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Abstract. Recently conducted clinical studies prove the utility of Coronary Com-
puted Tomography Angiography (CCTA) as a viable alternative to invasive an-
giography for the detection of Coronary Artery Disease (CAD). This has lead
to the development of several algorithms for automatic detection and grading of
coronary stenoses. However, most of these methods focus on detecting calcified
plaques only. A few methods that can also detect and grade non-calcified plaques
require substantial user involvement. In this paper, we propose a fast and fully
automatic system that is capable of detecting, grading and classifying coronary
stenoses in CCTA caused by all types of plaques. We propose a four-step ap-
proach including a learning-based centerline verification step and a lumen cross-
section estimation step using random regression forests. We show state-of-the-art
performance of our method in experiments conducted on a set of 229 CCTA vol-
umes. With an average processing time of 1.8 seconds per case after centerline
extraction, our method is significantly faster than competing approaches.

1 Introduction

According to the American Heart Association, Coronary Artery Disease (CAD) is a
leading cause of death in the western world [10]. Every year, about six million patients
in the United States emergency departments are examined for acute chest pain [5].
The current diagnostic standard is the conventional invasive angiography that involves
a very high amount of risk and cost. New generations of cardiac Computed Tomogra-
phy (CT) scanners enable the acquisition of Coronary CT Angiography (CCTA) images
with unprecedented quality [2]. In the review article [1], Achenbach has summarized
the results of many clinical studies, comparing contrast-enhanced CCTA with conven-
tional invasive angiography. These results prove CCTA a viable alternative for invasive
angiography. In particular, the high negative predictive value of CCTA allows ruling out
aortic dissection, pulmonary embolism and significant stenoses in the coronary arteries
by a single CT examination — the so-called “triple rule-out” protocol [5]. However, read-
ing CCTA images requires substantial experience and only well-trained physicians are
able to interpret CCTA reliably [12]. An automated system that can rule out clinically-
relevant stenoses (grade> 50%) in the coronary arteries could be used as a second
reader in the absence of an expert physician in the emergency department.
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Detection and grading of coronary stenoses in CCTA is very challenging due to
varying image quality. In an endeavor to reduce the radiation dose during CT scans, of-
ten images with relatively low signal-to-noise ratio are acquired [2]. Motion artifacts are
frequently encountered despite the routine use of beta blockade to reduce the heart rate.
Gated or modulated acquisition protocols may result in stair-case reconstruction arti-
facts which further complicate the analysis. Finally, coronary arteries follow long and
treacherous paths, extending over only a few voxels in diameter in the distal parts. Even
experts sometimes struggle to give a correct diagnosis due to these challenges [12].

In this work, we present an algorithm for detecting, grading and classifying severe
(i.e. clinically relevant) stenoses along automatically extracted centerlines of the coro-
naries. The contribution of our work is three-fold. First, we introduce a novel centerline
verification step (Section 3.1). Second, a novel regression approach replaces the lu-
men segmentation that is needed for grade estimation (Section 3.2). Finally, in contrast
to previous work, we propose a complete end-to-end and fully automated system that
works on all types of plaques.

2 Related Work

Vessel Tracing. Manual tracing of coronary centerlines in 3D cardiac CT volumes is
a highly tedious task. Many algorithms for automatic tracing of centerlines have been
proposed, the most important of which are reviewed in [8]. Owing to the importance of
the problem, the MICCALI association also organized a competition for automatic and
semi-automatic coronary artery tracking [14]. In our work, the centerlines were traced
using the state-of-the-art method of [6]. The method uses multi-scale medialness filters
in a graph-based algorithm to extract centerlines by computing minimum-cost paths.
Lumen Segmentation. Estimating the cross-sectional area (or the radius) of the vessel
lumen along the centerline is a key feature to detecting and grading coronary stenoses.
But methods relying on exact segmentation of the lumen are slow owing to high com-
putational complexity of the segmentation algorithms. A comprehensive review of all
major lumen segmentation algorithms is provided in [8]. Given a centerline, we pro-
pose a novel, automatic regression-based method to directly estimate the vessel radius,
which is significantly faster than a segmentation-based approach.

Stenosis Detection. In the past, a variety of algorithms have been proposed for detec-
tion of coronary plaques in CCTA. However, most of this work focuses on the detection
of calcified plaques only, e.g., see [15,11]. Fewer methods have been proposed for
fully automatic detection of non-calcified plaques, which are usually harder to detect
and grade with high confidence. For example, the methods proposed in [13] and [16]
need substantial user input in order to localize and grade coronary stenoses. A learning
based method was proposed in [15] which could detect both calcified and non-calcified
plaques. However, this approach does not consider stenosis grade and thus also reports
non-severe lesions which are clinically irrelevant. To the best of our knowledge, the
only system that currently analyzes CCTA for coronary artery disease in a fully auto-
mated way by reporting location, type and severity of coronary lesions is Rcadia’s COR
Analyzer. Being a commercial product, however, not much detail is known about the
approach. Recent studies evaluating the system were published in [3] and [7].



Vessel Centerline

Tracing Verification
Step 1 Step 2
Stenosis Lumen
Detection & |«—| Estimation
Classification (by regression)
Step 4 Step 3
(@ (b)

Fig. 1. (a) Overview of the four-step approach for stenosis detection, grading and classifica-
tion. (b) Example vessel tree showing the three major coronary arteries: left anterior descending
(LAD), left circumflex (LCX) and right coronary artery (RCA).

3 Methods

Given a CCTA image volume, the proposed system can automatically detect and clas-
sify coronary stenoses using the general four-step approach sketched in Fig. 1 a. In the
first step, centerlines of the three major coronary arteries, i.e. left anterior descending
(LAD), left circumflex (LCX) and right coronary artery (RCA) (Fig. 1 b), along with
their branches, are automatically extracted using the method of [6]. The left main (LM)
coronary artery is processed as the common part of LAD and LCX. Using a learning-
based classification approach, the second step verifies the accuracy of the extracted
centerlines and removes parts of the vessel tree belonging to non-coronary regions.
This ensures that the subsequent stenosis detection is only performed along the actual
vessel, thus producing more stable results. The third step employs a learning-based
regression approach to locally estimate the cross-sectional area of the vessel lumen
(which may be narrowed by coronary plaques), along the extracted centerlines. In the
fourth step, candidate stenoses are extracted for each individual segment of the vessel
tree as max-min-max triples of a baseline-corrected and smoothed radius curve along
with a grade estimate. Each candidate stenosis is either discarded (e.g. grade < 50%)
or accepted and classified as calcified, non-calcified or mixed stenosis. This decision
is based on image features as well as features of the candidate stenosis such as length,
cross-sectional area/radius and distance to the distal end of the vessel.

3.1 Centerline Verification

To avoid the risk of missing a potentially diseased coronary vessel, any automatic cen-
terline extraction algorithm must be highly sensitive, especially in low-contrast vessel
regions, which is true for the employed algorithm [6], for example. Thus, the method
should be able to trace centerlines of the vessels occluded by non-calcified plaques, that
often exhibit the same contrast as the vessel wall. Inevitably, such algorithms are prone
to various types of errors in tracing and centerlines may get wrongly traced into other
arteries or into non-coronary regions like veins, heart chambers, etc. Figure 2 (left)



Table 1. Summary of errors in tracing coronary centerlines in the distal vessel regions. A total of
229 volumes were processed and 1472 centerlines were traced.

Error in tracing > S5mm > 10mm > 15mm
# vessels affected 259 (17.6%) | 226 (15.4%) | 210 (14.3%)
# volumes affected | 131 (57.2%) | 116 (50.66%) | 107 (46.7%)

shows Curved Planar Reformation (CPR) views of some more noticeable examples for
erroneous tracing results of the employed algorithm. Table 1 summarizes the errors in
tracings for 229 volumes with 1472 traced centerlines in the distal vessel regions.

Clearly, erroneously traced centerlines are susceptible to many false alarms while
detecting lesions. Therefore, we propose to use a learning based algorithm for auto-
matic detection of non-coronary regions along the extracted centerlines. Similar to [11],
a cylindrical sampling pattern for feature extraction, with its axis aligned to the coro-
nary centerline, is employed. We then extract altogether 171 rotation invariant features
along the entire length of the cylinder at varying radii. These features are used to train
a random forests (RF) classifier [4] (100 trees, 14 randomly selected features, stratified
sampling of 8000 examples with replacement). Given an unseen volume, the RF clas-
sifier outputs a probability that a given point on the centerline belongs to a non-vessel
region. After removing outliers using a median filter of width 11, points with scores
higher than a fixed threshold are excluded from further analysis. In our experiments
this threshold was determined as 0.7 to yield a specificity of at least 98%, so that at
most 2% of the points are erroneously discarded (see Fig. 2, right).

3.2 Lumen Estimation

Instead of segmenting the lumen and computing the lumen cross-sectional area along
the vessel centerlines we propose using a non-linear regression approach to directly
estimate the cross-sectional area from local image features.

Alternatively for estimating the cross-sectional area we trained for and estimated
the radius r of an equivalent circle with the same area. Thus, a function for the radius
r(x|p) is estimated that depends on the feature vector x and a set of parameters p that are
learned from a training set T = {(x;, 7;)}\,. The training set is constructed from semi-
manual lumen segmentations of coronary arteries by computing cross-sections and the
corresponding radii r; at altogether IV centerline points. At the same points, rotation-
invariant features x; are extracted according to [11]. A regression function is learned by
minimizing the squared loss L(p) = vazl (r(xi|p) — r;)* on the training set T' with
respect to the parameters p. For this purpose an ensemble of randomized regression
trees, i.e. a random regression forest was employed [4]. Formally, each regression tree
models the dependent variable (the lumen radius) as a piecewise constant function,
which results in the following model for the ensemble:
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where I(-) denotes the set indicator function. Thus, for each tree ¢, the feature domain is
partitioned into M* regions R}, R, ..., R}, and in each region the radius is modeled
by a constant 7, [4]. During training of each tree, the sample is successively partitioned
by thresholding one of the feature values. The optimal split (feature and threshold) is
greedily determined as the one which reduces the squared loss function most. In the
leaves (a region RY,), the radius 7, is estimated as the average radius of all remaining
examples. While it is possible to stop splitting when the variance within a node and/or
the number of examples drop below certain values, we use fully grown trees in our
experiments, i.e. they were grown until only one example remained in every leave.
For obtaining good generalization performance, it is essential that every tree slightly
differs. This is achieved by training each tree on a resampled training sample (at most
4000 examples drawn with replacement) and by randomly selecting a fraction of the
features (one third, i.e. 57 of 171) to be considered for each split.

Given the feature vector of an unseen example, each regression tree is evaluated by
following its splits from the root to a leaf with an associated radius estimate r%,. The
random forest averages the estimates of its trees (Eqn. (1)). We used 7" = 50 regression
trees in our experiments.

3.3 Stenosis Detection and Classification

Candidate stenosis regions are identified and graded using the estimated lumen radii.
The vessel tree is decomposed into disjoint segments so that every segment either starts
at an ostium or a vessel bifurcation. Each segment is then analyzed separately.

First, a baseline curve is computed using binomial filtering (Fig. 3, green). It is sub-
tracted from the original radius curve to obtain a de-trended residual curve which is
again slightly smoothed (Fig. 3, red). The positions of the local optima are extracted;
clearly, local minima and maxima alternate. Every triple (max-min-max) is then re-
garded as a stenosis candidate for which a grade is estimated by
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where 7,4, is the minimum radius within, 7.y, the radius at the left (towards the
ostium) and 7,4, the radius at the right end of the stenosis candidate (Fig. 3, ma-
genta). At the ostia and bifurcations, the grade is estimated with the alternative formula
g=1—(Tmin/ rm-ght)Q to account for the non-pathologic radius broadening there.

Then it is decided for each stenosis candidate whether it should be discarded or
not. In addition to low grade candidates (< 50%), also short (< 0.9 mm) and narrow
(rrignt < 1.0mm) ones are discarded. Candidates close to the distal end of the vessel
(< 7.5mm) are also discarded since the data quality usually gets too low there.

Finally, using probability scores obtained from two classifiers for the detection of
calcified and non-calcified plaques similar to [11] (Fig. 3, cyan/orange), each accepted
stenosis candidate is classified into one of three types, “calcified”, “non-calcified” and
“mixed”* (calcified as well as non-calcified parts).



Specificity
o
@

i H i i i H i
02 03 04 05 o7 06 08 1

06
Sensithity

Fig. 2. Left: CPR views of wrong centerline tracings obtained using the algorithm of [6]. The first
two are partially incorrect and traced into a heart chamber and a vein respectively. The third is
entirely wrong and traced into a heart chamber. Points detected outside the coronary are marked
with orange ‘+’ sign. Right: ROC curves (sensitivity vs. specificity) obtained with 10-fold cross
validation using 229 volumes on per vessel point basis.

4 Experimental Results

Training of the system was performed using a total of 229 CCTA volumes that were
acquired on several cardiac CT scanners with varying protocols and reconstruction al-
gorithms. The slice distance for these scans varied between 0.3-0.5mm with x-y pixel
spacing being between 0.3-0.4mm. Each scan typically consisted of 200-300 slices. For
training and evaluation, the data was manually annotated. For automatic vessel trac-
ing, errors were annotated. Coronary plaques were labeled with their type (calcified,
non-calcified, mixed) as well as a rough grade (mild, moderate, severe, occluded).

Figure 2 shows cross-validation results for the centerline verification step. Invalid
centerline points are reliably recognized for several types of tracing errors (Fig. 2, Left).
The receiver-operating-characteristic (ROC) curve (Fig. 2, Right) shows that high speci-
ficities as well as sensitivities are attainable. The inferior performance on the RCA re-
sults from the difficulty to distinguish the (invalid) coronary sinus vein from a (valid)
artery. For the centerline verification step a high specificity (> 0.98) is desirable in
order to ensure that no valid parts of the vessel tree are discarded.

Numeric results for the overall system are provided in Table 2. The “by-lesion”
sensitivity quantifies how many of the severe non-calcified stenoses are detected while
the “by-vessel” sensitivity quantifies how many of the vessels with severe non-calcified
stenoses are identified. Only the “by-vessel” measure allows to compute the specificity
and negative predictive value (NPV). For an application as a second reader, sensitivity
and NPV are of utmost importance and preferred over specificity, i.e. false positives are
acceptable while false negatives are not. With an overall sensitivity of 97.62%, a NPV
of 99.77% and a specificity of 67.14% the proposed system performs competitive with
Rcadia’s system [3, 7]. But, while the Rcadia system requires about 10min of processing
time per case, on average, our system only needs 1.8s (up to 3.9s) after centerline
tracking which completes within a minute.



Table 2. Detection performance on non-calcified plaques (10-fold cross-validation). The system
is tuned towards high sensitivity and NPV to cope with its application as a second reader.

LAD LCX RCA Overall

by-lesion sensitivity 100.0% | 90.0% | 95.24% || 94.55%
false positives per volume 0.81 1.03 1.13 2.97

sensitivity 100.00% | 93.75% | 100.00% || 97.62%

by-vessel | specificity 7523% | 63.16% | 62.86% | 67.14%

negative predictive value 100.00% | 99.17% | 100.00% || 99.77%

This advantage can mainly be attributed to excellent performance of the lumen re-
gression step, which provides an accurate estimate of the lumen cross-sectional area
much faster than a segmentation method. To this end, we also compared our results to a
segmentation approach, a learning-based version of the graph cuts approach presented
in [9]. While comparable performance was achieved, the overall processing time of 21 s
(up to 42 s) after centerline extraction was clearly higher with segmentation approach.

A test of the lumen regression (without retraining) on the eight (training) data sets
provided by [14] yielded a bias of 0.18 mm (median 0.19 mm) and a standard deviation
of 0.27 mm (median absolute deviation 0.14 mm). Apart from the bias, which can be at-
tributed to systematic annotation differences, these results agree with the 10-fold cross-
validation results on our data which yielded a bias of 0.01 mm (median 0.002 mm) and
a standard deviation of 0.28 mm (median absolute deviation 0.08 mm).

Fig. 3 shows two examples of patients that have neither been used in training nor the
development of the proposed system. In both cases, the system can locate and classify
all severe stenotic lesions correctly. Note that the right example shows a second, more
distal stenosis for which a grade of about 40% is estimated (cf. graph below the image).
It is thus deemed non-severe and therefore not reported.

Fig. 3. Two examples of patients from unseen data. The presented system detects severe stenoses
caused by both calcified plaques (left) and non-calcified plaques (right). The graph at the bottom
shows the lumen estimate (blue), baseline (green), residual (red), grade estimate (magenta), calci-
fication score (cyan) and the score for non-calcified (soft) plaques (orange) along the vessel center
line. While the system is highly sensitive it only exhibits a moderate number of false alarms. For
the two examples shown above, other severe stenoses were neither present nor detected.
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Conclusion

An automatic method for the detection and classification of stenotic lesions in coronary
computed tomography angiography is proposed. The centerline verification step helps
the system cope with tracing errors and vessels with low data quality. Lumen cross-
sectional area is accurately estimated using a regression approach which is considerably
faster than a full segmentation method. A competitive performance is achieved with
significantly reduced computational burden as compared to state-of-the-art methods.
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