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Abstract

With {£;};>0 being a centered stationary Gaussian sequence with non-negative correlation function
p(i) :=E[£§;] and {o(i)};>1 a sequence of positive reals, we study the asymptotics of the persistence
probability of the weighted sum Zle o(i)é;, £ > 1. For summable correlations p, we show that the
persistence exponent is universal. On the contrary, for non-summable p, even for polynomial weight
functions o (i) ~ iP the persistence exponent depends on the rate of decay of the correlations (encoded
by a parameter H) and on the polynomial rate p of o. In this case, we show existence of the persistence
exponent O(H, p) and study its properties as a function of (p, H). During the course of our proofs,
we develop several tools for dealing with exit problems for Gaussian processes with non-negative
correlations — e.g. a continuity result for persistence exponents and a necessary and sufficient criterion
for the persistence exponent to be zero — that might be of independent interest.
© 2023 Elsevier B.V. Allrights reserved.
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1. Introduction

The study of the tail behavior of the first passage time of a random walk ) " | X; with
independent and identically distributed increments {X;} above (or below) a level x € R,
k
P( max in < Xx), as n — 00,

1<k=<n
i=1
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is a classical topic in probability theory. This type of problems is studied both for discrete and
continuous time [8,15,16,21,32]; and due to its fundamental nature it has numerous applications
in finance, insurance, queueing, and other subjects. In a recent work, Denisov, Sakhanenko and
Wachtel [14] study the case when the increments {X;} are independent, but not necessarily
identically distributed. When the random variables have finite variance, Denisov et al. show
that the properly time-rescaled version of the corresponding random walk (with non-identically
distributed increments) has the same tail behavior of the first passage time as the classical (i.i.d.)
random walk. A particular case is when X, = o(n)é, with i.i.d. {§,} with E&; = 0, where one
has (cf. Theorem 2 in [14])

k
2 x
P(max ;«:ma <) \[T prons M
where s%(n) =Y ", 0*(n).

The purpose of the present paper is to study the corresponding result in the case of correlated
Gaussian random variables. The picture is much more diverse, and as we shall see, the type
of behavior of the first passage time (1) strongly depends on the correlations as well as the
weights.

To fix the notation for this paper, let {§;};>0 be a centered stationary Gaussian sequence with
Eéiz = 1 and non-negative correlation function p(i) := E §y§;. Let {o(i)};> be a sequence of
positive real numbers. Define a centered Gaussian process {S¢}¢>0 by setting

¢
Se=Y ok, £>0.
i=1

In this paper, we are interested in studying the asymptotics of the persistence probability
for the sequence {S;},>0, defined by

g = P(max S, < 0), as n — oo,
1<t<n

for a wide class of choices of o(.) and p(.).

We will find that for summable p the persistence probability is universally determined only
by o via the function s?(n) := Y |_, 0*(i) and the behavior resembles the independent case
(1). Contrary to this, for non-summable correlations p, the picture is significantly richer. Here,
we study the case of polynomial weights o (i) ~ i” and polynomial correlations p(i) ~ ki*"=2
with H € (1/2,1) and H 4+ p > 1/2. In this case, we show the existence of the persistence
exponent O(H, p) and its limiting behavior when p or/and H approach the natural boundaries
of their ranges.

Let us briefly comment on the related literature. In the case of i.i.d. random walks,
there is a huge literature on first passage times, both classical (see already [21]) and recent
(see [7] for a review). In the independent, but non-identically distributed case, an early work
is [2], before [14] gave an essentially complete solution to the problem. In the correlated
but unweighted case (0 = 1), one has to mention the works [3,4,26]. To the knowledge of
the authors, no results seem available in the literature when the increments are correlated
and weighted random variables. For general background on persistence problems and their
significance in theoretical physics, we refer to the surveys [10,27,31] (for a theoretical physics
point of view) and [7] (for a review of the mathematical literature).

This paper is structured as follows. In Section 2, we state our main results, distinguishing
the case of summable and non-summable correlations. Section 3 is devoted to a few tools for
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non-exit problems for stationary Gaussian processes with non-negative correlations that might
be of independent interest. The proof of the universal result in the summable case is given in
Section 4, while the proofs for the results in the non-summable case are given in Section 5.
Finally, Section 6 contains the proofs of the general tools from Section 3.

2. Main results

2.1. A universal result for summable correlations

We first study the case when the correlation p(.) is summable, i.e.

> Pl < 0. @
i=0
We will also make the following three assumptions on the sequence of weights o (.):
lim s(n) = oo, 3)
n—00
14
im 20O 0 franes 1 (4)

n—00 o’(n)
and there exists a C < oo depending on o such that for all m > n we have

om) _ o)

s(m) —  s(n)

Then we can formulate the main result in the summable case.

&)

Theorem 2.1. Let o(.) satisfy (3), (4), and (5). Then for any correlation function p(.) satisfying
(2) we have

. logg,
lim =
n—oo log s(n)

Note that the order of log persistence only depends on o (through the function s(.)), and
is hence independent of p(.). The reason for the universality in the above theorem is that the
limiting process which governs the exponent always turns out to be the Ornstein—Uhlenbeck
process.

Below we give a list of common choices of weight functions for which Theorem 2.1 holds.
We use the notation f(i) ~ g(i) to denote lim; o, f(i)/g(i) = 1. In all cases, (3), (4), and (5)
can be checked relatively easily, possibly using [9].

Examples. (i) Suppose o (i) ~ i? where p > —1/2, where one has s*(n) ~ n*?*!1/2p + 1),
so that Theorem 2.1 gives

. loggn 1
1 = — — ). 6
nl)n(;lo logn <p+ 2) ©)

(ii) More generally, suppose o (.) is a regularly varying function of order p > —1/2. In this
case one shows that s2(n) ~ no2(n)/(2p + 1), so that Theorem 2.1 gives again (6).
(iii) Suppose o (i) ~ i~!/? so that s*>(n) ~ logn and by Theorem 2.1

. logg, 1
lim ——— = ——

n—oo loglogn 2
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(iv) Suppose o (i) ~ e’ for some p € (0,1) and y > 0. In this case s2(n) ~
n'=Po%(n)/(2yp) and Theorem 2.1 then gives

. logg,
lim —— = —
n—oo npb
We now turn our attention to the assumptions on the weight sequence o(.) made in
Theorem 2.1. Our first proposition shows that without (3) the conclusion of Theorem 2.1 does
not hold. In this case the persistence probability does not go to 0 with n, but instead converges

to some number between (0, 1), which is not universal and depends both on p(.) and o (.).

Proposition 2.2. If lim, o s*(n) = Y 1o, 0%(i) < oo (i.e. (3) does not hold), then for p(.)
satisfying (2) we have lim,_, », g, = q, for some q € (0, 1), where q depends on both p and
o.

Our second proposition shows that (4) is necessary for Theorem 2.1, as can be seen from a
counterexample with exponential weights. In this case the limiting exponent depends on both
o and p.

Proposition 2.3. Suppose o (i) = e* for some o > 0, and let p(.) satisfy (2). Then we have

. 1
lim,— o0 ﬁ)gg"y;‘ = —04(Dy.,), where

1
04(Dy,p) = — lim —loglP(max Z,(¢) < 0) € (0, c0),
n—-oon 1<t<n

where {Z,(£)}e>1 is a discrete time centered stationary Gaussian sequence with correlation
function

Y g Tl — j— 1)
Ym0 Hp — )

Dy () =

Remark 2.4. It is unclear whether condition (5) of Theorem 2.1 is actually necessary or
whether it is an artifact of our proof technique. We note that assumptions (3) and (4) already
imply that the sequence {‘S’(("Z‘))} converges to 0; and assumption (5) demands that this sequence
is eventually non-increasing up to a universal constant. Besides being a natural regularity
condition, (5) does hold for a lot of natural choices of weight functions o, as can be seen

from the above examples.

2.2. The non-summable case

We will now study the case when the correlation function p(.) is not summable. In particular,
we will assume that there exist k > 0 and H € (1/2, 1) such that
fim 29 _ %)

i—00 i2H72

Note that (7) implies that p is not summable. In this case, the persistence exponent is no longer
governed by the Ornstein—Uhlenbeck process as in Theorem 2.1, but instead heavily depends
on the choice of p and . We will demonstrate this by assuming that o satisfies
lim @ =1, 8)
i—»oo [P
and showing that the persistence exponent depends on both p and H. To introduce the limiting
process, we need the following definition.
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Definition 2.5. For H € (1/2,1), p + H > 0 define the function f, gz : (0, 00)? > (0, 00)
by setting

a b
fp.ula,b) = / / xPyPlx — y*H2dxdy.
o Jo
The function f, y(.) is well defined for (p, H) with p + H > 0 because
fp.u(a,b) < f, y(max(a, b), max(a, b)) = max(a, b)****# £, y(1, 1) < oo,

by Selberg’s integral formula (cf. [22, (1.2)]).

Definition 2.6. Define the correlation function of a stationary process on [0, c0) by setting

—t(p+H) fp,H(la et)

. 9
Jp.u(1, 1) ®

Cou(t)=e

Remark 2.7. For a fractional Brownian Motion B¥, define:

T

Z(t) = e—<P+H>f/ xPdBR(x), 1 eR,
0

cf. [28] for the definition of a stochastic integral w.r.t. FBM. Then it can be checked that the
function given in (9) is the correlation function of Z. In particular, this shows that C,, y is
indeed a correlation function.

Definition 2.8. Given a non-negative correlation function A(.) on [0, c0), let {Z(¢),t > 0} be a
centered stationary Gaussian process with A(.) as its correlation function, and let 8(A) € [0, oo]
be defined as

1
0(A) := — lim —logP( sup Z(¢) < 0),
T—oo T 1€[0,7]

where the existence of the limit follows by Slepian’s lemma and subadditivity.

We can now formulate the second main result of this paper, which handles the non-summable
case.

Theorem 2.9. Let o(.) and p(.) satisfy (7) and (8), respectively, for some k > 0, and (p, H)
such that H € (1/2,1), p+ H > 0. Then we have

. loggy
lim
n—00 logn

=—0(Cp.n),
where Cp, y is as in (9). Further, the exponent 8(p, H) := 0(C, g) lies in (0, 00).

We remark that in the case p = 0, when S, = Zf:l &;, the results of [3,4,26] imply
that 6(0, H) = 1 — H. The limiting process in this case is the (exponentially time-changed)
fractional Brownian motion, for which the exponent was obtained in [29].

There seems to be no way to obtain the exponent 6(p, H) explicitly for any other (p, H)
presently. This is in contrast to the summable correlation case, where for the choice o (i) ~ i”
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the exponent equals p + 1/2, see (6). Our next theorem explores some properties of the
persistence exponent 6(p, H) as p and H vary.

Theorem 2.10. The exponent 0(p, H) of Theorem 2.9 is continuous jointly in (p, H) on the
domain H € (1/2,1), p+ H > 0. It further satisfies

. 0(p, H)
1 =1 -1 1
I}rTr{ 11 for p > —1, (10)
1 1
lim 6(p, H) = p + =, for p>——, (11)
Hi% 2 2
lim 6(p, H) = o0, (12)
p—>00
o(p, H
jim 2P H) _ (13)
p—>00 p
0(p, H
im 2@y (14)
p\-H p+ H

In particular, 6(p, H) = p + % is contradicted by (10), (13), or (14) as well as 6(0, H) =
1—H.

Remark 2.11. It would be interesting to see if one can obtain sharper estimates than the ones
provided in (12) and (13). Heuristic calculations suggest that as p — oo one has

P S 0(p. H) S p** log p.

3. General tools

In this section, we state a few general results on persistence of Gaussian processes which
we will apply in the sequel, and some of which may be of independent interest. Almost all our
results apply for both discrete time and continuous time Gaussian processes, with time index
set N:= {1, 2, ...} and R := [0, co) respectively. For unifying the statements, we will denote
the time index set by T, which is either N or R. Also we will use x to denote the counting
measure if T = N, and the Lebesgue measure if T = R>(. We will also assume throughout
that the sample paths of the Gaussian process are continuous almost surely on T, so that the
supremum over compact sets in T is a well defined random variable. If T = N, then continuity
holds vacuously, as any function on N is continuous.

Throughout this section, let A(.) be a non-negative correlation function on T, and let
{Z(t),t € T} be a centered stationary Gaussian process with correlation function A(.).

We first state a lemma which gives a necessary and sufficient condition in full generality for
truly exponential decay of the persistence probability for stationary Gaussian processes with
non-negative correlations. There are sufficient conditions in the literature for truly exponential
decay (cf. [12,17,18,20]), but in our understanding none of them are both necessary and
sufficient.

Definition 3.1. For any r € R let
1
0(A,r)=— lim —logP( sup Z()<r),
T—oo T £€[0,T)NT
As before, existence of the limit follows by Slepian’s lemma and subadditivity.
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Lemma 3.2. Assume that Z has continuous sample paths almost surely and that A(.) is
non-negative.

(a) IffT A()u(dt) < oo, then B(A,r) € (0, 00) for every r € R.
(b) IffT A(t)u(dt) = oo, then O(A,r) =0 for every r € R.

The second result proves a continuity in levels for processes with non-negative correlations.

Theorem 3.3. The function r — 0(A, r) is continuous, i.e. the exponent is continuous in its
levels.

A previous result in this direction is that of [25, Theorem 3.1], who showed continuity of
the exponent under the assumption that the correlation function p(.) is strictly decreasing. More
recently, [19, Lemma 1.1] proves a significantly improved version of continuity in levels, which
allows for negative correlations, at the expense of mild integrability assumptions on the spectral
measure. Theorem 3.3 shows that for non-negative correlation functions, no extra assumption
on the spectral measure is necessary for continuity in levels.

We will now focus on comparing persistence of different processes. In this direction, we
first state a lemma which allows us to compare persistence of two Gaussian vectors in R”.

Lemma 3.4. Suppose {Z,(i)}h<i<n and {Y,(i)h<i<n are two triangular arrays of centered
Gaussian processes with positive definite covariance matrices A,, B, respectively, such that

timsup(I1Aa 12 + 14,12 + 1 Ball2 + 118, 12) < oo, (15)
n—oo
where ||.|2 denotes the Euclidian operator norm/largest eigenvalue of a symmetric matrix.
Assume further that lim,_, » |A, — Byl = 0. Then we have
. 1
lim sup — =0.

logP(max Y, (i) < r) —logP(max Z,(i) <r)
n—oo N 1<i<n 1<i<n

Using this lemma, we first prove a continuity lemma for persistence exponents for discrete
time Gaussian processes. This significantly improves [6, Lemma 5.1] by getting the same
conclusion under much weaker hypotheses.

Lemma 3.5. For every positive integer k, let {Z;(t)}:en be a discrete time centered Gaussian
process with non-negative correlation function Ai(., .). Further, let {Z(t)}:en be a stationary
centered Gaussian process with non-negative correlation function A(.). Assume that Ay (s, s+
T) converges to Ax(t) as k — oo, uniformly in s € Ny := N U {0}. Suppose further that with
gr(t) == SUP;en, Ar(s, s + T) we have

lim limsup » " gi(i) = 0. (16)

L—oo k— 00 oL
Then for every r € R we have
1
limsup —|logP( sup Z;(i) <r)—logP(sup Z(i) <r)| =0. a7
kon—oo N I<i<n I<i<n

Lifting the last result to the continuous setting, we prove the following lemma, which we
will use in the sequel to prove all the main results of this paper.
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Theorem 3.6. For every positive integer k, let {Z;(t)};cr., be a continuous time centered
Gaussian process with non-negative correlation function Ay(., .) and continuous sample paths.
Further, let {Z(t)}ier., be a stationary centered Gaussian process with continuous sample
paths and non-negative correlation function Ax(.). Assume that Ay(s,s + T) converges to
Axo(T) as k — oo, uniformly in s > 0. Suppose further that the following conditions hold.

(a) Setting gi(t) := sup,.o A(s, s + T), for every positive integer £ we have

hm l1m sup Z gr(i/l) = (13)

i=L

(b) There exists an n > 1 such that

limsup | log &|" sup (1 — Ak(s, s + 1)) < o0. (19)

e—>0 1<k<00,5>0,7€[0,¢]

(c) The limiting process {Zo(t)}ier., has a persistence exponent which is sampling contin-
uous, i.e.

1
lim sup lim sup —|logP( sup Zo(t) <r)— logIP’(1 r_naéﬂ Zx(i/0) < r)‘ =0.

{—00 T—o0 t€l0,T]
(20)
Then for every r € R we have
1
limsup — |logP( sup Zi(t) <r) —logP( sup Z(t) < r)‘ =0. 2n
kT—oo T 1€[0,T] 1€[0,T]

The above lemma is a significant generalization of previous versions of similar continuity
results in [12, Lemma 3.1] and [11, Theorem 1.6]. While the previous lemmas required a
supremum decay control over A(s, s + 7), the current lemma replaces this by a summability
condition, cf. (18). In particular, none of the previous results can be used to prove Theorem 2.1
in this generality. Below we comment on sufficient conditions for verifying (18) and (20),
respectively.

Remark 3.7. A sufficient condition for (18) is that sup. ycny Ak(s, s + 1) < g(7), where g
satisfies one of the following conditions:

(1) limsup,_, o, % < —1 (thus implying [11, Theorem 1.6]);

(ii) g is regularly varying and integrable (thus implying [12, Lemma 3.1]);
(iii) g is non-increasing and integrable.

We do note that neither of these sufficient conditions, (i)—(iii), is enough to prove Theorem 2.1
in full generality, and we do need the full strength of Theorem 3.6. For all other results in this
paper, the above sufficient conditions are enough.

Remark 3.8. Condition (20) essentially demands that for the limiting Gaussian process, the
persistence exponents obtained by discrete sampling in finer and finer grids converge to the
persistence exponent of the continuous process. A sufficient condition for (20) is that any of
the conditions (i)—(iii) of Remark 3.7 holds with g(t) = A.(t), which can be verified by an
application of [11, Theorem 1.6] or [12, Lemma 3.1].
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Remark 3.9. It is easy to verify that the scaled Ornstein—Uhlenbeck process with correlation
function A.o(t) = e *I"! satisfies all the conditions (i)—(iii) of Remark 3.7, for any o > 0. A
fact that we will repeatedly use in this paper is that the scaled Ornstein—Uhlenbeck process has
persistence exponent « (cf. e.g. the proof of [13, Lem 2.5]).

The following lemma is a modification of Theorem 3.6 to the case where the limiting
correlation is either non-integrable or degenerate, to deduce that the corresponding exponents
converge to 0 or oo, respectively.

Lemma 3.10. Suppose {Ai(7)}i is a sequence of stationary non-negative correlation functions
onT. Fixr e R.

(a) Suppose (19) holds, and limy_, o Ar(T) = Axo(T) for every T > 0, and 0(Ax, 1) = 0.
Then we have limy_, o, 0(Ay, r) = 0.

(b) Suppose (18) holds, and limy_. o, A(t) = 0 for every t > 0. Then we have
limy_, o 0(Ag, 1) = 00.

4. Proof of Theorem 2.1

The following definition is crucial for the notation in the rest of this paper.

Definition 4.1. Extend o(.), s(.) to positive reals by setting o(x) = o([x]), and s*(t) =
fot o2(x)dx. Let w(.) denote the inverse of s(.), i.e. w(s(u)) = s(w(u)) = u for all u > 0.

After interpolating the sequences p(.) and o (.), we do the same with the covariances of {S;}.

Definition 4.2. For any two positive reals £;, £, let

2] 1%
Fyo(tr, £2) 1=/0 /0 o(x)o(Mp([x] = [yDdxdy.

In particular, if £, £, are positive integers, then we have
DRZ)

Fpolti, ) =YY a(i)o(j)pl — j).

i=1 j=1

We proceed with stating three lemmas which will be used to prove Theorem 2.1, the proofs
of which we defer to the end of the section.

Lemma 4.3. Let p satisfy (2), and assume that o satisfies (3) and (4). Then for every b > 1

F, ,(wu), wb ad
tim L2 WO 45 S ey, 22
u— 00 u
(=1
Definition 4.4. For two positive functions f and g depending on arguments xi, ..., X,
Z1, ..., Zm, the expression f <. . g means the existence of a finite positive constant
C = C(z1,..-,2n), such that f < Cg for all xj, ..., x, (possibly in a certain range). In

particular, the notation f < g implies the existence of a universal constant C such that f < Cg
for all arguments (possibly in a certain range).
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Lemma 4.5. Let p satisfy (2). Then under no assumptions on ¢ we have for any b > 1

w(bu) w(bu)
[ [ oot = ¥y 5, bV - 1. 23)
w(u) 0

Lemma 4.6. Assume p(.) satisfies (2) and o (.) satisfies (3), (4), and (5). With

Fyo(w(u), we'u))

uZet

gu(‘[) =

we have

o0
lim lim sup/ gu(t)dt = 0.
L

—>0  y—00

Proof of Theorem 2.1. Step I: Reduction to convergence of the continuous-time interpolation.
To begin, define a Gaussian process (0, oo0) by setting X (u) = fou o([v])&[ydv, and note
that X(u) = S, for all positive integers u. Thus X(.) is just the linear interpolation of the partial
sums {S¢}¢>1, and consequently
P(max Sy < 0) =P( sup X(u) < 0).
I=t=n uel0,n]
For any positive integer k we define a Gaussian process on [0, c0) by setting Xi(t) =
k' X(w(ke")), t > 0, and claim that

1
lim —logP( sup X;(r) <0)=—1. 24)
kT—oo T 1€[0,T]

Given (24), using Slepian’s Lemma along with non-negativity of p(.), o(.), we get

P(sup X(u) <0)=P( sup X(u) <O, sup Xi(t) < 0)

u€l0,n] uel0,w(k)] t€[0,log(s(n)/ k)]
>P( sup X(u) <0)-P( sup X (1) <0)
uel0,w(k)] 1€[0,log(s(n)/ k)]

=P( max Sy <0)-IP( sup Xi(t) <0)
1=t=w(o 1€10,log(s(n)/ k)]

1\ wk)
> (—) -P( sup X (1) < 0),
2 t€[0,log(s(n)/ k)]

which on taking limits as n — oo gives

lim inf logP( sup X(¢) < 0)

n—oo logs(n) 1€[0,n]

> liminf log IP( sup X (1) <0)
n—oo logs(n) 1€[0,log(s(n)/ k)]

1
= liminf ——1logP( sup Xy(7) <0),
n—oo s'(n) 1€[0,5'(n)]

where s'(n) = log(s(n)/k) tends to +00 as n — oo with k fixed. On letting k — oo on both
sides of the above equation, invoking (24) gives

lim inf logP( sup X(t) <0) > —1,
n—co logs(n) rel0,n]
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thus giving the lower bound of the theorem. The corresponding upper bound follows on noting
that

P(sup X(t) < 0) <IP( sup X (1) < 0),
t€[0,n] t€[0,log(s(n)/ k)]

and invoking (24) again.
Step 2: Verification of (24). To this effect, setting u := ke®, for s <t we have
Fy o (wke'), w(ke"))
k2
—¢® lim Fp,o’(w(u)7 w(uet—.s))

U—00 u?
=*(1+23"p0),
=1

where the last equality uses (22). This gives

lim cov(X(s), Xx(t)) = lim
k— 00 k—o00

2s
—ls—1]
9

lim corr(Xy(s), Xe(1) = * —e

es et
which is the correlation function of a scaled Ornstein Uhlenbeck process with persistence ex-
ponent 1, by Remark 3.9. From this, the desired conclusion then follows on using Theorem 3.6,
where we need to verify the conditions of the lemma. To this effect, first note that (20) holds for
the Ornstein Uhlenbeck process, by Remark 3.9. Proceeding to verify (19), fors > 0, 7 € [0, 1]
setting u := ke® € [1, co) we have
Fy.o(w(u), w(ue"))
VFp.o W), wu)y/Fy o (w(uet), w(uer))
Fyo(wu), w(uer))

F, s(w(ue®), w(uet))

Fpo(w(ue), w(ue")) — F, o (w(u), w(uer))
F, o(w(ue®), w(ue))

1-— corr(Xk(s), Xi(s + 1:))

IA

-7 2t
Spo € e 1,

where the last inequality uses (23) along with (22). This verifies (19). It thus remains to verify
(18), for which setting u = ke® we have
F, s(w(ke®), w(ke*tT))
VFpo(wke), wke))\/Fp o (w(kes*T), w(kes+7))
_ Fy o(wu), wue"))
— Fpe (), wu)/F, , (wuer), w(uer))

Fyo(w), wew) _ o

corr(Xx(s), Xx(s + 1)) =

<

~pP,0

e'u?
where g,(.) is as in Lemma 4.6, and the last inequality uses (22). To verify (18) it thus suffices
to show that

o0
lim limsup )~ 2,(i/¢) =0 (25)
i=L

L—oo o0
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for every positive integer £. To this effect, for v € [i /€, (i + 1)/£] we have

gu(l/ﬁ) = Fp’(’(w(l’:/)e, uz)(MEi/Z))
e’ u

i/t

) w(u) w(ue
il /O /0 o (Do ([yDp(lx] = [yDdxdy

w(u) w(ue®)
< oWy /0 fo (XD (TyDp(x] — [y)dxdy

="' g,(7).

This immediately gives

o0 o0 (i+1)/¢ 00
Saim=ey [ gwdr = [ g
i=L i=L i/t Lt
from which (25) follows on using Lemma 4.6. This completes the proof of the theorem. [

Proof of Lemma 4.3. To begin note that

Fyo(w(u), wbu)) < F, o(Tw(u)], [wbu)])
fw)] fw@l=1  min(fw()][w(u)]-6)

= D o) +2 Y o0 > o (Do +¢)
i=1 =1 i=1
[w(bu)] =1 min([w ()], [w(bu)]—£)

+ Y e > (D)o (i +0)

f=Tw(u)] i=1

=Y p(O)Besw), (26)

(=0
where
[w()] N2 : _
Yl o) ife=0
2Z;n:ir;(Fw(uﬂ,fw(buﬂ—f)U(i)a(i +0) ifl<e< [w(uﬂ —1

YL w0 s (o i+ 0) if Tw@)] < £ < [wbw)] - 1
0 if € > Twbu)].

Bep(u) ==

Now for any b > 1 we have w(bu) — w(u) — oo, as w(bu) — w(u) < K for some K fixed
along a subsequence in u diverging to 400 implies b = % = Afg”l‘ff’u")))) < s(?’((;‘():)f), the right
hand side of which converges to 1 along the same subsequence, using (4). Thus for all u large

enough we have w(bu) — € > w(u), and so
1 [w()]
=B == ) ool +0),

i=1

which converges to 2 as u — oo, invoking (4) and (3). Also, for any u > 0, £ > 1 we have,
by the Cauchy—Schwarz inequality,
min([w(u)], [wbu)]—£)
Bep(u) <2 Z oo (i + ) < 2s(fw@)Ds(Twbu)]) < bu’.
i=1
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which along with the Dominated Convergence theorem gives

lim sup —F(w(”)’zw(b“)) <1+2) " p(0),

u—>00 u

thus giving the upper bound in (22). The corresponding lower bound follows on noting that

Fpo(wu), wbu)) = F, o(Tw@)] — 1, [w()] — 1)
[wu)]-1

> oo(e - j)

ij=1
[w)]—1 [w()]-2 Tw(u)]—€—1

Yo o+ Y. e Y. ololi+o,

i=1 =1 i=1

\Y

and using a similar argument as in the upper bound. [J

Proof of Lemma 4.5. Using the Cauchy—Schwarz inequality, the left hand side of (23) can
be bounded as follows:

w(bu)

w(bu)
fo a(x)o(Mpe([x] = [yDdydx

w(u)

w(bu) w(bu) w(bu) w(bu)

< / . / 200p(Tx1 — [yDdydx / . / o2(p(Tx] — [YDdydx
w(bu) w(bu) w(bu) w(bu)
-/ " o [ px] = IyDay Jax / 0] [ L, A= Daxay

w(bu) w(bu)
S [ ora / o2y,
w(u)

where the last line uses the fact that p is integrable. The last line equals

Vswbu))? — s(w))2s(wbu)) = bu*vb? — 1,
as desired. [

Proof of Lemma 4.6. Step 1: We first treat the integral fow(") Ow(”). By the Cauchy-Schwarz

inequality,

X o7 w(u) w(u)
/L uzfo [0 o(x)o(»p([yl — [xDdydxdz

ooe—r w(u) w(u)

5/ a / / o2()p([¥] — [xdydx
w(u) w(u)
/ f o2y — [xD)dydxdz

7L

w(u) w(u)
= A o (x) / p([y] — TxDdydx

u2

—-L

€ v 2 € 2 -L
Sp T / o (x)dx = ?s(w(u)) =e ", 27
0
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Step 2: Main part of the integral. Fix M € N. Then we can write the remaining part in
[ &u(t)dT as

00 -1 w(u) w(eu)
/ ¢ / / o (o (N1 — xDI{lx — y| > Mdydxdz
L 0 w

u? ()

0 ,-T w(u) w(etu)

+ f - f / ooy = FDI{lx — y| < M)dydxdr. (28)
L 0 w(u)

Since p satisfies (2), we can write p(i) = p(i)h(i), where both p, & are non-negative functions

satisfying Zf’il p(i) < oo and lim;_, o h(i) = 0. Using this, the first term in (28) can be

bounded as follows:

0 ,—t  pw) pwlelu)
/L : /0 / o) (Y)p([y] — [xDY|x — y| > M}dydxdz

u? ()

o ,—t pww) pwleu)
< sw i [ [ [ ame iy = ey

i>M—2 (u)
w(u) 00 _ 00 e 7
= sup h(i) f (oA = 1) f & drdydx
i>M-2 0 w(u) log%}) u
M [ o) o(y) .
= s A() f T T 5131 — TxDdydx
i=M—2 0 wwy U s(y)
] w(u) 00 0,2()()~
Se sup h(i) / o(Iy1 — [xDdydx
i>M-=2 0 w(u) MS(.X)
1 M o) .
Sp — sup h(i) dx =2 sup h(i), 29)
U j>pM-2 0 s(x) i=M—2

where the inequalities in the last two lines use (5) (because x < w(u) < y) and summability
of p, respectively. Proceeding to bound the second term in (28), using (4) we have

00 —1 pw@) pw(etu)
/; - /0 /o ox)o(p([x]—yDU|x — y| < M}dydxdr

u2
00 ,—T w(u) w(etu) 5
ot / i / / 2(0)p([x] — [y)dydxdr
L uJo 0
0 ,—T w(u)
< / > / o’ (x)dxdt = e " (30)
L u 0

Combining (29) and (30) with (27) and (28) we have

/ g.(t)dt < C(o, p) sup h(i)+ C(o, p, M)e ",

L i=M—-2

which converges to 0 on letting L — oo followed by M — o0, on using the fact that
lim; 0 h(@)=0. O

Proof of Proposition 2.2. Note that g, is a non-increasing sequence in n, and so it suffices to
show that liminf,_, - g, > 0. To this effect, we first claim that Sy L Sy = Y2, o(i)&;, where
the sum on the right hand side converges almost surely. It then follows that S,, ~ N(0, o'2)
for some o < 00, and so
P(sup Sy < 0) > P(Seo < —1) — P(sup | Sk — Seo| > 1).
k=K k=K
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On letting K — oo we have

11m P(sup S < 0) > P(So < —1),

K—oo k>K

and so there exists K > 1 such that P(sup;.x Sy < 0) > P(S < —1)/2. An application of
Slepian’s Lemma along with the fact that {S,},>; has non-negative correlation gives for n > K

1 K
P(max S, <0)= P( max S, < OF(max 5 <0) = (—) P(Sy, > —1),
1<t<n <K-— 2

which is positive, and hence the proof is complete. It thus remains to verify the almost sure
convergence of {Si}. To this effect, define a Gaussian process {Si}r>1 by setting

2Zp(z‘).
i=0

Then, for any m > n > 1, Cauchy—Schwarz inequality gives

E(Sn— S = Y oo(jpl—j) sJ > Uz(i)p(i_j)l PR OIS

i,j=n+1 i,j=n+l i,j=n+1

k ..
Sc:=CY o0&, Gl ¥ NO.D, Ci=

i=1

<C Y ) =EGu— S
i=n+1
An application of Markov’s inequality, symmetry, and Sudakov—Fernique inequality ([1, Thm
2.2.3]) then gives, for any § > 0,
1
P( max Sk — S| = 8) <=FE max |S; — S|
& n<k<m

n<k<

2 2
<- E n%{ax Sk — Sm) < E n%cax IS¢ — Sl 31
Since {Sk}kzl are sums of iid random variables, an application of Kolmogorov’s Maximal
inequality gives that for any A > 0 we have

. . C <& )
B(max |Se Sl = 2) < 5 37 ok,
k=m+1
which on integrating gives that for any & > 0,

m

oo
- ~ ~ ~ C
E max |Sk—Sm|=/ P(max |Sy — S| = Adr < e+ — E az(k).
0

n<k<m n<k<m
k=n+1

Plugging the choice ¢ = ,/C > . 41 0%(k) gives the bound
S, _ § 2
E nrgr}casxmmk Sl <2 ck;IU k). (32)

Combining (31) and (32) gives

P( max |Si — Sel = 26) < P(max [S — Su| = 8) <

n<k,{<m

OOIJA
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which on letting m — oo along with continuity in probability gives

o0

CE:o%m

k=n+1

SIS

}P’(]{r}zax [Sk — Sel = 26) <

Since lim,,_, oo maxy ¢>p, [Sx — Se| < maxg ¢, |Sk — S¢|, letting n — oo this gives

P(lim max |S; — S| > 25) = 0.

n—oo k,{>n

Since § > 0 is arbitrary, we have lim,_, oo maxg ¢>n |Sk — Sel =0, i.e. the sequence {Si}i>1 18
Cauchy almost surely. This proves almost sure convergence, and hence completes the proof of
the proposition. [

Proof of Proposition 2.3. Fixing integers T > 0,¢ > 1,k > 1 we have

l+k +T+k

COV(Serks Sevrit) =) D €0l — )

i=1 j=I
C4k—1 e4T+k—1

— 22k +T)e Z Z ef(i+j>ap(j —i—1),
i=0 i=0

which gives

: cort(Sek, Setr+k)
lim sup

—ﬂzo, (33)
k=00 p>1 120 D, (7)

and so D,(.) is a valid correlation function. To get the desired conclusion, we apply Lemma 3.5.
It thus suffices to verify (16), which follows on noting that (33) implies corr(Seyx, Se4r+k) Sa,p
D, (), which is summable using (2). O
5. The non-summable case
5.1. Proof of Theorem 2.9

We begin by stating two lemmas which will be used to prove Theorem 2.9. Since the lemmas

are analytic and do not contain any probabilistic ideas, we omit the proof of the lemmas (but
defer the interested reader to the appendix of the arxiv version of this paper [5]).

Lemma 5.1. Let H € (1/2,1), p+ H > 0, and for x > 1,a € R let Yo (x) == [; y*dy.

(a) For any b > N > 1 we have

IN2H=24 ) 0 o(b)

Foan (10 = fpn (1 Ny (1= )P, (34)
(b

Fon10) 2 fyn(1, 1) + L2220 (39)

(b)

I'(p+1)I'2QH —1)  Beta(p+1,2H — 1)

(p+ H)(p+2H) p+H '
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Lemma 5.2. Let H € (1/2,1), p+ H > 0. Then we have

F,o(u,b
lim sup .o (Ut, bu)

_Fpolwb 36
u—)OObzl M2p+2pr,H(17b) “ ( )

where F, (., .) is as in Definition 4.2, with p satisfying (7) and o satisfying (8).

Equipped with these lemmas, we can now prove Theorem 2.9.

Proof of Theorem 2.9. As in the proof of Theorem 2.1, define the continuous time Gaussian
process X(.) on (0, co) by setting X(u) := fou o([v])&,dv. For any positive integer k define
a Gaussian process on [0, 0o0) by setting X;(¢) := k=T X (ke'). As in Step 1 of the proof
of Theorem 2.1 (cf. (24)), it suffices to show that

lim log P( sup Xi(t) <0)=—0(Cp.n). 37
k,T— 00 1€[0,T]
For showing (37), note that for any 0 < s <, setting u := ke® we have

F, o (ke', ke®e'™)
k2p+2H

lim cov(X(t), Xi(s)) = lim
k—o00 u—0o0

1—s

— p2pH2H)s §; Fpo(u,ue™)

=e m —s
U—00 up+2H

— Ke(2p+2H)Sfp7H(l’ eT*S)’

using (36). This readily gives

1 N
hm corr( Xy (1), Xi(s)) = ¥~ ~opem o)
Jpu(1, 1)

thus verifying that C,, y(7) is a valid correlation function. For showing that the limit 6(p, H) €
(0, o0) we invoke Lemma 3.2, so that it suffices to show that fooo Cp.u(t)dt < oo, which

follows on using (34) to note that f, (1, e") <, x max(t, e*PT2A=1) and so we have

=Cput —s),

Cp.u(t) Spoy max(ze "D omrU=H)y (38)

To conclude (37), it thus remains to verify the conditions of Theorem 3.6. To this effect, note
that (20) follows from (38) and Remark 3.8. It thus remains to verify (18) and (19), which is
done below.

Verification of (18). Use Lemma 5.2 to note the existence of M < oo such that for all
u > M and b > e we have

%u””f’f,,ﬂ(l, b) < Epolu, bu) < 2P y(1, b).
K

Thus for any s > 0, T > 1, noting that u = ke’ > M gives

Fyo(u,ue)

VFpo(,u)/F,,(uet, uev)

©(p+H) efr(lfH))

corr(Xe(s), Xi(s + 1)) =

<4C, u(r) Spp max(re”

where the last inequality uses (38). This verifies (18) via Remark 3.7.
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Verification of (19). For verifying (19), for s > 0, T € [0, 1] setting u = ke* € [1, 00) we
have

F,o(ue',ue’) — F, o (u, ue)

1 ue®
_ /0 / o (X Do (TyDo(x] — [yDdxdy
u/2  puet
+ fl / (XD (TyDo(Tx] = [yDdxdy
+ //2 / (XN (TyDo(Tx] = [yDdxdy. (39)

Using (7) and (8) we get p([x] — [y]D) S, v =y and o([y]) o 7 fory = 1.
Consequently, the first term on the right hand side of (39) can be bounded as follows:

1 uet
/O / o (XD (yDo(x] — [yDdxdy

1 ue®
Se.p u2H72/ / xPdxdy S, ubt-1g (40)
0 u

Similarly, the second term on the right hand side of (39) can be bounded as follows:

u/2 puet
f / o (XD (FyDp(Tx] — [yDdxdy
1 u
Sop uP T2 f " / - xPdxdy <, u*Pt 41)
1 u

Finally, the third term on the right hand side of (39) can be estimated as
[ [ ottxboxneta - yiay
u/2 u

et et
2p+2H 2H-2
Spo I / / [x — ] dxdy
12 J1

et pet—x
— 2p2H / / 21?22 dzdx
1 Ji2—x

et pe—1
< M2p+21‘1/ |Z|2H72dzdx SH u2p+2H(e‘E _ 1) (42)
1 1/2—e

Combining (40), (41) and (42) along with (39) gives
Fyo(ue™,ue®) — F, o (u,ue®) Sp 0 TRAELES (43)

Using (43) and (36) gives, for all T € [0, 1],

sup (1 — corr(Xk(s), Xi(s + t))) Spe T
520,k>1

which verifies (19), and hence completes the proof of the theorem. [
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5.2. Proof of Theorem 2.10

Proof of Theorem 2.10. Step I: Proof of continuity. Let (pi, Hy) be a sequence converging
to (Poo, Heo). We need to show that

lim 0(pi, Hy) = 6(Poo, Heo).
k— 00

Since limy_, o Cp, 1, (T) = Cpy, Hoo (T), this will follow by another application of Theorem 3.6,
once we verify the conditions of that lemma. Using (34) gives the existence of a continuous
function M(p, H) such that

fp,H(l, e’y < M(p, H) max(r, eT(P+2H—1)>,
which gives

Cpoi(T) < Mmax(re_(””H’(), e "I M = sup M(px, Hy),
k=1
and consequently
log Cp, 1, (T) _
k=100  logt

This verifies (18) via Remark 3.7. The above display along with Remark 3.8 also verifies (20).
It thus suffices to verify (19). But this follows on noting that C,, y, (v) > e~ PxTHOT,
Step 2: Proof of (10). To begin note that

Op. H) _ 1 IP( Z(0) 0)
——— = l1Im — 10 su <
1—H 1907 8 P

rel0. 1551
li ! logP V4 ! 0 (44)
=1m—og(sup ( ><>
T—oo T 1€10,7] - H
Let
r ettt fpu(l, eTH)
Ay(‘[)jzcy< ):eT]—Hp’—
pH PIT—H frn(1, D)
denote the correlation of the process {Z (1 L H), t > O}. Using (34), on letting H 1 1 followed

by N — oo, for all H such that p +2H > 1 we get
=
f[’,H(lve H) < 1

lim sup

i o EEE T (p+ DY
A similar calculation using (35) gives the lower bound and so we get
 fpu(1,eTH) I
lim 201 20
H1l erpt—iH (P + 1)

which immediately gives that

limA, y(r)=e".
H1l

This is the correlation function of the scaled Ornstein—Uhlenbeck process, which by Remark 3.9
satisfies (20), and has persistence exponent 1. The desired conclusion will then follow from
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(44) by invoking Theorem 3.6, once we verify the other two conditions of that lemma, namely
(18) and (19).

To this effect, again use (34) with N = 2 to note that for all H such that p +2H > 1 we
have

T p+2H—-1
fp’H(l, eT-H) SP et I-H

which gives A, y(7) S, €77, thus verifying (18) via Remark 3.7. Proceeding to verify (19),
setting B = By = ﬁ and using (35) along with the fact that p4+2H > 1 for all H ~ 1 we
get

fon(1, 1) — e POt g (1, ePT)
(eﬂr)erZHfl -1

_ o Bt(p+H)
< Spn(L D = e (L D+ O o — 1)

1
_ T —Bt(p+H) _ -t
= fou(L, (1 —e )+ (e e )[(p+1)(p+2H_

1
— 1,1
Ginpraa—n @D

1
prhpiza—n D

n - fp.u(1, D]

< fp.u(l, DT + ’e’ﬁT(P+H) _ efri

< fp.n(l, DT+ (B(p+ H)+ Dt

’

where the last step follows from the fact that |e™ — e™| < x + y. This gives

1—A,u(@)  fru(,1)—e PP g (1, efT)

T Tfpu(l, 1)

1
1 —
)‘(P-i- D(p +2H — 1) fpu(1, 1)

and so to verify (19) it suffices to show that the right hand side above stays bounded as

H 1 1, or equivalently, (1 — H)_llfp,H(l, 1) — (;| stays bounded as H 1 1. Use part

p+1)?
. 3 L .
(b) of Lemma 5.1 to note that f, (1, 1) = m, and so it suffices to show that % is

bounded in a neighborhood of 1. But this follows on noting that the derivative is continuous

=1+@BpP+H+

’

in H, and converges as H 1 1 to

1 pl
2/ f xPyPlog|x — y|dxdy,
o Jo

which is finite for p > —1.
Step 3: Proof of (11). To begin, fixing § > 0 and using (34) with N =1 + § gives

§ \2H-2
fpu(,e) = fru(1,14+68) <, (—) max(f, ef(p+2H71>)’
’ ’ 1+36
which gives
§ \2H-2
u(l, e — 1+ 8)2p+2H a1, D <, (— max(z, et (P H2H-1) ’
" " ~PAT+8
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which gives

5 2H72maX<Te_t(/’+H)7e—f(l—H))
Cpu(t)—(1+ §)2PH2H gt () < ( ) s

~PANT+8 Jp.u(1, 1)
On letting H | 1/2 followed by § — 0 and noting that f}, 5(1,1) — oo gives

. _ 1
limsup C, y(t) < e P12

H1/2

The corresponding lower bound follows from the trivial bound C, y(t) > e~ P+ giving
limg 10 Cp u(t) = e~ (PH/27 which is the correlation function of the scaled Ornstein—
Uhlenbeck process which has persistence exponent p 4+ 1/2, by Remark 3.9, and satisfies (20).
The desired conclusion will then follow from Theorem 3.6, once we verify the conditions (18)
and (19) of the lemma. To this effect, (18) follows from (45) and Remark 3.7, and (19) follows
on noting that C, y(t) > e~ "+ and so the proof is complete.

Step 4: Proof of (12). For any T > 0 using (34) with N = et gives
et(p+2H~1)

(p+D(p+2H —1)

(r+

)T T
Fon(le) < e £ (1, 1) + (1 — e~ 5)2H2

which readily gives

—t(1—H)
D )T ‘[
Cpu(r) < e_(l o +(1—e 7)H2 e 6
fou (L D)(p+ D(p +2H — 1)
SHe T 4 pH=2,

where the last inequality uses part (b) of Lemma 5.1. Thus letting p — oo we get
lim,_o Cp u(r) = 0. Further, using (46) for all p > 1, > 1 we have C, y(r) Su
e~ 4+ e 701 and so C,.u(t) satisfies (18). Thus conclusion then follows from part (b)
of Lemma 3.10.

Step 5: Proof of (13). Note that the stationary Gaussian process with correlation function
C,,1(t/p) has persistence exponent 6(C, )/ p. We shall show that this sequence of correlation
functions, when p — o0, converges to a non-integrable correlation function, and then invoke
part (a) of Lemma 3.10. Recall that

I petlp 2H-2
C I\ e~ (pHH)T/p fo fo xPyPlx —y| dxdy
i B Lol PyvPly — 2H—2d d :
Jo Jo xPyPlx =yl xdy

Clearly, the first term tends to e~". In the integral, we set x =1 —u/pand y =1 —v/p
and obtain

)
/ / xPyPix — y|2H72dxdy
o Jo

P rp
=p ¥ / f (1 —u/p)*(1 —v/p)’lu — v*" *dudv.
0 J—et/P)p

Therefore, as p — oo
c (r) . I S e e u — v 2 dudv
H\ )~ e -
P I e e v u — v dudv
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We now claim that function Cs, (.) is non-integrable. Indeed, denoting by K ~! the constant
in the denominator of C, g, we have, as T — oo,

M Coo n(2)

S 00 — v 2H-2
= K/ / e_”e_”’u —1‘ dudv
0 0 T

o0 o0
— K / / e “e "dudv,
o Jo

and so C, g(7) is regularly varying and non-integrable. This observation along with part (b)
of Lemma 3.2 shows that 8(Cw ) = 0. From this, the conclusion follows from part (a) of
p+H

Lemma 3.10, once we verify (19). But this follows on noting that C, y(7/p) > e 7
Step 6: Proof of (14). We first claim that

1 e8]
lim sup/ / xPyPlx — yP"2dxdy < oo. 47
pl—H JO 1

We first complete the proof of (14), deferring the proof of (47). To this effect, note that the

T .
—H> has persistence exponent

stationary Gaussian process with correlation function C, g o+

o(c . . .
(p f: ) We shall show that this sequence of correlation functions, when p | —H, converges to

e~ ", which is the correlation function of an Ornstein—Uhlenbeck process with o = 1, satisfying
(20), by Remark 3.9).
For this purpose, first note that
I'(p+1DI'QH -1)
(p+H)(p+2H)

li L=
S fpu(s D

Second, note that
T
e P+H

1
fon(L e ) = £, y(1, 1) + / / xPyPlx — y*2dxdy.
0 1

By (47), the second term remains bounded when p | —H. Therefore,

| eptH
Cp,H( : ) ze_t—fp'H( . €PT) —e 7.
p+H frou(1, 1)

The conclusion follows by invoking Theorem 3.6, once we verify (18) and (19). Invoking (47)
we have C,, y(t/(p+H)) Su e " so that we get (18) via Remark 3.7. Further, (19) is obtained
from the observation that C,, H(er;H) > e~ 7, and so (14) follows.

It thus remains to verify (47). To this effect we have

1 oo
/ / xPyPlx =y 2dxdy
o Ji
1 p2 1 poo
= / f xPyP(x — y)*H2dxdy +/ / xPyP(x — y)*H2dxdy
o Ji 0 J2
1 p2 1 poo
/ / yP(x — 1)*"2dxdy —}-/ / xPyP(x — 1 2dxdy
o J1 0o J2

;[/‘Z(X _ 1)2H72dx + /OOXP(X/Q,)ZHizdx:I
1+ pl) 2
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_ 1 [ 1 4 p2-2H /ooxp+2H—2dx:|

1 1 2-2H /OO H—2
— [ +2 X dx],
I —HLl2H -1 ,

which is clearly finite as H — 2 < —1. This verifies (47), and hence completes the proof of
(14). O

6. Proof of the general tools

Throughout this section we carry out the proofs for T = R, noting that the proof for N
is simpler, and follows by minor modifications of the arguments outlined.

Proof of Lemma 3.2. The existence of (A, r) follows from non-negativity of A(.) along with
Slepian’s Lemma. Fixing a positive integer k, Slepian’s Lemma also gives that
P(sup Z(t) < r) > P(sup Z(t) < r)T,
[0,T] [0,1/k1

which after taking logarithms, dividing by 7', and taking the limit 7 — oo gives 8(A,r) <
—klog P(supyg 1,4 Z(7) < r), from which we get 6(A, r) < oo if P(supyy 4 Z(2) < r) > 0 for
some k. If there exists no such k > 1, then IF’(sup[Oyl/k] Z(t) < r)=0 for all kK > 1, which on
taking limits as k — oo and using continuity of sample paths gives P(Z(0) < r) = 0, which
is a contradiction as Z(0) is a centered Gaussian.

Proof of (a). Fix a positive integer M, and set s; := (M + 1)i for i > 1. Thus with
N = L35 we have

P(sup Z(5) <r) <P(max sup Z(1) <r) < ]P’( max / Z(1dt < r). (48)
1€[0,T] I<i<N [5;~1,5] I<i=N Jg 1
1 r1 1/2 . . —1 [Si .
Let us denote ¢ = (fo Jo Alu — v)dudv) . Setting X(i) == ¢ fs,-lq Z(u)du for i > 1, the

last term in (48) is same as P(max;<;<y X(i) < ¢~ 'r). The covariance matrix of the centered
Gaussian vector (X (1), ..., X(N)) is given by the matrix B, where B(i,i) := 1, and for i < j,

S/7S,+1 1 Sj,,'+1
B, j) =1t f / A — vydudv = ¢ / / Al — v)dudv.
s 0 Jsj—i

JSi

Noting that s; > M + 1, this can be estimated as follows:

1 o) o)
max Z BG, j) < 2;*2/ f A(u — v)dudv < 2(2/ Aw)du =: ey,
1<i<N T 0 JM+1 M

where limy;_. o, ey = 0, as fooo A(t)dt < oo. Invoking Gershgorin’s circle theorem ([23, Thm
6.1.1]) all eigenvalues of B lie within [1 — gy, 1 + &)/], and so we have

/p—1
j;—oo.;*lr)N efxB x/ZdX

f(—oo oo)N eﬂdBilX/de

< (1 fig)wp(/\/(o, 1) < \/%_ZM)N

P(]riliagvX(i) <¢ =
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Combining this with (48) we have the upper bound P(sup, ¢ 71 Z(1) <r) < ,BAI}' with

_ 1+ey Cilr M—00 —1
B = /1—eM P(N, 1)<—m) STPWVO D) <7 < L.

Thus there exists an M such that 8y < 1, and so (A,r) > —M+rllog By > 0, which
completes the proof of part (a).

Proof of (b). To begin setting I(T) := fOT A(s)ds we claim the existence of a sequence of
increasing positive reals {7}~ such that

1(Ty)
im ——— =
k—00 I(Tk/2)2

Step 1: We complete the proof of the lemma assuming (49) holds. To this effect, with T = T}
and setting Y7 := fOT Z(t)dt we have

(49)

T pT T
o% = Var(Yr) = / / A(u — v)dudv = 2/ (T —uw)A(u)du <2TI(T);
o Jo 0

giving
P(sup Z(t) <r)=PY7 < —SGrﬁ, sup Z(t) <r)
1€[0,T] 1€[0,T]
—E []P’( sup Z(t) < r‘YT>1{YT < —aoTﬁ”. (50)
1€[0,T]

We now claim that given Y7 = y, {Z(¢),t > 0} is a Gaussian process with mean m(¢)y and
covariance C(t{, t,), where

T
m(t)y = Jo AU~ wdu — u)duy,
or
K A dsid Gb
Cltr 1) = Al — 1) — Jo Jo At — sDA(t2 — s2)ds Sz‘

2
or

To derive the conditional mean in (51), fixing ¢ € [0, T'] the joint distribution of (Z(¢), Yr) is
a centered Gaussian vector with covariance matrix

1 fy At — wydu

[ At — uydu o2
Thus the conditional mean of Z(¢) given Y7 = y is given by

Jo At —wdu [ At — u)du

2 y - 2 yv
or or

0+

as claimed in (51). Focusing on the conditional covariance in (51), fixing ¢, #, € [0, T] note
that [Z(#1), Z(t2), Y7] is a centered Gaussian vector with covariance matrix

1 At —1) [y At —wdu
At — 1) 1 fy Aty — wydu
[ At —wdu [ Aty — u)du o2
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Thus the conditional covariance matrix of (Z(¢;), Z(t,)) given Yr = y is given by

1 A(t1 — 1) 1 jOT At — u)du
T2 [foT At —wdu [ Ay — u)du} .

2
Aty — 1) ! 7T | [ At = wydu
Also, the covariance term (which is the off-diagonal term above) equals

f) Aty — wdu [] At — v)dv

2 b
or

Aty — 1) —

thus verifying (51). On the set {Y; < —BGTﬁ}, we have

» f) At — wydu - SI(T/)NT __81T/2)
m = - _

Y oz = or = J2ID
We note that due to (49) we have K7 — oo along the subsequence mentioned there. Therefore,
we can assume that K7 + r > 0. This gives, on the set {Y; < —(Sarﬁ},

= —Kr, t > 0.

P( sup Z(1) < rlYp) = P( sup (1Z() = m(o)¥rl} < r + Kr|¥7)
1€[0,T] 1€[0,7]
[T
= [T#( s 020 —moyrly <7+ Krivy), (52)
i=1 teli—1,i
where the second inequality is by the Gaussian correlation inequality [30], also see [24,
Theorem 1]. Proceeding to estimate the right hand side above, first note that by (51) and

non-negative correlations, we have
Var[Z(t) — Z(s))YT] < Var(Z(t) — Z(s)),
which along with Sudakov—-Fernique inequality ([1, Theorem 2.2.3]) gives
E( sup {Z(1) — m(t)YT}|YT) <E sup Z(O)=FE sup Z(t) = a < 00, (53)
teli—1,i] teli—1,i] 1€[0,1]

using the Borel-TIS inequality ([1, Thm 2.1.1]). Invoking Borel-TIS inequality we now get
P(swp (1Z@)—m@Yrl) > r+ Krl¥r) =2P( sup (Z) = m(0)Yr) > r + Kr|¥r)
teli—1,i] teli—1,i]

1 2
—5(+Kr—a
< 2”20 HKT

where we used (53) and that fact that K7 + » — « > 0 along the subsequence mentioned in
(49), because K7 — oo along that subsequence. The last relation, along with (52) gives
[T1
P(sup Z(t) <r|¥r) > [1 - 267%(’““’“)2] )
tel0,T]
Combining with (50), this gives
[T1
P(sup Z(t) <r) > [1 — 2e‘%(’+KT‘“)2] P(Yr < —8073/T),
t€[0,T]

which on taking log, dividing by 7, and letting T — oo along the sequence {T}}i>1 gives
2

—0(A, r) > —% where we have used (49) to conclude that Ky — oo. The desired conclusion

then follows since § > 0 is arbitrary.
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Step 2: We prove (49) Assume by way of contradiction that (49) does not hold, which
implies liminfr_, o > 0. Thus there exist ¢ > 0 and T, > 0 such that we have

1(T/2)2
I(T) > eI(T/2)?, VT > 2T,. (54)

Using the assumption that I diverges, we can now make Ty even larger such that 1(Tp) > 2.
Further, by iterating (54), we obtain

124 Ty) > 222 (Y > (e 1Ty

which aloglg with the trivial bound I(7T) < T and the choice of Ty (namely, ¢I(Ty) > 2) gives
2kT, > 22", But this is a contradiction, as the right hand side grows much faster than the left
hand side as k — oo. This completes the proof of (49). [J

Proof of Theorem 3.3. If fooo A(t)dt = oo, then using Lemma 3.2 part (ii) we have
0(A,r) =0 for every r € R, and so continuity is trivial. So without loss of generality assume
that f0°° A(t)dt < oo. Use continuity of sample paths to note that

P(sup Z)=r)=P( sup ZO)=r=< Y PZg=r)=0
1€[0,M] 1€[0,M1NQ 4€l0M1N0
and so the distribution function of sup,cq s Z(¢) is continuous. For showing left continuity
of r = 0(A,r), fixing n < 0, M > 0 using stationary and non-negativity of the correlation
function along with Slepian’s Lemma gives

P(sup Z(t) <r+n)>P( sup Z(t) <r+ )i,
t€[0,T] te[0,M]

which on taking log, dividing by T and letting 7 — oo gives

1
—60(A,r+n) > —log]P’( sup Z(t) <r+n).
1€[0,M]

On letting n — 0 this gives

limsup0(A,r +1n) < —— log]P’( sup Z(t) <r),
n10 tel0,M]
where we use the fact that the distribution function of sup, o 4 Z(¢) is continuous. Letting
M — oo then gives

limsupO(A,r +1n) <6(A,r),
n10
and so we have verified left continuity.

We now proceed to verify right continuity, which is the main contribution of this theorem. To
this effect, recall from (51) in the proof of part (b) of Lemma 3.2 that given Y = fOT Z(t)dt =
v, the conditional distribution of {Z(¢), t > 0} is a Gaussian process with mean

A(t —u)du
m(t) fo(—) y,
o7
and covariance

foT foT Aty — s1)A(tr — s2)dsidsy

2
or

Var(Yr)

5
[

Ct1, ) = A —n) —

T
= 2/ (T — s)A(s)ds.
0
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Letting Z,;l(,) denote a Gaussian process on [0, 7] with mean function m(.) and covariance
C(.,.) fixing K < oo we have

P(sup Z(t) <r+n,Yyr > —KT)

_ 1
te[0,7T] B /2710%

_ 1

- \/ 2710%

e8] i

= 2

/ P( sup Zm(z)y <r+ T))é’ ZUT dy
KT te[0,T]

~ ’
/ P( sup Zyuqyy—y <1)e 2"T dy.
KT

te[0,T]
Since
» [ At — wydu _2 [ Ayt
m(t) = ,
2 [1(T —wA@wdu ~ T [ Awt)d1
there exists C > 0 such that for all T large enough we have sup, o7 m() < %, and
consequently

P( sup Zm(t)y n <r) <P(sup Z
1€l0,T] t€[0,T]

-1 <)

which gives

2

o0 _7
/ P( sup Zm(t)(y iy < r)e 7 dy.
KT 1€[0.T]

P(sup Z(t) <r+n,Yr > —KT) <
t€[0,T]

2
2mof

Changing variables to y' = y — % we get

o +"T)2

2
/KT "T P( buP Zm(r)\’ <r)e r dy,

tel0

P(sup Z(t)<r+n,Yr > —KT) <

te[0,T] /2

2

Se@(lﬁrf) / P Gup Zm(t)y/ <re 20'7. dy'
‘/2710% - t€lo,
_ec"z( ]P’( sup Z(t) <r).
te[0,T]
This gives
P(sup Z(t) <r+n) <P(sup Z(t)<r+n,Yr > —-KT)+P(Yr < —KT)
1€[0,T] te[O T]
a2 (k1)
<e®r P(sup Z(t) <r)—P(Yr < —KT),
1€[0,T]
or equivalently,
20 (K4
P(sup Z(t) <r+n)+P(Yr < —KT) <e®T P( sup Z(t) <r). (55)
1€[0,T] 1€[0,T]

An application of monotone convergence theorem gives
2

o T s o0
lim 2% = zfo (1 - ?)A(s)ds . 2/0 A(s)ds = 1 > 0.
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Thus, on taking log, dividing by T, and letting T — oo in (55) gives
{ O(A,r +1n) K } <1
maxi—0(A,r 1 < —
LYY Eee

which on letting | O followed by K — oo gives

(x + g) —0(A, r),

liminfO(A,r +n) > 0(A, r),
0
which verifies right continuity, and hence completes the proof of the theorem. [J

Proof of Lemma 3.4. Step 1: Interpolating between Y,(.) and Z,(.). Given a measurable set
D C R of positive Lebesgue measure, define

gn(y, D) = IOg/

1
exp {——x/<(1 A+ )/B,,_l)X} dx, y €10, 1],
D}‘l 2

and note that

1
0,80y, D) = 3B (X, (A, = B, VX, | Xy () € D1 <0 <),

n,y\in

where {X, ,(i)}1<i<n is a centered Gaussian vector with inverse covariance matrix X~ ; =
(1 —y)A;'+yB;!. Note that X, , is positive definite (because all eigenvalues are bounded
away from zero, by (15)) and symmetric, so that indeed it is a proper covariance matrix of a
Gaussian vector. By construction, we have X, o(.) < Z,(.) and X, 1(.) < Y,(.), and so with

D, := (—o0, r) we have
|10gIE”(lmax Y,(i) <r)— log]P’(lmax Z,(i) <r)|
<i<n <i<n

|gn(ls Dr) - gn(lv Doo) - gn(O, Dr) + gn(os Doo)|
= sup |3ygn(% D,)| + sup |8ygn(yv Do)l

v€l[0,1] v€l0,1]
l n
<14, = B, 2 sup EQY_ X,y (0’1 Xuy(i) € Dy 1 <i <)
2 yelo.ll
1 n
514" = Bl sup B Xy (021X, () € Do, 1 <0 < 1), (56)
v€l[0,1]

i=1

We now claim that for any D we have

limsup sup lE (Z X,,,y(i)2|X,,,7,(i) eD,1 <i<n)<o0. &9
n—oo ye[0,11 1 ol

Deferring the proof of (57), use (15) along with [|A, — By,[2 — 0 to conclude that ||A, ' —
Bn’1 Il — O (use that A;l - Bn’1 = A;l(B,, - An)Bn’l). This observation along with (56) and

(57) gives the desired conclusion.
Step 2: We show (57). First, we use (15) to get the existence of positive reals A, A, free of
n such that all eigenvalues of A I and B, ! lie within the interval [A1, A»]. In particular this
implies that the eigenvalues of X, , := (1 — y)A, ! + ¥ B, ! also lie in the same interval, and
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so fixing K > 0 we have

E (Xn: Xy (| Xpy (i) €D 1 <i < n)

i=1

< Kn+E (Y Xy (P X0, 07 = Kn}|X, ) e D1 <i < n)
i=1 i=1

E (ZL] Xn,y(i)zl{z,-":l Xy (i > Kn})
]P)(Xn,y(i) eD, 1<i< n)

\/E [(Zf:l Xw(i)z)z]\/ﬂ"(Z?_l Xy (i)? > Kn)

P(X,,,y(i) eD 1<i< n>

< Kn+

<Kn+

’

and so it suffices to show that

el o e )

yel0.1] P(Xn,y(i) eD 1<i< n) N

(58)

with C(K) > 0 for K large enough.
We will now bound each of the terms on the left hand side of (58). To begin, note that

1ory—1
e~ 2% ZnyXdx

- S ek

P(E me(i)Z - K}’l) — {21:1 x> l:} —
; f e—ix’En,yde
i=1 Rn

Ao
—Shx'x
f{zg':lxi2>l(n} € dx

RSN
S €™ ¥ dx

- (%)ZP(Z": £2 > 2 Kn)
i=1

(ﬁ) 5 (E [e§2/4]>ne—A|Kn/4
Al

< e—C(K)n’ (59)

IA

where the (&;) are i.i.d. N(0, 1) and where C’(K ) can be made arbitrarily large by making K
large. A similar calculation gives

IP’(X,W(Z') eD 1<i< n) =

[SE

PN(0, 1) € /A,D)", (60)
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which is at most an exponentially decreasing factor. Finally we are using the Cauchy—Schwarz
inequality

E [(Z X,,2) ] <n S EX,,0)f < i—”; 1)
i=1 i=1

which increases polynomially in n. Combining (59), (60), (61) and making K sufficiently large
to compensate the other exponential factors gives (58), and hence completes the proof of the
lemma. [J

Proof of Lemma 3.5. To begin, use the uniform convergence of correlation functions to
conclude that for any positive integer L we have

Epi=sup  sup  [P(Zi(s+i) < xi,i < L) —P(Zooli) < x;,i < L) 220, (62)

seNy (X1,0ey xL)e]RL

Step 1: Lower bound. Fix a positive integer M and use Slepian’s lemma and non-negative
correlations gives

[
P(max Z(i)<r)> 1_[ ]P’( max Zi(la— 1M +1i)<r)

a=1
n

31
z[P(lmau;W Zuy <P =& |

where the last inequality uses (62) with L = M. Taking log, dividing by n, and letting n — oo
on both sides of the above equation gives

hmlnf— loglP(sup Z;(i) <r)> i log P( sup Zyo(i) <r). (63)
k,n—00 n 1<i<n I<i<m
The lower bound of (17) follows from this on letting M — oc.
Step 2: Introducing a perturbation. For the upper bound of (17), let Wy, ..., W, be i.i.d.
N(0, 1), independent of {Z(¢)};>0. Then for any & > 0 we have, by the independence of the
{W:} and {Z, (1)},

P <i<n Zi (i hVVI h

P(max Zy(i) <r) < (max,<; < {Zx(i) + hW;} < r + Vh)
1<i<n I[D(Wl < h71/2)n

which on taklng log, dividing by n, and letting n, k — oo gives

3

hmsup logP( sup Zi(i) < r) < lim sup logIP(max{Zk(l) +hW;} <r+ «/_)

k,n—00 1<i<n k,n— 00

— logP(W, < h=Y?%). (64)

Step 3: Introducing blocks. Fix positive integers M, m with M > m, and let p; := i(m+ M)
fori > 1.Let N .= LMLJFMJ denote the largest integer i such that p; < n. Set I, := [p,—M, p,]
for 1 <a < N, and note the trivial inequality:

}P(max{Zk(z) +hW@i)} <r+ «/_) < ]P’( maX maX{Zk(l) +hW@i)} <r+ \/_) (65)

a<N iel,
Let {Yi(i)}ic1,1<a<ny be a centered Gauss1an vector such that the collection of vectors
({Yx(@)}ier,» 1 <a < N) are mutually independent, with
. d .
{Yi(DYier, = {Zi(Dliet, -
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Denoting A, and B, m,» to be the covariance matrices of {Z;(i) + AW (i)}ier, 1<a<nv and
{Yi(@) + hW(i)}icr,.1<a<n respectively, we have

N N
max Y Y " [Auili, j) = Buswrm(i, )l = max max Y A, j)

; N 1<a<N i€l
i€Ug=1la b= jey, == “ ba jel,

< max E Ar(, J)
I<i<n A “—
Jilj—il=m

[e9]
<2) ali) = e,

where 1im,,_, o0 liMg_, 00 €.k = 0 using (16). Invoking the Gershgorin circle theorem ([23, Thm
6.1.1]), this gives

limsup lim sup limsup || A, x — Buk.mmll2 = 0. (66)

m—o00 M—o0o k,n—>00

Also note that

n

(o]
lim sup max Ap (i, j) <2limsup ng(‘[),
—00

k,n—oo 1<i=n <

j=1 =0
which is finite using (16), and consequently we have

limsup || Ay kll2 + limsup || B,k pmr.mll2 < 00. (67)

k,n—00 k,n—00

Given that the eigenvalues of A, ; and B, x u.» are bounded below by & > 0, we see that (15)
is satisfied. Therefore, with (66) and (67), an application of Lemma 3.4 gives

1
lim sup lim sup lim sup — | log ]P’(lmaxN I_IlEIlX{Zk(i) +hW(@i)} < r+h)
n <a<N i€l,

m—00 M-—o0o k,n—00

—logP( max max{Y,(i) +hW(i)} <7+ vh)| = 0. (68)
<a<N i€l,
Step 4: Decoupling the blocks. By definition of {Y;(.)} we have
P( max max{Yy(i) + AW(i)} < r + vh)

I<a<N i€l,

N
= HIP’(r'réa}x{Zk(i) +hW(i)) < r +Vh)
a=1 “

< [BCmax (Zoo) + AW < r+ VI + 6u]

where the last inequality uses (62) with L = M. On taking log, dividing by n, and letting
n, k — oo on both sides of the above equation we get

1
lim sup— log ]P’(lmaxN mellx{Yk(i) +hW@)} <r+ \/E)
<a=N 1i€lqg

k,n—oo N

<
"M+ m

Step 5: Undoing the perturbation. For analyzing the right hand side of (69), set S = {i €
{1,...,M}: WG| >h""?}.Fix0<t < 1/2. Then, denoting the set of all p ordered tuples
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of distinct integers in {1, ..., M} by [M], we have
P( max (Zoo(i/€) +hW (i)} < r + Vh)

< P(IS| > M1) +P(IS| < M, max {Zoo(i) +hW ()} < 7+ h)

M
<P(S| > Mt P Zoo(i 2V h
<P(S| > M1) + 72 S B(max ZuGij) <r 42V
p=[M1=1)] (i1.....ip)E[M],
M .
P siem Z 2Vh
<P(S| > M)+ Z Z (maxi<j<y Zoo(i) <1 + \/_)

M—
p=TMA=1)] (if....ip)el M1, P(Zoo(0) <1 +2V/mM"r

M ) P(max; i<y Zoo(i) < r + 23/h)
[M(1—1)] P(Z(0) < r + 2/h)M!
where the inequality in the penultimate line uses Slepian’s inequality along with non-negative

correlations. We will now analyze both the terms on the right hand side of (70) separately.
Since |S| ~ Bin(M, P(|W,| > h~!/?)), for every t > 0 we have

<P(s| > Mt)+M< , (70)

1
lim sup lim sup Mlog]P’(|S| > Mt) = —oo0. an

h—0 M— o0
Also using the asymptotics of binomial coefficients gives
log( M )
. ma-n1) o _
Mhinoo —u - tlogt — (1 —t)log(l — 1),
so that

1
lim sup lim sup — log
t—0 M— o0

( M )P(maxl<i<M Zoo(i) <1+ ZN/Z)
M
[M(1—1)] P(Z(0) < r + 2/ h)M!

1
< lim — logP( max Zu(i) < r + 2vh). (72)
M—soco M 1<i<M

Combining (64), (65), (68), (69), (70), (71), and (72) and taking limits in the order n, k — oo,
M — 0o, m — 00, h — 0 and then r — 0 gives

1 1
li — log P Z:.(i < i li — log P Zoo(i 2
im sup  log (122" (i) <r) = lim lim = log P(max Zoo(i) < r + Vh),

from which the upper bound follows using Theorem 3.3. [

Proof of Theorem 3.6. Under the assumption (19), uniform convergence of correlation
functions gives

£.1 = sup sup |P( sup Zx(s + 1) < x) — P( sup Zoo(7) < x)| =70, (73)
seNg xeR 7€l0,L] 7€l0,L]

Using this, repeating arguments similar to the proof of the lower bound in the discrete case
(cf. (63)) gives

1 1
liminf — logP( sup Zy(t) <r) > —1logP( sup Z.(t) <r). (74)
kT—oo T 1€[0,T] M 1e[0,M]

The lower bound of (21) follows from this on letting M — oo.
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For the upper bound of (21), assume without loss of generality that 7" is an integer. Fixing
a positive integer ¢ and setting n = T'¢ we have the trivial upper bound:
P(sup Zi(t) <r) < ]P’( max Zk(l/e) <r),
1€[0,T1
where the correlation of the discrete time Gaussian process {Z;(i/{)};>; converge to that of
{Zoo(i/€)}i>1. Also {Zy(i/€)}i>1 satisfies (16) by assumption (18), and so an application of
Lemma 3.5 gives

1 1

limsup — logP( sup Zi(t) < r) < limsup — log ]P’( max Zx(i/l) < ). (75)
kT—oo 1 1€[0,T] Tooo T

From this the upper bound of (21) follows on letting £ — oo and invoking (20). This completes

the proof of the lemma. [

Proof of Lemma 3.10. Proof of (a). This follows on noting that the lower bound proof of
Theorem 3.6 only uses (19), cf. (74).

Proof of (b). This follows on noting that the upper bound proof of Theorem 3.6 only uses
(18) up to the step (75), giving

1 1
lim sup — log P( sup Zi(t) <r)<lim sup —log ]P( max Z(i/) <)
k,T— 00 te[0,7T] T—o0

= ZlogIE”(N(O, 1)< r),

where the last equality uses the fact that the limiting process is white noise. The desired
conclusion then follows on letting £ — oo.
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