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Most geometric computer vision problems involve orthogonality constraints. An important subclass of these
problems is subspace estimation, which can be equivalently formulated into an optimization problem on
Grassmann manifolds. In this paper, we propose to use the conjugate gradient algorithm on Grassmann man-
ifolds for robust subspace estimation in conjunction with the recently introduced generalized projection
based M-Estimator (gpbM). The gpbM method is an elemental subset-based robust estimation algorithm
that can process heteroscedastic data without any user intervention. We show that by optimizing the orthog-
onal parameter matrix on Grassmann manifolds, the performance of the gpbM algorithm improves signifi-
cantly. Results on synthetic and real data are presented.
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1. Introduction

Orthogonality constraints arise frequently in geometric computer
vision problems. Linear subspace estimation naturally falls into this cat-
egory. Orthogonal matrices representing linear subspaces of Euclidean
space can be represented as points on Grassmann manifolds. Studying
the geometric properties of Grassmann manifolds can therefore prove
very useful in solving many vision problems. In the recent past, the
problem of subspace estimation has been formulated in many different
ways. Important methods include robust regression based approaches
[34, 22], spectral clustering based approaches [6, 41] and clustering ran-
dom hypothesis on Grassmann manifolds [35, 2].

Robust regression has been an active field of research in comput-
er vision. It corresponds to estimating multiple, noisy inlier struc-
tures present in the data corrupted with gross outliers. Following
RAndom SAmple Consensus (RANSAC) [7], many algorithms like
MLESAC, LO-RANSAC, PROSAC, QDEGSAC, have been proposed. See
[27] for a brief description of these methods. Recently, the projection
based M-estimator (pbM) of [34] was extended to the generalized
pbM (gpbM) [22]. The main advantage of pbM and gpbM over RAN-
SAC and RANSAC-like regression algorithms is that both pbM and
gpbM do not require from the user an estimate of the scale of the
noise corrupting inlier points. While pbM uses a MAD-based scale
estimate that is dependent on the choice of a particular hypothesis,
gpbM estimates the true scale of the noise beforehand.

In this paper, we extend the work of [22] to robustly estimate sub-
spaces by using concepts of Riemannian geometry. While the main
idea of work follows that of [34], it is different from [34] in a number
by special issue Guest Editor
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of ways. Like [34], we also refine the estimate of the subspace
obtained from the gpbM algorithm by using conjugate gradient on
Grassmann manifolds. But, in pbM [34], firstly, the scale of the inlier
noise was estimated using a variant of the Median Absolute Deviation
(MAD) based method. Being dependent on MAD-based scale esti-
mate, the method is bound to fail when inliers comprise less than
half the data points or contain noise from an asymmetric distribution.
This is often the case when several inlier structures are present. Sec-
ondly, in [34], the scale of inlier noise being dependent on the choice
of a particular model hypothesis, explicit assumptions had to be made
for optimizing the objective function on Grassmann manifolds. In
gpbM, since the scale is computed beforehand, it is independent of
a particular model hypothesis and no such assumptions are required.
Finally, in [34], only homoscedastic formulation of the method was
presented. Our method can handle both homoscedastic and hetero-
scedastic data. We argue that by refining the subspace estimation
using Grassmann manifolds, the performance of the original gpbM al-
gorithm improves significantly. Experiments on challenging synthetic
and real examples are presented.

The paper is organized as follows. In Section 2, we describe the nec-
essary theoretical concepts related to Riemannian manifolds. We also
review some of the recent work that uses of Riemannian manifolds for
solving problems in computer vision. In Section 3, we describe, in detail,
the properties of Grassmann manifolds and derive the necessary rela-
tions. In Section 4, we briefly explain the gpbM algorithm with a de-
tailed focus on the conjugate gradient for Grassmann manifolds. In
Section 5, we present results from experiments conducted on synthetic
and real examples.

2. Riemannian manifolds

A Hausdorff space is defined as a topological space where for
any two distinct points x, y, there exist neighborhoods U around
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Fig. 1. Example of a two-dimensional manifold. Two overlapping coordinate charts are
shown. If the manifold is analytic, the transition map ϕ○ψ−1 (and ψ○ϕ−1) from ℝ2 to
ℝ2 should be analytic.
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x and V around y such that U and V are disjoint. A manifold M is an
d-dimensional Hausdorff topological space, that is locally homeo-
morphic to Euclidean space, i.e., for every point x∈M there exists
a neighborhood U ⊂M containing x and an associated mapping ϕ
from U to some Euclidean space Rd, such that ϕ Uð Þ is an open set
in Rd. The neighborhood U and its associated mapping ϕ together
form a coordinate chart U;ϕð Þ.

Given, two coordinate charts U;ϕð Þ and V;ψð Þ such that U∩V is
non-empty, the transition map ϕ○ψ−1 is defined as a mapping from
the open set ψ U∩Vð Þ∈Rd to the open set ϕ U∩Vð Þ∈Rd (Fig. 1). The
properties of calculus, like smoothness and differentiability, can be
applied to the transition maps of a manifold.

An analytic manifold is a smooth, differentiable manifold such that
for all coordinate charts U;ϕð Þ and V;ψð Þ, either U ∩ V is empty or
U ∩ V is nonempty and the transition map ϕ○ψ−1 is analytic, i.e.,
has a convergent Taylor series expansion.

Consider a real valued function f : M→R on the manifold. Given
a coordinate chart U;ϕð Þ, the function ~f ¼ f ○ϕ−1 maps the open set
ϕ Uð Þ∈Rd to ℝ. The function f is said to be continuous, if for all
coordinate charts ~f is continuous. Similarly, f is said to be analytic if
~f is analytic for all coordinate charts defined onM. The set of all con-
tinuous, real-valued functions on M is denoted by F Mð Þ.
Fig. 2. (a) An illustration of tangent and normal spaces of Riemannian manifold. The geode
vector Δ from a point x to another point y on the manifold.
Given a point x on the manifoldM, a tangent vector at x toM is a
real-valued function Δ : F Mð Þ→R that satisfies the properties of
linearity and Leibniz product rule of derivatives. Let Δx Mð Þ repre-
sent the vector space of all tangent vectors to M at x. It can be
shown that for d-dimensional manifolds, the tangent space is a d-
dimensional vector space ([24], p.8). For a point x lying on M, Δ(f)
is the magnitude of the derivative of f in the tangent direction Δ at
x. Intuitively, the tangent vector can be thought of as velocity of a
point constrained to move on the manifold. The tangent space can
be further divided into complementary spaces called the horizontal
and vertical spaces. The space normal to the tangent space is called
the normal space. See Fig. 2a.

The partial differentiation of f onM can be achieved by first mov-
ing the function f back to the Euclidean space using the coordinate
charts and then taking the usual directional derivative. Therefore,
given a coordinate chart U;ϕð Þ, the partial differential of f at x can
be written as

∂ið f Þ ¼
∂ f ○ϕ−1
� �

∂ui j
ϕ xð Þ

ð1Þ

where, ui is the i-th coordinate of the point ϕ(x) in Rd. The mutually
orthogonal tangent directions ∂i, i=1,…,d form the basis of Δx Mð Þ.

A Riemannian manifold is a real analytic manifold M of dimension
d, which can be isometrically embedded into some Euclidean space
Rm where m>d. The tangent space at every point x on a Riemannian
manifold is associated with an inner product gx called the Riemannian
metric ([24], p. 55). The manifold is denoted by the ordered pair
M; gð Þ. Two different inner product metrics on the same manifold
would lead to two different Riemannian manifolds. However, in prac-
tice there exists a standard metric and the Riemannian manifold is
denoted by the underlying analytic manifold M.

Given two tangent vectors Δ; Λ∈Δx Mð Þ, their inner product is
written as gx(Δ,Λ). This enables us to define angles between the
two tangent vectors. For a tangent vector Δ the Riemannian metric
is the length of Δ and given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gx Δ;Δð Þp

. Given a set of basis vectors
for the tangent space Δx Mð Þ, gx can always be represented as a sym-
metric positive definite matrix.

A curve in a manifold M is a smooth mapping α from an open in-
terval T of R toM. For a particular t∈T, α(t) lies on the manifold and
α′(t) is a tangent vector at α(t). Given a function f on the manifold,
the tangent vector α′(t) applied to f gives ∂( f○α)/∂ t, i.e., the direc-
tional derivative of f in the direction α′(t). The vector α′(t) is the
rate of change of α at t∈T. The length of the curve is given by

∫
t∈T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gα tð Þ α′ tð Þ;α′ tð Þ� �q

dt: ð2Þ
sic is always in the direction of the horizontal space. (b) Parallel transport of a tangent

image of Fig.�2
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Given points x, y onM, the shortest curve connecting x and y is called
the minimal geodesic. In this work, since we are always only interest-
ed in the minimal geodesics, for convenience, we call them just geode-
sics. The length of the geodesic is defined to be the Riemannian
distance between the two points. Geodesics have the property that
gα(t)(α′(t),α′(t)) is constant for all t∈ T, i.e., the speed is constant
along the geodesic ([24], p. 67).

In Euclidean space, a vector can be moved parallel to itself by just
moving the base of the arrow. While transporting a tangent vector Δ
from a point x to y on the manifoldM, the normal component Δ⊥ at y
is subtracted from the transported vector. This is called parallel
translation and is illustrated in Fig. 2b.

Riemannian manifolds appear frequently in computer vision
due to the geometric nature of the problems. Different types of
Riemannian manifolds like Lie groups, essential manifolds, symmetric
manifolds and Grassmann manifolds have been used in the past. Fol-
lowing, we present an overview of frequently used Riemannian mani-
folds in computer vision and the related papers that have appeared in
the past few years.

A Lie group is a group which is also a manifold such that the group
operations are compatible with the smooth structure of the manifold.
Examples include special orthogonal, special Euclidean and affine
groups. In [40], the mean shift-based clustering algorithm was ex-
tended to cluster points lying on matrix Lie groups and applications
on special Euclidean group and special orthogonal groups were pre-
sented. In [23], a method was developed to compute means and aver-
ages on the special orthogonal groups. Using this method, in [8], the
algorithm for principal component analysis (PCA) was extended to
similarity transformations and special orthogonal groups by defining
principal geodesics which was applied for shape analysis of anatomi-
cal objects. By defining the averages on special orthogonal and special
Euclidean groups, a method for estimating 3D motion was proposed
in [10]. In [38], a learning based method was developed for perform-
ing regression on points lying on the affine group and an application
of object detection and tracking was presented. Visual tracking using
particle filtering on affine groups was studied in [14], while [16] pro-
posed learning on affine groups to analyze visual flows in image
sequences.

An essential manifold is a six-dimensional space of essential ma-
trices and it encodes the epipolar geometry for a pair of calibrated
cameras. The essential manifold was first introduced in [30]. Using
its geometry, three different algorithms for rigid motion estimation
were proposed and their performance was compared. It was shown
in [31] that the essential manifold can be identified as the unit tan-
gent bundle of the special orthogonal group. Based on the work of
[20], Gauss-Newton type methods for essential manifolds were pro-
posed in [12]. In [33], the non-linear mean shift algorithm of [40]
was extended to cluster points lying on the essential manifold by de-
veloping a robust parametrization that bijectively maps an essential
matrix to a point on the manifold.

The set of allm×m symmetric positive definite matrices forms the
symmetric manifold. Geometric properties, like the mean of points
and geodesics on symmetric manifolds, were introduced in [25].
These properties were then used to perform operations like interpo-
lation, filtering and diffusion on symmetric manifolds. A computa-
tionally more efficient geometric mean called the Log-Euclidean
mean was proposed in [1]. This mean was used in [15] to perform
learning on symmetric manifold for visual tracking of objects. In
[39], a method for human detection was introduced by performing
learning on the space of covariance descriptors. This idea was further
extended in [36] to perform a classification of video sequences into
multiple classes for surveillance.

The set of m×k, (m>k) orthonormal matrices representing the
k-dimensional linear subspaces in Rm form a Grassmann manifold.
Geometric properties of Grassmann manifolds like geodesics, paral-
lel translation are discussed in [5]. In [32], a method for tracking
subspaces using a Bayesian approach was presented. Projective re-
construction of feature points from their multiple, low-dimension
projections using Grassmann tensors was proposed in [11]. In [3],
an algorithm for finding approximate nearest neighbors on Grass-
mann manifolds was proposed to analyze human activity in videos.
For the same application, the method of [19] performed classifica-
tion on product manifold of Grassmann manifolds. A non-linear
mean shift algorithm to intrinsically cluster points on Grassmannman-
ifolds was proposed in [2], while the method of [37] used Karcher
mean [13] to study inferences on Grassmann manifolds. In [17], the
conjugate gradient algorithm was applied on Grassmann manifolds
for the application of face recognition.

A general algorithm for nonlinear mean shift was proposed in [35],
which could handle points lying on any Riemannianmanifold. Further,
it was also proved that the employedmean-shift method converges to
the closest mode of the distribution. The geometric properties of Lie
groups, Grassmann manifolds, essential manifolds and the manifolds
of symmetric positive definite matrices were discussed in detail and
many applications were also presented. For more details, see [35]
and references therein.

While the concepts of geodesics and parallel translation are ap-
plicable to all Riemannian manifolds, specific implementations for
Grassmann manifolds will be presented in Section 3. Note that
points lying on manifolds are, in general, represented by small
bold letters. However, since points lying on Grassmann manifolds
are matrices, they are represented using the standard convention
with capital bold letters.

In Section 5, we present two real computer vision applications
that are formulated into the problem of robust subspace estimation.
Note that in such applications, our goal is to only estimate that appro-
priate subspace spanned by the inlier points. The choice of a particu-
lar basis vectors for that subspace is not important. Since orthogonal
matrices representing linear subspace with non-unique basis are
also points on Grassmann manifolds, robust subspace estimation
can be naturally formulated as the problem of optimizing an appro-
priate objective function on Grassmann manifolds. As opposed to
this, since points on Stiefel manifolds represent orthogonal matrices
with fixed set of basis, they are usually of lesser interest for the prob-
lems of subspace estimation in computer vision.

3. Grassmann manifolds

A point X on the Grassmann manifold, Gm;k, represents a k-
dimensional linear subspace inRm, wherem>k. Therefore, X is repre-
sented by an m×k orthogonal matrix, i.e., X⊤X ¼ Ik�k. The point X is
independent of the choice of any particular basis vectors. Points on
the Grassmann manifold are equivalence classes of m×k orthogonal
matrices, where two matrices are equivalent if their columns span
the same k-dimensional subspace in Rm [5]. Due to the frequent oc-
currence of orthogonality constraints in many geometric computer
vision problems, they can be solved by performing computations on
the Grassmann manifolds.

As opposed to Grassmann manifold, in Stiefel manifold, each point
is an m×k orthogonal matrix with a fixed set of basis vectors. While
algorithms for computations on Stiefel manifolds were described in
[2, 37], their performance on real applications in computer vision
were only shown for k=1. Since, the choice of basis vector is auto-
matically fixed in that case, the utility of Stiefel manifolds for comput-
er vision problems is still largely unexplored.

To develop the notions of the geodesics and parallel translation of
tangent vectors on Grassmann manifolds, it is important to under-
stand their quotient form representation. Note that tangents at points
on Gm;k are also represented as m×k matrices. However, due to the
convention, we still refer to them as vectors.

Let Q be anm×m orthogonal matrix, represented as a point on the
special orthogonal group, SO mð Þ. Let the geodesic curve between the
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two points Q 0;Q 1∈ SO mð Þ be given by Q tð Þ such that Q 0 ¼ Q 0ð Þ and
Q 1 ¼ Q t1ð Þwhere 0≤ t ≤ t1; t∈R. For any pointQ∈ SO mð Þ, we know
that

Q⊤Q ¼ Im�m: ð3Þ

Differentiating above equation yields Q⊤ΓQ þ Γ⊤QQ ¼ 0, where ΓQ is
the m×m matrix of differentials of Q ([4], p. 14). Intuitively, ΓQ is
the set of tangent vectors at Q. The normal space NQ at Q is the or-
thogonal complement of the tangent space (Fig. 2a), such that
trace Γ⊤QNQ

� �
¼ 0. It can be shown that NQ ¼ QP where P is any

m×m symmetric matrix. Then we will have the product of a skew-
symmetric matrix Γ⊤QQ and a symmetric matrix P, that satisfies the
trace being zero. Since Q is non-singular, orthogonal matrix

Q⊤NQ þN⊤
QQ ¼ Q⊤QPþ P⊤Q⊤Q ¼ 2P: ð4Þ

Twice differentiating (3) w.r.t. t yields

Q⊤Q˙ ˙ þ 2Q̇ ⊤ Q̇ þ Q˙ ˙ ⊤Q ¼ 0 ð5Þ

where Q̇ tð Þ and Q˙ ˙ tð Þ are the instantaneous velocity and acceleration
atQ tð Þ. Since the velocity Q̇ tð Þ, at any time t, is also the first derivative
of Q , Q̇ tð Þ∈ ΓQ tð Þ for 0≤ t≤ t1. By the definition of the geodesic, since
the speed (norm of the velocity), jjQ̇ tð Þjj ¼ constant, for 0≤ t≤ t1, the
component of the acceleration,Q˙ ˙ tð Þ in the tangent space ΓQ(t) is zero.
Therefore, the acceleration vectorQ˙ ˙ tð Þmust lie in the normal space at
Q tð Þ yielding

Q˙ ˙ ¼ Q Q⊤Q˙ ˙ þ Q˙ ˙ ⊤Q
� �

=2 ð6Þ

where Q⊤Q˙ ˙ þ Q˙ ˙ ⊤Q
� �

is a symmetric m×m matrix. From (5) and (6)
it can be shown that

Q⊤Q˙ ˙ þ Q̇ ⊤ Q̇ ¼ 0: ð7Þ

Let A ¼ Q⊤ Q̇ be an m×m matrix. Differentiating A w.r.t. t, we get
Ȧ ¼ Q̇ ⊤ Q̇ þQ⊤Q˙ ˙ ¼ 0, yielding A=constant. The solution of (7) is
of the form

Q̇ tð Þ ¼ Q tð ÞA ð8Þ

Q tð Þ ¼ Q 0ð ÞeAt : ð9Þ

Since the points along the geodesic always lie on the manifold, there-
fore Q tð Þ∈ SO mð Þ for 0≤ t≤ t1. It follows that eAt is a rotation matrix
and that A has to be skew-symmetric.

A Grassmann manifold Gm;k can be represented as quotient space
within the special orthogonal group SO mð Þ using the equivalence
classes. Given a point Q on SO mð Þ, its equivalence class [Q], for the
Grassmann manifold Gm;k, is the set of all m×m orthogonal matrices
whose first k columns span the same subspace. A point on the Grass-
mann manifold can be represented by the equivalence class

Q½ � ¼ Q Q k 0
0 Qm−k

� �
: Q k∈ SO kð Þ;Qm−k∈ SO m−kð Þ

	 

: ð10Þ

The tangent space ΓQ at a point Q, can be further divided into
linear subspaces called the vertical and horizontal spaces which
are orthogonal complements of each other (Fig. 2a). The vertical
space consists of the tangent vectors at Q, movements along
which keep the point in the same equivalence class, [Q]. Move-
ments only along the horizontal space at Q actually move a point
on the Grassmann manifold. Formally, vertical space is defined as
the set of vectors tangent to the entire equivalence class [Q].
From Eqs. (8) and (10), the horizontal tangent vectors at Q are
defined as

ΔQ ¼ QA ¼ Q 0 −B⊤

B 0

� �
ð11Þ

where A is an m×m skew-symmetric matrix and B is an arbitrary
(m−k)×k matrix. The dimension of the horizontal space and verti-
cal space being (m−k)k and m(m−1)/2−(m−k)k, the dimension
of entire tangent space ΓQ is m(m−1)/2. The dimension of the nor-
mal space NQ is m2−m(m−1)/2=m(m+1)/2. Note that the m×k
matrix X ¼ QIm�k is the projection of the entire equivalence class

[Q] on Gm;k, where Im�k ¼ Ik�k
0

� �
. Writing Q ¼ X X⊥½ �, where X⊥ is

the orthogonal complement of X, the horizontal space at X is the
set of vectors of the form

ΔX ¼ X X⊥½ � 0 −B⊤

B 0

� �
Im�k ¼ X⊥B: ð12Þ

Since the horizontal space is equivalent to the tangent space of the
quotient, the tangent space at X consists of m×k matrices of the
form ΔX which satisfyX⊤ΔX ¼ 0. From (9), the corresponding geode-
sic for the Grassmann manifold is given by

X tð Þ ¼ Q 0ð ÞeAtIm�k: ð13Þ

Similar to [5], it can be proved that given the initial conditions,
X 0ð Þ ¼ X; Ẋ 0ð Þ ¼ X⊥B ¼ Λ, the geodesic Eq. (13) can be rewritten as

X tð Þ ¼ XV U½ � cosΣt
sinΣt

� �
V⊤ ð14Þ

where UΣV⊤ is the compact SVD of Λ (only the first k columns of U
are computed) and the operators sin and cos act element-by-
element along the diagonal of Σ.

Given the tangent space ΔX at a point X, the normal space at X
consists of the set of matrices NX that satisfy trace Δ⊤

XNX
� � ¼ 0. Similar

to (4), the projection of an arbitrary m×k matrix Z on NX is given by

ZNX
¼ X X⊤Zþ Z⊤X

� �
=2: ð15Þ

A tangent vector Δ∈ΔX at X ¼ X 0ð Þ can be parallel-translated to an-
other point Y∈Gm;k by using the technique illustrated in Fig. 2b, i.e.,
by infinitesimally removing the normal component of the translated
vector, Δ⊥ along the path between X and Y on the manifold. By differ-
entiating (15), substituting Z ¼ Δ and using X⊤Δþ Δ⊤X ¼ 0, we get

Δ⊥ ¼ _Δτ ¼ −X Ẋ⊤Δþ Δ⊤ Ẋ
� �

=2: ð16Þ

The negative sign in the above equation appears due to the inverted
direction of Δ⊥ in Fig. 2. Similar to (12), let the solution of (16) be
of the form

Δτ tð Þ ¼ Q tð ÞCIm�k ¼ X⊥ tð ÞD ð17Þ

where C is another skew-symmetric matrix of the form

C ¼ 0 −D⊤

D 0

� �
ð18Þ

and D is an arbitrary (m−k)×kmatrix. The parallel translation of the
tangent vector (17) along the geodesic X tð Þ ¼ Q 0ð ÞeAtIm�k is given by

Δτ tð Þ ¼ Q 0ð ÞeAtCIm�k: ð19Þ
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Similar to [5], the parallel translation of Δ along the geodesic in direc-
tion Ẋ 0ð Þ ¼ X⊥ 0ð ÞB ¼ Λ can be rewritten as

Δτ tð Þ ¼ XV U½ � −sinΣt
cosΣt

� �
U⊤ þ I−UU⊤

h i� �
Δ ð20Þ

where UΣV⊤ is the compact SVD of Λ. It is easy to observe that
Δτ(0)=Δ.

For Grassmann manifold, tangent vectors in the horizontal space
and geodesics on the manifold are closely related. For a tangent vec-
tor Δ at X, there is a unique geodesic curve α : 0;1½ �→Gm;k, starting
at X with initial velocity α′(0)=Δ. The exponential map, expX, maps
Δ to the point on the manifold reached by this geodesic

expX Δð Þ ¼ α 1ð Þ ¼ X 1ð Þ: ð21Þ

where X 1ð Þ is computed using (14). Consequently, the origin of the
tangent space is mapped to the point itself, expX 0ð Þ ¼ X 0ð Þ. For each
point X∈Gm;k, there exists a neighborhood ~U of the origin in ΔX, such
that expX is a mapping from ~U onto a neighborhood U of X, where
U is called the normal neighborhood. Over the neighborhood U , we
can define the inverse of the exponential and this mapping from U
to ~U is known as the logarithm map, logX=expX−1. Given two points
X;Y∈ Gm;k, the logarithm map finds a constant, m×m skew-
symmetric matrix A (and consequently the tangent direction Λ),
such that the geodesic alongΛ and starting atX, reaches Y in unit time.

Let X⊤Y ¼ VCW⊤ and X⊤
⊥Y ¼ U1SW⊤ be the generalized SVD such

that C⊤C þ S⊤S ¼ Ik�k. Similar to [9], the Cosine-Sine (CS) decomposi-
tion of Q⊤Y can be written as

Q⊤Y ¼ X⊤Y
X⊤
⊥Y

� �
¼ V 0

0 U1

� � C
S

� �
W⊤ ð22Þ

Left-multiplying X⊤
⊥Y by X⊥, we obtain

X⊥X
⊤
⊥Y ¼ X⊥U1SW⊤ ¼ U S

0

� �
W⊤ ¼ US1W

⊤ ð23Þ

where U is an m×m orthogonal matrix with same first k columns as
X⊥U1. Left multiplying X⊤Y by X and adding to (23) results

XX⊤Y þ X⊥X
⊤
⊥Y ¼ Y ¼ XVCW⊤ þ US1W

⊤ ð24Þ

which is of the same form as (14), the only difference being the post-
multiplication with W⊤ above instead of V⊤ in (14). However, since
bothW⊤ and V⊤ are k×k orthogonal matrices, multiplication with ei-
ther of them does not move the point on Gm;k [5]. The logarithm map
can then be computed as

logX Yð Þ ¼ Λ ¼ UΣV⊤ ¼ U sin−1S1

h i
V⊤ ¼ U cos−1C1

h i
V⊤ ð25Þ

where C1 ¼ C 0
0 I m−kð Þ� m−kð Þ

� �
and sin−1 and cos−1 act element-by-

element along the diagonal of S1 and C1 respectively.
The GrassmannmanifoldGm;k can be represented as a submanifold

of the Euclidean space by smoothly embedding it in an (mk)-dimen-
sional Euclidean space. The tangent space ΔX at a point X∈ Gm;k has
k2 constraints imposed on it due to the condition X⊤ΔX ¼ 0. There-
fore, the tangent space ΔX has dimension d=(m−k)k. Given two
tangent vectors Δ,Λ∈ΔX at X∈Gm;k, the Grassmann metric is defined
as gX(Δ,Λ)= trace(Δ⊤Λ). Since both Δ and Λ are m×k matrices, the
trace of their matrix inner product gives the scalar product of the
two tangent vectors in Rd.

Let f : Gm;k→R be a real-valued, scalar function defined on Gm;k.
We denote by ∂fX, the m×k matrix of partial differentials (or the
Jacobian w.r.t. X) of f such that ∂fX i; jð Þ ¼ ∂f =∂X i; jð Þ;1≤i≤m;1≤j≤k.
As discussed in Section 2, the jth column vector in ∂fX gives the partial
differential of fw.r.t. the jth basis vector of X. Since each entry of ∂fX is
computed independently, in general, ∂fX does not lie in ΔX. The gradi-
ent of f at X is the tangent vector∇fX obtained by subtracting from∂fX
its component in subspace spanned by the columns of X yielding

∇fX ¼ ∂fX−XX⊤∂fX: ð26Þ

It can be verified that X⊤ ∇fXð Þ ¼ 0 and trace ∇f⊤XΔ
� � ¼ gX ∇fX;Δð Þ ¼

trace ∂f⊤XΔ
� �

.

4. Generalized projection based M-Estimator

The generalized projection basedM-estimator (gpbM), introduced
recently in [22], is a robust subspace estimation algorithm. Both the
number of inlier structures and the scale of inlier noise are estimated
automatically without any user intervention. The superior perfor-
mance of the algorithm over other robust estimation methods on
challenging synthetic and real world datasets was demonstrated. In
[34], the conjugate gradient method was used on Grassmann mani-
folds as the post-processing step for refining the estimate of the pa-
rameter matrix obtained from projection based M-estimator (pbM).
However, the optimization on Grassmann manifolds was performed
using the scale of the inlier noise that was dependent on the choice
of a particular hypothesis.

As opposed to [34], in our case, the employed scale does not de-
pend on a particular hypothesis. In addition, the gpbM can handle
heteroscedastic data for single or multiple constraints in a unified
framework. Following, we briefly present the gpbM algorithm. For
more details, please refer to [22].

Given n1 measurements of inlier variables yi ∈Rp, let xi ∈Rm; i ¼
1;…;n1 represent the corresponding carrier vectors that are usual-
ly monomials in a subset of the variables. For example, in the case
of fitting an ellipse to measured data yi ¼ y1 y2½ �⊤∈R2, the one-
dimensional constraint can be written as

θ1y1 þ θ2y2 þ θ3y
2
1 þ θ4y1y2 þ θ5y

2
2−α ¼ 0 ð27Þ

where Θ=[θ1 θ2 θ3 θ4 θ5]⊤ is the parameter vector and α is the sca-
lar intercept. The corresponding carrier vector is given by

x ¼ y1 y2 y21 y1y2 y22
h i⊤∈R5. In general, Θ can be an m×k, (kbm)

orthonormal matrix representing the k constraints satisfied by
the inlier points in Rm. Geometrically, Θ is the basis of the k-
dimensional null space of the data. Correspondingly, α is the k-
dimensional vector of intercepts.

Given n(>n1) points xi, i=1,…,n, the problem of robust linear
subspace estimation is to estimate the parameter matrix Θ∈Rm�k

and the intercept α ∈Rk from the system of equations

Θ⊤xio−α ¼ 0k ð28Þ

where xio, i=1,…,n1, are the unknown true values of the inlier carrier
points. The multiplicative ambiguity in the estimation of Θ is resolved
by requiring Θ⊤Θ ¼ Ik�k. The points xi, i=n1+1,…,n are outliers and
no assumptions are made about their distribution.

The nonlinear relationship between the variables and the carriers
makes the estimation problem heteroscedastic, i.e., each carrier vec-
tor has a different covariance matrix, and in general can even have
different mean. Given p×p covariance matrices Cyi of the variables
yi; i ¼ 1;…;n, the first order approximation of the m×m covariance
matrices of xi are computed using error propagation [21] as

Cxi ¼ J⊤xi jyi Cyi Jxi jyi ; i ¼ 1;…;n ð29Þ

where Jxi yij is the Jacobian of the carrier vector x with respect to the
vector of variables y and evaluated at yi.
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To estimate a k-dimensional linear subspace inRm, the gbpM algo-
rithm uses elemental subset-based hypotheses generation scheme.
Each hypothesis is represented by the pair [Θ, α]. Similar to RANSAC,
gpbM estimates Θ purely from an elemental subset. However, unlike
RANSAC, gpbM refines the estimate of α by using mean shift in the
projected space. Similar to [22], the heteroscedastic objective func-
tion for a particular hypothesis [Θ, α] is defined as

Θ̂; α̂
h i

¼ argmax
Θ;α

1
n

Xn
i¼1

K Θ⊤xi−α
� �⊤B−1

i Θ⊤xi−α
� �� �1

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
detBi

p ð30Þ

where the kernel function K(u) is related to the M-estimator loss
function ρ(u) by K(u)=1−ρ(u). The loss function ρ(u) is a redes-
cending M-estimator. It is non-negative, symmetric and non-
decreasing with |u|. It has a unique minimum of ρ(0)=0 and a max-
imum of one for |u|>1.

The k×k covariance matrix of each projection zi ¼ Θ⊤xi is given by
Hi ¼ Θ⊤CxiΘ. Note that eachm×kmatrix Θ results in a different set of
k×k covariance matrices,Hi; i ¼ 1;…;n. The k×k bandwidth matrices
Bi are given by Bi ¼ S⊤HiS where S is the k×k diagonal scale matrix,
with the diagonal entries corresponding to the value of scale in each
dimension of the null space. Each inlier structure is estimated by
using a three-step procedure:

• scale estimation,
• mean shift based robust model estimation,
• inlier/outlier dichotomy.

Multiple inlier structures are estimated iteratively by removing the
points associated with previously detected structures from the data.
The algorithm stops once no more significant inlier structures are
detected.

4.1. Heteroscedastic scale estimation

To estimate the approximate fraction of data points belonging to
an inlier structure, we generate M elemental subset-based model hy-
potheses. We vary the value of fraction between (0, 1] in Q steps, such
that for q=1,…,Q, the fraction is ηq=q/Q=nq/n. In all our experi-
ments, the value of Q was set to 40. The scale of the inlier noise is
estimated by taking into account the heteroscedasticity of the carrier
vector. Given a hypothesis [Θ, α], let

volq Θ;αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnq

l¼1

zl−αð Þ⊤H−1
l zl−αð Þ

vuut ð31Þ

be the volume around the intercept α containing nq points, where
zl; l ¼ 1;…;nq are the Mahalanobis distance based nq nearest
neighbors of α in the null space. For each q, the density for the
fraction ηq is computed using the volume volq(Θ,α) as ψq(Θ,α)=
nq/(volq(Θ,α)+ �), where a small constant � is added to suppress
extremely high values of densities at lower fractions.

The densities for all M hypotheses and all Q fractions are then
stacked into an M×Q matrix ψ. For every q, let the number of
rows of ψ that have the maximum density in the qth column be Jq.
The corresponding set of density values are ψq

max with ~ψq
max ⊂ψq

max
containing the ηqJq highest densities. For example, for ηq=0.1,
only the highest 0.1 J0.1 densities are taken into account. The sum
of highest density values for every q over the subset ~ψq

max is then
computed as

ψ̂q
sub ¼ ∑

ψ∈ ~ψq
max

ψ: ð32Þ

For every q, by summing over ~ψq
max, the estimation becomes more

robust for data containing multiple inlier structures, especially
when various inlier structures have very different number of points.
Our estimate of the inlier fraction ηq̂ is computed using

q̂ ¼ argmax
q

ψ̂q
sub: ð33Þ

The projections zi of the data points xi are then computed for the
hypothesis that gives the highest density at ηq̂. The dimensions of
the smallest rectangular region in the k-dimensional null space con-
taining nq̂ points, divided by two, gives the estimate of the scale
which forms the diagonal of S. The corresponding nq̂ points form
an initial estimate of the inliers. The algorithm for scale estimation
is summarized in the following steps.

1. Generate M model hypotheses using elemental subsets.
2. For each hypothesis [Θ, α],

2.1. Compute the projections zi ¼ Θ⊤xi; i ¼ 1;…;n.
2.2. Vary the value of unknown fraction ηq between (0, 1] in Q

uniform steps such that for q=1,…,Q, the fraction is ηq=
q/Q=nq/n.

2.3. For each q, compute the volume volq(Θ,α) around the inter-
cept α using (31).

2.4. Compute corresponding densityψq(Θ,α)=nq/(volq(Θ,α)+�).
3. For each fraction ηq and all M hypotheses,

3.1. Compute the number of peak density values over all hypoth-
eses Jq.

3.2. From the set of peak density values ψmax
q , compute the sum of

ηq Jq highest densities ψ̂
q
sub using (32).

4. Using (33), compute the index q̂. The estimate of the unknown
fraction is given by ηq̂.

5. Compute the projections of the data points xi; i ¼ 1;…;n to the hy-
pothesis that maximizes the density at ηq̂ .

6. The dimensions of the smallest k-dimensional rectangle in the null
space containing nq̂ points, divided by two, gives the estimate of
the scale.

4.2. Model estimation

We generate N elemental subset based model hypotheses. Howev-
er, the selection of elemental subsets is restricted over the initial set
of inliers returned by the scale estimation step, making the model es-
timation very efficient. For a given hypothesis, the original estimation
problem of (30) is reformulated into a problem of estimating the ker-
nel density in k dimensions. The adaptive kernel density function over
the projections zi ¼ Θ⊤xi ∈Rk; i ¼ 1;…;n is defined as

f Θ; zð Þ ¼ 1
n

Xn
i¼1

κ z−zið Þ⊤B−1
i z−zið Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
detBi

p ð34Þ

where κ(u2)=K(u) is the profile of the kernel K(u). Taking the deriv-
ative of (34) w.r.t. z,

df Θ; zð Þ
dz

¼ 2
n

Xn
i¼1

B−1
i z−zið Þ

g z−zið Þ⊤B−1
i z−zið Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
detBi

p ¼ 0 ð35Þ

where g(u2)=−d(κ(u2))/d(u2). Themean shift vector canbewritten as

δz ¼
Xn
i¼1

B−1
i g …ð Þffiffiffiffiffiffiffiffiffiffiffiffi
detBi

p
" #−1 Xn

i¼1

B−1
i zig …ð Þffiffiffiffiffiffiffiffiffiffiffiffi

detBi

p
" #

−z: ð36Þ

The mean shift procedure is initiated from z 0ð Þ ¼ α 0ð Þ (with a slight
abuse of the notation) which is the projection of the elemental subset
points on Θ. The iteration zð jþ1Þ ¼ δz jð Þ þ z jð Þ, is a gradient ascent step
converging to the closest mode, α.
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4.2.1. Conjugate gradient on the Grassmann manifold
The estimation of the intercept α is performed using mean shift

in the projected space. On the contrary, the parameter matrix Θ is
selected purely from the set of random hypotheses. This estimate
can be inaccurate, for example, if the selected elemental subset
points have significant inlier noise. Since, each Θ is an m×k orthog-
onal matrix, it can be represented as a point on the Grassmann man-
ifold, Gm;k. Optimization techniques to maximize the objective
function of (34) over Gm;k can therefore be employed. Note that
since we are only interested in the subspace associated with Θ and
not in any particular set of k basis vectors, optimization on Stiefel
manifold is not required.

The conjugate gradient algorithm is a popular non-linear optimiza-
tion method. It has fast convergence since it does not compute the
Hessian of the function. The method finds a solution by iteratively opti-
mizing the objective function in linearly independent directions called
the conjugate directions. A very good introduction to the method is
given in [29] and ([26], pp. 420–425). Like many numerical optimiza-
tion methods, function optimization along a particular direction is per-
formed using line search methods. Two such methods are given in
([28], pp. 213–217). We use Brent's method ([26], pp. 402–405) which
can find a minimum along a line after it has been bracketed.

In [5], a new approach of conjugate gradient algorithm to maxi-
mize a function f : Gm;k →R on the Grassmann manifold Gm;k was
proposed. In our case, since the optimization is performed over
both Θ and α the domain of our objective function of (34) is
Gm;k � Rk. The choice of conjugate gradient algorithm over standard
gradient descent is justified due to the unknown degree of nonli-
nearity of the objective function on Grassmann manifolds. Choosing
an appropriate value for step-size in gradient descent algorithm is
therefore very difficult. It can vary with the dimensionality of the
manifold, the choice of a particular hypothesis and the distribution
of data points. Each iteration of conjugate gradient is computation-
ally more expensive than that of gradient descent. However, since
we are only interested in locally optimum point, the algorithm usu-
ally converges in very few iterations.

Similar to [34], we extend the original algorithm of [5] over the
new product space Gm;k � Rk. However, in [34], due to the employed
Θ-dependent scale matrix SΘ, the optimization function (34) was
explicitly assumed being independent of SΘ. Since the scale matrix
SΘ was critically dependent on the hypothesis [Θ,α], this assump-
tion was quite unrealistic for computing the necessary conjugate
directions. Contrary to this, in our case, the estimated scale matrix
is independent of Θ and no such assumption is required. Also, in
[34], only homoscedastic applications were presented. Our method
can handle both homoscedastic and heteroscedastic data.

Conjugate gradientmethod originally being a functionminimization
algorithm, we seek to minimize f⋄(Θ,α)=− f(Θ,α). Since f⋄(Θ,α) is
minimized in the product space Gm;k � Rk, both Θ and α need to be
updated simultaneously in each iteration of the algorithm. The matrix
Θ is updated on the Grassmann manifold, Gm;k, while the vector α is
updated independently in Rk.

Given an estimated pair [Θ, α], with a slight abuse of the notation,
the initial gradient of the objective function f⋄(Θ,α) w.r.t. Θ onGm;k is
computed using (26) as

∇fΘ ¼ ∂fΘ −ΘΘ⊤∂fΘ ð37Þ

where ∂fΘ is the Jacobian of f⋄(Θ,α) w.r.t. Θ. The corresponding gra-
dient w.r.t. α is given by

∇fα ¼ ∂fα ð38Þ

where ∂fα is the Jacobian of f⋄(Θ,α) w.r.t. α.
The Jacobians∂fΘ and ∂fα depend on the choice of the kernel func-

tion and are computed by assuming an explicit independence among
Θ, α and the covariance matrices Hi; i ¼ 1;…;n. While computing
∂fΘ and ∂fα , the covariance matrices Hi are not differentiated w.r.t.
Θ and α. It can be shown that making this assumption is equivalent
to performing a first order approximation of the Jacobians. For
Epanechnikov kernel defined as

K uð Þ≃ 1−u2 if uj j≤ 1
0 if uj j > 1

	
ð39Þ

and for j=1,…,k, l=1,…,m, the entries of the m×k matrix ∂fΘ are

∂fΘ l; jð Þ ¼ −1
n

Xn
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
detBi

p ∂K uð Þ
∂Θ l; jð Þ

� �
¼ 2

n

Xn
i¼1

pi jð Þxi lð Þ ð40Þ

where u ¼ Θ⊤xi−α
� �⊤B−1

i Θ⊤xi−α
� �� �1

2 and pi ¼
B−1
i Θ⊤xi−αð Þffiffiffiffiffiffiffiffiffi

detBi

p . The
entries of the k-dimensional vector ∂fα are given as

∂fα jð Þ ¼ −1
n

Xn
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffi
detBi

p ∂K uð Þ
∂α jð Þ

� �
¼ −2

n

Xn
i¼1

pi jð Þ j ¼ 1;…; k: ð41Þ

Similar expressions of the Jacobians ∂fΘ and ∂fα of f⋄(Θ,α) for other
kernels can be derived.

Given the parameter pair [Θ(0),α(0)] estimated using mean shift,
let Γ 0ð Þ ¼ ∇fΘ 0ð Þ and γ 0ð Þ ¼ ∇fα 0ð Þ be the gradient directions obtained
using (37) and (38). The initial search directions are set as the nega-
tive of the gradients giving Λ(0)=−Γ(0) and λ(0)=−γ(0). At the jth

iteration of the conjugate gradient algorithm, the following steps
are executed.

1. Using line search, minimize f⋄(Θ(j)(t),α(j)) along the geodesic

Θ jð Þ tð Þ ¼ Θ jð ÞV cos Σtð ÞV⊤ þ U sin Σtð ÞV⊤ ð42Þ

where UΣV⊤ is the compact SVD of the conjugate direction Λ(j).
This is equivalent to finding tΘ, the value of the parameter t for
which the function f⋄(Θ(j)(t),α(j)) is minimum.

2. Using line search in Rk, minimize f⋄(Θ(j),α(j)(t)) along the conju-
gate direction

α jð Þ tð Þ ¼ α jð Þ þ tλ jð Þ
: ð43Þ

This is equivalent to finding tα, the value of the parameter t for
which the function f⋄(Θ(j),α(j)(t)) is minimum.

3. Set Θ(j+1)=Θ(j)(tΘ) and α(j+1)=α(j)(tα).
4. Using (20), parallel transport the tangent vectors Λ(j) and Γ(j) to

the point Θ(j+1) as

Γ jð Þ
τ ¼ Γ jð Þ− Θ jð ÞVsinΣtΘ þ U I− cosΣtΘ½ �

� �
U⊤Γ jð Þ ð44Þ

Λ jð Þ
τ ¼ Λ jð Þ− Θ jð ÞVsinΣtΘ þ U I− cosΣtΘ½ �

� �
U⊤Λ jð Þ

: ð45Þ

By substituting Λ jð Þ ¼ UΣV⊤

Λ jð Þ
τ ¼ −Θ jð ÞVsinΣtΘ þ UcosΣtΘ

� �
ΣV⊤

: ð46Þ

5. Compute the new gradient directions as

Γ jþ1ð Þ ¼ ∇fΘ jþ1ð Þ ¼ ∂fΘ jþ1ð Þ− Θ jþ1ð Þ� �
Θ jþ1ð Þ� �⊤∂fΘ jþ1ð Þ ð47Þ

γ jþ1ð Þ ¼ ∇fα jþ1ð Þ ¼ ∂fα jþ1ð Þ : ð48Þ



Fig. 3. Three intersecting lines. Sample input data for (a) σ=0, (b) σ=0.6, and
(c) σ=1.2.
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6. Compute the new conjugate search directions as

Λ jþ1ð Þ ¼ −Γ jþ1ð Þ þω jð ÞΛ jð Þ
τ ð49Þ

λ jþ1ð Þ ¼ −γ jþ1ð Þ þω jð Þ λ jð Þ ð50Þ

where

ω jð Þ ¼
trace Γ jþ1ð Þ− Γ jð Þ

τ

h i⊤
Γ jþ1ð Þ� �

þ γ jþ1ð Þ− γ jð Þh i⊤
γ jþ1ð Þ

trace Γ jð Þ� �⊤Γ jð Þ
� �

þ γ jð Þ� �⊤γ jð Þ
: ð51Þ

Note that for every j, the covariance matrices H jð Þ
i ¼ Θ jð Þ� �⊤

Cxi
Θ jð Þ

;

i ¼ 1;…;n should ideally be recomputed and inverted to estimate
f⋄(Θ,α). However, due to high computational complexity, the covari-
ance matrices are kept constant H jð Þ

i ¼ H 0ð Þ
i ; j ¼ 1;2;…; i ¼ 1;…;n. In

practice, inverting each Hi at every iteration of the algorithm does not
change the final estimate significantly. The estimated intercept α̂ corre-
sponds to the location of the highest mode over all N hypotheses, while
the corresponding matrix Θ̂ is the estimate of Θ.

4.2.2. Stopping criterion
To decide if all the inliers structures present in the data have been

discovered, we compute the strength of the current inlier structure as

ξ ¼ f Θ̂; α̂
� �

= Sk k2 where S is the corresponding estimated scalematrix.

The algorithm stops if the strength drops by a factor of 20 compared to
themaximum of the strengths of previously computed inlier structures,
indicating that the remaining points comprise only gross outliers.

4.3. Inlier/outlier dichotomy

Given the estimated model Θ̂; α̂
h i

, we first normalize the devia-

tion of each point from the mode by its point-dependent covariance.
For zi ¼ Θ̂⊤xi; i ¼ 1;…;n, the heteroscedastic projections around the
mode are computed as

z̃i ¼ α̂ þ zi− α̂ð Þ
jjzi− α̂ jj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zi− α̂ð Þ⊤H−1

i zi− α̂ð Þ
q

: ð52Þ

The inlier/outlier dichotomy is then performed by starting homo-
scedastic mean shift iterations from each point z̃i with H̃i ¼
Ik�k; i ¼ 1;…;n. The bandwidth matrices B̃i ¼ S⊤Ik�kS ¼ S⊤S also be-
come constant for all points. The points for which the mean shift pro-
cedure converges to α̂ (with small tolerance) are considered inliers.

5. Experimental results

We present three groups of experiments. First we show the per-
formance of our algorithm on a synthetic multiple line fitting exam-
ple. Then we present two real-world applications: fundamental
matrix estimation and affine motion factorization. While the prob-
lems of line fitting and affine factorization are homoscedastic due to
linear relationship between the carriers and variables, the problem
of fundamental matrix estimation is heteroscedastic. Other hetero-
scedastic applications can be found in the program http://coewww.
rutgers.edu/riul/research/code/GPBM/index.html.

In [22], it was shown that the gpbM algorithm performs better
than other robust estimation methods. In this paper, we emphasize
on the importance of optimization on Grassmann manifolds. It should
also be noted that comparing gpbM to RANSAC based methods is also
quite tricky, especially for multi-dimensional problems, since RAN-
SAC requires an accurate estimate of the scale of inlier noise in all di-
mensions of the residual space. Also, similar to [34], RANSAC like
methods do not estimate the model heteroscedastically [27]. To reca-
pitulate, M and N are the number of elemental subset-based random
hypotheses used in the scale estimation and model estimation steps.
Also, Θ and α represent the subspace parameter matrix (a point on
a Grassmann manifold) and the intercept, respectively.

5.1. Multiple line fitting

In this example, the kernel density is estimated using the
Epanechnikov kernel. We generated data points along three different
lines in 2D having 100 (blue), 150 (red) and 200 (green) points
(Fig. 3). For all three lines, the x and y coordinates were independently
corrupted with zero-mean Gaussian noise with standard deviations of
0.2σ(blue), 0.15σ(red) and 0.1σ(green). A total of seven different

http://coewww.rutgers.edu/riul/research/code/GPBM/index.html
http://coewww.rutgers.edu/riul/research/code/GPBM/index.html
image of Fig.�3


Table 1
Average error in the estimation of Θ and α over 100 runs relative to the ground truth
values. CG stands for conjugate gradient on Grassmann manifolds.

σ Average error in Θ (degrees) Average error in α (units)

gpbM gpbM+CG gpbM gpbM+CG

0.0 0.2515 0.2494 0.0627 0.0159
0.2 0.3563 0.3239 0.0771 0.0208
0.4 0.4919 0.4337 0.1375 0.0266
0.6 0.6417 0.6395 0.1694 0.0429
0.8 1.0327 0.8761 0.2330 0.1240
1.0 1.6126 1.5859 0.2924 0.2726
1.2 2.3383 2.1741 0.3332 0.2749
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values of the parameter σ were tried by varying σ uniformly between
[0, 1.2] in steps of 0.2. In addition, 500 random outliers were also
added between [–1,–1] and [3, 3]. The values of M=500 and N=200
were used. For each σ, we compare the performance of the 100 runs
of gpbM algorithm with and without performing the optimization on
Grassmann manifolds. Table 1 summarizes the results.

It is clear from Table 1 that the performance of the gpbM algo-
rithm improves if optimization on Grassmann manifolds is per-
formed. The amount of improvement in general depends on the
amount of inlier noise. For Θ, the average error increases quasi-
linearly with the increasing noise and the improvement is indepen-
dent of the slope of the lines. The corresponding change in α is not
linear and is more sensitive to the estimated Θ.

5.2. Fundamental matrix estimation

In fundamental matrix estimation Θ∈R8. Each data point is a vec-
tor of variables y ¼ x1 y1 x2 y2½ �⊤ and lies inR4. Here, (xi,yi), i=1,2 are
the coordinates of the corresponding points in the two images. Using
the epipolar constraint with the homogeneous image coordinates
(without the points at infinity)

x2 y2 1½ �F3�3

x1
y1
1

2
4

3
5 ¼ 0 ð53Þ

the carrier vector is written as x= x1 y1 x2 y2 x1x2 x1y2 y1x2 y1y2½ �⊤
which lies in R8. Assuming the variables y have covariance σ 2I4�4, the
first order approximation of the covariance matrix of x is computed
from the Jacobian using error propagation [21]

Jxjy ¼
1 0 0 0 x2 y2 0 0
0 1 0 0 0 0 x2 y2
0 0 1 0 x1 0 y1 0
0 0 0 1 0 x1 0 y1

2
664

3
775 ¼ I4�4 J yð Þ½ � ð54Þ
Fig. 4. Two images from the Oxford Corridor sequence. The true inliers
Cx ¼ σ2J⊤xjy I4�4 Jxjy ¼ σ 2 I4�4 J yð Þ
J yð Þ⊤ J yð Þ⊤J yð Þ

� �
: ð55Þ

We test our algorithm on two pairs of images. In both cases, the Epa-
nechnikov kernel is employed.

5.2.1. Oxford corridor images
In this experiment, the first and tenth frames from the Oxford

corridor sequence obtained from http://www.robots.ox.ac.uk/~vgg/
data/data-mview.html were used (Fig. 4). Notice the large disparity
between the two images. Using the SIFT algorithm [18], 127 point
matches were obtained, out of which 57 were true inliers. We com-
pared the performance of the gpbM algorithm over 100 runs with
and without performing the optimization on Grassmann manifolds.
The values of M=400 and N=200 were used. On average, the
gpbM algorithm misclassified 6.14 (out of 127) points, while only
4.7 points were classified wrongly after using the conjugate gradient
algorithm. The average absolute residual error for the 57 true inlier
points using gpbM algorithm was 1.79 pixels, while it was 1.74 pixels
after using the conjugate gradient algorithm. The corresponding me-
dian absolute residual error was 1.76 pixels without and 1.71 pixels
with optimization on the Grassmann manifold.

5.2.2. Moulin Rouge images
In this experiment, two images of the Moulin Rouge building from

the Paris dataset obtained from http://www.robots.ox.ac.uk/~vgg/
data/parisbuildings/index.html were used (Fig. 5). Again, the dispari-
ty between the two images is large. Using the SIFT algorithm [18], 182
point matches were obtained, out of which 114 were true inliers. We
compared the performance of the gpbM algorithm over 100 runs with
and without performing the optimization on Grassmann manifolds.
Again, the values of M=400 and N=200 were used. On average,
the gpbM algorithm misclassified 30.91 (out of 182) points, while
only 23.22 points were classified wrongly after using the conjugate
gradient algorithm. The relatively large number of misclassifications
is due to scalar nature of the epipolar constraint. The average absolute
residual error for the 114 true inlier points using gpbM algorithmwas
0.6520 pixels while it was 0.6320 pixels after using the conjugate gra-
dient algorithm. The corresponding median absolute residual error
was 0.6794 without and 0.6707 pixels with optimization on the
Grassmann manifold.

5.3. Affine motion factorization

If n1 rigidly moving points, all lying on an affine motion, are
tracked over F images, then the 2F image coordinates can be used to
define feature vectors in R2F . Factorization is based on the fact that,
are marked with blue dots and the outliers with green ‘+’ signs.

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/index.html
http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/index.html
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Fig. 5. Two images of the Moulin Rouge building from Paris dataset. The true inliers are marked with blue dots and the outliers with green ‘+’ signs.
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these vectors lie only in a four-dimensional subspace of R2F . If the
data is centered then the dimension of the subspace is only three.
For more details, see ([11], pp. 436–439). In [22], the gpbM algorithm
was used for projective motion estimation. Since that requires a lot of
theoretical introduction, in this paper, we present experiments for af-
fine motion factorization since our aim is just to demonstrate that op-
timization on Grassmannmanifolds improves the performance of gpbM.

We present two different experiments. In both experiments, for
estimating the kernel density, we used Tukey's biweight kernel
which is given as

K uð Þ≃ 1−u2
� �3

if uj j≤1
0 if uj j >1

:

(
ð56Þ
Fig. 6. First and last frames of the parking lot sequence with four motion

Table 2
Average percentage of misclassified points. CG stands for conjugate gradient on
Grassmann manifolds. The number in the parenthesis in the first column shows the
true number of motions for each sequence. Ext-MS and Int-MS stand for extrinsic
and intrinsic non-linear mean shift methods. The results of pbM+CG, gpbM and
gpbM+CG were averaged over 50 runs while those of Ext-MS and Int-MS were aver-
aged over 20 runs.

Sequence Ext-MS [35] Int-MS [2] pbM+CG [34] gpbM gpbM+CG

arm(2) 30.65% 27.73% 61.03% 7.99% 7.79%
articulated(3) 30.17% 24.50% 40.26% 6.90% 6.70%
cars1(2) 20.07% 23.00% 26.38% 6.51% 5.96%
cars2(2) 11.90% 9.08% 12.65% 3.58% 3.55%
cars4(2) 21.60% 11.94% 31.56% 7.55% 7.31%
cars5(3) 19.94% 19.41% 21.48% 8.93% 8.05%
cars6(2) 5.68% 7.09% 5.82% 1.86% 1.85%
cars8(2) 42.71% 35.29% 27.86% 7.31% 6.97%
truck1(2) 28.56% 13.24% 50.47% 6.27% 6.09%
2RT3RC(3) 12.52% 7.40% 26.50% 10.92% 10.06%

Overall 17.91% 14.64% 23.75% 6.58% 6.18%
For each sequence, F=5 frames were used by picking every sixth or
seventh frame from the sequence. Similar to [2], we first test our algo-
rithm on ten video sequences containing multiple motions from
Hopkins155 dataset. This dataset is available online at http://www.
vision.jhu.edu/data/hopkins155 and contains no gross outliers. For
this experiment, the values of M=1000 and N=200 were used.
Table 2 compares the performance of the gpbM algorithm with and
without using conjugate gradient on Grassmann manifolds over 50
runs. For comparison, we present the results of the pbM algorithm
[34] and of using the intrinsic [2] and extrinsic [35] mean shift
methods for subspace clustering over Grassmann manifolds. The re-
sults of [34] were average over 50 runs while those from [2, 35]
where averaged over 20 runs. None of the methods assume the
knowledge of the true number of motions.

In the second experiment, we compare the performance of two algo-
rithms on the parking lot sequence of [22]. In [22] results from only a
single run of the experiment were presented. Here we present the re-
sults of more detailed experiments performed over this sequence both
using the original gbpM [22] and its proposed extension. This sequence
contains four motions and gross outliers. There were a total of 474
points – 213 (background), 78 (black car), 75 (silver car), 46 (maroon
car) and 62 gross outliers. Fig. 6 shows the first and last frames of the se-
quence with points lying on various motions marked with different
colors. For this experiment, the values of M=2000 and N=400 were
used. Over 50 runs, the gpbM algorithm misclassified 11.94% of the
total points on average, which was reduced to 10.27% when optimiza-
tion on Grassmann manifolds was performed. Table 3 shows the corre-
sponding confusion matrices for the two cases averaged over 50 runs.

6. Conclusions

The generalized projection based M-estimator (gpbM) can robust-
ly estimate multiple, noisy inlier structures in the presence of a lot of
outliers. The scale of the inlier noise and the number of inlier
s and gross outliers. White points marked ‘+’ show gross outliers.

http://www.vision.jhu.edu/data/hopkins155
http://www.vision.jhu.edu/data/hopkins155
image of Fig.�6
image of Fig.�5


Table 3
Confusion matrices averaged over 50 runs — without (top) and with (bottom) using
conjugate gradient algorithm on Grassmann manifolds. M1, M2, M3 and M4 corre-
spond to points lying on black car, silver car, maroon car and background respectively.
The detection results are shown along rows.

M1 M2 M3 M4 Outliers

M1 66.1 7.2 3.6 1.0 1.1
M2 0.0 67.1 0.0 0.6 7.3
M3 0.0 0.0 44.1 0.0 1.9
M4 0.6 0.0 5.3 185.7 20.4
Outliers 2.3 0.0 3.3 2.0 54.4

M1 69.5 7.4 0.0 1.0 1.1
M2 0.0 70.9 0.0 0.1 4.0
M3 0.0 0.0 42.6 0.0 3.4
M4 0.7 0.0 7.4 183.0 20.9
Outliers 0.0 0.0 0.7 2.0 59.3
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structures are also estimated automatically without any user inter-
vention. By exploiting the geometric properties of Riemannian mani-
folds, the original robust subspace estimation problem of gpbM is
extended to a problem of maximizing the kernel density function
on Grassmann manifolds. We demonstrated that by using this exten-
sion the performance of the original gpbM algorithm can be im-
proved. As opposed to [34], where explicit independence was
assumed between the objective function and the scale of inlier
noise, in our case this assumption is automatically satisfied due to
the way in which the scale is estimated. Also, contrary to [34], our al-
gorithm is able to estimate the model heteroscedastically.
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