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Homework 1

Due: 4 February 2015

Homework submission: We will collect your homework at the beginning of class on the due date. If you
cannot attend class that day, please leave your solution in my postbox in the Department of Statistics, 10th floor
SSW, at any time before then.

Problem 1 (Directed sets)

Question (a): Let X be a set and x ∈ X . Recall that a neighborhood of x is any set A ⊂ X which contains x.
Let T be the set of all neighborhoods of a fixed point x, ordered by reverse inclusion, i.e. A � B
iff A ⊃ B. Show that (T,�) is a directed set.

Question (b): Let (T1,�1) and (T1,�1) be directed sets. Show that the Cartesion product T1 × T2 is directed
in the partial order defined by (s1, s2) � (t1, t2) iff s1 �1 t1 and s2 �2 t2.

Problem 2 (A martingale indexed by partitions)

Let (Ω,A) be a measurable space. A finite measurable partition s = (A1, . . . , An) of Ω is a subdivision of Ω
into a finite number of disjoint measurable sets Ai whose union is Ω. We say that a partition t = (B1, . . . , Bm) is
a refinement of another partition s = (A1, . . . , An) if every set Bj in t is a subset of some set Ai in s; in words,
t can be obtaine from s by splitting sets in s further, without changing any of the existing set boundaries in s.

Let T be the set of all finite measurable partitions of Ω, and defined as binary relation � as

s � t ⇔ t is a refinement of s .

Question (a): Show that � is a partial order on T.

Question (b): Show that the partially ordered set (T,�) is directed.

Later on in the lecture, we will use this construction to prove the Radon-Nikodym theorem on the existence of
densities. We anticipate a part of the proof in this problem (you can find the proof in Chapter 1.9 of the class
notes, but you are not required to read ahead to solve this problem). The proof idea is to “discretize” the density
f of a measure µ with respect to a probability measure P on finite partitions s as above. To this end, let s ∈ T,
so s is of the form s = (A1, . . . , An) for some n ≥ 2. Define a finite σ-algebra

Fs := σ(s) = σ(A1, . . . , An) .

Now let µ be a measure and P a probability measure, both defined (Ω,A). For each s, we define the function

Ys(x) :=

n∑
j=1

fs(Aj)IAj
(x) where fs(Aj) :=

{
µ(Aj)
P (Aj)

P (Aj) > 0

0 P (Aj) = 0
.

Note that Ys is a real-valued, measurable function defined on a probability space (Ω,A, P ), and hence a real-valued
random variable (even though it may not seem particularly random).

Question (c): Show that (Ys,Fs)s∈T is a martingale.



Problem 3 (A martingale workout)

Let (T,�) be a directed set and F = (Fs)s∈T a filtration. For each i = 1, . . . , n, let (Xi
s,Fs)s∈T be a martingale.

Question: Show that (maxi≤nX
i
s,Fs) is a submartingale.

Problem 4 (...and another one.)

Let (Xn,Fn)n∈N be a supermartingale, and assume there is a random variable X∞ and a σ-algebra F∞ such
that (Xn,Fn)n∈N∪{∞} is again a supermartingale.

Question: Show that (Xn,Fn)n∈N converges almost surely, and that limXn =a.s. X∞.

Hint: Show that Yn := Xn − E[X∞|Fn] defines a positive supermartingale on the same filtration, and apply a
suitable result from Probability I, Chapter 27, to (Yn).
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