

Bell-Shaped Curves and Other Shapes

Thought Question 1:

The heights of adult women in the United States follow, at least approximately, a bell-shaped curve. What do you think this means?

Thought Question 2:

What does it mean to say that a man's weight is in the **30th percentile** for all adult males?

Thought Question 3:

A "standardized score" is simply the number of standard deviations an individual falls above or below the mean for the whole group.

Male heights have a mean of 70 inches and a standard deviation of 3 inches. Female heights have a mean of 65 inches and a standard deviation of 2 $\frac{1}{2}$ inches. Thus, a man who is 73 inches tall has a standardized score of 1.

What is the standardized score corresponding to your own height?

Thought Question 4:

Data sets consisting of physical measurements (heights, weights, lengths of bones, and so on) for adults of the same species and sex tend to follow a similar pattern.

The pattern is that most individuals are clumped around the average, with numbers decreasing the farther values are from the average in either direction.

Describe **what shape** a histogram of such measurements would have.

8.1 Populations, Frequency Curves, and Proportions

Move from pictures and shapes of a set of data to ...

Pictures and shapes for populations of measurements.

Frequency Curves Smoothed-out histogram by connecting tops of rectangles with smooth curve.

Frequency curve for population of British male heights.

The measurements follow a **normal** distribution (or a bell-shaped or Gaussian curve).

Note: Height of curve set so area under entire curve is 1.

Frequency Curves

Not all frequency curves are bell-shaped!

Frequency curve for population of dollar amounts of car insurance damage claims.

The measurements follow a **right skewed** distribution. Majority of claims were below \$5,000, but there were occasionally a few extremely high claims.

Proportions

Recall: Total area under frequency curve = 1 for 100%

Key: *Proportion* of population of measurements falling in a certain range = *area* under curve over that range.

Mean British Height is 68.25 inches. Area to the right of the mean is 0.50. So *about half of all British men are* 68.25 inches or taller.

Tables will provide other areas under normal curves.

8.2 The Pervasiveness of Normal Curves

Many populations of measurements follow approximately a normal curve:

- Physical measurements within a homogeneous population heights of male adults.
- Standard academic tests given to a large group – SAT scores.

8.3 Percentiles and Standardized Scores

Your percentile = the percentage of the population that falls *below* you.

Finding percentiles for normal curves requires:

- Your **own value**.
- The mean for the population of values.
- The standard deviation for the population.

Then any bell curve can be *standardized* so one table can be used to find percentiles.

Standardized Scores

Standardized Score (standard score or *z*-score): <u>observed value – mean</u> standard deviation

IQ scores have a **normal** distribution with a **mean of 100** and a **standard deviation of 16**.

- Suppose your IQ score was 116.
- Standardized score = (116 100)/16 = +1
- Your IQ is 1 standard deviation *above* the mean.
- Suppose your IQ score was 84.
- Standardized score = (84 100)/16 = -1
- Your IQ is 1 standard deviation *below* the mean.

A normal curve with mean = 0 and standard deviation = 1 is called a standard normal curve.

Table 8.1: Proportions and Percentilesfor Standard Normal Scores

Standard	Proportion	Percentile	Standard	Proportion	Percentile
Score, z	Below z		Score, z	Below z	
-6.00	0.000000001	0.0000001	0.03	0.51	51
-5.20	0.0000001	0.00001	0.05	0.52	52
-4.26	0.00001	0.001	0.08	0.53	53
-3.00	0.0013	0.13	0.10	0.54	54
:	:	:	:	:	:
-1.00	0.16	16	0.58	0.72	72
:	:	:	:	:	:
-0.58	0.28	28	1.00	0.84	84
:	:	:	:	:	:
0.00	0.50	50	6.00	0.999999999	99.9999999

Finding a Percentile from an observed value:

- Find the standardized score = (observed value mean)/s.d., where s.d. = standard deviation. Don't forget to keep the plus or minus sign.
- 2. Look up the percentile in **Table 8.1**.
 - Suppose your IQ score was 116.
 - Standardized score = (116 100)/16 = +1
 - Your IQ is 1 standard deviation *above* the mean.
 - From Table 8.1 you would be at the **84th percentile**.
 - Your IQ would be higher than that of 84% of the population.

Finding an Observed Value from a Percentile:

- 1. Look up the percentile in **Table 8.1** and find the corresponding standardized score.
- 2. Compute **observed value** = mean +(standardized score)(s.d.), where s.d. = standard deviation.

Example 1: Tragically Low IQ

"Jury urges mercy for mother who killed baby. ... The mother had an IQ lower than 98 percent of the population." (Scotsman, March 8, 1994,p. 2)

- Mother was in the 2nd percentile.
- Table 8.1 gives her standardized score = -2.05, or 2.05 standard deviations below the mean of 100.
- Her IQ = 100 + (-2.05)(16) = 100 32.8 = 67.2 or about 67.

Example 2: Calibrating Your GRE Score

GRE Exams between 10/1/89 and 9/30/92 had mean verbal score of 497 and a standard deviation of 115. (ETS, 1993)

- Suppose your **score was 650** and scores were bell-shaped.
- Standardized score = (650 497)/115 = +1.33.
- Table 8.1, z = 1.33 is between the 90th and 91st percentile.
- Your score was higher than about 90% of the population.

Example 3: Removing Moles

Company *Molegon*: remove unwanted moles from gardens. Weights of moles are approximately normal with a mean of 150 grams and a standard deviation of 56 grams.

Only moles between 68 and 211 grams can be legally caught.

- Table 8.1: 86% weigh 211 or less; 7% weigh 68 or less.
- About 86% 7% = 79% are within the legal limits.

8.4 *z*-Scores and Familiar Intervals

Empirical Rule

For any **normal curve**, approximately ...

- 68% of the values fall within 1 standard deviation of the mean in either direction
- 95% of the values fall within 2 standard deviations of the mean in either direction
- 99.7% of the values fall within 3 standard deviations of the mean in either direction

A measurement would be an extreme outlier if it fell more than 3 s.d. above or below the mean.

Heights of Adult Women

Since adult women in U.S. have a mean height of 65 inches with a s.d. of 2.5 inches and heights are bell-shaped, approximately ...

- 68% of adult women are between 62.5 and 67.5 inches,
- 95% of adult women are between 60 and 70 inches,
- 99.7% of adult women are between 57.5 and 72.5 inches.

For Those Who Like Formulas

Notation for a Population

The lowercase Greek letter "mu" = μ represents the **population mean**.

The lowercase Greek letter "sigma" = σ represents the **population standard** deviation.

Therefore, the **population variance** is represented by σ^2 .

A normal distribution with a mean of μ and variance of σ^2 is denoted by $N(\mu, \sigma^2)$.

For example, the standard normal distribution is denoted by N(0, 1).

Standardized Score z for an Observed Value x

$$z = \frac{x - \mu}{\sigma}$$

Observed Value x for a Standardized Score z

 $x = \mu + z\sigma$

Empirical Rule

If a population of values is $N(\mu, \sigma^2)$, then approximately: 68% of values fall within the interval $\mu \pm \sigma$ 95% of values fall within the interval $\mu \pm 2\sigma$ 99.7% of values fall within the interval $\mu \pm 3\sigma$

