Statistical concept / technique | Neuroscience application |
---|---|
Point processes; conditional intensity functions | Neural spike trains; photon-limited image data |
Time-rescaling theorem for point processes | Fast simulation of network models; goodness-of-fit tests for spiking models |
Bias, consistency, principal components | Spike-triggered averaging; spike-triggered covariance |
Generalized linear models | Neural encoding models including spike-history effects; inferring network connectivity |
Regularization; shrinkage estimation | Maximum a posteriori estimation of high-dimensional neural encoding models |
Laplace approximation; Fisher information | Model-based decoding and information estimation; adaptive design of optimal stimuli |
Mixture models; EM algorithm; Dirichlet processes | Spike-sorting / clustering |
Optimization and convexity techniques | Spike-train decoding; ML estimation of encoding models |
Markov chain Monte Carlo: Metropolis-Hastings and hit-and-run algorithms | Firing rate estimation and spike-train decoding |
State-space models; sequential Monte Carlo / particle filtering | Decoding spike trains; optimal voltage smoothing |
Fast high-dimensional Kalman filtering | Optimal smoothing of voltage and calcium signals on large dendritic trees |
Markov processes; first-passage times; Fokker-Planck equation | Integrate-and-fire-based neural models |
Hierarchical Bayesian models | Estimating multiple neural encoding models |
Amortized inference | Spike sorting; stimulus decoding |
Date | Topic | Reading | Notes |
---|---|---|---|
Sept 6, 13 | Intro and overview | Paninski and Cunningham, `18; International Brain Lab, '17, '22, '23a, '23b | Slides here. |
Sept 20 | No class | ||
Sept 27 | Optogenetic circuit mapping | Hu et al '09, Shababo et al '13, Hage et al '19, Triplett et al '22, Antin et al '23, Triplett et al '23 | Guest lecture by Marcus Triplett. Slides here. Background slides on Gaussian processes by J. Cunningham here. |
Oct 4 | Dendritic imaging data | Huys et al '06; Paninski '10; Sun et al '19; Gonzalez et al '24; Park et al '24; Wong-Campos et al '24; Deistler et al '24 | Guest lecture by Ben Antin; slides here. |
Oct 11, 18 | Behavioral video analysis | DeepLabCut, MoSeq, PS-VAE, SLEAP, Lightning-Pose, Blau et al '24 | Guest lecture by Matt Whiteway. Slides here; video here. |
Oct 25, Nov 1 | Signal acquisition: spike sorting | Lewicki '98; Calabrese and Paninski '11, Lee et al '20; Boussard et al '21, Pachitariu et al '24; Windolf et al '24 | EM notes; Blei et al review on variational inference. Guest lecture by Charlie Windolf. Slides here and here. |
Nov 8 | Presentations of project ideas | Just two minutes each | |
Nov 15, 22 | Signal acquisition: single-cell-resolution functional imaging | Overview: Pnevmatikakis
and Paninski '18 Compression and denoising: Buchanan et al '18, Eom et al '23 Demixing: Pnevmatikakis et al '16; Zhou et al '18; Friedrich et al '17b; Lu et al '17; Giovanucci et al '17; Charles et al '19, Pasarkar et al '23; Saxena et al '20 Deconvolution: Deneux et al '16; Picardo et al '16; Friedrich et al '17a; Berens et al '18, Rupprecht et al '21 Wei and Zhou et al '19 | HMM tutorial by Rabiner; HMM notes. Guest lecture by Amol Pasarkar. Slides here. |
Nov 29 | No class (University holiday) | Happy thanksgiving! | |
Dec 6 | Decoding methods | Gallego et al '20, Zhang et al '23, Azabou et al '23 | Guest lecture by Yizi Zhang. Slides here. |
Dec 13, 20 | Project presentations | E-mail me your report as a pdf by Dec 20. |