Statistical concept / technique |
Neuroscience application |
Point processes; conditional intensity functions | Neural
spike trains; photon-limited image data |
Time-rescaling theorem for point processes | Fast
simulation of network models; goodness-of-fit tests for spiking
models |
Bias, consistency, principal components | Spike-triggered
averaging; spike-triggered covariance |
Generalized linear models | Neural encoding models
including spike-history effects; inferring network connectivity |
Regularization; shrinkage estimation | Maximum a posteriori
estimation of high-dimensional neural encoding models |
Laplace approximation; Fisher information | Model-based
decoding and information estimation; adaptive design of optimal
stimuli |
Mixture models; EM algorithm; Dirichlet processes |
Spike-sorting / clustering |
Optimization and convexity techniques | Spike-train
decoding; ML estimation of encoding models |
Markov chain Monte Carlo: Metropolis-Hastings and hit-and-run
algorithms | Firing rate estimation and spike-train
decoding |
State-space models; sequential Monte Carlo / particle
filtering | Decoding spike trains; optimal voltage
smoothing |
Fast high-dimensional Kalman filtering | Optimal smoothing of
voltage and calcium signals on large dendritic trees |
Markov processes; first-passage times; Fokker-Planck equation |
Integrate-and-fire-based neural models |
Hierarchical Bayesian models |
Estimating multiple neural encoding models |
Amortized inference |
Spike sorting; stimulus decoding |
Date |
Topic |
Reading |
Notes |
Sept 7-14 | Intro and
overview | Paninski and
Cunningham,
`18; International
Brain Lab, '17, International
Brain Lab, '22 | Slides here. |
Sept 21-28 | Signal acquisition: spike sorting | Lewicki
'98; Pachitariu
et al
'16; Lee
et al
'20; Steinmetz
et al '21; Calabrese
and Paninski
'11, Boussard
et al
'21, Varol
et al '21, Wang
et al
'19, Zanos
et al '11 | EM
notes; Blei et al review
on variational inference. Guest lecture
by Julien
Boussard
and Charlie
Windolf. Slides here. |
Oct 5, 12 | Signal acquisition: single-cell-resolution functional imaging | Overview: Pnevmatikakis
and Paninski '18 Compression and
denoising: Buchanan
et al
'18, Sun
et al '19
Demixing: Pnevmatikakis
et al '16; Zhou
et al
'18; Friedrich
et al
'17b; Lu
et al
'17; Giovanucci et al
'17; Charles
et al
'19, Saxena
et al '20
Deconvolution: Deneux
et al '16; Picardo
et al
'16; Friedrich
et al
'17a; Berens
et al
'18, Rupprecht
et al '21 Wei
and Zhou et al '19 | HMM
tutorial
by Rabiner; HMM
notes. Guest lecture
by Ian
Kinsella and Amol Pasarkar. Slides here. |
Oct 19, 26 | Behavioral video
analysis | DeepLabCut, DeepGraphPose, MoSeq,
PS-VAE, SLEAP,
MONET, DAART | Guest
lecture
by Matt Whiteway
and Dan
Biderman. Slides here. |
Oct 26 | Optogenetic circuit
mapping | Hu
et al '09, Shababo
et al '13, Hage
et al
'19, Triplett
et al '22 | Guest
lecture
by Marcus
Triplett. Slides here. |
Nov 2 | Presentations of project ideas | Just two
minutes each |
|
Nov 9 | Nonstandard imaging
methods | Pnevmatikakis
and Paninski '13, Kazemipour
et al
'21, Wang
et al
'21, Wu
et al '21 |
|
Nov 9, 16, 30 | Poisson regression models; hierarchical models for
sharing information across cells; expected log-likelihood | Kass et al
(2003), Wallstrom et al
(2008), Lewi
et al '07, Batty
et al
(2017), Cadena
et al (2017), Ramirez
and Paninski, '14, Mena
and Paninski '14, Soudry et al
'15 | Generalized linear model notes |
Nov 23 | No class (University holiday) | |
Happy thanksgiving! |
Dec 7 | Project presentations | |
E-mail me your report as a pdf by
Dec 19. |