Technical reports and papers
Davis, R.A. and Fernandes, L (2022). Indepdent Component Analysis
with Heavy Tails using Distance Covariance. Working paper
pdf file
Davis, R.A., Fokianos, K., Holan, S., Joe, H., Livsey, J. Lund, R.
Pipiras, V. and Ravishanker, N. (2021). Count Time Series: A
Methodological Review. (To appear in JASA.)
Palmer, W.R. , Davis, R.A., and Zheng, Z. (2021) Count-Valued Time
Series Models for COVID-19 Daily Death Dynamics, (To appear in STAT).
Cohen, J., Davis, R.A., and Samorodnitsky, G. (2020). Heavy-Tailed
Distributions, Correlations Kurtosis, and Taylor's Law of Fluctuation
Scaling. Proc. R. Soc. A 476:20200610
https://doi.org/10.1098/rspa.2020.0610
Davis, Richard A. and Nielsen, Mikkel S. (2020). Modeling of Time
Series using Random Forests: Theoretical Developments. Electronic
Journal of Statistics, 14, 3644–3671.
Xu, H, Davis, R.A., and Samorodnitsky, G. (2020). Handling Missing
Extremes in Tail Estimation. Submitted to Extremes.
Quebbeman, Andrew; Davis, Richard; Thompson, Jill; Zimmerman, Jess;
Uriarte, Maria (2019). Percolation Thresdhold Analysis Outperforms
Spatial Point Process Models in Detecting Community Assembly Processes
in Natural Communities. (Submitted to Methods in Ecology and
Evolution).
Davis, R.A., do Rêgo Sousa, T., and Klûppelberg, C. (2021). Indirect
Inference for Time Series using the Empirical Characteristic Function
and Control Variates. To appear in J. Time Series Analysis.
Davis, R.A., and Song, L. (2020). Noncausal Vector AR Processes with
Application to Economic Time Series. J. of Econometrics, 216,
246—267.
Wan, P. and Davis, R.A. (2018). Goodness-of-Fit Testing for Time
Series Models Via Distance Covariance. To appear in J. of Econometrics
Davis, R.A., Slot Nielsen, M., and Rhode, V. (2020). Stochastic
Differential Equations with a Fractionally Filtered Delay: a
Semimartingale Model for Long-Range Dependent Processes. Bernoulli,
26(2), 799—827.
Wan, P., Wang, T., Davis, R.A., and Resnick, S. (2018). Are Extreme
Value Estimation Methods Useful for Network Data? To appear in
Extremes.
Wan, P. and Davis, R.A. (2019). Threshold Selection for Multivariate
Heavy-Tailed Data. Extremes. 22, 131-66
Baek, C., Davis, R.A., and Pipiras, V. (2018). Periodic Dynamic Factor
Models: Estimation Approaches and Applications. Electronic Journal of
Statistics, 12, 4377-4411.
Zou, Jingjing, Davis, R.A., and Samorodnitsky, GZ. (2019). Extreme
Value Theory Without the Extremes: What can be done? Probability in
the Engineering and Informational Sciences, 1-21.
Wan, P., Wang, T., Davis, R.A., and Resnick, S. (2017). Fitting the
Linear Preferential Attachment Model. Electron. J. Statist. 11,
3738—3780.
Davis, R.A. and Zhang, J. (2018). Semiparametric Estimation for
Non-Gaussian Non-minimum Phase ARMA models. J. Time Ser. Anal. 39.
251—272.
Davis, R.A., Zang, P., and Zheng, T. (2016). Sparse Vector
Autoregressive Modeling. Journal of Computational and Graphical
Statistics, 25, 1077-1096.
Buhl, S., Davis, R.A., Klüppelberg, C., and Steinkohl, C. (2019).
Semiparametric Estimation for Parameters in a Max-Stable Space-Time
Process. Bermoulli 25, Number 4A, 2508—2537. Supplement:
DOI:10.3150/18-BEJ1061SUPP
Davis, R.A., Matsui, M., Mikosch, T., Wan, P. (2018). Applications of
distance correlation to time series. Bernoulli, 24, 3087--3116.
Davis, R.A., Drees, H., Segers, J., and Warchol, M. (2016). Modeling
Serial Extremal Dependence. (To appear in J. of Econometrics).
http://arxiv.org/abs/1604.00954
Baek, C., Davis, R.A., and Pipiras, V. (2017). Sparse Seasonal and
Periodic Vector Autoregressive Modeling. To appear in Computational
Statistics and Data Analysis.
Davis, R.A., Mikosch, T., Heiny, J., and Xie, X. (2015). Extreme
Value Analysis for the Sample Autocovariance Matrices of Heavy-Tailed
Multivariate Time Series. (To appear in Extremes.)
Davis, R.A., Hancock, S., Yao, Y-C. (2015). On Consistency of Minimum
Description Length Model Selection for Piecewise Autoregressions. (To
appear in Journal of Econometrics).
Cho, Y., Davis, R.A., and Ghosh, S. (2016). Asymptotic Properties of
the Empirical Spatial Extremogram. (To appear in Scandinavian Journal
of Statistics.) arXiv:1408:0412v1
Davis, R.A. and Dunsmuir, W.T.M. (2016). State-Space Models for Count
Time Series. In Handbook of Discrete-Valued Time Series, edited by
Davis, R.A., Holan, S., Lund, R. and Ravishanker, N. (2016). Chapman
and Hall, New York
Samorodnitsky, G., Resnick, R., Towsley, D., Davis, R., Willis, A.,
and Wan, P. (2016). Nonstandard Regular Variation of In-Degree and
Out-Degree in the Preferential Attachment Model. Journal of Applied
Probability, 53, 146-161.
Davis, R.A., Mikosch, T., and Pfaffel, O., (2016) Asymptotic Theory
for the Sample Covariance Matrix of a Heavy-Tailed Multivariate Time
Series. Stochastic Processes and Their Applications, 126, 767-799.
Nascimento, F.F., Gamerman, D., and Davis, R.A. (2016). A Bayesian
Semi-parametric Approach to Extreme Regime Identification. Brazilian
Journal of Statistics and Probability, 30, 540-561.
Wang, C., Liu, H., Yao, J-F, Davis, R.A., and Li, W.K. (2014).
Self-excited Threshold Poisson Autoregression. JASA
109, 777-787.
Davis, R.A., Kluppelberg, C., and Steinkohl, C. (2012). Statistical
Inference for Max-Stable Processes in Space and Time.
Journal of Royal Statistical Society, Series B 75(5),
791-819.
Davis, R.A. and Yau, C-Y (2013). Consistency of Minimum Description
Length Model Selection for Piecewise Stationary Time Series Models.
(To appear in Electronic Journal of Statistics) 7
381-411.
Davis, R.A., Mikosch, T., and Zhao, Y. (2012). Measures of Serial
Extremal Dependence and Their Estimation.
Stochastic Processes and Their Applications 123,
381-411.
Davis, R.A., Kluppelberg, C., and Steinkohl, C. (2013).
Max-stable processes for modelling extremes observed in space and
time. Journal of Korean Statistical Society,
42(3), 399-414.
Davis, R.A. and Hueter, I. (2012). The Convex Hull of Moving Average,
Stochastic Volatility and GARCH Pairs. Extremes 14,
487-505.
Davis, R.A. and Liu, H. (2014). Theory and Inference for a Class of
Nonlinear Models with Application to Time Series of Counts. (To appear
in Statistica Sinica.)
Davis, R.A., Zang, P., and Zheng, T. (2012). Sparse Vector
Autoregressive Modeling
(Submitted).
Davis, R.A., Pfaffel, O., and Steltzer, R. (2014) Limit theory for the
largest eigenvalues of sample covariance matrices with
heavy-tails. Stochastic Processes and Their Applications, 124
, 18–50.
Davis, R.A. and Wu, Rongning (2011). LAD Estimation with Applications
in Time Series Analysis.
Encyclopedia of Environmetrics, 2nd Edition A.-H. El-Shaarawi
and W. Piegorsch (eds). John Wiley & Sons Ltd, Chichester, UK, pp.1116-1122.
DOI:10.1002/9780470057339.vnn088.
Davis, R.A. and Yau, C-Y (2011). Likelihood Inference for
Discriminating Between Long-Memory and Change-point Models.
Journal of Time Series Analysis 33(4), 649-664.
Cooley, D., Davis, R.A., and Naveau, P. (2011). Approximating the
Conditional Density Given Large Observed Values via a Multivariate
Extremes Framework, with Application to Environmental Data.
Annals of Applied Statistics, 6, 1406-1429.
Davis, R.A. and Liu, Jingchen (2010). Discussion of: A statistical
analysis of multiple temperature proxies: Are reconstructions of
surface temperatures over the last 1000 years reliable?
Annals of Applied Statistics 5, 52-55.
Andrews, B. and Davis, R.A. (2013). Model Identification for Infinite
Variance Autoregressive Processes.
Annals of J. of Econometrics 172, 222-234.
Davis, R.A., and Song, L. (2012). Noncausal Vector AR Processes with
Application to Financial Time Series.
(Submitted.)
Davis, R.A., and Song, L. (2012). Functional Convergence of Stochastic
Integrals with Application to Statistical Inference.
Stochastic Processes and Their Applications 122(issue 3),
725-757.
Davis, R.A., and Song, L. (2011). Unit Roots in Moving Averages Beyond
First Order.
Annals of Statistics 39,, 3062-3091.
Davis, R.A. (2010). Heavy Tails in Financial Time Series. In: Cont,
Rama (editor): Encyclopedia of Quantitative Finance. Wiley, New
York.
Huang, W., Wang, K., Breidt, F.J., and Davis, R.A. (2011). A Class of
Stochastic Volatility Models for Environmental Applications.
J. Time Series Analysis 32 364-377.
Davis, R.A, Mikosch, T. and Cribben, I. (2012).
Towards Estimating Extremal Serial Dependence via the Bootstrapped Extremogram.
J. of Econometrics 170, 142-152.
Steinkohl, Christina, Davis, Richard A., Kluppelberg, Claudia (2013).
Extreme Value Analysis of Multivariate High Frequency Wind Speed Data.
Journal of Statistical Theory and Practice 7, 73-94.
pdf file
Chen, M., Davis, R.A., and Song, L. (2011). Inference for Regression
Models with Errors From a Non-invertible MA(1) Process. J. of
Forecasting 30, 6--30.
Davis, R.A. and Yau, C-Y (2009). Comments on Pairwise Likelihood in Time
Series Models. Statistica Sinica, 21, 255-277.
Andersen, T. G., Davis, R.A., Kreiss, J.-P., Mikosch, T. editors.
(2009). Handbook of Financial Time Series. Springer-Verlag, Berlin.
Tadjuidje Kamgaing, J., Ombao, H., and Davis, R.A. (2009).
Autoregressive Processes with Data Driven Regime Switching.
J. Time Series Analysis 30 505-533.
Cooley, D., Davis, R.A., and Naveau, P. (2010). The Pairwise Beta
Distribution: A Flexible Parametric. J. Multivariate Analysis
101, 2103-2117.
Wu, Rongning and Davis, R.A. (2010).
Least Absolute Deviation Estimation for General Autogressive Moving
Average Time Series Modes. J. Time Series Analysis 32
no. 4, 98-112.
Wang, K., Huang, W., Breidt, F.J., and Davis, R.A. (2008).
Application of Heteroskedastic Spatial Models to Computer Experiments.
(Submitted.)
Brillinger, D.R. and Davis, R.A. (2009). A Conversation with Murray
Rosenblatt. Statistical Science 24 116-140.
pdf file
Link to Statistical Science
Davis, R.A. and Mikosch, T. (2009). The Extremogram: a Correlogram
for Extreme Events.
Bernoulli 4, 977-1009.
Brockwell, P.J., Davis, R.A., and Yang, V. (2011). Estimation for
Non-negative Levy-driven CARMA Processes.
J. Business and Economic Statistics 29, 250-259.
Wu, Rongning and Davis, R.A. (2009). A Negative Binomial Model for
Time Series of Counts.
Biometrika 96, 1-15.
Andrews, B., Calder, M. and Davis, R.A. (2007). Maximum Likelihood
Estimation for Alpha-Stable Autoregressive Processes.
Annals of Statistics 37 1946-1982.
Davis, R.A., Lee, T., and Rodriguez-Yam, G. (2008). Break Detection
for a Class of Nonlinear Time Series Models. J. of
Time Series Analysis, 29, 834-867.
pdf file
Brockwell, P.J., Davis, R.A., and Yang, V. (2007).
Estimation for Non-negative Levy-driven Ornstein-Uhlenbeck Processes.
J. Appl. Prob.) 44, 977-989.
pdf file
Davis, R.A. and Mikosch, T. (2009).
Extreme Value Theory for GARCH Processes.
In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (eds.):
Handbook of Financial Time Series, 187-200. Springer, New York.
pdf file
Davis, R.A. and Mikosch, T. (2009).
Probabilistic Properties of Stochastic Volatility Models.
In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (eds.):
Handbook of Financial Time Series, 255-267. Springer, New York.
pdf file
Davis, R.A. and Mikosch, T. (2009).
Extremes of Stochastic Volatility Models.
In: Andersen, T.G., Davis, R.A., Kreiss, J.-P. and Mikosch, T. (eds.):
Handbook of Financial Time Series, 355-364. Springer, New York.
pdf file
Davis, R.A. and Mikosch, T. (2008).
Extreme Value Theory for Space-Time Processes with Heavy-Tailed
Distributions. Stochastic Processes and Their
Applications 118 560-584.
pdf file
Breidt, F.J., Davis, R.A. Hsu, N-J, Rosenblatt, M. (2006).
Pile-up Probabilities for the Laplace Likelihood Estimator of a
Non-invertible First Order Moving Average
IMS Lecture Notes Monograph Series, Vol 52, 1-19.
pdf file
Brockwell, P.J., Davis, R.A., and Yang, V. (2007). Continuous-time
Gaussian Autoregression. Statistica Sinica 17, 63-80.
pdf file
Andrews, Beth, Davis, R.A., and Breidt, F. Jay (2007). Rank
Estimation for All-Pass Time Series Models.
Annals of Statistics 35 844-869.
pdf file
Davis, R.A., Lee, T., and Rodriguez-Yam, G. (2005). Structural
Break Estimation for Non-stationary Time Series Signals. Proceedings
of IEEE/SP 13th Workshop on Statistical Signal Processing. Bordeaux,
France (July 2005).
pdf file
Davis, R.A., Lee, T., and Rodriguez-Yam, G. (2006). Structural
Break Estimation for Nonstationary Time Series Models.
J. American Statist. Assoc. 101, 229-239.
pdf file
Hoeting, J.H., Davis, R.A., Merton, A.A., and Thompson, S.E. (2006).
Model Selection for Geostatistical Models. Ecological
Applications
16, 87-98.
pdf file
Rodriguez-Yam, G., Davis, R.A., and Scharf, L. (2004). Efficient
Gibbs Sampling of Truncated Multivariate Normal with Application to
Constrained Linear Regression. (Submitted).
pdf file
Davis, R.A. and Rodriguez-Yam, Gabriel. (2005). Estimation for
State-Space Models: an Approximate Likelihood Approach.
Statistica Sinica 15, 381-406.
pdf file
Davis, R.A., Dunsmuir, W.T.M., and Streett, S. (2005). Maximum
Likelihood Estimation for an Observation Driven Model for Poisson Counts.
Methodology and Computing in Applied Probability 7, 149-159.
pdf file
Andrews, B., Davis, R.A., and Breidt, F. Jay (2006).
Maximum Likelihood Estimation for All-Pass Time Series Models.
J. Multivariate Analysis. 97 1638-1659.
pdf file
Davis, R.A., Dunsmuir, W.T.M., and Streett, S. (2003). Observation
driven Models for Poisson Counts.
Biometrika
90, 777-790.
pdf file
Rodriguez-Yam, G., Davis, R.A., and Scharf, L. (2002). A Bayesian
Model and Gibbs Sampler for Hyperspectral Imaging. Proceedings 2002
IEEE Sensor Array and Multichannel Signal Processing Workshop,
Washington, D.C., 105-109.
pdf file
Brockwell, P.J., Davis, R.A., and Trindade. A. (2004). Asymptotic Properties of Some Subset
Vector Autoregressive Process Estimators. journal of Multivariate
Analysis 90(2), 327-347.
pdf file
Basrak, B., Davis, R.A., and Mikosch, T. (2002). A Characterization
of Multivariate Regular Variation. Ann. Applied Prob.
12, 908-920.
pdf file
Basrak, B., Davis, R.A., and Mikosch, T. (2002). Regular
Variation of GARCH Processes, Stoch. Process. Appl. 99,
95-115.
pdf file
Brockwell, P.J. and Davis, R.A. (2001). Discussion of `Non-Gaussian OU based models and some of their uses in financial economics' by O.E.
Bardorff-Nielsen and N. Shephard. J. Royal Statistical
Society, B, 63.
Davis, R.A. (2001). Gaussian Processes, Encyclopedia of Environmetrics,
Section on Stochastic Modeling and Environmental Change, (D.
Brillinger, Editor), Wiley, New York.
pdf file
Brockwell, P.J. and Davis, R.A. (2000). Describing Data Over Time (with Peter Brockwell).
CyberStats:An Introduction to Statistics,
CyberGnostics. (CyberStats is a course delivered entirely on the Web)
Davis, R.A. and Mikosch, T. (2001). Point Process Convergence of Stochastic Volatility Processes with Application to Sample Autocorrelations.
J. Appl. Probab. 38A, 93-104.
pdf file
Porth, L.S., Boes, D.C., Davis, R.A., King, R., and Troendle, C.A. (2001). Case Study: Using subsampling to determine sample sizes required for streamflow estimation within acceptable error levels, J.~Hydrology 251 110--116
Breidt, F.J., Davis, R.A., and Trindade, A. (2001). Least Absolute Deviation Estimation for All-Pass Time Series Models. Annals of Statistics 29, 919-946.
pdf file
Davis, R.A. and Mikosch T. (2000). The Sample Autocorrelations of Financial Time Series Models, Nonlinear and Nonstationary Signal Processing,
(W.J. Fitzgerald, R.L. Smith, A.T. Walden, P. Young, editors),
Cambridge University Press, Cambridge, England, 247--274.
pdf file
Davis, R.A., Dunsmuir, W.T.M., and Wang, Y. (2000). On Autocorrelation in a Poisson Regression Model, Biometrika 87 491--506.
Basrak, B., Davis, R.A., and Mikosch, T. (1999). The Sample ACF of a Simple Bilinear Process, Stoch. Process. Appl. 83 1--14.
Davis, R.A., Dunsmuir, W.T.M., and Wang, Y. (1999). Modelling Time Series of Count Data,
Asymptotics, Nonparametrics, and Time Series} (Subir
Ghosh, editor) Marcel-Dekker, New York, 63--114.
Davis, R.A. and Mikosch, T. (1999). The Maximum of the Periodogram of a Non-Gaussian Sequence, Annals of Probability 27 522--536.
Davis, R.A. and Mikosch, T. (1998). The Sample ACF of Heavy--Tailed Stationary
Processes with Applications to ARCH. Ann.~Statist. 26 2049--2080.
Davis, R.A. and Mikosch, T. (1998). Gaussian likelihood based inference for non-invertible MA(1) processes
with S$/alpha$S noise, (Stoch. Process. Appl. 77 99--122.
Calder, M. and Davis, R.A. (1998). Inference for Linear Processes with Stable Noise,
A practical Guide to
Heavy Tails: Statistical Techniques and Applications
(Adler, R., Feldman, R., and Taqqu, M., editors)
Birkh/"auser, Boston, 159--176.
Breidt, F.J. and Davis, R.A. (1998). Extremes of Stochastic Volatility Models,
Annals of Applied Probability 8 664--675.
Calder, M. and Davis, R.A. (1997). Introduction to Whittle (1953) ``The Analysis of Multiple
Stationary Time Series",
Breakthroughs in Statistics, Volume 3 (Kotz and Johnson, editors),
Springer-Verlag, 141--148.
Davis, R.A. and Dunsmuir, W.T.M. (1997). Least Absolute Deviation Estimation
for Regression with ARMA Errors,
J. Theoretical Prob 10, 481--497.
Davis, R.A. and Wu, W. (1997). Bootstrapping $M$-Estimates in Regression and
Autoregression with Infinite Variance, Statistica
Sinica 7 1135--1154.
Davis, R.A. and Wu, W. (1997). M-estimation for linear regression with infinite variance, Probability and Mathematical
Statistics 17, 1--20.
Davis, R.A. and Resnick, S.I. (1996). Limit Theory for Bilinear Processes with Heavy Tailed Noise, Annals of Applied Probability 6, 1191--1210.
Davis, R.A., Chen, M., and Dunsmuir, W.T.M. (1996). Inference for Seasonal Moving Average Models With a Unit Root,
Athens Conference on Applied Probability and Time Series:
Volume II: Time Series Analysis in Memory of E.J. Hannan (P.M. Robinson and
M.Rosenblatt, editors), Springer-Verlag, 160--176.
Davis, R.A. and Dunsmuir, W.T.M. (1996). Maximum likelihood estimation for MA(1) processes with a root on or near the unit circle,
Econometric Theory 12 1--29.
Davis, R.A. (1996). Gauss-Newton and $M$-Estimation
for ARMA Processes With Infinite Variance,
Stoch. Process. Appl. 63 75--95.
Chen, C., Davis, R.A., and Brockwell, P.J. (1996). Order determination for multivariate autoregressions using resampling methods, J.~Multivariate Analysis, 57, 175--190.
Chen, M., Davis, R.A., and Dunsmuir, W.T.M. (1995). Inference for MA(1) processes with a root on or near the
unit circle, Invited paper in Probability and Mathematical Statistics, Issue in
Honour of Neyman's 100 Birthday 15 227--242.
Donahue, R., Brockwell, P.J., and Davis, R.A. (1995). On permissible correlations for a class of stationary
spatial processes,
Stat.~and Prob. Letters 22, 49--53.
Davis, R.A., Huang, D., and Yao, Y.C. (1995). Testing for a change in the parameter values and order of
an autoregressive model,
Ann. Statist. 23, 282--304.
Davis, R.A. and Hsing, T. (1995). Point process and partial sum convergence for weakly dependent
random variables with infinite variance,
Ann Probab}, 23, 879--917.
Davis, R.A. and Resnick, S.I. (1995). Crossings of max-stable processes,
J.~Appl.~Prob. 31, 130--138.
Breidt, F.J., and Davis, R.A., and Dunsmuir, W.T.M. (1995). Improved bootstrap forecast intervals for autoregressions, J.~Time Series Anal. 16, 177-200.
Davis, R.A., and Yao, Y.C., and Huang, D. (1994). On almost sure convergence of change-point estimators, Change-point Problems
(Carlstein,
Muller and Siegmund, editors). Institute of Mathematical Sciences,
Lecture Notes-Monograph Series, Volume 23, 359--372.
Chen, C., Davis, R.A., Brockwell, P.J., and Bai, Z.D.(1993). Order determination for autoregressive processes using resampling methods,
Statist.~Sinica 3, 481--500.
Davis, R.A. and Resnick, S.I. (1993). Prediction of stationary max-stable processes,
Ann. of Applied Prob 3, 497--525.
Brockwell, P.J., Davis, R.A., and Salehi, H. (1992). Transfer function models with non-stationary inputs, New Directions in Time
Series Analysis, Part I (Brillinger, Caines, Geweke, Parzen, Rosenblatt,
and Taqqu, editors). Springer-Verlag, 65--74.
Breidt, F.J., Davis, R.A., and Dunsmuir, W.T.M. (1992). On backcasting in linear time series models, New Directions in Time Series
Analysis, Part I (Brillinger, Caines, Geweke, Parzen, Rosenblatt,
and Taqqu, editors). Springer-Verlag, 25--40.
Breidt, F.J. and Davis, R.A. (1992). Time-reversibility, identifiability, and independence of innovations for stationary time series, J. of Time Series Analysis 13, 377--390.
Davis, R.A., Knight, K., and Liu, J. (1992). M-estimation for autoregressions with infinite variance, Stochastic Processes and Their Applications 40, 145--180.
Davis, R.A. and Rosenblatt, M. (1991). Parameter estimation for some time series models without contiguity, Statistics and
Probability Letters 11, 515--521.
Breidt, F.J., Davis, R.A., Lii, K.S., and Rosenblatt, M. (1991).
Maximum likelihood estimation for noncausal autoregressive
processes, J. Multivariate Analysis 36, 175--198.
Davis, R.A. and Resnick, S.I. (1991). Extremes of moving averages of random variables with
finite endpoint, Ann Probability 19, 312--328.
Brockwell, P.J., Davis, R.A., and Salehi, H. (1991). A state-space approach to transfer-function modelling, Statistical
Inference in Stochastic Processes (N.U. Prabhu and I.V. Basawa,
Editors). Marcel Dekker, 233--248.
Breidt, F.J., Davis, R.A., Lii, K.S., and Rosenblatt, M. (1990).
Nonminimum phase non-Gaussian autoregressive processes, Proc. Natl. Acad. Sci. Vol. 87, 179-181.
Davis, R.A. and Marengo, J. (1990). Limit theory for the sample covariance and correlation matrix
function of a class of multivariate linear processes, Stochastic Models 6, 483--498.
Davis, R.A. and Resnick, S.I. (1989). Basic properties and prediction of max-ARMA processes, Adv. App. Prob. 21, 781-803.
Davis, R.A. and McCormick, W.P. (1989). Estimation for first-order autoregressive processes with
positive or bounded innovations,
Stochastic Processes and Their Applications 31, 237-250.
Boes, D.C., Davis, R.A., and Gupta, S. (1989). Parameter estimation in low order fractionally differenced ARMA
processes, Stochastic Hydrol. and Hydraul.
3, 97-110.
Davis, R.A. and Resnick, S.I. (1988). Extremes of moving averages of random variables from the domain of
attraction of the double exponential distribution,
Stochastic Processes Appl. 30, 41-68.
Davis, R.A., Mulrow, E., and Resnick, S.I. (1988). Almost sure limit sets of random samples in $R^d$, Adv. Appl. Prob. 20, 573-599.
Brockwell, P.J. and Davis, R.A. (1988). Simple consistent estimation of the coefficients of a linear filter, Stochastic Processes
and Their Applications, 47-59.
Davis, R.A. (1988). Discussion of `Extreme values--theory and technical applications'
by G. Lindgren and H. Rootzen. Scandinavian Journal of
Statistics 14, 271-274.
Brockwell, P.J. and Davis, R.A. (1988). On the applications of innovation representation in time series
analysis, Probability and Statistics:
Essays in Honor of Franklin A. Graybill (J. N. Srivastava, editor).
North Holland, 61-84.
Davis, R.A., Mulrow, E. and Resnick, S.I. (1987). The convex hull of a random sample in $R^2$, Stochastic Models 3, 1-28.
Yao, Y.C. and Davis, R.A. (1986). The asymptotic behavior of the
likelihood ratio statistic for
testing a shift in mean in a sequence of independent normal variables.
Sankya 48 339-353.
Davis, R.A. and Resnick, S.I. (1986). Limit theory for the sample correlation function of moving averages, Dependence in Probability and
Statistics (Eberlein and Taqqu, Editors). Birkhauser, 417-426.
Davis, R.A. and Resnick, S.I. (1986).
Limit theory for the sample covariance and correlation
function of moving averages.
Ann. Statist. 14,
533-558.
Davis, R.A. and Resnick, S.I. (1985).
More limit theory for the sample correlation function of
moving averages.
Stochastic Provesses and Their Applications 20,
257-279.
Davis, R.A. and Resnick, S.I. (1985).
Limit theory for moving averages of random variables
with regularly varying tail probabilities.
Annals of Probability 13, 179-197.
Davis, R.A., Marengo, J. and Resnick, S.I. (1985). Extremal properties of a class of multivariate moving averages,
Proceedings of the $45^{th}$
Session of the International Statistical Institute, Vol. 4 Amsterdam.
With discussion. Bull. Inst. Internat. Statist. Vol V, 185-192.
Davis, R.A. and Resnick, S.I. (1984). Tail estimates motivated
by extreme value theory.
Annals of Statistics 12, 1467-1487.
Davis, R.A. (1984). On upper and lower extremes in stationary
sequences. Statistical Extremes and Applications, Tiago de Oliveira,
Ed., 443-460. Reidel Publishing Company.
Davis, R.A. (1983). Stable limits for partial sums of dependent
random variables.
Annals of Probability 11, 262-269.
Davis, R.A. (1983). Limit laws for upper and lower extremes from stationary mixing
sequences, J. Multivariate Analysis 13, 273-286.
Chernick, M.R. and Davis, R.A. (1982). Extremes in autoregressive processes with uniform marginal distributions, Statistics and Probability
Letters 1, 85-88
Davis, R.A. (1982). Limit laws for the maximum and minimum of stationary sequences,
Z. Wahrscheinlichkeitstheorie und verw Gebiete 61, 31-42.
Davis, R.A. (1982). Extremes of one-dimensional diffusions. Stochastic Processes
and Their Applications 13, 1-9.
Davis, R.A. (1982). The rate of convergence in distribution of the maxima,
Statistica Neerlandica 36, 31-35.
Davis, R.A. (1979). Maxima and minima of stationary processes, Annals of
Probability 7, 453-460.
Courses
Reports & Papers
Short Vita
Vita (PDF format)
Invited Talks
Biography
Current Research
Books
Davis Home
Statistics Home
|
|