Probability Theory II (G6106)

Spring 2015
http://stat.columbia.edu/~porbanz/G6106S15.html

Peter Orbanz
porbanz@stat.columbia.edu
Morgane Austern
ma3293@columbia.edu

Homework 8

Due: 17 April 2015
Homework submission: Please leave your solution in my postbox in the Department of Statistics, 10th floor SSW.

Problem 1

Prove Lemma 4.8 (properties of outer measure) in the class notes.

Problem 2

Recall that the gamma distribution with parameters (α, λ) is the distribution on $(0, \infty)$ with Lebesgue density $p(x)=\Gamma(\lambda)^{-1} \alpha^{\lambda} x^{\lambda-1} e^{-\alpha x}$. Suppose X and Y are independent gamma variables with parameters (α, λ_{y}) and (α, λ_{x}). Show that

$$
\frac{X}{Y} \Perp X+Y \quad \text { and } \quad \frac{X}{X+Y} \Perp X+Y .
$$

Problem 3

Many stochastic processes can be interpreted as distributions on functions, i.e. as random variables whose sample space is a space of functions. Suppose we are interested in functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$. The set of all such functions is the product space $\mathbb{R}^{\mathbb{R}_{+}}$. More generally, the set of all functions from \mathbb{T} to \mathbf{X} is the product set $\mathbf{X}^{\mathbb{T}}$. One of the main technical obstacles in the construction of stochastic processes is that \mathbb{T} is often uncountable (such as in the case $\mathbb{T}=\mathbb{R}_{+}$above); if so, the product set $\mathbf{X}^{\mathbb{T}}$ is still well-defined, but the product σ-algebra and product topology are becoming too coarse. The purpose of this problem, and of problem 4 below, is to understand this phenomenon better.
Let \mathbf{X} be a second-countable Hausdorff space with Borel σ-algebra $\mathcal{B}(\mathbf{X})$. Let \mathbb{T} be an arbitrary set, and consider the product space

$$
\mathbf{X}^{\mathbb{T}}:=\prod_{t \in \mathbb{T}} \mathbf{X}_{t}
$$

in which each factor is a copy of $\mathbf{X}_{t}:=\mathbf{X}$ of \mathbf{X}. For each t, denote by $\mathrm{pr}_{t}: \mathbf{X}^{\mathbb{T}} \rightarrow \mathbf{X}_{t}$ the projection map (cf. Definition 2.4 in the class notes). We write $\mathcal{B}(\mathbf{X})^{\mathbb{T}}$ for the product σ-algebra (the smallest σ-algebra on $\mathbf{X}^{\mathbb{T}}$ which makes all projections measurable), and $\mathcal{B}\left(\mathbf{X}^{\mathbb{T}}\right)$ for the Borel σ-algebra generated by the product topology.

Question (a): Show that $\mathcal{B}(\mathbf{X})^{\mathbb{T}} \subset \mathcal{B}\left(\mathbf{X}^{\mathbb{T}}\right)$.
Question (b): If \mathbb{T} is countable, show that equality holds, i.e. $\mathcal{B}(\mathbf{X})^{\mathbb{T}}=\mathcal{B}\left(\mathbf{X}^{\mathbb{T}}\right)$.
Question (c): Show that $\mathcal{B}(\mathbf{X})^{\mathbb{T}} \neq \mathcal{B}\left(\mathbf{X}^{\mathbb{T}}\right)$ can hold if \mathbb{T} is uncountable. In particular, show that, if \mathbf{X} contains more than one element, the singleton set $\{x\}$, for $x \in \mathbf{X}^{\mathbb{T}}$, are not in $\mathcal{B}(\mathbf{X})^{\mathbb{T}}$.

Problem 4

Let \mathbb{T} be an uncountable set. Let Ω be a set, and \mathcal{A}_{t} a σ-algebra on Ω for each $t \in \mathbb{T}$.
Question (a): Show that, for every $A \in \sigma\left(\bigcup_{t \in \mathbb{T}} \mathcal{A}_{t}\right)$, there exists a countable subset $I \in \mathbb{T}$ such that $A \in \sigma\left(\bigcup_{t \in I} \mathcal{A}_{t}\right)$.

Question (b): Let $\mathbf{X}^{\mathbb{T}}$ again be the product space in Problem 3. Show that an event A is measurable in the product σ-algebra $\mathcal{B}(\mathbf{X})^{\mathbb{T}}$ if and only if it depends only on a countable number of coordinates. That is: Show that, whenever $A \in \mathcal{B}(\mathbf{X})^{\mathbb{T}}$, there exists a countable subset $I \subset \mathbb{T}$ and sets $A_{t} \in \mathcal{B}\left(\mathbf{X}_{t}\right)$, for $t \in I$, such that $x \in A$ iff $\operatorname{pr}_{t} x \in A_{t}$ for all $t \in A$.

