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a b s t r a c t

Ricci curvature was proposed by Ollivier in a general framework of metric measure spaces,
and it has been studied extensively in the context of graphs in recent years. In this paper
we obtain the exact formulas for Ollivier’s Ricci-curvature for bipartite graphs and for the
graphs with girth at least 5. These are the first formulas for Ricci-curvature that hold for a
wide class of graphs, and extend earlier results where the Ricci-curvature for graphs with
girth 6 was obtained. We also prove a general lower bound on the Ricci-curvature in terms
of the size of the maximum matching in an appropriate subgraph. As a consequence, we
characterize the Ricci-flat graphs of girth 5. Moreover, using our general lower bound and
the Birkhoff–von Neumann theorem, we give the first necessary and sufficient condition
for the structure of Ricci-flat regular graphs of girth 4. Finally, we obtain the asymptotic
Ricci-curvature of randombipartite graphsG(n, n, p) and randomgraphsG(n, p), in various
regimes of p.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ricci curvature is a fundamental concept in Riemannian geometry, which provides a way of measuring the degree
to which the geometry determined by a given Riemannian metric might differ from that of Rn. Ricci curvature plays an
important role in general relativity, where it is the key term in the Einstein field equations, and in the celebrated Ricci flow
equation, where a time-dependent Riemannianmetric is deformed in the direction of its negative Ricci curvature. Bakry and
Émery [2] attempted to define Ricci-curvature through the heat semigroup on a metric measure space. In the recent years,
there have been several work on defining a synthetic Ricci curvature on general metric measure spaces by Sturm [27,28],
Lott and Villani [20], and Ohta [21].

In the context of graphs, Chung and Yau [5] developed the notion of Ricci-flat graphs, while proving log-Sobolev inequal-
ities. Later, Lin and Yau [18] generalized the notion of Bakry and Émery to the framework of graphs. Finally, Ollivier [23]
introduced a notion of coarse Ricci-curvature that extends to Markov chains on metric spaces. This was used to general-
ize a series of classical theorems in positive Ricci-curvature, such as spectral gap estimates, concentration of measure or
log-Sobolev inequalities [22,24]. Joulin and Ollivier [14] proved nonasymptotic estimates for the rate of convergence of em-
piricalmeans ofMarkov chains, togetherwith a Gaussian or exponential control on the deviations of empirical means, under
the assumption of positive curvature of the underlying space. This assumption reduces to thewell-known contraction under
path coupling when the underlying space is a finite graph, which has been used extensively to prove fast mixing of several
discrete Markov chains (refer to Chapter 14 of Levin et al. [15] for details on path coupling and its application to fast mixing
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and approximate counting of proper q-colorings of a graph). In Riemannian geometry, both Ollivier’s Ricci curvature and
Bakry–Émery curvature-dimension inequality give lower bound estimates for the first eigenvalue of the Laplace operator
[1,3,22]. For a detailed exposition on geometric methods concerning eigenvalue estimates in the study of Markov chains
refer to [6,8,11] and the references therein.

Recently, Ollivier’s Ricci-curvature has been studied in the context of graphs by Jost and Liu [13], Paeng [25], and Cho and
Paeng [4]. Very recently, Loisel and Romon [19] described a method for computing Ollivier’s Ricci-curvature for polyhedral
surfaces and discussed the connections with linear programming. Lin et al. [17,16] considered a modified definition of
Ricci-curvature of graphs, and proved several analogous results. In this paper we study Ollivier’s Ricci-curvature on graphs
using theMarkov kernel of the simple randomwalk on the graph. We obtain exact formulas for Ricci-curvature for bipartite
graphs and for the graphs with girth at least 5. Previously, an exact formula was only known for graphs with girth at least 6
[4,13]. Our formulas extend these results and provide exact expressions for the Ricci-curvature for a large class of graphs.
Using these results we characterize Ricci-flat graphs of girth at least 5. We also prove several other bounds on the
Ricci-curvature, involving different graph parameters. The most interesting among them is the derivation of a general
lower bound in terms of the size of the maximum matching in an appropriate neighborhood subgraph. Using this we
give a necessary and sufficient condition on the structure of Ricci-flat regular graphs of girth 4. Finally, using results about
approximate matching in random graphs, we study the asymptotic behavior of Ricci-curvature of random bipartite graphs
G(n, n, p) and random graphs G(n, p), in various regimes of p.

1.1. Ollivier’s Ricci-curvature: definitions and notations

In this section we recall some basic facts about Ollivier’s Ricci curvature on graphs and introduce other relevant defini-
tions and notation.

For two probability measures µ1, µ2 on a metric space (X, d), the transportation distance (or the Wasserstein distance)
between them is defined as

W1(µ1, µ2) = inf
ν∈M(µ1,µ2)


X×X

d(x, y)dν(x, y), (1)

whereM(µ1, µ2) is the collection of probabilitymeasures on X×X withmarginalsµ1 andµ2. Another useful representation
of the transportation distance is through the celebrated Kantorovich duality (Theorem 1.14, Villiani [29]), which states that

W1(µ1, µ2) = sup
f ,1−Lip


X
f dµ1 −


X
f dµ2


, (2)

where the supremum is taken over all functions f : X → R which satisfy |f (x) − f (y)| ≤ d(x, y), for all x, y ∈ X .
The transportation distance between probability measure is used to define the Ricci-curvature of metric measure spaces.

Ametricmeasure space (X, d,m) is ametric space (X, d), and a collection of probabilitymeasuresm = {mx : x ∈ X} indexed
by the points of X . The coarse Ricci curvature of a metric measure space is defined as follows:

Definition 1.1 (Ollivier [23]). On any metric measure space (X, d,m), for any two distinct points x, y ∈ X , the coarse Ricci
curvature of (X, d,m) of (x, y) is defined as κ(x, y) := 1 −

W1(mx,my)
d(x,y) .

Hereafter, we shall refer to Ollivier’s coarse Ricci curvature simply as Ricci curvature and we shall study it for locally
finite graphs. Consider a locally finite weighted simple graph G = (V (G), E(G)), where each edge (x, y) ∈ E(G) is
assigned a positive weight wxy = wyx. The graph is equipped with the standard shortest path graph distance dG, that is,
for x, y ∈ V (G), dG(x, y) is the length of the shortest path in G connecting x and y. The girth of G is the length of the shortest
cycle in G. For x ∈ V (G) define the degree dx =


(x,y)∈E(G) wxy and the neighborhood NG(x) = {y ∈ V (G) : (x, y) ∈ E(G)}.

For each x ∈ V (G) define a probability measure

mx(y) =

wxy

dx
, if y ∈ NG(x)

0, otherwise.

Note that these are just the transition probabilities of a weighted randomwalk on the vertices of G. IfmG = {mx : x ∈ V (G)},
then considering the metric measure space M(G) := (V (G), dG,mG), we can define the Ricci curvature for any edge
(x, y) ∈ E(G) as κG(x, y) := 1 − WG

1 (mx,my). Applying Eq. (1) for M(G) we get

WG
1 (mx,my) = inf

ν∈A


z1∈NG(x)


z2∈NG(y)

ν(z1, z2)d(z1, z2), (3)

where A denotes the set of all dx × dy matrices with entries indexed by NG(x) × NG(y) such that ν(x′, y′) ≥ 0,
z∈NG(y) ν(x′, z) =

wxx′
dx

, and


z∈NG(x) ν(z, y′) =
wyy′

dy
, for all x′

∈ NG(x) and y′
∈ NG(y). Intuitively, theWasserstein distance

measures the optimal cost to move one pile of sand to another one with the same mass. For a matrix ν ∈ A, ν(x′, y′)
represents the mass moving from x′

∈ NG(x) to y′
∈ NG(y). For this reason, the matrix ν is often called the transfer plan.
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By the Kantorovich duality in Eq. (2) we can also write

WG
1 (mx,my) = sup

f ,1−Lip

 
z∈NG(x)

f (z)mx(z) −


z∈NG(y)

f (z)my(z)


. (4)

Henceforth, we denote by L1 the set of all 1-Lipschitz functions on G, that is, the set of all functions f : V (G) → R such
that |f (x) − f (y)| ≤ dG(x, y), for x, y ∈ V (G). For any x ∈ V (G) and any function f ∈ L1, define Ex(f ) =


z∈NG(x) f (z)mx(z).

With these notation, Eq. (4) now becomesWG
1 (mx,my) = supf∈L1

{Ex(f )−Ey(f )}. By triangle inequality [23], if κG(x, y) ≥ γ
for all neighbors (x, y) ∈ E(G), then κG(x, y) ≥ γ , for all x, y ∈ V (G). Therefore, it is reasonable to consider κG(x, y) only for
neighboring vertices (x, y) ∈ E(G).

Hereafter, the subscript and superscript G from κG,WG
1 , and dG will be often omitted when the graph is clear from the

context. For notational brevity, the main theorems will be stated for unweighted graphs, that is, wxy = 1, for (x, y) ∈ E(G).
However, most of these results can be generalized to weighted graphs, as discussed in Section 3.3. Finally, for a, b ∈ R,
define a+ := max{a, 0}, a ∧ b := min{a, b}, and a ∨ b := max{a, b}.

1.2. Prior work on Ricci curvature of graphs

Recently, there has been a series of papers on coarse Ricci-curvature when the metric space is a graph G. Jost and Liu
proved the following general bounds:

Theorem 1.1 (Jost and Liu [13]). For any locally finite unweighted graph G, with (x, y) ∈ E(G),

|∆G(x, y)|
dx ∨ dy

−


1 −

1
dx

−
1
dy

−
|∆G(x, y)|
dx ∧ dy


+

−


1 −

1
dx

−
1
dy

−
|∆G(x, y)|
dx ∨ dy


+

≤ κ(x, y) ≤
|∆G(x, y)|
dx ∨ dy

, (5)

where ∆G(x, y) is the number of triangles supported on (x, y).

They also show that the above lower bound is tight for trees. In fact, it is clear from their proof that the lower bound
is an equality whenever there are no 3, 4, or 5 cycles supported on (x, y). In particular, the lower bound is tight whenever
g(G) ≥ 6, where g(G) is the girth of the graph G. Recently, Cho and Paeng [4] proved this independently, and also showed
that the girth condition and the tree formula, obtained by putting |∆G(x, y)| = 0 in the lower bound in (5), are equivalent
in the following sense: the tree formula holds for all (x, y) ∈ E(G), if and only if g(G) ≥ 6. Cho and Paeng [4] also proved
other Ricci-curvature bounds involving girth. In particular, they showed that if g(G) ≥ 5, then κ(x, y) ≤ −1 +

2
δ
, where

δ := δ(G) is the minimum degree in G, and (x, y) ∈ E(G). They also obtained interesting lower bounds on the clique number
and chromatic number of a graphwith the Ricci curvature. Paeng [25] used Ollivier’s Ricci curvature to obtain upper bounds
on the diameter and volume of finite graphs. The relation between Ollivier’s Ricci curvature and the first eigenvalue was
studied by Bauer et al. [3].

Lin et al. [16] introduced a different notion of Ricci-curvature on graphs by modifying Ollivier’s definition. It is defined as
the differential limit of a lazy random walk on the graph, and we shall refer to it as the modified Ricci-curvature to distin-
guish it from Ollivier’s coarse Ricci-curvature. The modified definition has some properties which are similar to the original
definition, however, in several contexts they are very different. With this definition, Lin et al. [16] proved a theorem on the
modified Ricci curvature of the Cartesian product of graphs. They established upper bounds on the diameter and the number
of vertices for graphs with positive curvatures, and also proved asymptotic properties of the modified Ricci-curvature for
random graphs. Recently, Lin et al. [17] characterized the set of all modified Ricci-flat graphs with girth at least 5, where a
graph is called modified Ricci-flat whenever it has modified Ricci-curvature zero for every edge in the graph. They showed
that if G is a connected modified Ricci-flat graph with girth g(G) ≥ 5, then G is the infinite path, or a cycle Cn with n ≥ 6,
the dodecahedral graph, the Petersen graph, or the half-dodecahedral graph.

1.3. Summary of our results and organization of the paper

In this paper we obtain exact expressions of Ollivier’s Ricci-curvature for bipartite graphs and for the graphs with girth
at least 5. For a bipartite graph G with (x, y) ∈ E(G), we show that the Ricci-curvature has the form

κ(x, y) = −2

1 −

1
dx

−
1
dy

− EG(x, y)


+

.

The explicit form of EG(x, y) is given in Theorem 3.1, and can be interpreted as a non-negative correction term which
improves the lower bound in Theorem 1.1 to an exact equality.

Similarly, when G is a graph with girth greater than 4 and (x, y) ∈ E(G), the Ricci-curvature has the form

κ(x, y) = −2

1 −

1
dx

−
1
dy

− FG(x, y)


+


−


1 −

1
dx

−
1
dy


+

.

The explicit form of FG(x, y) is given in Theorem 3.3, and as before, can be interpreted as a non-negative correction term.
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To the best of our knowledge, exact formulas for Ricci-curvature were only known for the graphs with girth at least six
[4,13]. Our results extend these to graphswith no odd-cycles and graphswith no cycles smaller than 5. As a consequence, we
characterize Ricci-flat graphs of girth at least 5, where a graph G is said to Ricci-flat if κ(x, y) = 0 for all (x, y) ∈ E(G). This
is in analogue to the result on modified Ricci-curvature of Lin et al. [17] in the context of Ollivier’s coarse Ricci-curvature.

In Theorem 5.1we prove a general lower bound on the Ricci-curvature κ(x, y) in terms of the size of thematching among
the non-common neighbors of x and y in the graph G. This bound is often tight, especially in regular graphs which have a
perfectmatching between the non-commonneighbors of x and y. As the set of all transportationmatrices in d-regular graphs
is related to the famous Birkhoff polytope, our lower bound result combined with the celebrated Birkhoff–von Neumann
theorem gives a necessary and sufficient condition on the structure of Ricci-flat regular graphs of girth 4, which is detailed
in Corollary 5.3.

Finally, we also study the Ricci-curvature of random bipartite graphs G(n, n, p) (Theorem 6.2) and random graphs
G(n, p) (Theorem 6.3), in various regimes of p. Using a variant of the Hall’s marriage theorem, and the existence of
near-perfect matching in random bipartite graphs, we obtain the limiting behavior of the Ricci-curvature in the regimes of p
where it has a constant limit in probability. We also show that when npn → λ, that is, the graph is locally tree-like, the
Ricci-curvature converges in distribution to the tree formula of Jost and Liu [13]. These are the first known results for
Ollivier’s Ricci-curvature for Erdős–Renyi random graphs. The analogous version of these results using the modified
Ricci-curvature were obtained by Lin et al. [16]. They showed almost sure convergence to constant limits, but could not
capture all the different regimes of p.

In Section 2 we prove several important lemmas which build the foundations for proving themain results. We show that
the computation of Ricci-curvature on a graph can be formulated as a totally unimodular linear programming problem, and
so it suffices to optimize over integer valued 1-Lipschitz functions. We also prove a crucially important reduction lemma
where we identify the exact neighborhood of an edge (x, y) ∈ E(G) that needs to be considered while computing the
Ricci-curvature κ(x, y). In Section 7 we summarize our work and mention directions for possible future work.

2. Preliminaries

We begin by proving an extension lemma for Lipschitz functions on graphs. Let G = (V (G), E(G)) be a locally finite
weighted graph. Let U ⊂ V (G) be a fixed subset of vertices, and dG the shortest path metric on G.

Lemma 2.1. Any 1-Lipschitz function g : U → R, that is, |g(a)−g(b)| ≤ dG(a, b), for a, b ∈ U, can be extended to a 1-Lipschitz
function g : V (G) → R on G, that is, |g(a) − g(b)| ≤ dG(a, b), for a, b ∈ V .

Proof. Define g := g on U . Let z ∈ V (G)\U be any point. Note that result follows by induction if we can construct a function
g : U ∪ {z} → R which is satisfies |g(a) − g(b)| ≤ dG(a, b), for a, b ∈ U ∪ {z}. To this end, let

A :=


a∈U

[g(a) − dG(a, z), g(a) + dG(a, z)].

Observe that if A is empty, then there must exist a, b ∈ U such that g(a) + dG(a, z) < g(b) − dG(b, z). This implies that

g(b) − g(a) > dG(a, z) + dG(b, z) ≥ dG(a, b).

This contradicts the assumption that g is Lipschitz on U , and proves that A is non-empty. Therefore, we can define g(z) = r ,
for some r ∈ A. Moreover, by construction |g(a) − g(b)| ≤ dG(a, b) ≤ dG(a, b), for any two vertices a, b ∈ U ∪ {z}. By
repeating this constructing inductively for every z ∈ V (G)\U , the result follows. �

Next, we show that computing the transportation distance is a linear programming problem, with integral extreme
points. To prove this we use the following result from linear programming (Theorem 2.2, Chapter 4, Yemelichev et al. [30]):
The polyhedron P = {w⃗ : b⃗1 ≤ Mw⃗ ≤ b⃗2, d⃗1 ≤ w⃗ ≤ d⃗2} has integral extreme points, whenever b⃗1, b⃗2, d⃗1, d⃗2 are integral
vectors andM is totally unimodular, that is, the determinant of every sub-matrix ofM is 0, +1, or −1.

Lemma 2.2. Let G = (V (G), E(G)) be a locally finite weighted graph. For (x, y) ∈ E(G), there exists g ∈ L1 such that g : V (G)
→ Z, g(x) = 0, and g = arg supf∈L1

{Ex(f ) − Ey(f )}. Thus, while computing κ(x, y) it suffices to optimize over integer valued
1-Lipschitz functions, and consequently κ(x, y) is rational.

Proof. For (x, y) ∈ E(G) and f ∈ L1, denote by Txy(f ) = Ex(f )−Ey(f ) =
1
dx


z∈N(x) f (z)wxz −

1
dy


z∈N(y) f (z)wyz . Note that

Txy is location invariant, that is, Txy(f ) = Txy(f + c), for any c ∈ R. Therefore, w.l.o.g. generality we can assume g(x) = 0.
Thus, computing the transportation distance is equivalent to

max
f

Txy(f ) subject to |f (a) − f (b)| ≤ 1 for (a, b) ∈ E(G), and f (x) = 0.

This is clearly a linear programming problem with |V (G)| − 1 variables and 2|E(G)| constraints.
The set of all feasible functions of this linear program forms a polytope in R|V (G)|−1 with finitely many extreme points.

Consider the digraph D(G) obtained by duplicating every edge of G and orienting one each in both directions. As each of the
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Fig. 1. Core neighborhood of (x, y): illustration for the proof of the reduction lemma.

constraints of the linear program are of the form |f (a) − f (b)| ≤ 1 for (a, b) ∈ E(G), the set of constraints can be written
as M ′ f⃗ ≤ 1⃗ and |f⃗ | ≤ diam(G) · 1⃗, where M is the incidence matrix of the digraph D(G), f⃗ is the vector of values of f with
f (x) = 0, and diam(G) is the diameter of the graph G. As M is totally unimodular (Theorem 13.9, Schrijver [26]), the set of
points of this linear program are integral, completing the proof of the lemma. �

2.1. Reduction lemma: removing large cycles

The transportation distance, and hence the Ricci curvature, of an edge (x, y) ∈ E(G), is a local property depending only
on vertices which are close to x and y. In this section we prove a reduction lemma where we make the above statement
precise by exactly identifying the sub-graph of G which contributes to Ricci curvature of an edge (x, y) ∈ E(G).

Before we proceed to state the lemma, we introduce some notation which will be used throughout the paper. Consider
a locally finite weighted graph G = (V (G), E(G)). For any two vertices x, y ∈ V (G), such that (x, y) ∈ E(G), we associate the
following quantities (refer to Fig. 1(a)):

∆G(x, y) This is set of vertices in V (G) which are common neighbors of both x and y, that is, ∆G(x, y) = NG(x) ∩ NG(y). In
fact, |∆G(x, y)| is the number of triangles in G supported on (x, y)

PG(x, y) This is the set of vertices which are at distance 2 from both x and y. That is, PG(x, y) = {v ∈ V (G) : dG(x, v) =

dG(y, v) = 2}.

Define V(x,y) := NG(x) ∪ NG(y) ∪ PG(x, y), and denote by H the subgraph of G induced by V(x,y).

Lemma 2.3 (Reduction Lemma). For a locally finite weighted graph G = (V (G), E(G)) and an edge (x, y) ∈ E(G), κG(x, y) =

κH(x, y). Moreover, for computing κ(x, y) it suffices to assume that there are no edges between ∆G(x, y) and PG(x, y).

Proof. To begin with observe that dG(a, b) ≤ dH(a, b), for any a, b ∈ V (H). Therefore, any function which is Lipschitz in dG
is also Lipschitz in dH . Therefore,

WH
1 (mx,my) ≥ WG

1 (mx,my).

To show the other inequality it suffices to show that for any 1-Lipschitz function f : V (H) → R with respect to dH , we
can define a function g : V (G) → R which is 1-Lipschitz with respect to dG and agrees with f on NG(x, y) := NG(x) ∪ NG(y),
as the transportation distance betweenmx andmy only depends on the values of the function at NG(x, y). To this end, define
g = f on NG(x, y). Observe that if a, b ∈ NG(x, y), then by construction of H there is a path from a to b of length dG(a, b)
in H , and so dG(a, b) = dH(a, b). Moreover, as f is Lipschitz with respect to dH , we have |g(a) − g(b)| = |f (a) − f (b)| ≤

dH(a, b) = dG(a, b). Finally, applying Lemma 2.1 with U = NG(x, y) proves that g can be extended to a Lipschitz function
with respect to dG on the whole of V (G). This proves that WH

1 (mx,my) ≤ WG
1 (mx,my), and the proof of the first part of the

lemma is complete.
To show the second part, it suffices to show that κH(x, y) = κH\e(x, y), for a edge e between ∆G(x, y) and PG(x, y). By the

dual definition (3) thismeans that the optimal transfermatrixA remains unchanged if we drop the edge e. This is equivalent
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to showing that for any z1 ∈ NG(x) and z2 ∈ NG(y) there is a shortest path connecting z1, z2 without using e. The following
cases may arise:

dH(z1, z2) = 3 The shortest path not using e in this case is (z1, x, y, z2).
dH(z1, z2) = 2 If z1 ∈ NG(x) ∩ NG(y) then a path of length 2 not containing e is (z1, y, z2). Similarly, for z2 ∈ NG(x) ∩ NG(y)

a path of length 2 is (z1, x, z2). Therefore, consider z1 ∈ NG(x)\NG(y) and z2 ∈ NG(y)\NG(x). However, it is
easy to see that as e is an edge between ∆G(x, y) and PG(x, y), a path of length 2 containing e cannot connect
z1 and z2. Therefore, if dH(z1, z2) = 2, then there exists a path of length 2 not containing e.

dH(z1, z2) = 1 The shortest path in this case is (z1, z2) and e ≠ (z1, z2), as dH(z1, x) = 1, dH(z2, y) = 1. �

If ϕG(x, y) denotes the set of edges between ∆G(x, y) and PG(x, y) (red edges in Fig. 1), we denote the core neighborhood
of (x, y) in G as the subgraph

G(x,y) := (V (H), E(H)\ϕG(x, y)).

The above lemma shows that it suffices to consider only the core neighborhood subgraph G(x,y) for computing the Ricci-
curvature of (x, y) ∈ E(G), which greatly simplifies computations of κ(x, y).

One of the few known exact formulas for Ricci-curvature for graphs is the following result of Jost and Liu [13] for trees:

Theorem 2.1 (Jost and Liu [13]). For any neighboring vertices x, y of a unweighted tree T ,

κ(x, y) = −2

1 −

1
dx

−
1
dy


+

.

An immediate consequence of Lemma2.3 and the above theorem is the following corollary,which generalizes the formula
for Ricci curvature of trees to graphs with girth ≥ 6. This generalization was clear from the proof of Theorem 2.1 in Jost and
Lin [13], and was also proved by Cho and Paeng [4].

Corollary 2.2 ([4,13]). For a locally finite unweighted graph G = (V (G), E(G)) and an edge (x, y) ∈ E(G),

κ(x, y) = −2

1 −

1
dx

−
1
dy


+

,

if there are no 3, 4, and 5 cycles supported on (x, y). In particular, the above formula holds whenever the girth of G is at least 6.

3. Bipartite graphs and graphs with girth greater than 4

Jost and Liu [13] obtained bounds on Ricci-curvature involving the number of triangles supported on (x, y), that is
|∆G(x, y)|. Their main result is stated in Theorem 1.1, which reduces to the following when there are no triangle supported
on (x, y):

− 2

1 −

1
dx

−
1
dy


+

≤ κ(x, y) ≤ 0. (6)

It is also known that the lower bound is tight for the graphs with girth at least 6 [4,13]. Cho and Paeng [4] also obtained
bounds on the Ricci-curvature of graphs with girth at least 5 in terms of the minimum degree of the graph. In this section,
using the reduction lemma and by a careful analysis of the structure of the core-neighborhood we improve all existing
bounds to obtain exact formulas for the Ricci-curvature in bipartite graphs and graphs with girth at least 5.

3.1. Ricci curvature of bipartite graphs

In this section we shall give an exact formula for κ(x, y) whenever the graph G is bipartite, that is, there are no cycles
of odd-length in G. We know that NG(x) and NG(y) denote the set of neighbors of x and y, respectively. We partition
NG(x) = N0(x)


N1(x) ∪ {y}, where

N1(x) = {z ∈ NG(x)\{y} : dG(z,NG(y)) = 1}, is the set of neighbors of xwhich are on a 4-cycle supported on (x, y).
N0(x) = NG(x)\(N1(x) ∪ {y}), is the set of remaining neighbors of x, apart from y.

Similarly, we can define a partition NG(y) = N0(y)


N1(y) ∪ {x}. Now, if we assume that G is bipartite, |∆G(x, y)| = 0 and
|PG(x, y)| = 0. This simplifies the structure of the core neighborhood, and using that we now give the exact formula for
κ(x, y) in bipartite graphs.

Theorem 3.1. Let G = (V (G), E(G)) be a locally finite unweighted bipartite graph and (x, y) ∈ E(G). Suppose R(x, y) is
the subgraph of G(x,y) induced by N1(x)


N1(y), and R1(x, y), R2(x, y), . . . , Rq(x, y) be the connected components of R(x, y).
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Fig. 2. Ricci curvature of bipartite graphs: structure of the core neighborhood.

If Ua(x) = V (Ra(x, y)) ∩ N1(x) and Ua(y) = V (Ra(x, y)) ∩ N1(y), for a ∈ {1, 2, . . . , q}, then

κ(x, y) = −2


1 −

1
dx

−
1
dy

−
|N1(y)|

dy
+

q
a=1


|Ua(y)|

dy
−

|Ua(x)|
dx


+


+

. (7)

Proof. Using Lemma 2.3 we can replace G by its core neighborhood G(x,y). As G is bipartite, there are no edges between
N0(x) and N1(x), and between N0(y) and N1(y). Therefore, the structure of the core neighborhood G(x,y) is as depicted
in Fig. 2.

For any Z ⊆ V (G(x,y)) and any function f ∈ L1, denote byWf (Z) =


z∈Z f (z). Therefore, for (x, y) ∈ E(G),

Ey(f ) − Ex(f ) =
f (x) + Wf (N0(y)) + Wf (N1(y))

dy
−

f (y) + Wf (N0(x)) + Wf (N1(x))
dx

. (8)

Lemma 2.2 implies that it suffices to maximize Ey(f ) − Ex(f ) over 1-Lipschitz functions f satisfying f (x) = 0, and f (y) ∈

{−1, 0, 1}. Therefore, for i ∈ {−1, 0, 1} define

κi(x, y) := 1 − max
f∈L1,f (y)=i

(Ey(f ) − Ex(f )),

and observe that κ(x, y) = κ−1(x, y) ∧ κ0(x, y) ∧ κ1(x, y). Assuming f (x) = 0 we consider the following three cases
separately.

Case 1:
f (y) = −1. This implies that f (z) ≤ 0 for z ∈ NG(y) and f (z) ≥ −1, for z ∈ NG(x). Therefore, from Eq. (8) we get

Ey(f ) − Ex(f ) ≤
1
dx

+
|N0(x)| + |N1(x)|

dx
= 1.

Moreover, this bound is attained by the function g : V (G(x,y)) → R:

g(z) =


−1, if z ∈ NG(x),
0, otherwise,

which is 1-Lipschitz on the core neighborhood of (x, y) (refer to 2(a)). This implies, κ−1(x, y) = 0.
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Case 2:
f (y) = 0. This implies that f (z) ≤ 1 for z ∈ NG(y) and f (z) ≥ −1, for z ∈ NG(x). Therefore, from Eq. (8) we get as before,

Ey(f ) − Ex(f ) ≤
|N0(y)| + Wf (N1(y))

dy
−

−|N0(x)| + Wf (N1(x))
dx

,

=
|N0(y)|

dy
+

|N0(x)|
dx

+
Wf (N1(y))

dy
−

Wf (N1(x))
dx

.

=
|N0(y)|

dy
+

|N0(x)|
dx

+

q
a=1


Wf (Ua(y))

dy
−

Wf (Ua(x))
dx


, (9)

where Ua(x) and Ua(y) are as defined in the statement of the theorem, for a ∈ {1, 2, . . . , q}. For any 1-Lipschitz function
f : V (G(x,y)) → Z with f (x) = f (y) = 0 denote the restriction of f to Ua(y) ∪ Ua(x) ∪ {x, y} as fa, for a ∈ {1, 2, . . . , q}. This
implies that

1 − κ0(x, y) ≤
|N0(y)|

dy
+

|N0(x)|
dx

+

q
a=1

max
fa∈L1,

fa(y)=0


Wfa(Ua(y))

dy
−

Wfa(Ua(x))
dx


. (10)

Fix a ∈ {1, 2, . . . , q}, and consider a 1-Lipschitz function fa : Ua(y) ∪ Ua(x) ∪ {x, y} → Z, with fa(x) = fa(y) = 0. Define

W(fa) :=
Wfa(Ua(y))

dy
−

Wfa(Ua(x))
dx

.

Now, if there exists z ∈ N1(y) such that fa(z) = −1, then for fa be to 1-Lipschitz fa(w) ∈ {−1, 0}, for all w ∈ NG(z) ∩ N1(x).
Then the function f ′

a : Ua(y) ∪ Ua(x) ∪ {x, y} → Z, with f ′
a(z) = 0 and f ′

a(w) = fa(w), for all w ≠ z, satisfies W(fa) < W(f ′
a).

Therefore, it suffices to assume that fa(z) ∈ {0, 1} for all z ∈ N1(y), and similarly fa(z) ∈ {−1, 0} for all z ∈ N1(x). This
observation and the bipartite structure of Ra(x, y) immediately implies that there are two possibilities:

(i) fa(z) = 0 for all z ∈ Ua(y) and fa(z) = −1 for all z ∈ Ua(x),
(ii) fa(z) = 1 for all z ∈ Ua(y) and fa(z) = 0 for all z ∈ Ua(x).

This implies that

max
fa∈L1,

fa(y)=0

W(fa) =
|Ua(y)|

dy
· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

 +
|Ua(x)|

dx
· 1 |Ua(x)|

dx
≥

|Ua(y)|
dy

.

=


|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

 +
|Ua(x)|

dx
. (11)

Noting that
q

a=1 |Ua(x)| = |N1(x)|, and substituting Eq. (11) in Eq. (10) we get

κ0(x, y) ≥ 1 −
|N0(y)|

dy
−

|N0(x)| + |N1(x)|
dx

−

q
a=1


|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

,

=
1
dx

−
|N0(y)|

dy
−

q
a=1


|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

. (12)

Now, consider the 1-Lipschitz function g : V (G(x,y)) → R

g(z) =


−1, if z ∈ N0(x);
1, if z ∈ N0(y);
ga(z), if z ∈ Ua(x) ∪ Ua(y);
0, otherwise;

where for a ∈ {1, 2, . . . , q},

ga(z) :=


−1 · 1


|Ua(x)|

dx
≥

|Ua(y)|
dy


, if z ∈ Ua(x);

1 · 1


|Ua(x)|
dx

<
|Ua(y)|

dy


, if z ∈ Ua(y).

It is easy to see that

Ey(g) − Ey(g) =
|N0(y)|

dy
+

|N0(x)| + |N1(x)|
dx

+

q
a=1


|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

.
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Therefore, g attains the lower bound in Eq. (12) and we have

κ0(x, y) =
1
dx

−
|N0(y)|

dy
−

q
a=1


|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

. (13)

Case 3:
f (y) = 1. This implies that f (z) ≤ 2 for z ∈ NG(y) and f (z) ≥ −1, for z ∈ NG(x). Therefore, from Eq. (8) we get as before,

Ey(f ) − Ex(f ) ≤
2|N0(y)|

dy
+

|N0(x)| − 1
dx

+

q
a=1


Wf (Ua(y))

dy
−

Wf (Ua(x))
dx


, (14)

where Ua(x) and Ua(y) for a ∈ {1, 2, . . . , q} are as defined in the statement of the theorem. As before, for any 1-Lipschitz
function f : V (G(x,y)) → Z with f (x) = 0, f (y) = 1 denote the restriction of f to Ua(y) ∪ Ua(x) ∪ {x, y} as fa, for a ∈ {1, 2,
. . . , q}. Define W(fa) as before. Then from the bipartite structure of Ra(x, y) it follows that ga := argmaxfa∈L1,fa(y)=1 W(fa)
must be one of the following:

(i) ga(z) = 0 for all z ∈ Ua(y) and ga(z) = −1 for all z ∈ Ua(x),
(ii) ga(z) = 1 for all z ∈ Ua(y) and ga(z) = 0 for all z ∈ Ua(x),
(iii) ga(z) = 2 for all z ∈ Ua(y) and ga(z) = 1 for all z ∈ Ua(x).

This implies that,

max
fa∈L1,

fa(y)=0

W(fa) = max


|Ua(x)|
dx

,
|Ua(y)|

dy
,
2|Ua(y)|

dy
−

|Ua(x)|
dx


,

=


2|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

 +
|Ua(x)|

dx
· 1 |Ua(x)|

dx
≥

|Ua(y)|
dy

,
= 2


|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

 +
|Ua(x)|

dx
. (15)

Noting that
q

a=1 |Ua(x)| = |N1(x)|, and substituting Eq. (15) in Eq. (14) we get

κ1(x, y) ≥
2
dx

−
2|N0(y)|

dy
− 2

q
a=1


|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

. (16)

Now, consider the 1-Lipschitz function g : V (G(x,y)) → R

g(z) =


−1, if z ∈ N0(x);
1, if z ∈ N0(y);
ga(z), if z ∈ Ua(x) ∪ Ua(y);
0, otherwise;

where for a ∈ {1, 2, . . . , q},

ga(z) :=

−1 · 1 |Ua(x)|
dx

≥
|Ua(y)|

dy

 + 1 · 1 |Ua(x)|
dx

<
|Ua(y)|

dy

, if z ∈ Ua(x);

2 · 1 |Ua(x)|
dx

<
|Ua(y)|

dy

, if z ∈ Ua(y).

It is easy to see that g attains the lower bound in Eq. (16) and we have

κ1(x, y) =
2
dx

−
2|N0(y)|

dy
− 2

q
a=1


|Ua(y)|

dy
−

|Ua(x)|
dx


· 1 |Ua(x)|

dx
<

|Ua(y)|
dy

. (17)

Note that κ1(x, y) = 2κ0(x, y) and κ−1(x, y) = 0. Therefore, κ(x, y) = κ−1(x, y) ∧ κ0(x, y) ∧ κ1(x, y) = κ1(x, y) ∧ 0, and
the proof completes. �

The formula in the above theorem is exact and, as a result, it is quite complicated and heavily depends on the structure
of the graph.
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Remark 3.1. It can be easily verified that (7) is symmetric in x and y. To see this, note by (7)

κ(y, x) = −2


1 −

1
dx

−
1
dy

−
|N1(x)|

dx
+

q
a=1


|Ua(x)|

dx
−

|Ua(y)|
dy


· 1 |Ua(x)|

dx
≥

|Ua(y)|
dy




+

= −2


1 −

1
dx

−
1
dy

−
|N1(x)|

dx
+

q
a=1


|Ua(x)|

dx
−

|Ua(y)|
dy


+

q
a=1


|Ua(y)|

dy
−

|Ua(x)|
dx


+


+

= κ(x, y),

since
q

a=1
|Ua(x)|

dx
=

|N1(x)|
dx

and
q

a=1
|Ua(y)|

dy
=

|N1(y)|
dy

.

In the following corollary we derive a cleaner upper bound on κ(x, y) for bipartite graphs, which is tight whenever the
graph G is connected.

Corollary 3.2. Let G = (V (G), E(G)) be a locally finite bipartite graph and (x, y) ∈ E(G). Then

κ(x, y) ≤ −2

1 −

1
dx

−
1
dy

−


|N1(x)|

dx
∧

|N1(y)|
dy


+

,

and equality holds whenever R(x, y) (defined in Theorem 3.1) is connected. In particular, for the complete bipartite graph Kp,q
(p ≤ q), κ(x, y) = 0, for any (x, y) ∈ E(Kp,q).

Proof. The proof of the first part follows from Eq. (7) by dropping the last non-negative term. The second part follows from
(7) by direct substitution, from which the result on Kp,q follows. �

3.2. Ricci curvature of graphs with girth greater than 4

In this sectionwe shall give an exact formula for κ(x, y) for graphsGwith girth greater than 4. As before, partitionNG(x) =

N0(x)


N2(x) ∪ {y}, where

N2(x) = {z ∈ NG(x)\{y} : dG(z,NG(y)) = 2}.
N0(x) = NG(x)\(N2(x) ∪ {y}), is the set of remaining neighbors of x, apart from y.

Similarly, we can define a partition NG(y) = N0(y)


N2(y) ∪ {x}. Using these definitions we now give the exact formula for
κ(x, y) for graphs Gwith girth greater than 4.

Theorem 3.3. Let G = (V (G), E(G)) be a locally finite unweighted graph with girth g(G) ≥ 5 and (x, y) ∈ E(G). Suppose
Q (x, y) is the subgraph of G(x,y) induced by N2(x)


N2(y)


PG(x, y), and Q1(x, y),Q2(x, y), . . . ,Qq(x, y) be the connected

components of Q (x, y). If La(x) = V (Qa(x, y)) ∩ N2(x) and La(y) = V (Qa(x, y)) ∩ N2(y), for a ∈ {1, 2, . . . , q}, then
κ(x, y) = κ0(x, y) ∧ κ1(x, y), where

κ0(x, y) = −


1 −

1
dx

−
1
dy


+

. (18)

and

κ1(x, y) = −2


1 −

1
dx

−
1
dy

−
|N2(x)|
2dx

+
1
2

q
a=1


|La(x)|
dx

−
|La(y)|
dy


+


+

. (19)

Proof. The proof of this theorem is similar to the proof of Theorem 3.1. Using Lemma 2.3 we can replace G by its core neigh-
borhood G(x,y), which is depicted in Fig. 3. For any Z ⊆ V (G(x,y)) and any function f ∈ L1, denote by Wf (Z) =


z∈Z f (z).

Therefore, for (x, y) ∈ E(G),

Ey(f ) − Ex(f ) =
f (x) + Wf (N0(y)) + Wf (N2(y))

dy
−

f (y) + Wf (N0(x)) + Wf (N2(x))
dx

. (20)

As before, for i ∈ {−1, 0, 1} define

κi(x, y) := 1 − max
f∈L1,f (y)=i

(Ey(f ) − Ex(f )),

and observe that κ(x, y) = κ−1(x, y) ∧ κ0(x, y) ∧ κ1(x, y). Assuming f (x) = 0 we consider the following three cases
separately.
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Fig. 3. Ricci curvature of graphs with girth at least 5: structure of the core neighborhood.

Case 1:
f (y) = −1. This implies that f (z) ≤ 0 for z ∈ NG(y) and f (z) ≥ −1, for z ∈ NG(x). Therefore, from Eq. (20) we get

Ey(f ) − Ex(f ) ≤
1
dx

+
|N0(x)| + |N2(x)|

dx
= 1.

Moreover, this bound is attained by the function g(z) := −1 · 1{z∈NG(x)∪{y}} which is 1-Lipschitz on the core neighborhood
of (x, y). This implies, κ−1(x, y) = 0.
Case 2:

f (y) = 0. This implies that f (z) ≤ 1 for z ∈ NG(y) and f (z) ≥ −1, for z ∈ NG(x). Therefore, from Eq. (20) we get,

Ey(f ) − Ex(f ) ≤
|N0(y)| + |N2(y)|

dy
+

|N0(x)| + |N2(x)|
dx

,

= 2 −
1
dx

−
1
dy

. (21)

This implies that κ0(x, y) ≥ −1 +
1
dx

+
1
dy
.

Now, consider the 1-Lipschitz function g : V (G(x,y)) → R

g(z) =


−1, if z ∈ N0(x) ∪ N2(x);
1, if z ∈ N0(y) ∪ N2(y);
0, otherwise.

It is easy to see that Ey(g) − Ey(g) = 2 −
1
dx

−
1
dy
. Therefore, g attains the lower bound in Eq. (22) and we have

κ0(x, y) = −1 +
1
dx

+
1
dy

. (22)

Case 3:
f (y) = 1. This implies that f (z) ≤ 2 for z ∈ NG(y) and f (z) ≥ −1, for z ∈ NG(x). From Eq. (20) and similar to Case 3 in

Theorem 3.1 we get,

Ey(f ) − Ex(f ) ≤
2|N0(y)|

dy
+

|N0(x)| − 1
dx

+

q
a=1


Wf (La(y))

dy
−

Wf (La(x))
dx


, (23)

where La(x) and La(y) for a ∈ {1, 2, . . . , q} are as defined in statement of the theorem. As before, for any 1-Lipschitz function
f : V (G(x,y)) → Z with f (x) = 0, f (y) = 1 denote the restriction of f to La(y) ∪ La(x) ∪ {x, y} as fa, for a ∈ {1, 2, . . . , q}.
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Define W(fa) as before. Then it is easy to see that ga := argmaxfa∈L1,fa(y)=1 W(fa) must be either

(i) ga(z) = 1 for all z ∈ La(y) and ga(z) = −1 for all z ∈ La(x),
(ii) ga(z) = 2 for all z ∈ La(y) and ga(z) = 0 for all z ∈ La(x).

This implies that,

max
fa∈L1,

fa(y)=0

W(fa) = max


|La(y)|
dy

+
|La(x)|
dx

,
2|La(y)|

dy


,

=


|La(y)|
dy

+
|La(x)|
dx


· 1 |La(x)|

dx
≥

|La(y)|
dy

 +
2|La(y)|

dy
· 1 |La(x)|

dx
<

|La(y)|
dy

,
=


|La(x)|
dx

−
|La(y)|
dy


· 1 |La(x)|

dx
≥

|La(y)|
dy

 +
2|La(y)|

dy
. (24)

Noting that
q

a=1 |La(y)| = |N2(y)|, and substituting Eq. (24) in Eq. (23) we get

κ1(x, y) ≥ 1 −
|N0(x)| − 1

dx
−

2(|N0(y)| + |N2(y)|)
dy

−

q
a=1


|La(x)|
dx

−
|La(y)|
dy


· 1 |La(x)|

dx
≥

|La(y)|
dy

.

= −2 +
2
dx

+
2
dy

+
|N2(x)|

dx
−

q
a=1


|La(x)|
dx

−
|La(y)|
dy


· 1 |La(x)|

dx
≥

|La(y)|
dy

. (25)

Now, consider the 1-Lipschitz function g : V (G(x,y)) → R with g(x) = 0, g(y) = 1 and

g(z) =


−1, if z ∈ N0(x);
2, if z ∈ N0(y);
ga(z), if z ∈ La(x) ∪ La(y).

,

where for a ∈ {1, 2, . . . , q},

ga(z) :=


−1 · 1 |La(x)|

dx
≥

|La(y)|
dy

, if z ∈ La(x);

1 · 1 |La(x)|
dx

≥
|La(y)|
dy

 + 2 · 1 |La(x)|
dx

<
|La(y)|
dy

, if z ∈ La(y);

1 · 1 |La(x)|
dx

<
|La(y)|
dy

, if z ∈ PG(x, y).

It is easy to see that g attains the lower bound in Eq. (25) and we have

κ1(x, y) = −2 +
2
dx

+
2
dy

+
|N2(x)|

dx
−

q
a=1


|La(x)|
dx

−
|La(y)|
dy


· 1 |La(x)|

dx
≥

|La(y)|
dy

. (26)

Note that κ(x, y) = κ−1(x, y) ∧ κ0(x, y) ∧ κ1(x, y) = κ0(x, y) ∧ κ1(x, y), since κ−1(x, y) = 0, and the proof completes.
As in Remark 3.1, it is easy to check that (19) is symmetric in x and y. �

3.3. Extension to weighted graphs

The above theorems can be readily extended to weighted graphs.

3.3.1. Weighted bipartite graphs
Since Lemma 2.3 also holds for weighted graphs, we can replace G by its core neighborhood G(x,y), and the structure

of the core neighborhood G(x,y) is as depicted in Fig. 2. For any Z ⊆ V (G(x,y)) and any function f ∈ L1, denote by
W x

f (Z) =


z∈Z f (z)wxz and W y
f (Z) =


z∈Z f (z)wyz . Let N0(x),N0(y),N1(x), and N1(y) be as defined before Theorem 3.1.

Therefore, for (x, y) ∈ E(G),

Ey(f ) − Ex(f ) =
f (x)wxy + W y

f (N0(y)) + W y
f (N1(y))

dy
−

f (y)wxy + W x
f (N0(x)) + W x

f (N1(x))

dx
, (27)

where dx =


(x,y)∈E(G) wxy, for x ∈ V (G). Lemma 2.2 implies that it suffices to maximize Ey(f ) − Ex(f ) over 1-Lipschitz
functions f satisfying f (x) = 0, and f (y) ∈ {−1, 0, 1}. Now, by calculations identical to those in the proof of Theorem 3.1 it
can be shown that:
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Corollary 3.4. Let G = (V (G), E(G)) be a locally finite weighted bipartite graph and (x, y) ∈ E(G). Suppose R(x, y) is the
subgraph of G(x,y) induced by N1(x)


N1(y), and R1(x, y), R2(x, y), . . . , Rq(x, y) be the connected components of R(x, y). If

Ua(x) = V (Ra(x, y)) ∩ N1(x) and Ua(y) = V (Ra(x, y)) ∩ N1(y), for a ∈ {1, 2, . . . , q}, then

κ(x, y) = −2

1 −
wxy

dx
−

wxy

dy
−


z∈N1(y)

wyz

dy
+

q
a=1




z∈Ua(y)
wyz

dy
−


z∈Ua(x)

wxz

dx


+


+

. (28)

3.3.2. Weighted graphs with girth greater than 4
Similarly, by calculations identical to those in the proof of Theorem 3.1, it is possible to obtain the Ricci-curvature for

locally finite weighted graphs with girth at least 5.

Corollary 3.5. Let G = (V (G), E(G)) be a locally finite weighted graphwith girth g(G) ≥ 5 and (x, y) ∈ E(G). Suppose Q (x, y) is
the subgraph of G(x,y) induced by N2(x)


N2(y)


PG(x, y), and Q1(x, y),Q2(x, y), . . . ,Qq(x, y) be the connected components of

Q (x, y). If La(x) = V (Qa(x, y))∩N2(x) and La(y) = V (Qa(x, y))∩N2(y), for a ∈ {1, 2, . . . , q}, then κ(x, y) = κ0(x, y)∧κ1(x, y),
where

κ0(x, y) = −


1 −

wxy

dx
−

wxy

dy


+

. (29)

and

κ1(x, y) = −2

1 −
wxy

dx
−

wxy

dy
−


z∈N2(x)

wxz

2dx
+

1
2

q
a=1




z∈La(x)
wxz

dx
−


z∈La(y)

wyz

dy


+


+

. (30)

4. Ricci-flat graphs of girth 5

The notion of Ricci-flat graphs was first introduced by Chung and Yau [5]. It was defined for regular graphs and was used
to prove logarithmic Harnack inequalities for graphs. These inequalities are useful in bounding the Log-Sobolev constant,
and, consequently, the mixing times of Markov chains [7]. Recently, Lin et al. [17,16] defined Ricci-flat graphs as graphs
where themodified Ricci-curvature vanishes on every edge. This definition is motivated by the fact that Ricci-flat manifolds
are Riemannian manifolds where the Ricci curvature vanishes. Moreover, this definition does not require the graph to be
regular. Ricci flat graphs defined by Chung and Yau are not necessarily Ricci-flat in this sense (for constructions of Ricci-flat
graphs under both definitions refer to Lin et al. [17]).

In this paper, we consider Ricci-flat graphs with respect to Olliver’s coarse Ricci curvature, that is, a graph G is said to
be Ricci-flat if κ(x, y) = 0, for all (x, y) ∈ E(G). The following corollary characterizes Ricci-flat graphs with girth at least 5.
Hereafter, only locally finite simple unweighted graphs are considered.

Corollary 4.1. A connected graph G is a Ricci-flat graphwith g(G) ≥ 5, if and only if G is one of the following: the path Pn (n ≥ 2),
the infinite ray, the infinite path, the cycle Cn (n ≥ 5), or the star graph Tn (n ≥ 3).

Proof. Suppose κ(x, y) = 0 for all (x, y) ∈ E(G) and g(G) ≥ 5. Then it follows from Theorem 3.3 that 1
dx

+
1
dy

≥ 1, for all
(x, y) ∈ E(G). This implies that either dx = dy = 2, or dx ∧ dy = 1, for all (x, y) ∈ E(G). The following two cases arise:

Case 1: There is a vertex v ∈ V (G) with dv ≥ 3. Then all neighbors of v must have degree 1, with no edges left to connect to
other vertices. Thus, the graph G must be a n-star Tn rooted at v.

Case 2: dx ≤ 2 for all x ∈ V (G). If dx = 2, for all x ∈ V (G), then it is easy to see that G is an infinite path or a cycle of length
at least 5. Hence, it suffices to assume that there is at least one vertex V (G) with degree 1. Then there can be at most
2 vertices with degree 1. Thus, depending on whether the number of degree 1 vertices is one or two, G is either the
infinite half ray or the finite path Pn, respectively. �

Lin et al. [17] characterized Ricci-flat graphs of girth 5 using their modified definition of Ricci-curvature. The above
corollary is the analogous version of their result using Ollivier’s original definition of coarse Ricci-curvature. As it happens,
the structure of Ollivier’s Ricci-flat graphs of girth 5 is much simpler than the structure of the modified Ricci-flat graphs.
Apart from the infinite path and the cycle, themodified Ricci-flat graphs of girth 5 include quite complicated graphs, such as
the Peterson graph, the dodecahedral graph, and the half-dodecahedral graph. Ollivier’s Ricci-flat graph however includes
the n-star, which is not included in the modified definition. This illustrates that the structure of Ricci-flat graphs in the two
definitions of Ricci-curvature are, in fact, quite different.



36 B.B. Bhattacharya, S. Mukherjee / Discrete Mathematics 338 (2015) 23–42

5. A general lower bound with maximummatching and Ricci-flat regular graphs of girth 4

In this section we establish connections between Ricci-curvature and the size of the matching in the core neighborhood
subgraph.We prove a general lower bound on the Ricci-curvature in terms of the size of themaximummatching. The bound
is often nearly tight, especially in triangle-free regular graphs. Using this boundweprove a necessary and sufficient condition
on the structure of Ricci-flat regular graphs of girth 4.

5.1. A general lower bound with maximum matching

Let G = (V , E) be a fixed graph, with (x, y) ∈ E(G). Recall that NG(x) and NG(y) denote the set of neighbors of x and y,
and ∆G(x, y) = NG(x) ∩ NG(y). Define, QG(x) = NG(x)\∆G(x, y) and QG(y) = NG(y)\∆G(x, y). Let HG(x, y) be the subgraph
of G induced by the vertices in QG(x) ∪ QG(y). A matching in HG(x, y) is a collection of disjoint edges (a, b) ∈ E(G), with
a ∈ QG(x) and b ∈ QG(y).

Theorem 5.1. Let G = (V , E) be a fixed graph, with (x, y) ∈ E(G). If |MG(x, y)| (≤ |QG(x)|∧|QG(y)|) is the size of themaximum
matching in HG(x, y), then

κ(x, y) ≥
|∆G(x, y)|
dx ∨ dy

− 2

1 −

|MG(x, y)| + |∆G(x, y)|
dx ∨ dy


.

Moreover, if |MG(x, y)| = |QG(x)| ∧ |QG(y)|, then κ(x, y) ≥
|∆G(x,y)|
dx∨dy

− 2

1 −

dx∧dy
dx∨dy


.

Proof. W.l.o.g. assume dx ≤ dy and let |MG(x, y)| = k. By the definition of matching there exists Tx := {a1, a2, . . . , ak} ⊆

QG(x) and Ty := {b1, b2, . . . , bk} ⊆ QG(y) such that dG(ai, bi) = 1. Consider any 1-Lipschitz function f : V (G) → Z.
Lemma 2.2 implies that it suffices to optimize over f (x) = 0. This means that |f (z)| ≤ 1 for all z ∈ NG(x), and
|f (ai) − f (bi)| ≤ 1.

Txy(f ) =

k
i=1


f (bi)
dy

−
f (ai)
dx


+


z∈∆G(x,y)


f (z)
dy

−
f (z)
dx


+


z∈QG(y)\Ty

f (z)
dy

−


z∈QG(x)\Tx

f (z)
dx

≤
k
dy

+


1
dx

−
1
dy

 k
i=1

|f (ai)| +


z∈∆G(x,y)

|f (z)|


+


z∈QG(y)\Ty

f (z)
dy

+
|QG(x)\Tx|

dx

≤
k
dy

+


1
dx

−
1
dy


{k + |∆G(x, y)|} +

2|QG(y)\Ty|
dy

+
|QG(x)\Tx|

dx

=
k
dy

+


1
dx

−
1
dy


{k + |∆G(x, y)|} +

2(|QG(y)| − k)
dy

+
|QG(x)| − k

dx
. (31)

The result follows from noting that κ(x, y) = 1 − supf∈L1,f (x)=0 Txy(f ), and |QG(x)| = dx − |∆G(x, y)|, |QG(y)| = dy −

|∆G(x, y)|. If dx ≤ dy and k = |QG(x)| ∧ |QG(y)|, then k = |QG(x)| = dx −|∆G(x, y)|, and the result follows from the previous
bound by direct substitution. �

Combining the lower bound in the above theorem and the upper bound from Theorem 1.1 we get

|∆G(x, y)|
dx ∨ dy

− 2

1 −

|MG(x, y)| + |∆G(x, y)|
dx ∨ dy


≤ κ(x, y) ≤

|∆G(x, y)|
dx ∨ dy

. (32)

In the following section we obtain a necessary and sufficient condition on the structure of regular graphs for which the
upper bound in Eq. (32) is tight. As a consequence we characterize Ricci-flat regular graphs with girth 4.

5.2. Ricci-flat regular graphs with girth 4

Recall that the Birkhoff polytope Bn is the convex polytope in Rn2 whose points are the doubly stochastic matrices, that is,
the n × n matrices whose entries are non-negative real numbers and whose rows and columns each add up to 1 [31]. The
Birkhoff–von Neumann theorem states that the extreme points of the Birkhoff polytope are the permutation matrices, that is,
matrices with exactly one entry 1 in each row and each column and 0 elsewhere.

Using this result on the Birkhoff polytope and Theorem 5.1 it is easy to get a necessary and sufficient condition on the
structure of Ricci-flat graphs with girth 4 which are regular. In fact, we shall prove a much stronger result where we give a
necessary and sufficient condition on the structure of graphs for which the upper bound in Eq. (32) is an equality.

Theorem 5.2. For be a graph G = (V , E), with (x, y) ∈ E(G) and dx = dy = d, κ(x, y) =
|∆G(x,y)|

d , if and only if there is a perfect
matching between QG(x) and QG(y).
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Proof. If there is a perfect matching between QG(x) and QG(y), then by Theorem 5.1, κ(x, y) =
∆G(x,y)

d .
Conversely, suppose κ(x, y) =

∆G(x,y)
d . From Eq. (3)

κ(x, y) = 1 − inf
ν∈A


z1∈NG(x)


z2∈NG(y)

ν(z1, z2)d(z1, z2),

where A is the set of all d× dmatrices with entries indexed by NG(x)×NG(y) such that ν(x′, y′) ≥ 0,


z∈NG(y) ν(x′, z) =
1
d ,

and


z∈NG(x) ν(z, y′) =
1
d , for all x

′
∈ NG(x) and y′

∈ NG(y). Therefore, A forms a Birkhoff polytope in Rd2 (after multiplying
with d), and since κ(x, y) is a linear function defined over A, it is maximized at one the extreme points. Therefore, by the
Birkhoff–von Neumann theorem the optimal transfer plan is a permutation matrix.

To complete the proof, note that the optimal transfer plan, which is given by a permutation matrix, cannot transfer any
mass to or from ∆G(x, y). Moreover, each transfer must be over a path of length 1. This is because a mass of 1/d needs to be
transferred by a path of length at least 1 for all vertices in NG(x)\∆G(x, y), which already gives W1(x, y) ≥ 1 − ∆G(x, y)/d,
and so any furthermass transfer will result in κ(x, y) < ∆G(x, y)/d, a contradiction. This implies that theremust be a perfect
matching between QG(x) and QG(y). �

When G is triangle free, by definition QG(x) = NG(x) and QG(y) = NG(y). The following corollary is then immediate from
the above theorem:

Corollary 5.3. A connected graph G with g(G) = 4 and dx = dy = d has κ(x, y) = 0 if and only if there is a perfect matching
between NG(x) and NG(y).

This implies that regular, triangle-free Ricci-flat graphs must have a perfect matching between NG(x) and NG(y) for all
(x, y) ∈ E(G). The n-dimensional integer lattice Zn, the n-dimensional hypercube Cn

2 , a cycle Cn of length n ≥ 4, and the
complete bipartite graphKn,n, are examples of regular Ricci-flat graphs of girth 4. Identifying the set of all such regular graphs
remains open.

6. Ricci curvature of random graphs

In this section we study the behavior of Ollivier’s Ricci-curvature for Erdős–Rényi random graphs G(n, p) in different
regimes of p. As seen in the previous section, the Ricci-curvature depends on the size of matchings in the core neighborhood
subgraph. In this section we will prove a technical matching lemma, establish properties of matchings in random bipartite
graphs, and use these results to obtain Ricci-curvature of random graphs.

6.1. A more technical matching lemma

Let G = (V , E) be a fixed graph, with (x, y) ∈ E(G). Define, RG(x) = (NG(x)\{y})\∆G(x, y) and RG(y) = (NG(y)\{x})\
∆G(x, y). Let HG(x, y) be the subgraph of G induced by the vertices in RG(x) ∪ RG(y). The subgraph HG(x, y) is said to have a
m-matching of size k if there exists Tx := {a1, a2, . . . , ak} ⊆ RG(x) and Ty := {b1, b2, . . . , bk} ⊆ RG(y) such that dG(ai, bi)
≤ m, form ∈ Z+ and k ≤ |RG(x)| ∧ |RG(y)|. Note that a 1-matching of size k is just the standard bipartite matching of size k
between RG(x) and RG(y) in the subgraph HG(x, y).

The following lemma gives a lower bound on the Ricci-curvature in terms of the size of 2-matchings in HG(x, y).

Lemma 6.1. Let G = (V , E) be a fixed graph, with (x, y) ∈ E(G), and HG(x, y) be the subgraph of G induced by the vertices in
RG(x) ∪ RG(y). If there exists a 2-matching of size k (≤ |RG(x)| ∧ |RG(y)|) in the HG(x, y), then

κ(x, y) ≥ −2 +
3|∆G(x, y)| + k + 2

dx ∨ dy
.

Moreover, if k = |RG(x)| ∧ |RG(y)|, then κ(x, y) ≥ −2 +
2|∆G(x,y)|+dx∧dy+1

dx∨dy
.

Proof. W.l.o.g. assume dx ≤ dy. By the definition of m-matching there exists Tx := {a1, a2, . . . , ak} ⊆ RG(x) and
Ty := {b1, b2, . . . , bk} ⊆ RG(y) such that dG(ai, bi) ≤ 2. Consider any 1-Lipschitz function f : V (G) → Z. Lemma 2.2
implies that it suffices to optimize over f (x) = 0. This means that |f (z)| ≤ 1 for all z ∈ NG(x), and |f (ai) − f (bi)| ≤ 2. If
Txy(f ) = Ex(f ) − Ey(f ), then from calculations similar to the proof of Theorem 5.1

Txy(f ) = −
f (y)
dx

+

k
i=1


f (bi)
dy

−
f (ai)
dx


+


z∈∆G(x,y)


f (z)
dy

−
f (z)
dx


+


z∈RG(y)\Ty

f (z)
dy

−


z∈RG(x)\Tx

f (z)
dx

≤
|f (y)|
dx

+
2k
dy

+


1
dx

−
1
dy


{k + |∆G(x, y)|} +

2(|RG(y)| − k)
dy

+
|RG(x)| − k

dx
. (33)
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Note that κ(x, y) = 1 − supf∈L1,f (x)=0 Txy(f ). Therefore, simplifying Eq. (33) the result follows. Moreover, if dx ≤ dy and
k = |RG(x)| ∧ |RG(y)|, then k = |RG(x)| = dx − 1 − |∆G(x, y)|, and the result follows from the previous bound by direct
substitution. �

6.2. Matchings in random bipartite graphs

Matchings in random graphs are well studied in the literature [12], beginning with the celebrated result of Erdős and
Rényi [10] on the existence of perfect matchings. The proof of this result relies on the Hall’s marriage theorem. Here we use
a variant of Hall’s theorem to obtain an analogous result about the existence of near-perfect matching in random bipartite
graphs.

Recall, Hall’s marriage theorem states that a bipartite graph G = (V , E) with bipartition (A, B) has a perfect matching if
and only if for all X ⊆ A, |NG(X)| ≥ |X |, where NG(X) =


x∈X NG(x). We will need the following strengthening of Hall’s

theorem [9]:

Theorem 6.1 ([9]). Consider a bipartite graph G = (V , E) with bipartition (A, B). For X ⊆ A, define δ(X) = |X | − |NG(X)|,
where NG(X) =


x∈X NG(x). Let δmax = maxX⊆A δ(X). Then the size of the maximum matching in G is |A| − δmax. �

Using this theoremwe now prove the following lemma about the existence of near-perfect matching in random bipartite
graphs.

Lemma 6.2. For every ε ∈ (0, 1),

lim
n→∞

P(G(n, n, p) has a matching of size n(1 − ε)) =


0 if np → 0,
1 if np → ∞.

Proof. Let G ∼ G(n, n, p) be a random bipartite graph with bipartition (A, B), with |A| = |B| = n and edge probability p.
If np → 0 and there is a matching of size n(1 − ε) in G, then |E(G)| ≥ n(1 − ε). But E(G) ∼ Bin(n2, p), and so

P(E(G) ≥ n(1 − ε)) → 0 by Markov’s inequality.
Next, suppose np → ∞. Let X ⊆ A, with |X | ≥ εn. If D(X) =


x∈X dx, then D(X) ∼ Bin(n|X |, p), and by Hoeffding’s

inequality P(D(X) < |X |) ≤ exp(−2|X |(np − 1)2). Thus, by a union bound,

P(∃X ⊆ A : |NG(X)| < |X |, |X | ≥ εn) ≤ P(∃X ⊆ A : D(X) < |X |, |X | ≥ εn)

≤

n
|X |=nε


n

|X |


exp(−2|X |(np − 1)2)

≤ 2n exp(−2εn(np − 1)2) → 0.

Thus, with probability 1−o(1), for any X ⊆ A, with |X | ≥ εn, |NG(X)| ≥ |X |. Therefore, from Theorem 6.1, G has a matching
of size n(1 − ε) with probability 1 − o(1), when np → ∞. �

Remark 6.1. Lemma 6.2 immediately gives that for a random bipartite graph G(m, n, p) with (m ∧ n)p → ∞,
limm,n→∞ P(G(m, n, p) has a matching of size (m ∧ n)(1 − ϵ)) = 1.

6.3. Ricci curvature of random bipartite graphs

We are now ready to state and prove our result on the Ricci curvature of random bipartite graphs. Let G(n, n, p) be a
randombipartite graphwith bipartition (An, Bn). Let a ∈ An and b ∈ Bn be two fixed vertices. ForG ∼ G(n, n, p), conditioned
on the edge (a, b) being present, denote by κn(a, b) the Ricci-curvature of the edge (a, b) in G.

Theorem 6.2. Let G ∼ G(n, n, pn) be a random bipartite graph with bipartition (An, Bn), conditioned on the edge (a, b) being
present.
(a) If npn → 0 then with probability 1 − o(1) the edge (a, b) is isolated, and consequently κn(a, b) = 0.
(b) If npn → λ for 0 < λ < ∞, then κn(a, b)

D
→ −2


1 −

1
1+X1

−
1

1+X2


+

, where X1, X2 are independent Poisson(λ) random

variables, that is, the Ricci curvature converges in distribution to Ricci-curvature of its limiting tree.
(c) If npn → ∞, and np2n → 0 then κn(a, b)

P
→ −2.

(d) If np2n → ∞, then κn(a, b)
P
→ 0.

Proof. Let G ∼ G(n, n, pn) be a random bipartite graph with bipartition An = {α1, α2, . . . , αn} and Bn = {β1, β2, . . . , βn}

conditioned on the edge (a, b) being present. For i, j ∈ {1, 2, . . . , n} := [n] define let δij = 1 if (αi, βj) ∈ E(G) and 0,
otherwise. Define Xa

n :=


j∈[n]\{b} δaj and Xb
n :=


i∈[n]\{a} δib. Clearly, (Xa

n , X
b
n ) are independent binomial random variables

with parameters (n − 1, pn), which are measurable with respect to Fn := σ(δaj, δib, i ∈ [n]\{a}, j ∈ [n]\{b}).
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(a) In this case, P({Xa
n ≠ 0} ∪ {Xb

n ≠ 0}) ≤ E(Xa
n + Xb

n ) ≤ 2npn → 0. Therefore, with probability 1 − o(1) the edge (a, b)
is isolated.

(b) Observe that, in this case,

P

 
i∈[n]\{b}


j∈[n]\{a}

δajδjiδib ≠ 0


≤


i∈[n]\{b}


j∈[n]\{a}

E(δajδjiδib) ≤ n2p3n = O(1/n).

Therefore, with probability 1 − O(1/n) there are no 4-cycles in G supported on (a, b). As G is bipartite, the girth of G is
at least 6, and Corollary 2.2 implies that

κn(a, b) = −2

1 −

1
1 + Xa

n
−

1
1 + Xb

n


+

.

The conclusion follows on noting that (Xa
n , X

b
n )

D
→ (X1, X2), where X1, X2 are independent Poisson(λ) random variables.

(c) Let RG(b) denote the set of vertices in NG(b) which are not connected to any vertex in NG(a). Then given Fn,

|RG(b)| ∼ Bin

Xb
n , 1 − (1 − pn)X

a
n


and E


|RG(b)|
Xb
n

F  = 1 − (1 − pn)X
a
n

P
→ 0,

as np2n → 0. Consequently, we have |RG(b)| = op(Xb
n ). Defining RG(a) by symmetry we have |RG(a)| = op(Xa

n ). Now,
consider the 1-Lipschitz function f on the (random) core-neighborhood of G defined as follows:

f (x) =


0 if x ∈ NG(a)\RG(a),
1 if x ∈ RG(a) ∪ {a},
2 if x ∈ RG(b) ∪ {b},
3 if x ∈ NG(b)\RG(b).

This implies that

Eb(f ) − Ea(f ) =
1 + 2|RG(b)| + 3(Xb

n − |RG(b)|)
1 + Xb

n
−

2 + |RG(a)|
1 + Xa

n
.

The RHS converges to 3 in probability. Thus, Wn(a, b) ≥ 3 − o(1) with probability 1 − o(1). Moreover, by definition
Wn(a, b) ≤ 3 and the conclusion follows.

(d) As bipartite graphs are triangle free, from Eq. (6) we know that κ(a, b) ≤ 0. So, it suffices to prove only the lower bound.
To this effect, note that on the set Cn := {Xa

n ≥ npn/2, Xb
n ≥ npn/2} we have (Xa

n ∧ Xb
n )pn ≥ np2n/2 → ∞. Thus, if we

denote by HG(a, b) the random bipartite graph induced by NG(a) ∪ NG(y), by Remark 6.1 we have

P(HG(a, b) does not have a matching of size (1 − ε)(|NG(a)| ∧ |NG(b)|)|Fn, Cn) ≤ δ,

for n large enough. Let En be the event {HG(a, b) does not have a matching of size (1−ε)(|NG(a)|∧|NG(b)|)}. This implies
that for n large enough

P(En) ≤ E(P(En|Fn, Cn)) + P(C c
n) ≤ δ + P({Xa

n ∧ Xb
n ≥ npn/2}c).

As (Xa
n ∧Xb

n )/npn
P
→ 1, when npn → ∞, the above implies that with probability 1− o(1) there exists a bipartite match-

ing between in HG(a, b) of size (1 − ε)(|NG(a)| ∧ |NG(b)|). This observation, together with Theorem 5.1, would imply
that with probability 1 − o(1) we have

lim
n→∞

κn(a, b) ≥ −2

1 −

(Xa
n ∧ Xb

n )(1 − ε) + 1
(1 + Xa

n ) ∨ (1 + Xb
n )


= −2ε.

As ε is arbitrary, we have κn(a, b)
P
→ 0. �

6.4. Ricci curvature of Erdős–Rényi random graphs

Building on the techniques developed in the previous section, we now determine the limiting behavior of Ricci-curvature
for Erdős–Rényi random graphs G(n, pn) in different regimes of pn.

Theorem 6.3. Let G ∼ G(n, pn) be a Erdős–Rényi random graph with vertex set Vn, conditioned on the edge (a, b) being present.

(a) If npn → 0 then with probability 1 − o(1) the edge (a, b) is isolated, and consequently κn(a, b) = 0.
(b) If npn → λ for 0 < λ < ∞, then κn(a, b)

D
→ −2


1 −

1
1+X1

−
1

1+X2


+

, where X1, X2 are independent Poisson(λ) random

variables, that is, the Ricci curvature converges in distribution to Ricci-curvature of its limiting tree.
(c) If npn → ∞, n2p3n → 0, then κn(a, b)

P
→ −2.



40 B.B. Bhattacharya, S. Mukherjee / Discrete Mathematics 338 (2015) 23–42

(d) If n2p3n → ∞, np2n → 0, then κn(a, b)
P
→ −1.

(e) If np2n → ∞, pn → 0, then κn(a, b)
P
→ 0.

(f) If pn → p with 0 < p < 1, then κn(a, b)
P
→ p.

Proof. Let Vn = {v1, v2, . . . , vn} and G ∼ G(n, pn) be a random graph with vertex set Vn, conditioned on the edge (a, b)
being present, for 2 fixed vertices a, b ∈ Vn. For {i, j} ⊆ {1, 2, . . . , n} := [n] define let δij = 1 if (vi, vj) ∈ E(G) and
0, otherwise. Define Xa

n :=


j∈[n]\{a,b} δaj and Xb
n :=


i∈[n]\{a,b} δib. Clearly, (Xa

n , X
b
n ) are independent binomial random

variables with parameters (n−2, pn), which are measurable with respect to Fn := σ(δaj, δib, i ∈ [n]\{a, b}, j ∈ [n]\{a, b}).

(a) By Markov’s inequality we have P({Xa
n + Xb

n ≠ 0}) ≤ E(Xa
n + Xb

n ) ≤ 2npn → 0. So, the edge (a, b) is isolated with
probability 1 − o(1), and κn(a, b) = 0.

(b) We will show that in this case there are no cycles of length 3, 4, or 5 supported on (a, b) with probability 1− O(1/n). In
this regard, note that

P (∃ a 3-cycle supported on (a, b)) ≤


j∈[n]\{a,b}

E(δajδbj) ≤ np2n = O(1/n),

P (∃ a 4-cycle supported on (a, b)) ≤


{j,k}⊂[n]\{a,b}

E(δajδjkδbk) ≤ n2p3n = O(1/n),

P (∃ a 5-cycle supported on (a, b)) ≤


{j,k,l}⊂[n]\{a,b}

E(δajδjkδklδbl) ≤ n3p4n = O(1/n).

This implies that P(∃ a 3, 4, or 5 cycle supported on (a, b)) = O(1/n). Therefore, with probability 1 − O(1/n), the girth
of G is at least 6, and Corollary 2.2 implies that

κn(a, b) = −2

1 −

1
1 + Xa

n
−

1
1 + Xb

n


+

.

The conclusion follows on noting that (Xa
n , X

b
n )

D
→ (X1, X2), where X1, X2 are independent Poisson(λ) random variables.

(c) As in the previous case, the probability of a triangle and a quadrilateral supported on (a, b) is bounded by np2n and n2p3n,
and sowith probability 1−o(1) there are no 3 and 4-cycles supported on (a, b). LetQ2(b) = {x ∈ NG(b) : dG(x,NG(a)) =

2}. Note that

|Q2(b)|
Fn ∼ Bin(Xb

n , 1 − (1 − p2n)
(n−4)Xa

n ) and E


|Q2(b)|
Xb
n

Fn


= 1 − (1 − p2n)

(n−4)Xa
n

P
→ 0.

Now, consider the 1-Lipschitz function f on the (random) core-neighborhood of G defined as follows:

f (x) =


0 if x ∈ NG(a),
2 if x ∈ Q2(b) ∪ {b},
3 if x ∈ NG(b)\Q2(b),
1 otherwise.

Then we have

Eb(f ) − Eb(f ) =
1 + 2|Q2(b)| + 3(Xb

n − |Q2(b)|)
1 + Xb

n
−

2
1 + Xa

n
.

The RHS converges to 3 in probability, and the conclusion follows from arguments similar to the proof of part (c) of
Theorem 6.2.

(d) In this case there are no triangles supported on (a, b)with probability 1−o(1). Define R1(a) = {x ∈ NG(a) : dG(x,NG(b))
= 1}, and R1(b) similarly. By an argument similar to the previous case we have R1(a) = op(Xa

n ) and R1(b) = op(Xb
n ).

Now, for any z1 ∈ NG(a)\R1(a) and z2 ∈ NG(b)\R1(b) we have d(z1, z2) ≥ 2, and so the function f defined below is
1-Lipschitz:

f (x) =

0 if x ∈ NG(a) ∪ {a},
2 if x ∈ NG(b)\R1(b),
1 otherwise.

Plugging in f we have

Ea(f ) − Ea(f ) =
|R2(b)| + 2(Xb

n − |R2(b)|)
1 + Xb

n
−

1
1 + Xa

n
.

The RHS converges to 2 in probability, proving the upper bound for κn(a, b).
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To prove the lower bound, assuming ∆G(a, b) = ∅ we claim that with probability 1− o(1) there exists a 2-matching
between NG(a) and NG(b) of size (1 − ε)(Xa

n ∧ Xb
n ). Assuming the claim is true by of Lemma 6.1

κn(a, b) ≥ −2 +
2 + (1 − ε)Xa

n ∧ Xb
n

(1 + Xa
n ) ∨ (1 + Xb

n )
.

The RHS converges to −1 − ε in probability, which would finish the proof of (d).
To complete the proof we need to verify the claim, that is, construct a 2-matching between NG(a) and NG(b) in the

subgraph HG(a, b). Define a new random graph H (G) with V (H (G)) = NG(a) ∪ NG(b) and an edge between i ∈ NG(a)
and j ∈ NG(b) if and only if in the original random graph G there is a path from i to j of length 2.

By this construction, the probability that there is an edge between i and j in H (G) is p̂n := 1 − (1 − p2n)
n−4. By a

Taylor’s expansion we have

|1 − (1 − p2n)
n−4

− np2n| ≤ 4p2n +
1
2
n2p4n(1 + p2n)

n−6
= np2n


4
n

+
1
2
np2ne

np2n


= np2no(1),

and so for all large n we have p̂n ≥ np2n/2. Note that there is a 2-matching in HG(a, b) of size (1 − ε)(Xa
n ∧ Xb

n ) if
and only if H (G) has a 1-matching of size (1 − ε)(Xa

n ∧ Xb
n ). Since existence of a matching is a monotone property

and the edges in H (G) are positively correlated, w.l.o.g. we may assume that the edges in H (G) are independent, as
that would further reduce the probability of a matching. Now, on the set Cn := {Xa

n ≥ npn/2, Xb
n ≥ npn/2} we have

(Xa
n ∧ Xb

n )p̂n ≥ npnp̂n/2 ≥ n2p3n/4 → ∞. Thus, by Remark 6.1 we have

P(H (G) has no matching of size (1 − ε)(Xa
n ∧ Xb

n )|Fn, Cn, |∆G(a, b)| = 0) ≤ δ,

from which the claim follows, as P(Cn) → 1.
(e) In this case there may be triangles supported on (a, b). Recall RG(a) = NG(a)\∆G(a, b) and RG(b) = NG(b)\∆G(a, b),

and HG(a, b) is the subgraph of G induced by the vertices in RG(a) ∪ RG(b). This implies that |RG(a)| = Xa
n −

|∆G(a, b)|, |RG(b)| = Xb
n − |∆G(a, b)|. As [(Xa

n ∧ Xb
n ) − |∆G(a, b)|]pn

P
→ ∞, by Remark 6.1 there exists a matching

in HG(a, b) of size (1 − ε)(Xa
n ∧ Xb

n − ∆G(a, b)) with probability 1 − o(1), and so by Theorem 5.1 we have

κn(a, b) ≥
|∆G(a, b)|

(1 + Xa
n ) ∨ (1 + Xb

n )
− 2


1 −

(Xa
n ∧ Xb

n − ∆G(a, b))(1 − ϵ) + |∆G(a, b)|
(1 + Xa

n ) ∨ (1 + Xb
n )


.

The RHS converges to −2ε in probability, as |∆G(x, y)| = op(Xa
n ∧ Xb

n ). This proves that κn(a, b) ≥ 0 in probability.
Moreover, by Eq. (6) we have κn(a, b) ≤

|∆G(x,y)|
(Xa

n+1)∧(Xb
n+1)

which converges to 0 in probability, completes the proof.

(f) By a similar argument as in the previous case, there exists a matching between RG(a) and RG(b) of size (1−ε)(Xa
n ∧Xb

n −

|∆G(a, b)|), and so by Theorem 5.1 we have

κn(a, b) ≥
|∆G(a, b)|

(1 + Xa
n )(1 + Xb

n )
− 2


1 −

(Xa
n ∧ Xb

n − |∆G(a, b)|)(1 − ε) + |∆G(a, b)|
(1 + Xa

n ) ∨ (1 + Xb
n )


.

The RHS converges to p − 2ε(1 − p), which together with Eq. (6) implies that κn(a, b)
P
→ p. �

7. Conclusions

In this paper we derive exact formulas for Ollivier’s Ricci-curvature for bipartite graphs and graphs with girth at least 5.
We also prove a general lower bound on κ(x, y) in terms of the size of the matching among the non-common neighbors of
x and y in the graph G. This bound is often tight, especially in regular graphs which have a perfect matching between the
non-common neighbors. This together with the Birkhoff–von Neumann provide a necessary and sufficient condition on the
structure of Ricci-flat regular graphs of girth 4. However, it remains open to characterize the set of graphs with a perfect
matching between the non-common neighbors of x and y, for all edges (x, y) in the graph.

We also study the Ricci-curvature of random graphs and characterize the limiting behavior of the Ricci-curvature in the
regimeswhere it has a constant limit in probability. StudyingRicci-curvature for other randomgraphmodels is an interesting
problem for future research.
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