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Large-scale parametric survival analysis
Sushil Mittal,a*† David Madigan,a Jerry Q. Chengb and
Randall S. Burdc

Survival analysis has been a topic of active statistical research in the past few decades with applications spread
across several areas. Traditional applications usually consider data with only a small numbers of predictors with
a few hundreds or thousands of observations. Recent advances in data acquisition techniques and computation
power have led to considerable interest in analyzing very-high-dimensional data where the number of predictor
variables and the number of observations range between 104 and 106. In this paper, we present a tool for
performing large-scale regularized parametric survival analysis using a variant of the cyclic coordinate descent
method. Through our experiments on two real data sets, we show that application of regularized models to
high-dimensional data avoids overfitting and can provide improved predictive performance and calibration over
corresponding low-dimensional models. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: survival analysis; parametric models; regularization; penalized regression; pediatric trauma

1. Introduction

Regression analysis of time-to-event data occupies a central role in statistical practice [1, 2] with appli-
cations spread across several fields including biostatistics, sociology, economics, demography, and
engineering [3–6]. Newer applications often gather high-dimensional data that present computational
challenges to existing survival analysis methods. As an example, new technologies in genomics have
led to high-dimensional microarray gene expression data where the number of predictor variables is of
the order of 105. Other large-scale applications include medical adverse event monitoring, longitudinal
clinical trials, and business data mining tasks. All of these applications require methods for analyzing
high-dimensional data in a survival analysis framework.

In this paper, we consider high-dimensional parametric survival regression models involving both
large numbers of predictor variables and large numbers of observations. Although Cox models continue
to attract much attention [7], parametric survival models have always been a popular choice among
statisticians for analyzing time-to-event data [4, 6, 8, 9]. Parametric survival models feature prominently
in commercial statistical software, are straightforward to interpret, and can provide competitive predic-
tive accuracy. To bring all these advantages to high-dimensional data analysis, these methods need to be
scaled to data involving 104–106 predictor variables and even larger numbers of observations.

Computing the maximum likelihood fit of a parametric survival model requires solving a nonlinear
optimization problem. Standard implementations work well for small-scale problems. Because these
approaches typically require matrix inversion, solving large-scale problems using standard software
is typically impossible. One possible remedy is to perform feature selection as a preprocessing step.
Although feature selection does reduce memory and computational requirements and also serves as a
practical solution to overfitting, it introduces new problems. First, the statistical consequences of most
feature selection methods remain unclear, making it difficult to choose the number of features for a
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given task in a principled way. Second, the most efficient feature selection methods are greedy and may
choose redundant or ineffective combinations of features. Finally, it is often unclear how to combine
heuristic feature selection methods with domain knowledge. Even when standard software does pro-
duce estimates, numerical ill conditioning can result in a lack of convergence, large estimated coefficient
variances, and poor predictive accuracy or calibration.

In this paper, we describe a regularized approach to parametric survival analysis [10]. The main idea
is the use of a regularizing prior probability distribution for the model parameters that favors sparseness
in the fitted model, leading to point estimates being zero for many of the model parameters. To solve
the optimization problem, we use a variation of the cyclic coordinate descent method [11–14]. We show
that application of this type of model to high-dimensional data avoids overfitting, can provide improved
predictive performance and calibration over corresponding low-dimensional models, and is efficient both
during fitting and at prediction time.

In Section 2, we review some of the other works that address similar problems. In Section 3, we
describe the basics of a regularized approach to parametric survival analysis. In Section 4, we provide
a brief overview of the four parametric models used for survival analysis using a high-dimensional for-
mulation. We also describe our optimization technique, which is tailored for each specific model for
computing point estimates of model parameters. More involved algorithmic details of the method per-
taining to each of the four parametric models can be found in Appendix A. We describe the data sets and
methods that we use in our experiments in Section 5 and provide experimental results in Section 6. The
first application uses a large data set of hospitalized injured children for developing a model for predict-
ing survival. Through our experiments, we establish that an analysis that uses our proposed approach can
add significantly to predictive performance as compared with the traditional low-dimensional models.
In the second application, we apply our method to a publicly available breast cancer gene expression
data set and show that the high-dimensional parametric model can achieve performance similar to a low-
dimensional Cox model while being better calibrated. Finally, we conclude in Section 8 with directions
for future work.

We have publicly released the C++ implementation of our algorithm, which can be down-
loaded from http://code.google.com/p/survival-analysis-cmake/. This code has been derived from the
widely used BBR/BXR software for performing large-scale Bayesian logistic regression (http://www.
bayesianregression.org). All four parametric models discussed in this paper are included in the imple-
mentation; however, it is fairly straightforward to also extend it to other parametric models. The
computation of various evaluation metrics discussed in Section 5 is also integrated into the code.

2. Related work

Survival analysis is an old subject in statistics that continues to attract considerable research attention.
Traditionally, survival analysis is concerned with the study of survival times in clinical and health-related
studies [4, 15]. However, over the past several decades, survival analysis has found an array of applica-
tions ranging from reliability studies in industrial engineering to analyses of inter-child birth times in
demography and sociology [3]. Other application areas have also benefited from the use of these methods
[6, 8].

Earlier applications usually consisted of a relatively small number of predictors (usually less than
20) with a few hundred or sometimes a few thousand examples. Recently, there has been considerable
interest in analyzing high-dimensional time-to-event problems. For instance, a large body of work has
focused on methodologies to handle the overwhelming amount of data generated by new technologies in
biology such as gene expression microarrays and single nucleotide polymorphism data. The goal of the
work in high-dimensional survival analysis has been both to develop new statistical methods [16–21] and
to extend the existing methods to handle new data sets [13,22–24]. For example, recent work [16,18] has
extended the traditional support vector machines used for regression to survival analysis by additionally
penalizing discordant pairs of observations. Another method [19, 20] extends the use of random forests
for variable selection for survival analysis. Similarly, other methods [22, 25] have used an elastic net
approach for variable selection both under the Cox proportional hazards model and under an accelerated
failure time model. This method is similar to another work [24] that applies an efficient method to com-
pute L1-penalized parameter estimates for Cox models. A recent review [26] provides a survey of the
existing methods for variable selection and model estimation for high-dimensional data.

Some more recent tools such as coxnet [27] and fastcox [25] adopt optimization approaches
that can scale to the high-dimensional high-sample-size data that we focus on. Although other models

3956

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 23 3955–3971



S. MITTAL ET AL.

provided by the R package glmnet do support sparse formats, neither coxnet nor fastcox cur-
rently supports a sparse matrix format for the input data. However, both coxnet and fastcox provide
estimates for the Cox proportional hazards model, and fastcox supports elastic net regularization.

3. Regularized survival analysis

Denote by n the number of individuals in the training data. We represent their survival times by
yi D min.ti ; ci /; i D 1; : : : ; n, where ti and ci are the time to event (failure time) and right-censoring
time for each individual, respectively. Let ıi D I.ti 6 ci / be the indicator variable such that ıi is 1
if the observation is not censored and 0 otherwise. Further, let xi D Œxi1; xi2; : : : ; xip�

> be a p-vector
of covariates. We assume that ti and ci are conditionally independent given xi and that the censoring
mechanism is noninformative. The observed data comprise triplets D D f.yi ; ıi ; xi / W i D 1; : : : ; ng.

Let � be the set of unknown, underlying model parameters. We assume that the survival times
y1; y2; : : : ; yn arise in an independent and identically distributed fashion from density and survival func-
tions f .yj�/ and S.yj�/, respectively, parametrized by � . We are interested in the likelihood L.� jD/
of the parametric model, where

L.� jD/D

nY
iD1

f .yi j�/
ıiS.yi j�/

.1�ıi /: (1)

We analyze and compare the performance of four different parametric models by modeling the distribu-
tions of the survival times using exponential, Weibull, log-logistic, or lognormal distributions. Each of
these distributions can be fully parametrized by the parameter pair � D .�; ˛/. Typically, the parameter �
is reparametrized in terms of the covariates xD Œx1; x2; : : : ; xp�> and the vector ˇ D Œˇ1; ˇ2; : : : ; ˇp�>

such that �i D �
�
ˇ>xi

�
; i D 1; : : : ; n. In general, the mapping function �.�/ is different for each

model, and standard choices exist. The likelihood function of (1) in terms of the new parameters can be
written as

L.ˇ; ˛jD/D

nY
iD1

f .yi j�i ; ˛/
ıiS.yi j�i ; ˛/

.1�ıi /: (2)

The parameters ˇ and ˛ are estimated by maximizing their joint posterior density

L.ˇ; ˛// L.ˇ; ˛jD/�.ˇ/�.˛/: (3)

The joint posterior distribution of .ˇ; ˛/ does not usually have a closed-form solution, but it can be
shown that the conditional posterior distributions �.ˇj˛;D/ and �.˛jˇ;D/ are concave and therefore
can be solved efficiently. In practice, it is sufficient to estimate ˇ and ˛ by maximizing the conditional
posterior of just ˇ

L.ˇ// L.ˇ; ˛jD/�.ˇ/: (4)

For a model to generalize well to unseen test data, it is important to avoid overfitting the training data.
In the Bayesian paradigm, this goal can be achieved by specifying appropriate prior distribution on ˇ
such that each ˇj is likely to be near 0. As we will observe in the following sections, both Gaussian and
Laplacian priors fall under this category. Because we focus on posterior mode estimation in this paper,
one can view our procedure as Bayesian or simply as a form of regularization or penalization. We use
the Bayesian terminology in part because we view fully Bayesian computation as the next desirable step
in large-scale survival analysis. We return to this point in the conclusion section.

3.1. Gaussian priors and ridge regression

For L2 regularization, we assume a Gaussian prior for each ˇj with 0 mean and variance �j , that is,

�.ˇj j�j /D N.0; �j /D
1p
2��j

exp

 
�
ˇ2j

2�j

!
: (5)

The mean of 0 encodes a prior preference for values of ˇj that are close to 0. The variances �j are posi-
tive constants that control the degree of regularization and are typically chosen through cross-validation.
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Smaller values of �j imply a stronger belief that ˇj is being close to 0 whereas larger values impose
a less-informative prior. In the simplest case, we assume that �1 D �2 D : : : D �p . Assuming that the
components of ˇ are independent a priori, the overall prior for ˇ can be expressed as the product of
the priors of each individual ˇj , that is, �.ˇj�1; : : : ; �p/ D

Qp
jD1 �.ˇj j�j /. Finding the maximum a

posteriori estimate of ˇ with this prior is equivalent to performing a ridge regression [28]. Note that
although the Gaussian prior favors the value of ˇj close to 0, posterior modes are generally not exactly
equal to 0 for any ˇj .

3.2. Laplacian prior and lasso regression

For L1 regularization, we again assume that each ˇj follows a Gaussian distribution with mean 0
and variance �j . However, instead of fixed �j ’s, we assume that each �j arises from an exponential
distribution parametrized using �j ’s and having a density of

�.�j j�j /D
�j

2
exp

�
�
�j

2
�j

�
: (6)

Integrating out �j gives an equivalent nonhierarchical, double-exponential (Laplace) distribution with a
density of

�.ˇj j�j /D

p
�j

2
exp .�

p
�j jˇj j/: (7)

Again, in the simplest case, we assume that �1 D �2 D : : :D �p . Similar to the Gaussian prior, assuming
that the components of ˇ are independent, �.ˇj�1; : : : ; �p/ D

Qp
jD1 �.ˇj j�j /. Finding the maximum

a posteriori estimate of ˇ with the Laplacian prior is equivalent to performing a Lasso regression [29].
With this approach, a sparse solution typically ensues, meaning the posterior mode for many components
of the ˇ vector will be 0.

4. Parametric models

It can be shown that for both Gaussian and Laplacian regularization, the negated log-posterior of (4) for
all the four parametric models considered in our work are log-convex. Therefore, a wide range of opti-
mization algorithms can be used. Because of the high dimensionality of our target applications, the usual
methods such as Newton–Raphson cannot be used because of their high memory requirements. Many
alternate optimization approaches have been proposed for maximum a posteriori estimation for high-
dimensional regression problems [30, 31]. We use the Combined Local and Global (CLG) algorithm of
[30], which is a type of cyclic coordinate descent algorithm, because of its favorable property of scal-
ing to high-dimensional data and ease of implementation. This method was successfully adapted to the
lasso [14] for performing large-scale logistic regression and implemented in the widely used BBR/BXR
software (http://www.bayesianregression.org).

A cyclic coordinate descent algorithm begins by setting all p parameters ˇj ; j D 1; : : : ; p , to some
initial value. It then sets the first parameter to a value that minimizes the objective function, holding all
other parameters constant. This problem then is a one-dimensional optimization. The algorithm finds the
minimizing value of a second parameter, while holding all other values constant (including the new value
of the first parameter). The third parameter is then optimized, and so on. When all variables have been
traversed, the algorithm returns to the first parameter and starts again. Multiple passes are made over the
parameters until some convergence criterion is met. We note that similar to previous work [14], instead
of iteratively updating each parameter till convergence, we do it only once before proceeding on to the
next parameter. Because the optimal values of the other parameters are themselves changing, tuning a
particular parameter to very high precision, in each pass of the algorithm, is not necessary. For more
details of the CLG method, we refer readers to relevant publications in this area [14, 30]. The details of
our algorithm for different parametric models are described in Appendix A. We also note that for the case
of the Laplacian prior, the derivative of the negated log-posterior is undefined for ˇj D 0; j D 1; : : : ; p.
Section 4.3 of [14] describes the modification of the CLG algorithm that we utilized to address this issue.
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5. Experiments

We tested our algorithm for large-scale parametric survival analysis on two different data sets. In the
following, we briefly describe the data sets and also motivate their choice for our work. In both cases,
we compare the performance of the high-dimensional parametric model trained on all predictors with
that of a low-dimensional model trained on a small subset of predictors.

5.1. Pediatric trauma data

Trauma is the leading cause of death and acquired disability in children and adolescents. Injuries result
in more deaths in children than all other causes combined [32]. To provide optimal care, children at high
risk for mortality need to be identified and triaged to centers with the resources to manage these patients.
The overall goal of our analysis is to develop a model for predicting mortality after pediatric injury.
For prediction within the domain of trauma, the literature has traditionally focused on low-dimensional
analysis, that is, modeling using a small set of features from the injury scene or emergency depart-
ment [33, 34]. Although approaches that use low-dimensional data to predict outcome may be easier to
implement, the trade-off may be poorer predictive performance.

We obtained our data set from the National Trauma Data Bank (NTDB), a trauma database main-
tained by the American College of Surgeons. The data set includes 210;555 patient records of injured
children aged <15 years collected over 5 years (2006–2010). We divided these data into a training data
set (153;402 patients for years 2006–2009) and a testing data set (57;153 patients for year 2010). The
mortality rate of the training set is 1:68%, whereas that of the test set is 1:44%. There are a total of
125;952 binary predictors indicating the presence or absence of a particular attribute (or interaction
among various attributes). The high-dimensional model was trained using all the 125;952 predictors,
whereas the low-dimensional model used only 41 predictors. The information about various predictors
used for both high-dimensional and low-dimensional models is summarized in Table I.

5.2. Breast cancer gene expression data

For our second application, we analyzed the well-known breast cancer gene expression data set [35,36].
This data set is publicly available and consists of cDNA expression profiles of 295 tumor samples of
patients with breast cancer. These patients were diagnosed with breast cancer between 1984 and 1995 at
the Netherlands Cancer Institute and were aged 52 years or younger at the time of diagnosis. Overall, 79
(26:78%) patients died during the follow-up time, and the remaining 216 are censored. The total number
of predictors (number of genes) is 24;885, each of which represents the log ratio of the intensities of the
two color dyes used for a specific gene. The high-dimensional model was trained using all the 24,885
predictors. For the low-dimensional model, we used the glmpath (coxpath) package of R [37] and
generated the entire regularized paths and output predictors in the order of their relative importance.

Table I. Description of the predictors used for high-dimensional and low-dimensional models for pediatric
trauma data.

Predictor type # Predictors Description High-dim Low-dim

Main effects
ICD-9 codes 1890 International Classification of Disease, X

Ninth Revision
AIS codes (predots) 349 Abbreviated Injury Scale codes that include X

body region, anatomic structure associated
with the injury, and the level of injury

Interactions/combinations
ICD-9, ICD-9 102;284 Co-occurrences of two ICD-9 injury codes X
AIS code, AIS code 20;809 Co-occurrences of two AIS codes X
Body region, AIS score 41 Combinations of any of the nine body regions X X

associated to an injury with injury severity
score (between 1 and 6) determined according to
the AIS coding scheme

[Body region, AIS score], 579 Co-occurrences of two [body region, AIS X
[Body region, AIS score] score] combinations

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 23 3955–3971
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We picked the top five predictors from the list and trained a low-dimensional model for comparisons.
The data were then randomly split into training .67%/ and testing .33%/ sets such that the mortality in
both parts was equal to the original mortality rate.

5.3. Hyperparameter selection

The Gaussian and Laplacian priors both require a prior variance, 	2j ; j D 1; : : : ; p, for parameter values.

The actual hyperparameters are � D �j D 	2j for Gaussian and
p
� D
p
�j D

p
2=	j for Laplacian. For

both the applications, the regularization parameter was selected using a fourfold cross-validation on the
training data. The variance 	2j was varied between 10�5 and 106 by multiples of 10. For the Gaussian
loss, this amounts to varying the actual regularization parameter between 10�5 and 106 by multiples of
10, whereas that for the Laplacian was between 0.0014 and 447.21 in multiples of

p
10. For each choice

of the hyperparameter, we computed the sum of log-likelihoods for the patients in all the four validation
sets and chose the hyperparameter value that maximized this sum.

5.4. Performance evaluation

There are several ways to compare the performance of fitted parametric models. These evaluation metrics
can be divided into two categories—ones that assess the discrimination quality of the model and others
that assess the calibration. As for any other regression model, the log-likelihood on the test data is an
obvious choice for measuring the performance of penalized parametric survival regression. In the past
several years, survival analysis-specific metrics that take censoring into account have been proposed.
Among these metrics, the area under the ROC curve (AUC), also known as Harrell’s c-statistic [38, 39],
a measure of discriminative accuracy of the model, has become one of the important criteria used to
evaluate the performance of survival models [40]. Motivated from a similar test for logistic regression
model proposed by Hosmer and Lemeshow, we evaluated calibration using an overall goodness-of-fit
test that has been proposed for survival data [41, 42]. Although the original test was proposed for Cox
models, its use for parametric models has also been described [6, Chapter 8]. In the following, we briefly
describe these two metrics.

5.4.1. Harrell’s c-statistic. Harrell’s c-statistic is an extension of the traditional area under the ROC
curve statistic but is more suited for time-to-event data because it is independent of any thresholding
process. The method is based on the comparison of estimated and ground truth ordering of risks between
pairs of comparable subjects. Two subjects are said to be comparable if at least one of the subjects in
the pair has developed the event (e.g., death) and if the follow-up time duration for that subject is less
than that of the other. By using the notation of Section 3, the comparability of an ordered pair of subjects
.i; j / can be represented by the indicator variable 
ij D I.yi < yj ; ıi D 1/, such that 
i;j is 1 when
the two subjects are comparable and 0 otherwise. The total number of comparable pairs in the test data
containing n subjects can then be computed as

n� D

nX
iD1

nX
jD1
j¤i


i;j : (8)

To measure the predicted discrimination, the concordance of the comparable pairs is then estimated. A
pair of comparable subjects (as defined earlier) is said to be concordant if the estimated risk of the subject
who developed the event earlier is more than that of the other subject. Therefore, the concordance of the
ordered subject pair .i; j / can also be represented using the indicator variable �ij D I.
ij D 1; ri > rj /,
where ri D �ˇ

>xi and rj D �ˇ
>xj are the relative risk scores of the i th and j th subjects. Therefore,

�ij is 1 when the two subjects are concordant and 0 otherwise. The total number of concordant pairs can
then be written as

n� D

nX
iD1

nX
jD1
j¤i

�i;j : (9)3960
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Finally, the c-statistic is given by

c-statisticD
n�

n�
: (10)

5.4.2. Hosmer–Lemeshow statistic. To assess the overall goodness of fit using this test, the subjects are

first sorted in order of their relative risk score (ri D �ˇ
>xi ; i D 1; : : : ; n) and divided into G equal-

sized groups. The observed number of events og of the gth group is obtained by summing the number
of noncensored observations in that group, whereas the number of expected events eg is computed by
summing the cumulative hazard of all the subjects in the same group. The �2 statistic for the overall
goodness of fit is then given by

�2 D

GX
gD1

.og � eg/
2

eg
: (11)

Table II. Comparison of low-dimensional and high-dimensional models for pediatric trauma data with
Gaussian penalization.

Predictors

Model type Overall Selected Log-likelihood c-Statistic �2

Exponential
Low-dim 41 41 �4270.01 0.88 124.39
High-dim 125,952 101,733 �4372.41 0.94 543.28

Weibull
Low-dim 41 41 �4242.38 0.88 131.60
High-dim 125,952 101,794 �4557.10 0.94 749.22

Log-logistic
Low-dim 41 41 �4120.66 0.89 95.37
High-dim 125,952 100,889 �3765.45 0.94 95.02

Lognormal
Low-dim 41 41 �3234.00 0.89 76.95
High-dim 125,952 88,244 �3129.02 0.93 165.68

The number of selected predictors refers to the number of significant predictors .jˇj j> 10�4/. Bold emphases represent
superior performance of one model over the other.

Table III. Comparison of low-dimensional and high-dimensional models for pediatric trauma data with
Laplacian penalization.

Predictors

Model type Overall Selected Log-likelihood c-Statistic �2

Exponential
Low-dim 41 41 �4271.23 0.88 122.58
High-dim 125,952 153 �4034.67 0.92 94.34

Weibull
Low-dim 41 41 �4243.57 0.88 126.84
High-dim 125,952 151 �3997.28 0.92 107.99

Log-logistic
Low-dim 41 41 �4122.07 0.89 94.73
High-dim 125,952 432 �3777.83 0.94 83.00

Lognormal
Low-dim 41 41 �3236.79 0.89 80.71
High-dim 125,952 168 �2974.49 0.93 89.36

Bold emphases represent superior performance of one model over the other.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 23 3955–3971
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6. Results

We now compare the performance of the low-dimensional and high-dimensional parametric models on
both data sets. For both applications, the hyperparameter 	2 was selected by performing a fourfold
cross-validation on the training data.

6.1. Pediatric trauma data

Tables II and III summarize the results for the pediatric trauma data set for low-dimensional and high-
dimensional models using all the four parametric models with Gaussian and Laplacian penalization.
Note that under the L2 prior, the estimate for any ˇj is never exactly 0, and thus, all variables contribute
towards the final model. The number of selected predictors in Table II just refers to the number of sig-
nificant predictors .jˇj j > 10�4/. The Hosmer–Lemeshow �2 index was computed using the value of
G D 50. Both the discriminative measures (log-likelihood and c-statistic) are always significantly better
for high-dimensional models than for the corresponding low-dimensional models. In many cases, the
high-dimensional model is also better calibrated.

Table IV. Comparison of number of events in low-risk, medium-risk, and high-risk groups for various
low-dimensional and high-dimensional models using Gaussian penalization for pediatric trauma data.

Low-dim High-dim

Model type Risk group # Subjects # Events MST # Events MST

Low 18,860 10 2.00 8 3.38
Exponential Medium 18,860 41 4.10 18 4.33

High 19,433 774 3.66 799 3.65

Low 18,860 11 2.00 7 3.43
Weibull Medium 18,860 34 3.44 18 3.67

High 19,433 780 3.69 800 3.66

Low 18,860 10 2.00 11 3.73
Log-logistic Medium 18,860 32 4.13 21 4.14

High 19,433 783 3.66 793 3.65

Low 18,860 10 2.00 16 6.56
Lognormal Medium 18,860 31 4.10 39 3.23

High 19,433 784 3.66 770 3.62

MST, mean observed survival time in days.

Table V. Comparison of number of events in low-risk, medium-risk, and high-risk groups for various
low-dimensional and high-dimensional models using Laplacian penalization for pediatric trauma data.

Low-dim High-dim

Model type Risk group # Subjects # Events MST # Events MST

Low 18,860 10 2.00 10 3.00
Exponential Medium 18,860 40 3.95 28 7.75

High 19,433 775 3.67 787 3.52

Low 18,860 10 2.00 10 3.00
Weibull Medium 18,860 37 3.32 20 9.80

High 19,433 778 3.70 795 3.51

Low 18,860 10 2.00 4 4.50
Log-logistic Medium 18,860 32 4.13 23 3.65

High 19,433 783 3.66 798 3.66

Low 18,860 10 2.00 12 3.00
Lognormal Medium 18,860 32 4.10 25 2.96

High 19,433 783 3.67 788 3.69

MST, mean observed survival time in days.
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Table VI. Comparison of low-dimensional and high-dimensional models for gene expression data with
Gaussian penalization.

Predictors

Model type Overall Selected Log-likelihood c-Statistic �2

Exponential
Low-dim 5 5 �86.26 0.71 16.83
High-dim 24,496 24,344 �98.72 0.75 112.69

Weibull
Low-dim 5 5 �85.64 0.71 12.79
High-dim 24,496 22,299 �85.56 0.70 9.34

Log-logistic
Low-dim 5 5 �85.65 0.70 14.74
High-dim 24,496 22,090 �86.14 0.70 5.37

Lognormal
Low-dim 5 5 �52.10 0.70 16.02
High-dim 24,496 24,154 �65.14 0.66 23.61

The number of selected predictors refers to the number of significant predictors .jˇj j> 10�4/. Bold emphases represent
superior performance of one model over the other.

Table VII. Comparison of low-dimensional and high-dimensional models for gene expression data with
Laplacian penalization.

Predictors

Model type Overall Selected Log-likelihood c-Statistic �2

Exponential
Low-dim 5 5 �86.27 0.71 17.14
High-dim 24,496 13 �87.51 0.67 2.74

Weibull
Low-dim 5 5 �85.63 0.71 12.79
High-dim 24,496 13 �86.80 0.66 3.75

Log-logistic
Low-dim 5 5 �85.65 0.70 14.71
High-dim 24,496 9 �86.20 0.68 3.66

Lognormal
Low-dim 5 5 �52.10 0.70 15.98
High-dim 24,496 9 �53.46 0.66 8.57

Bold emphases represent superior performance of one model over the other.

To provide further insight, we grouped the subjects into low-risk, medium-risk, and high-risk groups
by sorting their relative risk scores in increasing order and using threshold values at the 33rd and 66th
percentiles. For each group, we counted the number of events (number of noncensored observations).
Tables IV and V summarize the results for Gaussian and Laplacian penalizations, respectively. The
results show that in almost all cases, the subjects assigned to the high-risk group by the high-dimensional
models had more events than the ones assigned to the high-risk group by the low-dimensional models.
Although both kinds of models assign a similar number of subjects to the low-risk group, the mean
observed survival time of the subjects having events is more for the high-dimensional models than
for the corresponding low-dimensional ones. These findings also establish that in most cases, the
high-dimensional models are better calibrated than their low-dimensional counterparts.

6.2. Breast cancer gene expression data

The results of the gene expression data set for low-dimensional and high-dimensional models using all
the four parametric models with Gaussian and Laplacian penalizations are summarized in Tables VI and
VII, respectively. The Hosmer–Lemeshow �2 statistic was computed using G D 10 because of very few
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Table VIII. Computation time (s) taken for training various low-dimensional and high-dimensional models
using Gaussian and Laplacian penalizations for pediatric trauma and gene expression data.

Pediatric trauma Gene expression

Gaussian Laplacian Gaussian Laplacian

Model type Low-dim High-dim Low-dim High-dim Low-dim High-dim Low-dim High-dim

Exponential 1 4453 1 2588 1 4 1 8
Weibull 3 3406 2 2600 1 12 1 30
Log-logistic 2 2794 2 3278 1 13 1 38
Lognormal 6 3250 6 3101 1 51 1 52

observations in the test set. Although the discriminative performance of both methods is similar for most
of the cases, the high-dimensional models are almost always better calibrated.

7. Computation time

Table VIII summarizes the training time taken for fitting different parametric models for low-dimensional
and high-dimensional data sets. All the experiments were performed on a system with an Intel 2.4-GHz
processor with 8 GB of memory. Note that even though the time taken to fit high-dimensional models
to pediatric trauma data set is much more than that taken to fit low-dimensional models, given the scale
of the problem (153,402 patients with 125,952 predictors), the performance of the methods may be
acceptable in many applications.

8. Conclusions

We present a method to perform regularized parametric survival analysis on data with 104–106 pre-
dictor variables and a large number of observations. Through our experiments in the context of two
different applications, we have demonstrated the advantage of using high-dimensional survival analysis
over the corresponding low-dimensional models. We have provided a freely available software tool that
implements our proposed algorithm. Future work will provide the extension to Cox proportional hazards
models in addition to accelerated failure time models and Aalen’s additive hazard model. We have also
developed software for high-dimensional regularized generalized linear models that utilizes inexpensive
massively parallel devices known as graphics processing units (GPU’s) [43]. This provides more than
an order-of-magnitude speedup and in principle could be further developed to include survival analysis.
Fully Bayesian extensions to our current work could explore the hierarchical framework to simultane-
ously model multiple time-to-event endpoints, model multilevel structure such as patients nested within
hospitals, and incorporate prior information when available.

Appendix A

Here, we describe the details of our algorithm for exponential, Weibull, log-logistic, or lognormal
distributions of the survival times.

A.1. Exponential

The exponential model is the simplest of all and can be parametrized using a single parameter �, such that
the density and survival functions can respectively be written as f .yj�/ D f .yj�/ D 1=� exp .�y=�/
and S.yj�/D S.yj�/D exp .�y=�/. The likelihood function can be written as

L.�1; : : : ; �njD/D

nY
iD1

f .yi j�i /
ıiS.yi j�i /

.1�ıi / D exp

 
nX
iD1

�
�ıi log�i �

yi

�i

�!
: (12)
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A common form for the mapping function �.�/ is �
�
ˇ>xi

�
D exp

�
ˇ>xi

�
. The likelihood function is

then

L.ˇjD/D exp

 
�

nX
iD1

ıiˇ
>xi �

nX
iD1

yi exp
�
�ˇ>xi

�!
; (13)

and the corresponding log-likelihood is

l.ˇjD/D�

nX
iD1

ıiˇ
>xi �

nX
iD1

yi exp
�
�ˇ>xi

�
: (14)

By adding the Gaussian prior with mean 0 and variance �j , the posterior density can be written as

lG.ˇ/D l.ˇjD/C log.�.ˇj�1; : : : ; �p//D l.ˇjD/�
pX
jD1

 
log
p
�j C

1

2
log 2� C

ˇ2j

2�j

!
: (15)

Similarly, for the Laplacian prior, the posterior density can be written as

lL.ˇ/D l.ˇjD/C log.�.ˇj�1; : : : ; �p//D l.ˇjD/�
pX
jD1

.log 2� log
p
�j C

p
�j jˇj j/: (16)

With the CLG algorithm, the one-dimensional problem involves finding ˇ.new/
j , the value of the j th

entry of ˇ that minimizes �l.ˇ/, assuming that the other ˇj ’s are held at their current values. Therefore,
when (14) and (15) are used for Gaussian prior (and the constants log

p
�j and .1=2/ log 2� are ignored),

finding ˇ.new/
j is equivalent to finding the ´ that minimizes

gG.´/D ´

nX
iD1

xij ıi C

nX
iD1

yi exp

0
BB@�´xij �

pX
kD1
k¤j

ˇkxik

1
CCAC ´2

2�j
: (17)

The classic Newton method approximates the objective function g.�/ by the first three terms of its Taylor
series at the current ˇj

g.´/� g.ˇj /C g
0.ˇj /.´� ˇj /C

1

2
g00.ˇj /.´� ˇj /

2; (18)

where

g0G.ˇj /D
dgG.´/

d´

ˇ̌̌
ˇ
´Dˇj

D

nX
iD1

xij ıi �

nX
iD1

yixij exp
�
�ˇ>xi

�
C
ˇj

�j
; (19)

g00G.ˇj /D
d2gG.´/

d´2

ˇ̌̌
ˇ
´Dˇj

D

nX
iD1

yix
2
ij exp

�
�ˇ>xi

�
C
1

�j
: (20)

Similarly, for the Laplacian prior,

gL.´/D ´

nX
iD1

xij ıi C

nX
iD1

yi exp

0
BB@�´xij �

pX
kD1
k¤j

ˇkxik

1
CCACp�j j´j; (21)

g0L.ˇj /D
dgL.´/

d´

ˇ̌̌
ˇ
´Dˇj

D

nX
iD1

xij ıi �

nX
iD1

yixij exp
�
�ˇ>xi

�
C
p
�j sign.ˇj /; ˇj ¤ 0; (22)

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013, 23 3955–3971

3965



S. MITTAL ET AL.

g00L.ˇj /D
d2gL.´/

d´2

ˇ̌̌
ˇ
´Dˇj

D

nX
iD1

yix
2
ij exp

�
�ˇ>xi

�
; ˇj ¤ 0: (23)

The value of ˇ.new/
j for both types of priors can then be computed as

ˇ
.new/
j D ˇj Cˇj D ˇj �

g0.ˇj /

g00.ˇj /
: (24)

A.2. Weibull

The Weibull model is a more general parametric model with density and survival functions given
by f .yj�/ D f .yj�; ˛/ D .˛y˛�1=�/ exp .�y˛=�/ and S.yj�/ D S.yj�; ˛/ D exp .�y˛=�/,
respectively. The corresponding likelihood function can be written as

L.�1; : : : ; �n; ˛jD/D

nY
iD1

f .yi j�i ; ˛/
ıiS.yi j�i ; ˛/

.1�ıi / D ˛d
nY
iD1

�
y˛�1i

�i
exp

�
�
y˛i
�i

��ıi �
exp

�
�
y˛i
�i

��.1�ıi /
(25)

where d D
Pn
iD1 ıi . Similar to the previous case, using �i D exp

�
ˇ>xi

�
, the log-likelihood function

can be written as

l.˛;ˇjD/D d log˛C
nX
iD1

0
@ıi .˛ � 1/ logyi � ıiˇ

>xi �
y˛i

exp
�
ˇ>xi

�
1
A : (26)

Similar to Equations (15) and (16), conditional posterior corresponding to the Gaussian and Laplacian
priors can be written as

lG.˛;ˇ/D l.˛;ˇjD/C log.�.ˇj�1; : : : ; �p//D l.˛;ˇjD/�
pX
jD1

 
log
p
�j C

1

2
log 2� C

ˇ2j

2�j

!
; (27)

lL.˛;ˇ/D l.˛;ˇjD/C log.�.ˇj�1; : : : ; �p//D l.˛;ˇjD/�
pX
jD1

.log 2� log
p
�j C

p
�j jˇj j/: (28)

With the CLG algorithm, the one-dimensional problem involves finding ˛.new/
j and ˇ.new/

j , the value

of the j th entry of ˇ that gives the minimum value of �l.˛;ˇ/, assuming that the other ˛j ’s and ˇj ’s
are held at their current values. Therefore, for both Gaussian and Laplacian priors, finding ˛.new/ is
equivalent to finding the ´ that minimizes

g.´/D�d log ´�
nX
iD1

�
ıi .´� 1/ logyi � y

´
i exp

�
�ˇ>xi

��
: (29)

By writing the Taylor series expansion for g.´/ around ´,

g.´/� g.˛/C g0.˛/.´� ˛/C
1

2
g00.˛/.´� ˛/2; (30)

where

g0.˛/D
dg.´/

d´

ˇ̌̌
ˇ
´D˛

D�d=˛ �

nX
iD1

�
ıi logyi � y

˛
i exp

�
�ˇ>xi

�
logyi

�
; (31)

g00.˛/D
d2g.´/

d´2

ˇ̌̌
ˇ
´D˛

D d=˛2C

nX
iD1

y˛i .log yi /
2 exp

�
�ˇ>xi

�
: (32)
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The value of ˛.new/
j for both types of priors can then be computed as

˛.new/ D ˛C˛ D ˛ �
g0.˛/

g00.˛/
: (33)

The stepwise update for ˇ for both Gaussian and Laplacian priors are similar to that of the exponential
model and can be obtained by replacing yi with y˛i in Equations (18)�(24).

A.3. Log-logistic

For the log-logistic model, the density and survival functions are given by

f .yj�/D f .yj�; ˛/D
˛y˛�1

�
�
1C y˛

�

�2 and S.yj�/D S.yj�; ˛/D
1�

1C y˛

�

� ; (34)

The corresponding likelihood function can be written as

L.�1; : : : ; �n; ˛jD/D

nY
iD1

f .yi j�i ; ˛/
ıiS.yi j�i ; ˛/

.1�ıi / D ˛d
nY
iD1

0
B@ y˛�1i

�i

�
1C

y˛
i

�i

�2
1
CA
ıi 0
@ 1�
1C

y˛
i

�i

�
1
A
.1�ıi /

: (35)

where d D
Pn
iD1 ıi . By reparameterizing, �i D exp

�
ˇ>xi

�
, the log-likelihood function can be written

as

l.˛;ˇjD/D d log˛C
nX
iD1

�
ıi .˛ � 1/ logyi � ıiˇ

>xi � .1C ıi / log
�
1C y˛i exp

�
�ˇ>xi

���
: (36)

The posterior distributions corresponding to the Gaussian and Laplacian priors are similar to those for
the Weibull model in (27) and (28). With the CLG algorithm, for both types of priors, finding the update
˛.new/ is equivalent to finding the ´ that minimizes

g.´/D�d log ´�
nX
iD1

�
ıi .´� 1/ logyi � .1C ıi / log

�
1C y´i exp

�
�ˇ>xi

���
: (37)

The value of ˛.new/
j for both types of priors can then be computed using (33), where

g0.˛/D
dg.´/

d´

ˇ̌̌
ˇ
´D˛

D�d=˛ �

nX
iD1

0
@ıi logyi �

.1C ıi /y
˛
i exp

�
�ˇ>xi

�
log yi

1C y˛i exp
�
�ˇ>xi

�
1
A ; (38)

g00.˛/D
d2g.´/

d´2

ˇ̌̌
ˇ
´D˛

D d=˛2C

nX
iD1

.1C ıi /y
˛
i exp

�
�ˇ>xi

�
.logyi /2�

1C y˛i exp
�
�ˇ>xi

��2 : (39)

For the Gaussian prior, finding ˇ.new/
j is equivalent to finding the ´ that minimizes

gG.´/D ´

nX
iD1

xij ıi C

nX
iD1

.1C ıi / log

0
BB@1C y˛i exp

0
BB@�´xij �

pX
kD1
k¤j

ˇkxik

1
CCA
1
CCAC ´2

2�j
: (40)

Similar to the previous cases, the updated value ˇ.new/
j can be computed using (24), where

g0G.ˇj /D
dgG.´/

d´

ˇ̌̌
ˇ
´Dˇj

D

nX
iD1

xij ıi �

nX
iD1

.1C ıi /y
˛
i xij exp

�
�ˇ>xi

�
1C y˛i exp

�
�ˇ>xi

� C
ˇj

�j
; (41)
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g00G.ˇj /D
d2gG.´/

d´2

ˇ̌̌
ˇ
´Dˇj

D

nX
iD1

.1C ıi /y
˛
i x

2
ij exp

�
�ˇ>xi

�
�
1C y˛i exp

�
�ˇ>xi

��2 C 1

�j
: (42)

Similarly, for the Laplacian prior,

gL.´/D ´

nX
iD1

xij ıi C

nX
iD1

.1C ıi / log

0
BB@1C y˛i exp

0
BB@�´xij �

pX
kD1
k¤j

ˇkxik

1
CCA
1
CCACp�j j´j; (43)

g0L.ˇj /D
dgL.´/

d´

ˇ̌̌
ˇ
´Dˇj

D

nX
iD1

xij ıi �

nX
iD1

.1C ıi /y
˛
i xij exp

�
�ˇ>xi

�
1C y˛i exp

�
�ˇ>xi

� C
p
�j sign.ˇj /; ˇj ¤ 0;

(44)

g00L.ˇj /D
d2gL.´/

d´2

ˇ̌̌
ˇ
´Dˇj

D

nX
iD1

.1C ıi /y
˛
i x

2
ij exp

�
�ˇ>xi

�
�
1C y˛i exp

�
�ˇ>xi

��2 ; ˇj ¤ 0: (45)

A.4. Lognormal

Assuming that the survival times yi ; i D 1; : : : ; n, follow a lognormal distribution is equivalent to
assuming that their logarithms wi D logyi ; i D 1; : : : ; n, follow a normal N.�; 	2/ distribution with
density and survival functions given by f .yj�/D f .wj�; 	/D .1=

p
2�	2/ exp .�.w ��/2=2	2/ and

S.yj�/D S.wj�; 	/D 1�ˆ..w ��/=	/, respectively, whereˆ.�/ is the Gaussian cumulative distribu-
tion function. Following the convention, we replace � and ˛ with � and 	 , respectively. The likelihood
function of �i ; �j ; : : : ; �n and 	 can be written as

L.�1; : : : ; �n; 	 jD/D

nY
iD1

f .yi j�i ; 	/
ıiS.yi j�i ; 	/

.1�ıi /

D .2�	2/�d=2
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iD1

�
exp

�
�
.w ��i /

2

2	2

��ıi �
1�ˆ

�w ��i
	

��.1�ıi /
; (46)

where d D
Pn
iD1 ıi . By reparameterizing �i D ˇ

>xi , the log-likelihood function can be written as

l.	;ˇjD/D log 2� � d log 	 �
1

2	2

nX
iD1

ıi

�
wi � ˇ

>xi
�2
C

nX
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!!
:

(47)
The conditional posterior densities corresponding to the Gaussian and Laplacian priors can be written as

lG.	;ˇ/D l.	;ˇjD/C log.�.ˇj�1; : : : ; �p//D l.	;ˇjD/�
pX
jD1

 
log
p
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!
; (48)

lL.	;ˇ/D l.	;ˇjD/C log.�.ˇj�1; : : : ; �p//D l.	;ˇjD/�
pX
jD1

.log 2� log
p
�j C

p
�j jˇj j/: (49)

Assuming that the other parameters are held at their current values, the one-dimensional problems
involve finding 	 .new/ and ˇ.new/

j that minimize the posterior. With the CLG algorithm for both types

of priors, finding 	 .new/ is equivalent to finding the ´ that minimizes

g.´/D d log 	 C
1

2	2

nX
iD1

ıi

�
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>xi
�2
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nX
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!!
: (50)
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The value of 	 .new/ can then be computed as

	 .new/ D 	 C	 D 	 �
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g00.	/
: (51)

Here,
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For the Gaussian prior, finding ˇ.new/
j is equivalent to finding the ´ that minimizes

gG.´/D
1
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nX
iD1
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2 �

nX
iD1
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where ri D wi �
Pp

kD1
k¤j

ˇkxik . The updated value ˇ.new/
j can be computed using (24), where
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and pi and qi are same as (54). Similarly, for the Laplacian prior,
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