deduce that the corresponding exponents
onverge to 0 or ∞, respectively.

emma 3.10. Suppose {Ak(τ )}k is a sequence of stationary non-negative correlation functions
n T. Fix r ∈ R.

(a) Suppose (19) holds, and limk→∞ Ak(τ ) = A∞(τ ) for every τ > 0, and θ (A∞, r ) = 0.
Then we have limk→∞ θ (Ak, r ) = 0.

(b) Suppose (18) holds, and limk→∞ Ak(τ ) = 0 for every τ > 0. Then we have
limk→∞ θ (Ak, r ) = ∞.

. Proof of Theorem 2.1

The following definition is crucial for the notation in the rest of this paper.

efinition 4.1. Extend σ (.), s(.) to positive reals by setting σ (x) = σ (⌈x⌉), and s2(t) =
t

0 σ
2(x)dx . Let w(.) denote the inverse of s(.), i.e. w(s(u)) = s(w(u)) = u for all u > 0.

After interpolating the sequences ρ(.) and σ (.), we do the same with the covariances of {Sℓ}.

efinition 4.2. For any two positive reals ℓ1, ℓ2 let

Fρ,σ (ℓ1, ℓ2) :=

∫ ℓ1

0

∫ ℓ2

0
σ (x)σ (y)ρ(⌈x⌉ − ⌈y⌉)dxdy.

n particular, if ℓ1, ℓ2 are positive integers, then we have

Fρ,σ (ℓ1, ℓ2) =

ℓ1∑
i=1

ℓ2∑
j=1

σ (i)σ ( j)ρ(i − j).

We proceed with stating three lemmas which will be used to prove Theorem 2.1, the proofs
f which we defer to the end of the section.

emma 4.3. Let ρ satisfy (2), and assume that σ satisfies (3) and (4). Then for every b ≥ 1

lim
u→∞

Fρ,σ (w(u), w(bu))
u2 = 1 + 2

∞∑
ℓ=1

ρ(ℓ). (22)

efinition 4.4. For two positive functions f and g depending on arguments x1, . . ., xn ,
z1, . . ., zm , the expression f ≲z1,...,zn g means the existence of a finite positive constant

= C(z1, . . . , zn), such that f ≤ Cg for all x1, . . . , xn (possibly in a certain range). In
articular, the notation f ≲ g implies the existence of a universal constant C such that f ≤ Cg
or all arguments (possibly in a certain range).
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Lemma 4.5. Let ρ satisfy (2). Then under no assumptions on σ we have for any b ≥ 1∫ w(bu)

w(u)

∫ w(bu)

0
σ (x)σ (y)ρ(⌈x⌉ − ⌈y⌉)dydx ≲ρ bu2

√
b2 − 1. (23)

emma 4.6. Assume ρ(.) satisfies (2) and σ (.) satisfies (3), (4), and (5). With

g̃u(τ ) :=
Fρ,σ (w(u), w(eτu))

u2eτ

we have

lim
L→∞

lim sup
u→∞

∫
∞

L
g̃u(τ )dτ = 0.

Proof of Theorem 2.1. Step 1: Reduction to convergence of the continuous-time interpolation.
To begin, define a Gaussian process (0,∞) by setting X (u) :=

∫ u
0 σ (⌈v⌉)ξ⌈v⌉dv, and note

hat X (u) = Su for all positive integers u. Thus X (.) is just the linear interpolation of the partial
ums {Sℓ}ℓ≥1, and consequently

P( max
1≤ℓ≤n

Sℓ < 0) = P( sup
u∈[0,n]

X (u) < 0).

or any positive integer k we define a Gaussian process on [0,∞) by setting Xk(t) :=
−1 X (w(ket )), t ≥ 0, and claim that

lim
k,T →∞

1
T

logP( sup
t∈[0,T ]

Xk(t) < 0) = −1. (24)

iven (24), using Slepian’s Lemma along with non-negativity of ρ(.), σ (.), we get

P( sup
u∈[0,n]

X (u) < 0) = P( sup
u∈[0,w(k)]

X (u) < 0, sup
t∈[0,log(s(n)/k)]

Xk(t) < 0)

≥ P( sup
u∈[0,w(k)]

X (u) < 0) · P( sup
t∈[0,log(s(n)/k)]

Xk(t) < 0)

= P( max
1≤ℓ≤w(k)

Sℓ < 0) · P( sup
t∈[0,log(s(n)/k)]

Xk(t) < 0)

≥

(1
2

)w(k)
· P( sup

t∈[0,log(s(n)/k)]
Xk(t) < 0),

hich on taking limits as n → ∞ gives

lim inf
n→∞

1
log s(n)

logP( sup
t∈[0,n]

X (t) < 0)

≥ lim inf
n→∞

1
log s(n)

logP( sup
t∈[0,log(s(n)/k)]

Xk(t) < 0)

= lim inf
n→∞

1
s ′(n)

logP( sup
t∈[0,s′(n)]

Xk(t) < 0),

where s ′(n) = log(s(n)/k) tends to +∞ as n → ∞ with k fixed. On letting k → ∞ on both
ides of the above equation, invoking (24) gives

lim inf
1

logP( sup X (t) < 0) ≥ −1,

n→∞ log s(n) t∈[0,n]
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thus giving the lower bound of the theorem. The corresponding upper bound follows on noting
that

P( sup
t∈[0,n]

X (t) < 0) ≤ P( sup
t∈[0,log(s(n)/k)]

Xk(t) < 0),

and invoking (24) again.

Step 2: Verification of (24). To this effect, setting u := kes , for s ≤ t we have

lim
k→∞

cov(Xk(s), Xk(t)) = lim
k→∞

Fρ,σ (w(kes), w(ket ))
k2

=e2s lim
u→∞

Fρ,σ (w(u), w(uet−s))
u2

=e2s
(

1 + 2
∞∑
ℓ=1

ρ(ℓ)
)
,

here the last equality uses (22). This gives

lim
k→∞

corr(Xk(s), Xk(t)) =
e2s

eset
= e−|s−t |,

hich is the correlation function of a scaled Ornstein Uhlenbeck process with persistence ex-
onent 1, by Remark 3.9. From this, the desired conclusion then follows on using Theorem 3.6,
here we need to verify the conditions of the lemma. To this effect, first note that (20) holds for

he Ornstein Uhlenbeck process, by Remark 3.9. Proceeding to verify (19), for s ≥ 0, τ ∈ [0, 1]
etting u := kes

∈ [1,∞) we have

1 − corr
(

Xk(s), Xk(s + τ )
)

= 1 −
Fρ,σ (w(u), w(ueτ ))√

Fρ,σ (w(u), w(u))
√

Fρ,σ (w(ueτ ), w(ueτ ))

≤ 1 −
Fρ,σ (w(u), w(ueτ ))

Fρ,σ (w(ueτ ), w(ueτ ))

=
Fρ,σ (w(ueτ ), w(ueτ )) − Fρ,σ (w(u), w(ueτ ))

Fρ,σ (w(ueτ ), w(ueτ ))

≲ρ,σ e−τ
√

e2τ − 1,

where the last inequality uses (23) along with (22). This verifies (19). It thus remains to verify
(18), for which setting u = kes we have

corr(Xk(s), Xk(s + τ )) =
Fρ,σ (w(kes), w(kes+τ ))√

Fρ,σ (w(kes), w(kes))
√

Fρ,σ (w(kes+τ ), w(kes+τ ))

=
Fρ,σ (w(u), w(ueτ ))√

Fρ,σ (w(u), w(u))
√

Fρ,σ (w(ueτ ), w(ueτ ))

≲ρ,σ

Fρ,σ (w(u), w(eτu))
eτu2 = g̃u(τ ),

here g̃u(.) is as in Lemma 4.6, and the last inequality uses (22). To verify (18) it thus suffices
o show that

lim
L→∞

lim sup
u→∞

∞∑
g̃u(i/ℓ) = 0 (25)
i=L
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for every positive integer ℓ. To this effect, for τ ∈ [i/ℓ, (i + 1)/ℓ] we have

g̃u(i/ℓ) =
Fρ,σ (w(u), w(uei/ℓ))

ei/ℓu2

= e−i/ℓu−2
∫ w(u)

0

∫ w(uei/ℓ)

0
σ (⌈x⌉)σ (⌈y⌉)ρ(⌈x⌉ − ⌈y⌉)dxdy

≤ e1/ℓ−τu−2
∫ w(u)

0

∫ w(ueτ )

0
σ (⌈x⌉)σ (⌈y⌉)ρ(⌈x⌉ − ⌈y⌉)dxdy

= e1/ℓg̃u(τ ).

his immediately gives
∞∑

i=L

g̃u(i/ℓ) ≤ ℓe1/ℓ
∞∑

i=L

∫ (i+1)/ℓ

i/ℓ
g̃u(τ )dτ = ℓe1/ℓ

∫
∞

L/ℓ
g̃u(τ )dτ,

rom which (25) follows on using Lemma 4.6. This completes the proof of the theorem. □

roof of Lemma 4.3. To begin note that

Fρ,σ (w(u), w(bu)) ≤ Fρ,σ (⌈w(u)⌉, ⌈w(bu)⌉)

=

⌈w(u)⌉∑
i=1

σ 2(i) + 2
⌈w(u)⌉−1∑
ℓ=1

ρ(ℓ)
min(⌈w(u)⌉,⌈w(bu)⌉−ℓ)∑

i=1

σ (i)σ (i + ℓ)

+

⌈w(bu)⌉−1∑
ℓ=⌈w(u)⌉

ρ(ℓ)
min(⌈w(u)⌉,⌈w(bu)⌉−ℓ)∑

i=1

σ (i)σ (i + ℓ)

=:

∞∑
ℓ=0

ρ(ℓ)βℓ,b(u), (26)

here

βℓ,b(u) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑⌈w(u)⌉
i=1 σ (i)2 if ℓ = 0

2
∑min(⌈w(u)⌉,⌈w(bu)⌉−ℓ)

i=1 σ (i)σ (i + ℓ) if 1 ≤ ℓ ≤ ⌈w(u)⌉ − 1∑min(⌈w(u)⌉,⌈w(bu)⌉−ℓ)
i=1 σ (i)σ (i + ℓ) if ⌈w(u)⌉ ≤ ℓ ≤ ⌈w(bu)⌉ − 1

0 if ℓ ≥ ⌈w(bu)⌉.

ow for any b > 1 we have w(bu) − w(u) → ∞, as w(bu) − w(u) ≤ K for some K fixed
long a subsequence in u diverging to +∞ implies b =

bu
u =

s(w(bu))
s(w(u)) ≤

s(w(u)+K )
s(w(u)) , the right

and side of which converges to 1 along the same subsequence, using (4). Thus for all u large
nough we have w(bu) − ℓ ≥ w(u), and so

1
u2 βℓ,b(u) =

2
u2

⌈w(u)⌉∑
i=1

σ (i)σ (i + ℓ),

hich converges to 2 as u → ∞, invoking (4) and (3). Also, for any u > 0, ℓ ≥ 1 we have,
y the Cauchy–Schwarz inequality,

βℓ,b(u) ≤ 2
min(⌈w(u)⌉,⌈w(bu)⌉−ℓ)∑

σ (i)σ (i + ℓ) ≤ 2s(⌈w(u)⌉)s(⌈w(bu)⌉) ≲ bu2.
i=1
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which along with the Dominated Convergence theorem gives

lim sup
u→∞

F(w(u), w(bu))
u2 ≤ 1 + 2

∞∑
ℓ=1

ρ(ℓ),

hus giving the upper bound in (22). The corresponding lower bound follows on noting that

Fρ,σ (w(u), w(bu)) ≥ Fρ,σ (⌈w(u)⌉ − 1, ⌈w(u)⌉ − 1)

=

⌈w(u)⌉−1∑
i, j=1

σ (i)σ ( j)ρ(i − j)

=

⌈w(u)⌉−1∑
i=1

σ (i)2
+

⌈w(u)⌉−2∑
ℓ=1

ρ(ℓ)
⌈w(u)⌉−ℓ−1∑

i=1

σ (i)σ (i + ℓ),

nd using a similar argument as in the upper bound. □

roof of Lemma 4.5. Using the Cauchy–Schwarz inequality, the left hand side of (23) can
e bounded as follows:∫ w(bu)

w(u)

∫ w(bu)

0
σ (x)σ (y)ρ(⌈x⌉ − ⌈y⌉)dydx

≤

√∫ w(bu)

w(u)

∫ w(bu)

0
σ 2(x)ρ(⌈x⌉ − ⌈y⌉)dydx

√∫ w(bu)

w(u)

∫ w(bu)

0
σ 2(y)ρ(⌈x⌉ − ⌈y⌉)dydx

=

√∫ w(bu)

w(u)
σ 2(x)

[∫ w(bu)

0
ρ(⌈x⌉ − ⌈y⌉)dy

]
dx

√∫ w(bu)

0
σ 2(y)

[∫ w(bu)

w(u)
ρ(⌈x⌉ − ⌈y⌉)dx

]
dy

≲ρ

√∫ w(bu)

w(u)
σ 2(x)dx

√∫ w(bu)

0
σ 2(y)dy,

here the last line uses the fact that ρ is integrable. The last line equals√
s(w(bu))2 − s(w(u))2s(w(bu)) = bu2

√
b2 − 1,

s desired. □

roof of Lemma 4.6. Step 1: We first treat the integral
∫ w(u)

0

∫ w(u)
0 . By the Cauchy–Schwarz

nequality,∫
∞

L

e−τ

u2

∫ w(u)

0

∫ w(u)

0
σ (x)σ (y)ρ(⌈y⌉ − ⌈x⌉)dydxdτ

≤

∫
∞

L

e−τ

u2

√∫ w(u)

0

∫ w(u)

0
σ 2(x)ρ(⌈y⌉ − ⌈x⌉)dydx

·

√∫ w(u)

0

∫ w(u)

0
σ 2(y)ρ(⌈y⌉ − ⌈x⌉)dydxdτ

=
e−L

u2

∫ w(u)

0
σ 2(x)

∫ w(u)

0
ρ(⌈y⌉ − ⌈x⌉)dydx

≲ρ

e−L ∫ w(u)

σ 2(x)dx =
e−L

s(w(u))2
= e−L . (27)
u2
0 u2
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Step 2: Main part of the integral. Fix M ∈ N. Then we can write the remaining part in
∞

L g̃u(τ )dτ as∫
∞

L

e−τ

u2

∫ w(u)

0

∫ w(eτ u)

w(u)
σ (x)σ (y)ρ(⌈y⌉ − ⌈x⌉)1{|x − y| > M}dydxdτ

+

∫
∞

L

e−τ

u2

∫ w(u)

0

∫ w(eτ u)

w(u)
σ (x)σ (y)ρ(⌈y⌉ − ⌈x⌉)1{|x − y| ≤ M}dydxdτ. (28)

ince ρ satisfies (2), we can write ρ(i) = ρ̃(i)h(i), where both ρ̃, h are non-negative functions
atisfying

∑
∞

i=1 ρ̃(i) < ∞ and limi→∞ h(i) = 0. Using this, the first term in (28) can be
ounded as follows:∫

∞

L

e−τ

u2

∫ w(u)

0

∫ w(eτ u)

w(u)
σ (x)σ (y)ρ(⌈y⌉ − ⌈x⌉)1{|x − y| > M}dydxdτ

≤ sup
i≥M−2

h(i)
∫

∞

0

e−τ

u2

∫ w(u)

0

∫ w(eτ u)

w(u)
σ (x)σ (y)ρ̃(⌈y⌉ − ⌈x⌉)dydxdτ

= sup
i≥M−2

h(i)
∫ w(u)

0

∫
∞

w(u)
σ (x)σ (y)ρ̃(⌈y⌉ − ⌈x⌉)

∫
∞

log s(y)
u

e−τ

u2 dτdydx

= sup
i≥M−2

h(i)
∫ w(u)

0

∫
∞

w(u)

σ (x)
u

σ (y)
s(y)

ρ̃(⌈y⌉ − ⌈x⌉)dydx

≲σ sup
i≥M−2

h(i)
∫ w(u)

0

∫
∞

w(u)

σ 2(x)
us(x)

ρ̃(⌈y⌉ − ⌈x⌉)dydx

≲ρ

1
u

sup
i≥M−2

h(i)
∫ w(u)

0

σ 2(x)
s(x)

dx = 2 sup
i≥M−2

h(i), (29)

here the inequalities in the last two lines use (5) (because x ≤ w(u) ≤ y) and summability
f ρ̃, respectively. Proceeding to bound the second term in (28), using (4) we have∫

∞

L

e−τ

u2

∫ w(u)

0

∫ w(eτ u)

0
σ (x)σ (y)ρ(⌈x⌉ − ⌈y⌉)1{|x − y| ≤ M}dydxdτ

≲σ,M

∫
∞

L

e−τ

u2

∫ w(u)

0

∫ w(eτ u)

0
σ 2(x)ρ(⌈x⌉ − ⌈y⌉)dydxdτ

≲ρ

∫
∞

L

e−τ

u2

∫ w(u)

0
σ 2(x)dxdτ = e−L . (30)

Combining (29) and (30) with (27) and (28) we have∫
∞

L
g̃u(τ )dτ ≤ C(σ, ρ) sup

i≥M−2
h(i) + C(σ, ρ,M)e−L ,

which converges to 0 on letting L → ∞ followed by M → ∞, on using the fact that
limi→∞ h(i) = 0. □

Proof of Proposition 2.2. Note that qn is a non-increasing sequence in n, and so it suffices to
show that lim infn→∞ qn > 0. To this effect, we first claim that Sk

a.s.
→ S∞ :=

∑
∞

i=1 σ (i)ξi , where
the sum on the right hand side converges almost surely. It then follows that S∞ ∼ N (0, σ 2)
for some σ < ∞, and so

P(sup Sk < 0) ≥ P(S∞ < −1) − P(sup |Sk − S∞| > 1).

k≥K k≥K
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On letting K → ∞ we have

lim
K→∞

P(sup
k≥K

Sk < 0) ≥ P(S∞ < −1),

nd so there exists K ≥ 1 such that P(supk≥K Sk < 0) ≥ P(S∞ < −1)/2. An application of
Slepian’s Lemma along with the fact that {Sℓ}ℓ≥1 has non-negative correlation gives for n ≥ K

P( max
1≤ℓ≤n

Sℓ < 0) ≥ P( max
1≤ℓ≤K−1

Sℓ < 0)P( max
K≤ℓ≤n

Sℓ < 0) ≥

(1
2

)K
P(S∞ > −1),

hich is positive, and hence the proof is complete. It thus remains to verify the almost sure
onvergence of {Sk}. To this effect, define a Gaussian process {S̃k}k≥1 by setting

S̃k := C
k∑

i=1

σ (i)ξ̃i , {ξ̃i }i≥1
i id
∼ N (0, 1), C :=

√2
∞∑

i=0

ρ(i).

hen, for any m ≥ n ≥ 1, Cauchy–Schwarz inequality gives

E (Sm − Sn)2
=

m∑
i, j=n+1

σ (i)σ ( j)ρ(i − j) ≤

√ m∑
i, j=n+1

σ 2(i)ρ(i − j)

√ m∑
i, j=n+1

σ 2( j)ρ(i − j)

≤C
m∑

i=n+1

σ 2(i) = E (S̃m − S̃n)2.

n application of Markov’s inequality, symmetry, and Sudakov–Fernique inequality ([1, Thm
.2.3]) then gives, for any δ > 0,

P( max
n≤k≤m

|Sk − Sm | ≥ δ) ≤
1
δ
E max

n≤k≤m
|Sk − Sm |

≤
2
δ
E max

n≤k≤m
(Sk − Sm) ≤

2
δ
E max

n≤k≤m
|S̃k − S̃m |. (31)

Since {S̃k}k≥1 are sums of iid random variables, an application of Kolmogorov’s Maximal
inequality gives that for any λ > 0 we have

P( max
n≤k≤m

|S̃k − S̃m | ≥ λ) ≤
C
λ2

n∑
k=m+1

σ 2(k),

hich on integrating gives that for any ε > 0,

E max
n≤k≤m

|S̃k − S̃m | =

∫
∞

0
P( max

n≤k≤m
|S̃k − S̃m | ≥ λ)dλ ≤ ε +

C
ε

m∑
k=n+1

σ 2(k).

lugging the choice ε =

√
C

∑m
k=n+1 σ

2(k) gives the bound

E max
n≤k≤m

|S̃k − S̃m | ≤ 2

√C
m∑

k=n+1

σ 2(k). (32)

Combining (31) and (32) gives

P( max
n≤k,ℓ≤m

|Sk − Sℓ| ≥ 2δ) ≤ P( max
n≤k≤m

|Sk − Sm | ≥ δ) ≤
4
δ

√C
m∑

σ 2(k),

k=n+1
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which on letting m → ∞ along with continuity in probability gives

P(max
k,ℓ≥n

|Sk − Sℓ| ≥ 2δ) ≤
4
δ

√C
∞∑

k=n+1

σ 2(k).

ince limn→∞ maxk,ℓ≥n |Sk − Sℓ| ≤ maxk,ℓ≥n |Sk − Sℓ|, letting n → ∞ this gives

P( lim
n→∞

max
k,ℓ≥n

|Sk − Sℓ| ≥ 2δ) = 0.

ince δ > 0 is arbitrary, we have limn→∞ maxk,ℓ≥n |Sk − Sℓ|
a.s.
= 0, i.e. the sequence {Sk}k≥1 is

auchy almost surely. This proves almost sure convergence, and hence completes the proof of
he proposition. □

roof of Proposition 2.3. Fixing integers τ ≥ 0, ℓ ≥ 1, k ≥ 1 we have

cov(Sℓ+k, Sℓ+τ+k) =

ℓ+k∑
i=1

ℓ+τ+k∑
j=1

e(i+ j)αρ(i − j)

=e(2ℓ+2k+τ )α
ℓ+k−1∑

i=0

ℓ+τ+k−1∑
j=0

e−(i+ j)αρ( j − i − τ ),

hich gives

lim
k→∞

sup
ℓ≥1,τ≥0

⏐⏐⏐corr(Sℓ+k, Sℓ+τ+k)
Dα(τ )

− 1
⏐⏐⏐ = 0, (33)

nd so Dα(.) is a valid correlation function. To get the desired conclusion, we apply Lemma 3.5.
t thus suffices to verify (16), which follows on noting that (33) implies corr(Sℓ+k, Sℓ+τ+k) ≲α,ρ

Dα(τ ), which is summable using (2). □

. The non-summable case

.1. Proof of Theorem 2.9

We begin by stating two lemmas which will be used to prove Theorem 2.9. Since the lemmas
re analytic and do not contain any probabilistic ideas, we omit the proof of the lemmas (but
efer the interested reader to the appendix of the arxiv version of this paper [5]).

emma 5.1. Let H ∈ (1/2, 1), p + H > 0, and for x ≥ 1, α ∈ R let ψα(x) :=
∫ x

1 yαdy.

(a) For any b ≥ N ≥ 1 we have

f p,H (1, b) ≤ f p,H (1, N ) +

(
1 −

1
N

)2H−2ψp+2H−2(b)
p + 1

, (34)

f p,H (1, b) ≥ f p,H (1, 1) +
ψp+2H−2(b)

p + 1
. (35)

(b)

f p,H (1, 1) =
Γ (p + 1)Γ (2H − 1)

=
Beta(p + 1, 2H − 1)

.

(p + H )Γ (p + 2H ) p + H
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Lemma 5.2. Let H ∈ (1/2, 1), p + H > 0. Then we have

lim
u→∞

sup
b≥1

⏐⏐⏐ Fρ,σ (u, bu)
u2p+2H f p,H (1, b)

− κ

⏐⏐⏐ = 0, (36)

where Fρ,σ (., .) is as in Definition 4.2, with ρ satisfying (7) and σ satisfying (8).

Equipped with these lemmas, we can now prove Theorem 2.9.

Proof of Theorem 2.9. As in the proof of Theorem 2.1, define the continuous time Gaussian
process X (.) on (0,∞) by setting X (u) :=

∫ u
0 σ (⌈v⌉)ξ⌈v⌉dv. For any positive integer k define

a Gaussian process on [0,∞) by setting Xk(t) := k−(p+1/2) X (ket ). As in Step 1 of the proof
f Theorem 2.1 (cf. (24)), it suffices to show that

lim
k,T →∞

1
T

logP( sup
t∈[0,T ]

Xk(t) < 0) = −θ (C p,H ). (37)

or showing (37), note that for any 0 ≤ s ≤ t , setting u := kes we have

lim
k→∞

cov(Xk(t), Xk(s)) = lim
u→∞

Fρ,σ (kes, keset−s)
k2p+2H

= e(2p+2H )s lim
u→∞

Fρ,σ (u, uet−s)
u2p+2H

= κe(2p+2H )s f p,H (1, et−s),

sing (36). This readily gives

lim
k→∞

corr(Xk(t), Xk(s)) = e(s−t)(p+H ) f p,H (1, et−s)
f p,H (1, 1)

= C p,H (t − s),

hus verifying that C p,H (τ ) is a valid correlation function. For showing that the limit θ (p, H ) ∈

0,∞) we invoke Lemma 3.2, so that it suffices to show that
∫

∞

0 C p,H (τ )dτ < ∞, which
ollows on using (34) to note that f p,H (1, eτ ) ≲p,H max(τ, eτ (p+2H−1)), and so we have

C p,H (τ ) ≲p,H max(τe−τ (p+H ), e−τ (1−H )). (38)

o conclude (37), it thus remains to verify the conditions of Theorem 3.6. To this effect, note
hat (20) follows from (38) and Remark 3.8. It thus remains to verify (18) and (19), which is
one below.

Verification of (18). Use Lemma 5.2 to note the existence of M < ∞ such that for all
> M and b ≥ e we have

1
2

u2p+2H f p,H (1, b) ≤
Fρ,σ (u, bu)

κ
≤ 2u2p+2H f p,H (1, b).

hus for any s > 0, τ > 1, noting that u = kes > M gives

corr(Xk(s), Xk(s + τ )) =
Fρ,σ (u, ueτ )√

Fρ,σ (u, u)
√

Fρ,σ (ueτ , ueτ )

≤ 4C p,H (τ ) ≲p,H max(τe−τ (p+H ), e−τ (1−H )),

where the last inequality uses (38). This verifies (18) via Remark 3.7.
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Verification of (19). For verifying (19), for s ≥ 0, τ ∈ [0, 1] setting u := kes
∈ [1,∞) we

have

Fρ,σ (ueτ , ueτ ) − Fρ,σ (u, ueτ )

=

∫ 1

0

∫ ueτ

u
σ (⌈x⌉)σ (⌈y⌉)ρ(⌈x⌉ − ⌈y⌉)dxdy

+

∫ u/2

1

∫ ueτ

u
σ (⌈x⌉)σ (⌈y⌉)ρ(⌈x⌉ − ⌈y⌉)dxdy

+

∫ ueτ

u/2

∫ ueτ

u
σ (⌈x⌉)σ (⌈y⌉)ρ(⌈x⌉ − ⌈y⌉)dxdy. (39)

sing (7) and (8) we get ρ(⌈x⌉ − ⌈y⌉) ≲ρ |x − y|
2H−2, and σ (⌈y⌉) ≲σ y p for y ≥ 1.

onsequently, the first term on the right hand side of (39) can be bounded as follows:∫ 1

0

∫ ueτ

u
σ (⌈x⌉)σ (⌈y⌉)ρ(⌈x⌉ − ⌈y⌉)dxdy

≲σ,ρ u2H−2
∫ 1

0

∫ ueτ

u
x pdxdy ≲p u p+2H−1τ (40)

imilarly, the second term on the right hand side of (39) can be bounded as follows:∫ u/2

1

∫ ueτ

u
σ (⌈x⌉)σ (⌈y⌉)ρ(⌈x⌉ − ⌈y⌉)dxdy

≲σ,ρ u p+2H−2
∫ u/2

1

∫ ueτ

u
x pdxdy ≲σ u2p+2Hτ. (41)

inally, the third term on the right hand side of (39) can be estimated as∫ ueτ

u/2

∫ ueτ

u
σ (⌈x⌉)σ (⌈x⌉)ρ(⌈x⌉ − ⌈y⌉)dxdy

≲ρ,σ u2p+2H
∫ eτ

1/2

∫ eτ

1
|x − y|

2H−2dxdy

= u2p+2H
∫ eτ

1

∫ eτ−x

1/2−x
|z|2H−2dzdx

≤ u2p+2H
∫ eτ

1

∫ e−1

1/2−e
|z|2H−2dzdx ≲H u2p+2H (eτ − 1). (42)

Combining (40), (41) and (42) along with (39) gives

Fρ,σ (ueτ , ueτ ) − Fρ,σ (u, ueτ ) ≲ρ,σ u2p+2Hτ. (43)

sing (43) and (36) gives, for all τ ∈ [0, 1],

sup
s≥0,k≥1

(
1 − corr

(
Xk(s), Xk(s + τ )

))
≲ρ,σ τ,
hich verifies (19), and hence completes the proof of the theorem. □
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5.2. Proof of Theorem 2.10

roof of Theorem 2.10. Step 1: Proof of continuity. Let (pk, Hk) be a sequence converging
o (p∞, H∞). We need to show that

lim
k→∞

θ (pk, Hk) = θ (p∞, H∞).

ince limk→∞ C pk ,Hk (τ ) = C p∞,H∞
(τ ), this will follow by another application of Theorem 3.6,

once we verify the conditions of that lemma. Using (34) gives the existence of a continuous
function M(p, H ) such that

f p,H (1, eτ ) ≤ M(p, H ) max
(
τ, eτ (p+2H−1)

)
,

hich gives

C pk ,Hk (τ ) ≤ M max
(
τe−(pk+Hk ), e−τ (1−Hk )), M := sup

k≥1
M(pk, Hk),

and consequently

sup
k≥1,τ≥0

log C pk ,Hk (τ )
log τ

= −∞.

his verifies (18) via Remark 3.7. The above display along with Remark 3.8 also verifies (20).
t thus suffices to verify (19). But this follows on noting that C pk ,Hk (τ ) ≥ e−(pk+Hk )τ .

Step 2: Proof of (10). To begin note that

−
θ (p, H )
1 − H

= lim
T →∞

1
T

logP
(

sup
t∈[0, T

1−H ]

Z (t) < 0
)

= lim
T →∞

1
T

logP
(

sup
t∈[0,T ]

Z
( t

1 − H

)
< 0

)
. (44)

et

Ap,H (τ ) := C p,H

( τ

1 − H

)
= e−τ

p+H
1−H

f p,H (1, e
τ

1−H )
f p,H (1, 1)

enote the correlation of the process
{

Z
(

t
1−H

)
, t ≥ 0

}
. Using (34), on letting H ↑ 1 followed

y N → ∞, for all H such that p + 2H > 1 we get

lim sup
H↑1

f p,H (1, e
τ

1−H )

eτ
p+2H−1

1−H

≤
1

(p + 1)2 .

similar calculation using (35) gives the lower bound and so we get

lim
H↑1

f p,H (1, e
τ

1−H )

eτ
p+2H−1

1−H

=
1

(p + 1)2 ,

hich immediately gives that

lim
H↑1

Ap,H (τ ) = e−τ .

his is the correlation function of the scaled Ornstein–Uhlenbeck process, which by Remark 3.9
atisfies (20), and has persistence exponent 1. The desired conclusion will then follow from
304



F. Aurzada and S. Mukherjee Stochastic Processes and their Applications 159 (2023) 286–319

w
s
g

a

(

w

(44) by invoking Theorem 3.6, once we verify the other two conditions of that lemma, namely
(18) and (19).

To this effect, again use (34) with N = 2 to note that for all H such that p + 2H > 1 we
have

f p,H (1, e
τ

1−H ) ≲p eτ
p+2H−1

1−H ,

hich gives Ap,H (τ ) ≲p e−τ , thus verifying (18) via Remark 3.7. Proceeding to verify (19),
etting β := βH :=

1
1−H and using (35) along with the fact that p + 2H > 1 for all H ∼ 1 we

et

f p,H (1, 1) − e−βτ (p+H ) f p,H (1, eβτ )

≤ f p,H (1, 1) − e−βτ (p+H )[ f p,H (1, 1) +
(eβτ )p+2H−1

− 1
(p + 1)(p + 2H − 1)

]

= f p,H (1, 1)(1 − e−τ ) +
(
e−βτ (p+H )

− e−τ
)

[
1

(p + 1)(p + 2H − 1)
− f p,H (1, 1)]

≤ f p,H (1, 1)τ +
⏐⏐e−βτ (p+H )

− e−τ
⏐⏐ ⏐⏐⏐⏐ 1

(p + 1)(p + 2H − 1)
− f p,H (1, 1)

⏐⏐⏐⏐
≤ f p,H (1, 1)τ + (β(p + H ) + 1)τ

⏐⏐⏐⏐ 1
(p + 1)(p + 2H − 1)

− f p,H (1, 1)
⏐⏐⏐⏐ ,

where the last step follows from the fact that |e−x
− e−y

| ≤ x + y. This gives

1 − Ap,H (τ )
τ

=
f p,H (1, 1) − e−βτ (p+H ) f p,H (1, eβτ )

τ f p,H (1, 1)

≤ 1 + (β(p + H ) + 1)
⏐⏐⏐⏐ 1
(p + 1)(p + 2H − 1) f p,H (1, 1)

− 1
⏐⏐⏐⏐ ,

nd so to verify (19) it suffices to show that the right hand side above stays bounded as
H ↑ 1, or equivalently, (1 − H )−1

| f p,H (1, 1) −
1

(p+1)2 | stays bounded as H ↑ 1. Use part

b) of Lemma 5.1 to note that f p,1(1, 1) =
1

(p+1)2 , and so it suffices to show that ∂ f p,H (1,1)
∂H is

bounded in a neighborhood of 1. But this follows on noting that the derivative is continuous
in H , and converges as H ↑ 1 to

2
∫ 1

0

∫ 1

0
x p y p log |x − y|dxdy,

which is finite for p > −1.
Step 3: Proof of (11). To begin, fixing δ > 0 and using (34) with N = 1 + δ gives

f p,H (1, eτ ) − f p,H (1, 1 + δ) ≲p

( δ

1 + δ

)2H−2
max

(
τ, eτ (p+2H−1)

)
,

hich gives

f p,H (1, eτ ) − (1 + δ)2p+2H f p,H (1, 1) ≲p

( δ

1 + δ

)2H−2
max

(
τ, eτ (p+2H−1)

)
,
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which gives

C p,H (τ ) − (1 + δ)2p+2H e−τ (p+H ) ≲p

( δ

1 + δ

)2H−2 max
(
τe−τ (p+H ), e−τ (1−H )

)
f p,H (1, 1)

. (45)

On letting H ↓ 1/2 followed by δ → 0 and noting that f p,H (1, 1) → ∞ gives

lim sup
H↓1/2

C p,H (τ ) ≤ e−τ (p+
1
2 ).

he corresponding lower bound follows from the trivial bound C p,H (τ ) ≥ e−(p+H )τ , giving
imH↓1/2 C p,H (τ ) = e−(p+1/2)τ , which is the correlation function of the scaled Ornstein–
hlenbeck process which has persistence exponent p +1/2, by Remark 3.9, and satisfies (20).

The desired conclusion will then follow from Theorem 3.6, once we verify the conditions (18)
and (19) of the lemma. To this effect, (18) follows from (45) and Remark 3.7, and (19) follows
on noting that C p,H (τ ) ≥ e−(p+H )τ , and so the proof is complete.

Step 4: Proof of (12). For any τ > 0 using (34) with N = e
τ
4 gives

f p,H (1, eτ ) ≤ e
(p+H )τ

2 f p,H (1, 1) + (1 − e−
τ
4 )2H−2 eτ (p+2H−1)

(p + 1)(p + 2H − 1)
,

which readily gives

C p,H (τ ) ≤ e−
(p+H )τ

2 + (1 − e−
τ
4 )2H−2 e−τ (1−H )

f p,H (1, 1)(p + 1)(p + 2H − 1)
(46)

≲H,τ e−
(p+H )τ

2 + p2H−2,

here the last inequality uses part (b) of Lemma 5.1. Thus letting p → ∞ we get
imp→∞ C p,H (τ ) = 0. Further, using (46) for all p ≥ 1, τ ≥ 1 we have C p,H (τ ) ≲H
−
τH
2 + e−τ (1−H ), and so C p,H (τ ) satisfies (18). Thus conclusion then follows from part (b)

f Lemma 3.10.
Step 5: Proof of (13). Note that the stationary Gaussian process with correlation function

p,H (τ/p) has persistence exponent θ (C p,H )/p. We shall show that this sequence of correlation
functions, when p → ∞, converges to a non-integrable correlation function, and then invoke
part (a) of Lemma 3.10. Recall that

C p,H

(
τ

p

)
= e−(p+H )τ/p

∫ 1
0

∫ eτ/p

0 x p y p
|x − y|

2H−2dxdy∫ 1
0

∫ 1
0 x p y p|x − y|

2H−2dxdy
.

Clearly, the first term tends to e−τ . In the integral, we set x = 1 − u/p and y = 1 − v/p
nd obtain∫ 1

0

∫ eτ/p

0
x p y p

|x − y|
2H−2dxdy

= p−2H
∫ p

0

∫ p

(1−eτ/p)p
(1 − u/p)p(1 − v/p)p

|u − v|2H−2dudv.

herefore, as p → ∞

C p,H

(
τ

p

)
→ e−τ

∫
∞

0

∫
∞

−τ
e−ue−v

|u − v|2H−2dudv∫
∞

∫
∞ e−ue−v|u − v|2H−2dudv

=: C∞,H (τ ).

0 0
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We now claim that function C∞,H (.) is non-integrable. Indeed, denoting by K −1 the constant
in the denominator of C∞,H , we have, as τ → ∞,

τ 2−2H C∞,H (τ )

= K
∫

∞

0

∫
∞

0
e−ue−v

⏐⏐u − v

τ
− 1

⏐⏐⏐2H−2
dudv

→ K
∫

∞

0

∫
∞

0
e−ue−vdudv,

and so C∞,H (τ ) is regularly varying and non-integrable. This observation along with part (b)
of Lemma 3.2 shows that θ (C∞,H ) = 0. From this, the conclusion follows from part (a) of
Lemma 3.10, once we verify (19). But this follows on noting that C p,H (τ/p) ≥ e−

p+H
p τ .

Step 6: Proof of (14). We first claim that

lim sup
p↓−H

∫ 1

0

∫
∞

1
x p y p

|x − y|
2H−2dxdy < ∞. (47)

e first complete the proof of (14), deferring the proof of (47). To this effect, note that the
tationary Gaussian process with correlation function C p,H

(
τ

p+H

)
has persistence exponent

θ (C p,H )
p+H . We shall show that this sequence of correlation functions, when p ↓ −H , converges to

e−τ , which is the correlation function of an Ornstein–Uhlenbeck process with α = 1, satisfying
(20), by Remark 3.9).

For this purpose, first note that

lim
p↓−H

f p,H (1, 1) =
Γ (p + 1)Γ (2H − 1)
(p + H )Γ (p + 2H )

→ ∞.

Second, note that

f p,H (1, e
τ

p+H ) = f p,H (1, 1) +

∫ 1

0

∫ e
τ

p+H

1
x p y p

|x − y|
2H−2dxdy.

y (47), the second term remains bounded when p ↓ −H . Therefore,

C p,H

(
τ

p + H

)
= e−τ f p,H (1, e

τ
p+H )

f p,H (1, 1)
→ e−τ .

The conclusion follows by invoking Theorem 3.6, once we verify (18) and (19). Invoking (47)
we have C p,H (τ/(p+ H )) ≲H e−τ so that we get (18) via Remark 3.7. Further, (19) is obtained
from the observation that C p,H ( τ

p+H ) ≥ e−τ , and so (14) follows.
It thus remains to verify (47). To this effect we have∫ 1

0

∫
∞

1
x p y p

|x − y|
2H−2dxdy

=

∫ 1

0

∫ 2

1
x p y p(x − y)2H−2dxdy +

∫ 1

0

∫
∞

2
x p y p(x − y)2H−2dxdy

≤

∫ 1

0

∫ 2

1
y p(x − 1)2H−2dxdy +

∫ 1

0

∫
∞

2
x p y p(x − 1)2H−2dxdy

≤
1 [∫ 2

(x − 1)2H−2dx +

∫
∞

x p(x/2)2H−2dx
]

1 + p 1 2
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=
1

1 + p

[ 1
2H − 1

+ 22−2H
∫

∞

2
x p+2H−2dx

]
→

1
1 − H

[ 1
2H − 1

+ 22−2H
∫

∞

2
x H−2dx

]
,

hich is clearly finite as H − 2 < −1. This verifies (47), and hence completes the proof of
14). □

. Proof of the general tools

Throughout this section we carry out the proofs for T = R≥0, noting that the proof for N
s simpler, and follows by minor modifications of the arguments outlined.

roof of Lemma 3.2. The existence of θ (A, r ) follows from non-negativity of A(.) along with
lepian’s Lemma. Fixing a positive integer k, Slepian’s Lemma also gives that

P(sup
[0,T ]

Z (t) < r ) ≥ P( sup
[0,1/k]

Z (t) < r )⌈T ⌉k,

hich after taking logarithms, dividing by T , and taking the limit T → ∞ gives θ (A, r ) ≤

k logP(sup[0,1/k] Z (t) < r ), from which we get θ (A, r ) < ∞ if P(sup[0,1/k] Z (t) < r ) > 0 for
ome k. If there exists no such k ≥ 1, then P(sup[0,1/k] Z (t) < r ) = 0 for all k ≥ 1, which on
aking limits as k → ∞ and using continuity of sample paths gives P(Z (0) < r ) = 0, which
s a contradiction as Z (0) is a centered Gaussian.

Proof of (a). Fix a positive integer M , and set si := (M + 1)i for i ≥ 1. Thus with
N := ⌊

T
M+1⌋ we have

P( sup
t∈[0,T ]

Z (t) < r ) ≤ P( max
1≤i≤N

sup
[si −1,si ]

Z (t) < r ) ≤ P
(

max
1≤i≤N

∫ si

si −1
Z (t)dt < r

)
. (48)

et us denote ζ :=

(∫ 1
0

∫ 1
0 A(u − v)dudv

)1/2
. Setting X (i) := ζ−1

∫ si
si −1 Z (u)du for i ≥ 1, the

ast term in (48) is same as P(max1≤i≤N X (i) < ζ−1r ). The covariance matrix of the centered
aussian vector (X (1), . . . , X (N )) is given by the matrix B, where B(i, i) := 1, and for i < j ,

B(i, j) := ζ−2
∫ 1

0

∫ s j −si +1

s j −si

A(u − v)dudv = ζ−2
∫ 1

0

∫ s j−i +1

s j−i

A(u − v)dudv.

oting that s1 ≥ M + 1, this can be estimated as follows:

max
1≤i≤N

∑
j ̸=i

B(i, j) ≤ 2ζ−2
∫ 1

0

∫
∞

M+1
A(u − v)dudv ≤ 2ζ−2

∫
∞

M
A(u)du =: εM ,

here limM→∞ εM = 0, as
∫

∞

0 A(t)dt < ∞. Invoking Gershgorin’s circle theorem ([23, Thm
.1.1]) all eigenvalues of B lie within [1 − εM , 1 + εM ], and so we have

P( max
1≤i≤N

X (i) < ζ−1r ) =

∫
(−∞,ζ−1r )N e−x′ B−1x/2dx∫

(−∞,∞)N e−x′ B−1x/2dx

≤

(1 + εM

1 − εM

)N/2
P
(
N (0, 1) <

ζ−1r
√

1 − εM

)N
.
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Combining this with (48) we have the upper bound P(supt∈[0,T ] Z (t) < r ) ≤ βN
M with

βM :=

√
1 + εM

1 − εM
P
(
N (0, 1) <

ζ−1r
√

1 − εM

)
M→∞
→ P(N (0, 1) < ζ−1r ) < 1.

hus there exists an M such that βM < 1, and so θ (A, r ) ≥ −
1

M+1 logβM > 0, which
completes the proof of part (a).

Proof of (b). To begin setting I (T ) :=
∫ T

0 A(s)ds we claim the existence of a sequence of
increasing positive reals {Tk}k≥1 such that

lim
k→∞

I (Tk)
I (Tk/2)2 = 0. (49)

tep 1: We complete the proof of the lemma assuming (49) holds. To this effect, with T = Tk

and setting YT :=
∫ T

0 Z (t)dt we have

σ 2
T := Var(YT ) =

∫ T

0

∫ T

0
A(u − v)dudv = 2

∫ T

0
(T − u)A(u)du ≤ 2T I (T );

iving

P( sup
t∈[0,T ]

Z (t) < r ) ≥ P(YT < −δσT
√

T , sup
t∈[0,T ]

Z (t) < r )

= E
[
P
(

sup
t∈[0,T ]

Z (t) < r
⏐⏐⏐YT

)
1
{

YT ≤ −δσT
√

T
}]
. (50)

We now claim that given YT = y, {Z (t), t ≥ 0} is a Gaussian process with mean m(t)y and
ovariance C(t1, t2), where

m(t)y :=

∫ T
0 A(t − u)du

σ 2
T

y,

C(t1, t2) := A(t1 − t2) −

∫ T
0

∫ T
0 A(t1 − s1)A(t2 − s2)ds1ds2

σ 2
T

.

(51)

o derive the conditional mean in (51), fixing t ∈ [0, T ] the joint distribution of (Z (t), YT ) is
centered Gaussian vector with covariance matrix⎡⎣ 1

∫ T
0 A(t − u)du∫ T

0 A(t − u)du σ 2
T

⎤⎦ .
hus the conditional mean of Z (t) given YT = y is given by

0 +

∫ T
0 A(t − u)du

σ 2
T

y =

∫ T
0 A(t − u)du

σ 2
T

y,

s claimed in (51). Focusing on the conditional covariance in (51), fixing t1, t2 ∈ [0, T ] note
that [Z (t1), Z (t2), YT ] is a centered Gaussian vector with covariance matrix⎡⎢⎢⎢⎢⎣

1 A(t1 − t2)
∫ T

0 A(t1 − u)du

A(t1 − t2) 1
∫ T

0 A(t2 − u)du∫ T ∫ T 2

⎤⎥⎥⎥⎥⎦ .

0 A(t1 − u)du 0 A(t2 − u)du σT
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Thus the conditional covariance matrix of (Z (t1), Z (t2)) given YT = y is given by⎡⎣ 1 A(t1 − t2)

A(t1 − t2) 1

⎤⎦ −
1
σ 2

T

⎡⎢⎣
∫ T

0 A(t1 − u)du∫ T
0 A(t2 − u)du

⎤⎥⎦ [∫ T
0 A(t1 − u)du

∫ T
0 A(t2 − u)du

]
.

Also, the covariance term (which is the off-diagonal term above) equals

A(t1 − t2) −

∫ T
0 A(t1 − u)du

∫ T
0 A(t2 − v)dv

σ 2
T

,

thus verifying (51). On the set {YT ≤ −δσT
√

T }, we have

m(t)y =

∫ T
0 A(t − u)du

σ 2
T

y ≤ −
δ I (T/2)

√
T

σT
≤ −

δ I (T/2)
√

2I (T )
=: −KT , t ≥ 0.

e note that due to (49) we have KT → ∞ along the subsequence mentioned there. Therefore,
e can assume that KT + r > 0. This gives, on the set {YT ≤ −δσT

√
T },

P( sup
t∈[0,T ]

Z (t) < r |YT ) ≥ P
(

sup
t∈[0,T ]

{|Z (t) − m(t)YT |} < r + KT |YT

)
≥

⌈T ⌉∏
i=1

P
(

sup
t∈[i−1,i]

{|Z (t) − m(t)YT |} < r + KT |YT

)
, (52)

where the second inequality is by the Gaussian correlation inequality [30], also see [24,
Theorem 1]. Proceeding to estimate the right hand side above, first note that by (51) and
non-negative correlations, we have

Var
[

Z (t) − Z (s)
⏐⏐⏐YT

]
≤ Var(Z (t) − Z (s)),

which along with Sudakov–Fernique inequality ([1, Theorem 2.2.3]) gives

E
(

sup
t∈[i−1,i]

{Z (t) − m(t)YT }|YT

)
≤ E sup

t∈[i−1,i]
Z (t) = E sup

t∈[0,1]
Z (t) =: α < ∞, (53)

using the Borel–TIS inequality ([1, Thm 2.1.1]). Invoking Borel–TIS inequality we now get

P
(

sup
t∈[i−1,i]

{|Z (t) − m(t)YT |} > r + KT |YT

)
= 2P

(
sup

t∈[i−1,i]
{Z (t) − m(t)YT } > r + KT |YT

)
≤ 2e−

1
2 (r+KT −α)2

,

where we used (53) and that fact that KT + r − α > 0 along the subsequence mentioned in
(49), because KT → ∞ along that subsequence. The last relation, along with (52) gives

P( sup
t∈[0,T ]

Z (t) < r |YT ) ≥

[
1 − 2e−

1
2 (r+KT −α)2

]⌈T ⌉

.

Combining with (50), this gives

P( sup
t∈[0,T ]

Z (t) < r ) ≥

[
1 − 2e−

1
2 (r+KT −α)2

]⌈T ⌉

P(YT ≤ −δσT
√

T ),

hich on taking log, dividing by T , and letting T → ∞ along the sequence {Tk}k≥1 gives
−θ (A, r ) ≥ −

δ2

2 , where we have used (49) to conclude that KT → ∞. The desired conclusion
hen follows since δ > 0 is arbitrary.
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Step 2: We prove (49). Assume by way of contradiction that (49) does not hold, which
mplies lim infT →∞

I (T )
I (T/2)2 > 0. Thus there exist ε > 0 and T0 > 0 such that we have

I (T ) ≥ ε I (T/2)2, ∀T ≥ 2T0. (54)

Using the assumption that I diverges, we can now make T0 even larger such that ε I (T0) > 2.
urther, by iterating (54), we obtain

I (2k T0) ≥ ε1+2+22
+2k−1

I (T0)2k
≥ (ε I (T0))2k

,

hich along with the trivial bound I (T ) ≤ T and the choice of T0 (namely, ε I (T0) ≥ 2) gives
k T0 ≥ 22k

. But this is a contradiction, as the right hand side grows much faster than the left
and side as k → ∞. This completes the proof of (49). □

roof of Theorem 3.3. If
∫

∞

0 A(t)dt = ∞, then using Lemma 3.2 part (ii) we have
(A, r ) = 0 for every r ∈ R, and so continuity is trivial. So without loss of generality assume

hat
∫

∞

0 A(t)dt < ∞. Use continuity of sample paths to note that

P( sup
t∈[0,M]

Z (t) = r ) = P( sup
t∈[0,M]∩Q

Z (t) = r ) ≤

∑
q∈[0,M]∩Q

P(Z (q) = r ) = 0,

nd so the distribution function of supt∈[0,M] Z (t) is continuous. For showing left continuity
f r ↦→ θ (A, r ), fixing η < 0,M > 0 using stationary and non-negativity of the correlation
unction along with Slepian’s Lemma gives

P( sup
t∈[0,T ]

Z (t) < r + η) ≥ P( sup
t∈[0,M]

Z (t) < r + η)⌈
T
M ⌉,

hich on taking log, dividing by T and letting T → ∞ gives

−θ (A, r + η) ≥
1
M

logP( sup
t∈[0,M]

Z (t) < r + η).

n letting η → 0 this gives

lim sup
η↑0

θ (A, r + η) ≤ −
1
M

logP( sup
t∈[0,M]

Z (t) < r ),

here we use the fact that the distribution function of supt∈[0,M[ Z (t) is continuous. Letting
M → ∞ then gives

lim sup
η↑0

θ (A, r + η) ≤ θ (A, r ),

nd so we have verified left continuity.
We now proceed to verify right continuity, which is the main contribution of this theorem. To

his effect, recall from (51) in the proof of part (b) of Lemma 3.2 that given YT =
∫ T

0 Z (t)dt =

y, the conditional distribution of {Z (t), t ≥ 0} is a Gaussian process with mean

m(t)y =

∫ T
0 A(t − u)du

σ 2
T

y,

nd covariance

C(t1, t2) := A(t1 − t2) −

∫ T
0

∫ T
0 A(t1 − s1)A(t2 − s2)ds1ds2

σ 2
T

, σ 2
T := Var(YT )

= 2
∫ T

(T − s)A(s)ds.

0
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Letting Z̄m̄(t) denote a Gaussian process on [0, T ] with mean function m̄(.) and covariance
(., .) fixing K < ∞ we have

P( sup
t∈[0,T ]

Z (t) < r + η, YT > −K T ) =
1√

2πσ 2
T

∫
∞

−K T
P( sup

t∈[0,T ]
Z̄m(t)y < r + η)e

−
y2

2σ2
T dy

=
1√

2πσ 2
T

∫
∞

−K T
P( sup

t∈[0,T ]
Z̄m(t)y−η < r )e

−
y2

2σ2
T dy.

ince

m(t) =

∫ T
0 A(t − u)du

2
∫ T

0 (T − u)A(u)du
≤

2
∫

∞

0 A(t)dt

T
∫ T/2

0 A(t)dt
,

here exists C > 0 such that for all T large enough we have supt∈[0,T ] m(t) ≤
C
T , and

consequently

P( sup
t∈[0,T ]

Z̄m(t)y−η < r ) ≤ P( sup
t∈[0,T ]

Z̄m(t)(y−
ηT
C ) < r ),

hich gives

P( sup
t∈[0,T ]

Z (t) < r + η, YT > −K T ) ≤
1√

2πσ 2
T

∫
∞

−K T
P( sup

t∈[0,T ]
Z̄m(t)(y−

ηT
C ) < r )e

−
y2

2σ2
T dy.

hanging variables to y′
= y −

ηT
C we get

P( sup
t∈[0,T ]

Z (t) < r + η, YT > −K T ) ≤
1√

2πσ 2
T

∫
∞

−K T −
ηT
C

P( sup
t∈[0,T ]

Z̄m(t)y′ < r )e
−

(y′
+
ηT
C )2

2σ2
T dy′

≤e
ηT 2

Cσ2
T

(K+
η
C ) 1√

2πσ 2
T

∫
∞

−∞

P( sup
t∈[0,T ]

Z̄m(t)y′ < r )e
−

y′2

2σ2
T dy′

=e
ηT 2

Cσ2
T

(K+
η
C )
P( sup

t∈[0,T ]
Z (t) < r ).

This gives

P( sup
t∈[0,T ]

Z (t) < r + η) ≤P( sup
t∈[0,T ]

Z (t) < r + η, YT > −K T ) + P(YT < −K T )

≤e
ηT 2

Cσ2
T

(K+
η
C )
P( sup

t∈[0,T ]
Z (t) < r ) − P(YT < −K T ),

r equivalently,

P( sup
t∈[0,T ]

Z (t) < r + η) + P(YT < −K T ) ≤ e
ηT 2

Cσ2
T

(K+
η
C )
P( sup

t∈[0,T ]
Z (t) < r ). (55)

n application of monotone convergence theorem gives

lim
σ 2

T
= 2

∫ T (
1 −

s )
A(s)ds → 2

∫
∞

A(s)ds =: λ > 0.

T →∞ T 0 T 0
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Thus, on taking log, dividing by T , and letting T → ∞ in (55) gives

max
{
−θ (A, r + η),−

K 2

2λ

}
≤

η

Cλ

(
K +

η

c

)
− θ (A, r ),

which on letting η ↓ 0 followed by K → ∞ gives

lim inf
η↓0

θ (A, r + η) ≥ θ (A, r ),

which verifies right continuity, and hence completes the proof of the theorem. □

Proof of Lemma 3.4. Step 1: Interpolating between Yn(.) and Zn(.). Given a measurable set
D ⊆ R of positive Lebesgue measure, define

gn(γ, D) := log
∫

Dn
exp

{
−

1
2

x′

(
(1 − γ )A−1

n + γ B−1
n

)
x
}

dx, γ ∈ [0, 1],

nd note that

∂γ gn(γ, D) =
1
2
E

(
X ′

n,γ (A−1
n − B−1

n )Xn,γ

⏐⏐⏐Xn,γ (i) ∈ D, 1 ≤ i ≤ n
)
,

here {Xn,γ (i)}1≤i≤n is a centered Gaussian vector with inverse covariance matrix Σ−1
n,γ :=

1 − γ )A−1
n + γ B−1

n . Note that Σn,γ is positive definite (because all eigenvalues are bounded
way from zero, by (15)) and symmetric, so that indeed it is a proper covariance matrix of a
aussian vector. By construction, we have Xn,0(.) d

= Zn(.) and Xn,1(.) d
= Yn(.), and so with

Dr := (−∞, r ) we have

| logP( max
1≤i≤n

Yn(i) < r ) − logP( max
1≤i≤n

Zn(i) < r )|

= |gn(1, Dr ) − gn(1, D∞) − gn(0, Dr ) + gn(0, D∞)|

≤ sup
γ∈[0,1]

|∂γ gn(γ, Dr )| + sup
γ∈[0,1]

|∂γ gn(γ, D∞)|

≤
1
2
∥A−1

n − B−1
n ∥2 sup

γ∈[0,1]
E (

n∑
i=1

Xn,γ (i)2
|Xn,γ (i) ∈ Dr , 1 ≤ i ≤ n)

+
1
2
∥A−1

n − B−1
n ∥2 sup

γ∈[0,1]
E (

n∑
i=1

Xn,γ (i)2
|Xn,γ (i) ∈ D∞, 1 ≤ i ≤ n). (56)

e now claim that for any D we have

lim sup
n→∞

sup
γ∈[0,1]

1
n
E (

n∑
i=1

Xn,γ (i)2
|Xn,γ (i) ∈ D, 1 ≤ i ≤ n) < ∞. (57)

eferring the proof of (57), use (15) along with ∥An − Bn∥2 → 0 to conclude that ∥A−1
n −

B−1
n ∥2 → 0 (use that A−1

n − B−1
n = A−1

n (Bn − An)B−1
n ). This observation along with (56) and

57) gives the desired conclusion.
Step 2: We show (57). First, we use (15) to get the existence of positive reals λ1, λ2 free of

such that all eigenvalues of A−1
n and B−1

n lie within the interval [λ1, λ2]. In particular this
mplies that the eigenvalues of Σ := (1 − γ )A−1

+ γ B−1 also lie in the same interval, and
n,γ n n
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so fixing K > 0 we have

E
( n∑

i=1

Xn,γ (i)2
|Xn,γ (i) ∈ D, 1 ≤ i ≤ n

)
≤ K n + E

( n∑
i=1

Xn,γ (i)21
{ n∑

i=1

Xn,γ (i)2 > K n
}⏐⏐⏐Xn,γ (i) ∈ D, 1 ≤ i ≤ n

)

≤ K n +

E
(∑n

i=1 Xn,γ (i)21
{∑n

i=1 Xn,γ (i)2 > K n
})

P
(

Xn,γ (i) ∈ D, 1 ≤ i ≤ n
)

≤ K n +

√
E

[(∑n
i=1 Xn,γ (i)2

)2]√
P
(∑n

i=1 Xn,γ (i)2 > K n
)

P
(

Xn,γ (i) ∈ D, 1 ≤ i ≤ n
) ,

nd so it suffices to show that

sup
γ∈[0,1]

√
E

[(∑n
i=1 Xn,γ (i)2

)2]√
P
(∑n

i=1 Xn,γ (i)2 > K n
)

P
(

Xn,γ (i) ∈ D, 1 ≤ i ≤ n
) ≤ e−C(K )n, (58)

ith C(K ) > 0 for K large enough.
We will now bound each of the terms on the left hand side of (58). To begin, note that

P
( n∑

i=1

Xn,γ (i)2 > K n
)

=

∫
{
∑n

i=1 x2
i >K n}

e−
1
2 x′Σ−1

n,γ xdx∫
Rn e−

1
2 x′Σ−1

n,γ xdx

≤

∫
{
∑n

i=1 x2
i >K n}

e−
λ1
2 x′xdx∫

Rn e−
λ2
2 x′xdx

=

(λ2

λ1

) n
2 P(

n∑
i=1

ξ 2
i > λ1 K n)

≤

(λ2

λ1

) n
2
(
E [eξ

2/4]
)n

e−λ1 K n/4

≤ e−C̃(K )n, (59)

here the (ξi ) are i.i.d. N (0, 1) and where C̃(K ) can be made arbitrarily large by making K
arge. A similar calculation gives

P
(

Xn,γ (i) ∈ D, 1 ≤ i ≤ n
)

=

∫
Dn e−

1
2 x′Σ−1

n,γ xdx∫
Rn e−

1
2 x′Σ−1

n,γ xdx

≥

∫
Dn e−

λ2
2 x′xdx∫

Rn e−
λ1
2 x′xdx

=

(λ1
) n

2 P(N (0, 1) ∈

√
λ2 D)n, (60)
λ2
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which is at most an exponentially decreasing factor. Finally we are using the Cauchy–Schwarz
inequality

E
[( n∑

i=1

Xn,γ (i)2
)2]

≤ n
n∑

i=1

E Xn,γ (i)4
≤

3n2

λ2
1
, (61)

hich increases polynomially in n. Combining (59), (60), (61) and making K sufficiently large
o compensate the other exponential factors gives (58), and hence completes the proof of the
emma. □

roof of Lemma 3.5. To begin, use the uniform convergence of correlation functions to
onclude that for any positive integer L we have

ξk,L := sup
s∈N0

sup
(x1,...,xL )∈RL

⏐⏐⏐P(Zk(s + i) < xi , i ≤ L) − P(Z∞(i) < xi , i ≤ L)
⏐⏐ k→∞

→ 0. (62)

Step 1: Lower bound. Fix a positive integer M and use Slepian’s lemma and non-negative
correlations gives

P( max
1≤i≤n

Zk(i) < r ) ≥

⌈
n
M ⌉∏

a=1

P( max
1≤i≤M

Zk((a − 1)M + i) < r )

≥

[
P( max

1≤i≤M
Z∞(i) < r ) − ξk,M

]⌈
n
M ⌉

,

here the last inequality uses (62) with L = M . Taking log, dividing by n, and letting n → ∞

on both sides of the above equation gives

lim inf
k,n→∞

1
n

logP( sup
1≤i≤n

Zk(i) < r ) ≥
1
M

logP( sup
1≤i≤M

Z∞(i) < r ). (63)

he lower bound of (17) follows from this on letting M → ∞.
Step 2: Introducing a perturbation. For the upper bound of (17), let W1, . . . ,Wn be i.i.d.
(0, 1), independent of {Zk(t)}t≥0. Then for any h > 0 we have, by the independence of the

Wi } and {Zk(t)},

P( max
1≤i≤n

Zk(i) < r ) ≤
P(max1≤i≤n{Zk(i) + hWi } < r +

√
h)

P(W1 < h−1/2)n
,

hich on taking log, dividing by n, and letting n, k → ∞ gives

lim sup
k,n→∞

1
n

logP( sup
1≤i≤n

Zk(i) < r ) ≤ lim sup
k,n→∞

1
n

logP( max
1≤i≤n

{Zk(i) + hWi } < r +
√

h)

− logP(W1 < h−1/2). (64)

Step 3: Introducing blocks. Fix positive integers M,m with M > m, and let pi := i(m + M)
or i ≥ 1. Let N := ⌊

n
M+m ⌋ denote the largest integer i such that pi ≤ n. Set Ia := [pa −M, pa]

or 1 ≤ a ≤ N , and note the trivial inequality:

P( max
1≤i≤n

{Zk(i) + hW (i)} < r +
√

h) ≤ P( max
1≤a≤N

max
i∈Ia

{Zk(i) + hW (i)} < r +
√

h). (65)

et {Yk(i)}i∈Ia ,1≤a≤N be a centered Gaussian vector such that the collection of vectors
{Yk(i)}i∈Ia , 1 ≤ a ≤ N ) are mutually independent, with

{Y (i)} d
= {Z (i)} .
k i∈Ia k i∈Ia
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Denoting An,k and Bn,k,M,m to be the covariance matrices of {Zk(i) + hW (i)}i∈Ia ,1≤a≤N and
Yk(i) + hW (i)}i∈Ia ,1≤a≤N , respectively, we have

max
i∈

⋃N
a=1 Ia

N∑
b=1

∑
j∈Ib

|An,k(i, j) − Bn,k,M,m(i, j)| = max
1≤a≤N

max
i∈Ia

N∑
b ̸=a

∑
j∈Ib

Ak(i, j)

≤ max
1≤i≤n

∑
j :| j−i |≥m

Ak(i, j)

≤ 2
∞∑

i=m

gk(i) =: εm,k,

here limm→∞ limk→∞ εm,k = 0 using (16). Invoking the Gershgorin circle theorem ([23, Thm
.1.1]), this gives

lim sup
m→∞

lim sup
M→∞

lim sup
k,n→∞

∥An,k − Bn,k,M,m∥2 = 0. (66)

lso note that

lim sup
k,n→∞

max
1≤i≤n

n∑
j=1

An,k(i, j) ≤ 2 lim sup
k→∞

∞∑
τ=0

gk(τ ),

hich is finite using (16), and consequently we have

lim sup
k,n→∞

∥An,k∥2 + lim sup
k,n→∞

∥Bn,k,M,m∥2 < ∞. (67)

iven that the eigenvalues of An,k and Bn,k,M,m are bounded below by h > 0, we see that (15)
s satisfied. Therefore, with (66) and (67), an application of Lemma 3.4 gives

lim sup
m→∞

lim sup
M→∞

lim sup
k,n→∞

1
n

⏐⏐⏐ logP( max
1≤a≤N

max
i∈Ia

{Zk(i) + hW (i)} < r +
√

h)

− logP( max
1≤a≤N

max
i∈Ia

{Yk(i) + hW (i)} < r +
√

h)
⏐⏐⏐ = 0. (68)

Step 4: Decoupling the blocks. By definition of {Yk(.)} we have

P( max
1≤a≤N

max
i∈Ia

{Yk(i) + hW (i)} < r +
√

h)

=

N∏
a=1

P(max
i∈Ia

{Zk(i) + hW (i)} < r +
√

h)

≤

[
P( max

1≤i≤M
{Z∞(i) + hW (i)} < r +

√
h) + ξk,M

]N
,

where the last inequality uses (62) with L = M . On taking log, dividing by n, and letting
n, k → ∞ on both sides of the above equation we get

lim sup
k,n→∞

1
n

logP( max
1≤a≤N

max
i∈Ia

{Yk(i) + hW (i)} < r +
√

h)

≤
1

M + m
logP( max

1≤i≤M
{Z∞(i) + hW (i)} < r +

√
h). (69)

tep 5: Undoing the perturbation. For analyzing the right hand side of (69), set S := {i ∈

1, . . . ,M} : |W (i)| > h−1/2
}. Fix 0 < t < 1/2. Then, denoting the set of all p ordered tuples
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w
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s

C

f

P
f

U
(

of distinct integers in {1, . . . ,M} by [M]p we have

P( max
1≤i≤M

{Z∞(i/ℓ) + hW (i)} < r +
√

h)

≤ P(|S| > Mt) + P(|S| ≤ Mt, max
1≤i≤M

{Z∞(i) + hW (i)} < r +
√

h)

≤ P(|S| > Mt) +

M∑
p=⌈M(1−t)⌉

∑
(i1,...,i p)∈[M]p

P( max
1≤ j≤p

Z∞(i j ) < r + 2
√

h)

≤ P(|S| > Mt) +

M∑
p=⌈M(1−t)⌉

∑
(i1,...,i p)∈[M]p

P(max1≤i≤M Z∞(i) < r + 2
√

h)

P(Z∞(0) < r + 2
√

h)M−p

≤ P(|S| > Mt) + M
(

M
⌈M(1 − t)⌉

)
P(max1≤i≤M Z∞(i) < r + 2

√
h)

P(Z (0) < r + 2
√

h)Mt
, (70)

here the inequality in the penultimate line uses Slepian’s inequality along with non-negative
orrelations. We will now analyze both the terms on the right hand side of (70) separately.
ince |S| ∼ Bin(M,P(|W1| > h−1/2)), for every t > 0 we have

lim sup
h→0

lim sup
M→∞

1
M

logP(|S| > Mt) = −∞. (71)

lso using the asymptotics of binomial coefficients gives

lim
M→∞

log
( M
⌈M(1−t)⌉

)
M

= −t log t − (1 − t) log(1 − t),

o that

lim sup
t→0

lim sup
M→∞

1
M

log

{
M

(
M

⌈M(1 − t)⌉

)
P(max1≤i≤M Z∞(i) < r + 2

√
h)

P(Z∞(0) < r + 2
√

h)Mt

}
≤ lim

M→∞

1
M

logP( max
1≤i≤M

Z∞(i) < r + 2
√

h). (72)

ombining (64), (65), (68), (69), (70), (71), and (72) and taking limits in the order n, k → ∞,
M → ∞, m → ∞, h → 0 and then t → 0 gives

lim sup
k,n→∞

1
n

logP( sup
1≤i≤n

Zk(i) < r ) ≤ lim
h→0

lim
M→∞

1
M

logP( max
1≤i≤M

Z∞(i) < r + 2
√

h),

rom which the upper bound follows using Theorem 3.3. □

roof of Theorem 3.6. Under the assumption (19), uniform convergence of correlation
unctions gives

ξk,L := sup
s∈N0

sup
x∈R

⏐⏐⏐P( sup
τ∈[0,L]

Zk(s + τ ) < x) − P( sup
τ∈[0,L]

Z∞(τ ) < x)|
k→∞
→ 0. (73)

sing this, repeating arguments similar to the proof of the lower bound in the discrete case
cf. (63)) gives

lim inf
k,T →∞

1
T

logP( sup
t∈[0,T ]

Zk(t) < r ) ≥
1
M

logP( sup
t∈[0,M]

Z∞(t) < r ). (74)

The lower bound of (21) follows from this on letting M → ∞.
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For the upper bound of (21), assume without loss of generality that T is an integer. Fixing
positive integer ℓ and setting n = T ℓ we have the trivial upper bound:

P( sup
t∈[0,T ]

Zk(t) < r ) ≤ P( max
1≤i≤n

Zk(i/ℓ) < r ),

here the correlation of the discrete time Gaussian process {Zk(i/ℓ)}i≥1 converge to that of
Z∞(i/ℓ)}i≥1. Also {Zk(i/ℓ)}i≥1 satisfies (16) by assumption (18), and so an application of
emma 3.5 gives

lim sup
k,T →∞

1
T

logP( sup
t∈[0,T ]

Zk(t) < r ) ≤ lim sup
T →∞

1
T

logP( max
1≤i≤T ℓ

Z∞(i/ℓ) < r ). (75)

rom this the upper bound of (21) follows on letting ℓ → ∞ and invoking (20). This completes
he proof of the lemma. □

roof of Lemma 3.10. Proof of (a). This follows on noting that the lower bound proof of
heorem 3.6 only uses (19), cf. (74).

Proof of (b). This follows on noting that the upper bound proof of Theorem 3.6 only uses
18) up to the step (75), giving

lim sup
k,T →∞

1
T

logP( sup
t∈[0,T ]

Zk(t) < r ) ≤ lim sup
T →∞

1
T

logP( max
1≤i≤T ℓ

Z∞(i/ℓ) < r )

= ℓ logP(N (0, 1) < r ),

here the last equality uses the fact that the limiting process is white noise. The desired
onclusion then follows on letting ℓ → ∞.
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