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Measuring agreement between a statistical model and a spike train data
series, that is, evaluating goodness of �t, is crucial for establishing the
model’s validity prior to using it to make inferences about a particular
neural system. Assessing goodness-of-�t is a challenging problem for
point process neural spike train models, especially for histogram-based
models such as perstimulus time histograms (PSTH) and rate functions
estimated by spike train smoothing. The time-rescaling theorem is a well-
known result in probability theory, which states that any point process
with an integrable conditional intensity function may be transformed into
a Poisson process with unit rate. We describe how the theorem may be
used to develop goodness-of-�t tests for both parametric and histogram-
based point process models of neural spike trains. We apply these tests in
two examples:a comparison of PSTH, inhomogeneous Poisson, and inho-
mogeneous Markov interval models of neural spike trains from the sup-
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plementary eye �eld of a macque monkey and a comparison of temporal
and spatial smoothers, inhomogeneous Poisson, inhomogeneous gamma,
and inhomogeneous inverse gaussian models of rat hippocampal place
cell spiking activity. To help make the logic behind the time-rescaling the-
orem more accessible to researchers in neuroscience, we present a proof
using only elementary probability theory arguments. We also show how
the theorem may be used to simulate a general point process model of a
spike train. Our paradigm makes it possible to compare parametric and
histogram-based neural spike train models directly. These results sug-
gest that the time-rescaling theorem can be a valuable tool for neural
spike train data analysis.

1 Introduction

The development of statistical models that accurately describe the stochastic
structure of neural spike trains is a growing area of quantitative research in
neuroscience. Evaluating model goodness of �t—that is, measuring quan-
titatively the agreement between a proposed model and a spike train data
series—is crucial for establishing the model’s validity prior to using it to
make inferences about the neural system being studied. Assessing goodness
of �t for point neural spike train models is a more challenging problem than
for models of continuous-valued processes. This is because typical distance
discrepancy measures applied in continuous data analyses, such as the aver-
age sum of squared deviations between recorded data values and estimated
values from the model, cannot be directly computed for point process data.
Goodness-of-�t assessments are even morechallenging forhistogram-based
models, such as peristimulus time histograms (PSTH) and rate functions
estimated by spike train smoothing, because the probability assumptions
needed to evaluate model properties are often implicit. Berman (1983) and
Ogata (1988) developed transformations that, under a given model, convert
point processes like spike trains into continuous measures in order to assess
model goodness of �t. One of the theoretical results used to construct these
transformations is the time-rescaling theorem.

A form of the time-rescaling theorem is well known in elementary prob-
ability theory. It states that any inhomogeneous Poisson process may be
rescaled or transformed into a homogeneous Poisson process with a unit rate
(Taylor & Karlin, 1994). The inverse transformation is a standard method for
simulating an inhomogeneous Poisson process from a constant rate (homo-
geneous) Poisson process. Meyer (1969) and Papangelou (1972) established
the general time-rescaling theorem, which states that any point process with
an integrable rate function may be rescaled into a Poisson process with a
unit rate. Berman and Ogata derived their transformations by applying the
general form of the theorem. While the more general time-rescaling theo-
rem is well known among researchers in point process theory (Br Âemaud,
1981; Jacobsen, 1982; Daley & Vere-Jones, 1988; Ogata, 1988; Karr, 1991), the



The Time-Rescaling Theorem 327

theorem is less familiar to neuroscience researchers. The technical nature of
the proof, which relies on the martingale representation of a point process,
may have prevented its signi�cance from being more broadly appreciated.

The time-rescaling theorem has important theoretical and practical im-
plications for application of point process models in neural spike train data
analysis. To help make this result more accessible to researchers in neu-
roscience, we present a proof that uses only elementary probability theory
arguments. We describe how the theorem may be used to develop goodness-
of-�t tests for both parametric and histogram-based point process models
of neural spike trains. We apply these tests in two examples: a compar-
ison of PSTH, inhomogeneous Poisson, and inhomogeneous Markov in-
terval models of neural spike trains from the supplementary eye �eld of
a macque monkey and a comparison of temporal and spatial smoothers,
inhomogeneous Poisson, inhomogeneous gamma, and inhomogeneous in-
verse gaussian models of rat hippocampal place cell spiking activity. We
also demonstrate how the time-rescaling theorem may be used to simulate
a general point process.

2 Theory

2.1 The Conditional Intensity Function and the Joint Probability Den-
sity of the Spike Train. De�ne an interval (0, T], and let 0 < u1 < u2 <
, . . . , < un¡1 < un · T be a set of event (spike) times from a point process.
For t 2 (0, T], let N (t) be the sample path of the associated counting process.
The sample path is a right continuous function that jumps 1 at the event
times and is constant otherwise (Snyder & Miller, 1991). In this way, N (t)
counts the number and location of spikes in the interval (0, t]. Therefore, it
contains all the information in the sequence of events or spike times. For
t 2 (0, T], we de�ne the conditional or stochastic intensity function as

l(t | Ht ) D lim
D t!0

Pr(N (t C D t) ¡ N (t) D 1 | Ht)
D t

, (2.1)

where Ht D f0 < u1 < u2, . . . , uN (t) < tg is the history of the process up to
time t and uN (t) is the time of the last spike prior to t. If the point process is an
inhomogeneous Poisson process, then l(t | Ht ) D l (t) is simply the Poisson
rate function. Otherwise, it depends on the history of the process. Hence,
the conditional intensity generalizes the de�nition of the Poisson rate. It is
well known that l (t | Ht ) can be de�ned in terms of the event (spike) time
probability density, f (t | Ht ) , as

l(t | Ht ) D
f (t | Ht )

1 ¡
R t

uN (t)
f (u | Ht) du

, (2.2)

for t > uN (t) (Daley & Vere-Jones, 1988; Barbieri, Quirk, Frank, Wilson, &
Brown, 2001). We may gain insight into equation 2.2 and the meaning of the
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conditional intensity function by computing explicitly the probability that
given Ht, a spike uk occurs in [t, t C D t) where k D N (t) C 1. To do this, we
note that the events fN (t C Dt) ¡ N (t) D 1 | Htg and fuk 2 [t, t C D t) | Htg
are equivalent and that therefore,

Pr (N (t C D t) ¡ N (t) D 1 | Ht ) D Pr(uk 2 [t, t C Dt) | uk > t, Ht )

D
Pr(uk 2 [t, t C Dt) | Ht )

Pr (uk > t | Ht)

D

R tCDt
t f (u | Ht ) du

1 ¡
R t

uN (t)
f (u | Ht ) du

¼ f (t | Ht)D t

1 ¡
R t

uN (t)
f (u | Ht ) du

D l (t | Ht )D t. (2.3)

Dividing by D t and taking the limit gives

lim
D t!0

Pr(uk 2 [t, t C D t) | Ht )
D t

D
f (t | Ht )

1 ¡
R t

uN (t)
f (u | Ht ) du

D l(t | Ht ) , (2.4)

which is equation 2.1. Therefore, l (t | Ht)D t is the probability of a spike in
[t, t C Dt) when there is history dependence in the spike train. In survival
analysis, the conditional intensity is termed the hazard function because in
this case, l (t | Ht )D t measures the probability of a failure ordeath in [t, tCD t)
given that the process has survived up to time t (Kalb�eisch & Prentice,
1980).

Because we would like to apply the time-rescaling theorem to spike train
data series, we require the joint probability density of exactly n event times
in (0, T]. This joint probability density is (Daley & Vere-Jones, 1988; Barbieri,
Quirk, et al., 2001)

f (u1, u2, . . . , un \ N (T) D n)

D f (u1, u2, . . . , un \ unC1 > T)

D f (u1, u2, . . . , un \ N (un) D n) Pr (unC1 > T | u1, u2, . . . , un)

D
nY

kD1

l(uk | Huk
) exp

»
¡

Z uk

uk¡1

l(u | Hu) du
¼

¢ exp

(
¡

Z T

un

l (u | Hu) du

)
, (2.5)
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where

f (u1, u2, . . . , un \ N (un) D n)

D
nY

kD1

l (uk | Huk
) exp

»
¡

Z uk

uk¡1

l (u | Hu) du
¼

(2.6)

Pr(unC1 > T | u1, u2, . . . , un) D exp

(
¡

Z T

un

l(u | Hu) du

)
, (2.7)

and u0 D 0. Equation 2.6 is the joint probability density of exactly n events
in (0, un], whereas equation 2.7 is the probability that the n C 1st event
occurs after T. The conditional intensity function provides a succinct way
to represent the joint probability density of the spike times. We can now
state and prove the time-rescaling theorem.

Time-Rescaling Theorem. Let 0 < u1 < u2 < , . . . , < un < T be a realization
from a point process with a conditional intensity function l(t | Ht ) satisfying
0 < l (t | Ht ) for all t 2 (0, T]. De�ne the transformation

L (uk) D
Z uk

0
l (u | Hu ) du, (2.8)

for k D 1, . . . , n, and assume L (t) < 1 with probability one for all t 2 (0, T].
Then the L (uk) ’s are a Poisson process with unit rate.

Proof. Let tk D L (uk) ¡ L (uk¡1 ) for k D 1, . . . , n and set tT DR T
un

l(u | Hu) du. To establish the result, it suf�ces to show that the tks
are independent and identically distributed exponential random variables
with mean one. Because the tk transformation is one-to-one and tnC1 > tT
if and only if unC1 > T, the joint probability density of the tk’s is

f (t1, t2, . . . , tn \ tnC1 > tT )

D f (t1, . . . , tn) Pr (tnC1 > tT | t1, . . . , tn) . (2.9)

We evaluate each of the two terms on the right side of equation 2.9. The
following two events are equivalent:

ftnC1 > tT | t1, . . . , tng D funC1 > T | u1, u2, . . . , ung. (2.10)

Hence

Pr(tnC1 > tT | t1, t2, . . . , tn ) D Pr(unC1 > T | u1, u2, . . . , un )

D exp

(
¡

Z T

un

l (u | Hun
) du

)

D expf¡tTg, (2.11)
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where the last equality follows from the de�nition of tT. By the multivariate
change-of-variable formula (Port, 1994),

f (t1, t2, . . . , tn ) D | J| f (u1, u2, . . . , un \ N (un) D n) , (2.12)

where J is the Jacobian of the transformation between uj, j D 1, . . . , n and
tk, k D 1, . . . , n. Because tk is a function of u1, . . . , uk, J is a lower triangular
matrix, and its determinant is the product of its diagonal elements de�ned
as | J| D |

Qn
kD1 Jkk|. By assumption 0 < l (t | Ht) and by equation 2.8 and

the de�nition of tk, the mapping of u into t is one-to-one. Therefore, by
the inverse differentiation theorem (Protter & Morrey, 1991), the diagonal
elements of J are

Jkk D
@uk

@tk
D l(uk | Huk

) ¡1. (2.13)

Substituting |J | and equation 2.6 into equation 2.12 yields

f (t1, t2, . . . , tn ) D
nY

kD1

l(uk | Huk
) ¡1

nY

kD1

l (uk | Huk
)

¢ exp
»

¡
Z uk

uk¡1

l (u | Hu ) du
¼

D
nY

kD1

expf¡[L (uk) ¡ L (uk¡1 )]g

D
nY

kD1

expf¡tkg. (2.14)

Substituting equations 2.11 and 2.14 into 2.9 yields

f (t1, t2, . . . , tn \ tnC1 > tT ) D f (t1, . . . , tn) Pr(tnC1 > tT | t1, . . . , tn)

D

³
nY

kD1

expf¡tkg
´

expf¡tTg, (2.15)

which establishes the result.

The time-rescaling theorem generates a history-dependent rescaling of
the time axis that converts a point process into a Poisson process with a unit
rate.

2.2 Assessing Model Goodness of Fit. We may use the time-rescaling
theorem to construct goodness-of-�t tests for a spike data model. Once a
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model has been �t to a spike train data series, we can compute from its
estimated conditional intensity the rescaled times

tk D L (uk) ¡ L (uk¡1 ) . (2.16)

If the model is correct, then, according to the theorem, the tks are indepen-
dent exponential random variables with mean 1. If we make the further
transformation

zk D 1 ¡ exp(¡tk) , (2.17)

then zks are independent uniform random variables on the interval (0, 1). Be-
cause the transformations inequations 2.16 and 2.17 are both one-to-one, any
statistical assessment that measures agreement between the zks and a uni-
form distribution directly evaluates how well the original model agrees with
the spike train data. Here we present two methods: Kolmogorov-Smirnov
tests and quantile-quantile plots.

To construct the Kolmogorov-Smirnov test, we �rst order the zks from
smallest to largest, denoting the ordered values as z (k) s. We then plot the val-
ues of the cumulative distribution function of the uniform density de�ned

as bk D k¡ 1
2

n for k D 1, . . . , n against the z (k) s. If the model is correct, then the
points should lie on a 45-degree line (Johnson & Kotz, 1970). Con�dence
bounds for the degree of agreement between the models and the data may
be constructed using the distribution of the Kolmogorov-Smirnov statistic.
For moderate to large sample sizes the 95% (99%) con�dence bounds are
well approximated as bk § 1.36/n1/2 (bk § 1.63/n1/2) (Johnson & Kotz, 1970).
We term such a plot a Kolmogorov-Smirnov (KS) plot.

Another approach to measuring agreement between the uniform prob-
ability density and the zks is to construct a quantile-quantile (Q-Q) plot
(Ventura, Carta, Kass, Gettner, & Olson, 2001; Barbieri, Quirk, et al., 2001;
Hogg & Tanis, 2001). In this display, we plot the quantiles of the uniform
distribution, denoted here also as the bks, against the z(k) s. As in the case of
the KS plots, exact agreement occurs between the point process model and
the experimental data if the points lie on a 45-degree line. Pointwise con�-
dence bands can be constructed to measure the magnitude of the departure
of the plot from the 45-degree line relative to chance. To construct point-
wise bands, we note that if the tks are independent exponential random
variables with mean 1 and the zks are thus uniform on the interval (0, 1),
then each z (k) has a beta probability density with parameters k and n ¡ k C 1
de�ned as

f (z | k, n ¡ k C 1) D
n!

(n ¡ k) ! (k ¡ 1)!
zk¡1 (1 ¡ z)n¡k, (2.18)

for 0 < z < 1 (Johnson & Kotz, 1970). We set the 95% con�dence bounds
by �nding the 2.5th and 97.5th quantiles of the cumulative distribution
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associated with equation 2.18 for k D 1, . . . , n. These exact quantiles are
readily available in many statistical software packages. For moderate to
large spike train data series, a reasonable approximation to the 95% (99%)
con�dence bounds is given by the gaussian approximation to the bino-
mial probability distribution as z(k) § 1.96[z(k) (1 ¡ z(k) ) /n]1/2 (z(k) §
2.575[z(k) (1 ¡ z(k) ) /n]1/2). To our knowledge, these local con�dence bounds
for the Q-Q plots based on the beta distribution and the gaussian approxi-
mation are new.

In general, the KS con�dence intervals will be wider than the corre-
sponding Q-Q plot intervals. To see this, it suf�ces to compare the widths
of the two intervals using their approximate formulas for large n. From the
gaussian approximation to the binomial, the maximum width of the 95%
con�dence interval for the Q-Q plots occurs at the median: z(k) D 0.50 and
is 2[1.96/ (4n) 1/2] D 1.96n¡1/2. For n large, the width of the 95% con�dence
intervals for the KS plots is 2.72n¡1/2 at all quantiles. The KS con�dence
bounds consider the maximum discrepancy from the 45-degree line along
all quantiles; the 95% bands show the discrepancy that would be exceeded
5% of the time by chance if the plotted data were truly uniformlydistributed.
The Q-Q plot con�dence bounds consider the maximum discrepancy from
the 45-degree line for each quantile separately. These pointwise 95% con-
�dence bounds mark the amount by which each value z(k) would deviate
from the true quantile 5% of the time purely by chance. The KS bounds are
broad because they are based on the joint distribution of all n deviations,
and they consider the distribution of the largest of these deviations. The
Q-Q plot bounds are narrower because they measure the deviation at each
quantile separately. Used together, the two plots help approximate upper
and lower limits on the discrepancy between a proposed model and a spike
train data series.

3 Applications

3.1 An Analysis of Supplementary Eye Field Recordings. For the �rst
application of the time-rescaling theorem to a goodness-of-�t analysis, we
analyze a spike train recorded from the supplementary eye �eld (SEF) of a
macaque monkey. Neurons in the SEF play a role in oculomotor processes
(Olson, Gettner, Ventura, Carta, & Kass, 2000). A standard paradigm for
studying the spiking propertiesof these neurons is a delayed eye movement
task. In this task, the monkey �xates, is shown locations of potential target
sites, and is then cued to the speci�c target to which it must saccade. Next,
a preparatory cue is given, followed a random time later by a go signal.
Upon receiving the go signal, the animal must saccade to the speci�c target
and hold �xation for a de�ned amount of time in order to receive a reward.
Beginning fromthe point of the speci�c target cue, neural activity is recorded
for a �xed interval of time beyond the presentation of the go signal. After
a brief rest period, the trial is repeated. Multiple trials from an experiment
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such as this are jointly analyzed using a PSTH to estimate �ring rate for a
�nite interval following a �xed initiation point. That is, the trials are time
aligned with respect to a �xed initial point, such as the target cue. The data
across trials are binned in time intervals of a �xed length, and the rate in each
bin is estimated as the average number of spikes in the �xed time interval.

Kass and Ventura (2001) recently presented inhomogeneous Markov in-
terval (IMI) modelsas an alternative to the PSTH for analyzing multiple-trial
neural spike train data. These models use a Markov representation for the
conditional intensity function. One form of the IMI conditional intensity
function they considered is

l(t | Ht ) D l (t | uN (t) , h ) D l1 (t | h )l2 (t ¡ uN (t) | h ) , (3.1)

where uN (t) is the time of the last spike prior to t, l1 (t | h ) modulates �r-
ing as a function of the experimental clock time, l2 (t ¡ uN (t) | h ) repre-
sents Markov dependence in the spike train, and h is a vector of model
parameters to be estimated. Kass and Ventura modeled log l1 (t | h ) and
log l2 (t ¡ uN (t) | h ) as separate piecewise cubic splines in their respective
arguments t and t ¡ uN (t) . The cubic pieces were joined at knots so that
the resulting functions were twice continuously differentiable. The number
and positions of the knots were chosen in a preliminary data analysis. In the
special case l (t | uN (t) , h ) D l1 (t | h ) , the conditional intensity function in
equation 3.1 corresponds to an inhomogeneous Poisson (IP) model because
this assumes no temporal dependence among the spike times.

Kass and Ventura used their models to analyze SEF data that consisted
of 486 spikes recorded during the 400 msec following the target cue signal
in 15 trials of a delayed eye movement task (neuron PK166a from Olson
et al., 2000, using the pattern condition). The IP and IMI models were �t
by maximum likelihood, and statistical signi�cance tests on the spline co-
ef�cients were used to compare goodness of �t. Included in the analysis
were spline models with higher-order dependence among the spike times
than the �rst-order Markov dependence in equation 3.1. They found that
the IMI model gave a statistically signi�cant improvement in the �t relative
to the IP and that adding higher-order dependence to the model gave no
further improvements. The �t of the IMI model was not improved by in-
cluding terms to model between-trial differences in spike rate. The authors
concluded that there was strong �rst-order Markov dependence in the �r-
ing pattern of this SEF neuron. Kass and Ventura did not provide an overall
assessment of model goodness of �t or evaluate how much the IMI and the
IP models improved over the histogram-based rate model estimated by the
PSTH.

Using the KS and Q-Q plots derived from the time-rescaling theorem, it is
possible to compare directly the �ts of the IMI, IP, and PSTH models and to
determine which gives the most accurate description of the SEF spike train
structure. The equations for the IP rate function, lIP (t | hIP ) D l1 (t | hIP ) ,
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and for the IMI conditional intensity function, lIMI (t | uN (t) , hIMI ) D
l1 (t | hIMI )l2 (t ¡ uN (t) , hIMI ) , are given in the appendix, along with a dis-
cussion of the maximum likelihood procedure used to estimate the co-
ef�cients of the spline basis elements. The estimated conditional inten-
sity functions for the IP and IMI models are, respectively, lIP (t |, OhIP ) and
lIMI (t | uN (t) , OhIMI ) , where Oh is the maximum likelihood estimate of the
speci�c spline coef�cients. For the PSTH model, the conditional intensity
estimate is the PSTH computed by averaging the number of spikes in each
of 40 10 msec bins (the 400 msec following the target cue signal) across
the 15 trials. The PSTH is the �t of another inhomogeneous Poisson model
because it assumes no dependence among the spike times.

The results of the IMI, IP, and PSTH model �ts compared by KS and
Q-Q plots are shown in Figure 1. For the IP model, there is lack of �t at
lower quantiles (below 0.25) because in that range, its KS plot lies just out-
side the 95% con�dence bounds (see Figure 1A). From quantile 0.25 and
beyond, the IP model is within the 95% con�dence bounds, although be-
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yond the quantile 0.75, it slightly underpredicts the true probability model
of the data. The KS plot of the PSTH model is similar to that of the IP
except that it lies entirely outside the 95% con�dence bands below quan-
tile 0.50. Beyond this quantile, it is within the 95% con�dence bounds. The
KS plot of the PSTH underpredicts the probability model of the data to
a greater degree in the upper range than the IP model. The IMI model is
completely within the 95% con�dence bounds and lies almost exactly on
the 45-degree line of complete agreement between the model and the data.
The Q-Q plot analyses (see Figure 1B) agree with KS plot analyses with
a few exceptions. The Q-Q plot analyses show that the lack of �t of the
IP and PSTH models is greater at the lower quantiles (0–0.50) than sug-
gested by the KS plots. The Q-Q plots for the IP and PSTH models also
show that the deviations of these two models near quantiles 0.80 to 0.90
are statistically signi�cant. With the exception of a small deviation below
quantile 0.10, the Q-Q plot of the IMI lies almost exactly on the 45-degree
line.

Figure 1: Facing page. (A) Kolmogorov-Smirnov (K-S) plots of the inhomoge-
neous Markov interval (IMI) model, inhomogeneous Poisson (IP), and perstim-
ulus time histogram (PSTH) model �ts to the SEF spike train data. The solid
45-degree line represents exact agreement between the model and the data.
The dashed 45-degree lines are the 95% con�dence bounds for exact agree-
ment between the model and experimental data based on the distribution of the
Kolmogorov-Smirnov statistic. The 95% con�dence bounds are bk § 1.36n¡ 1

2 ,
where bk D (k ¡ 1

2
) /n for k D 1, . . . , n and n is the total number of spikes. The

IMI model (thick, solid line) is completely within the 95% con�dence bounds
and lies almost exactly on the 45-degree line. The IP model (thin, solid line)
has lack of �t at lower quantiles (< 0.25). From the quantile 0.25 and be-
yond, the IP model is within the 95% con�dence bounds. The KS plot of the
PSTH model (dotted line) is similar to that of the IP model except that it lies
outside the 95% con�dence bands below quantile 0.50. Beyond this quantile,
it is within the 95% con�dence bounds, yet it underpredicts the probability
model of the data to a greater degree in this range than the IP model does.
The IMI model agrees more closely with the spike train data than either the IP
or the PSTH models. (B) Quantile-quantile (Q-Q) plots of the IMI (thick, solid
line), IP (thin, solid line), and PSTH (dotted line) models. The dashed lines are
the local 95% con�dence bounds for the individual quantiles computed from
the beta probability density de�ned in equation 2.18. The solid 45-degree line
represents exact agreement between the model and the data. The Q-Q plots
suggests that the lack of �t of the IP and PSTH models is greater at the lower
quantiles (0–0.50) than suggested by the KS plots. The Q-Q plots for the IP and
PSTH models also show that the deviations of these two models near quantiles
0.80 to 0.90 are statistically signi�cant. With the exception of a small devia-
tion below quantile 0.10, the Q-Q plot of the IMI lies almost exactly on the
45-degree line.
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We conclude that the IMI model gives the best description of these SEF
spike trains. In agreement with the report of Kass and Ventura (2001), this
analysis supports a �rst-order Markov dependence among the spike times
and not a Poisson structure, as would be suggested by either the IP or the
PSTH models. This analysis extends the �ndings of Kass and Ventura by
showing that of the three models, the PSTH gives the poorest description of
the SEF spike train. The IP model gives a better �t to the SEF data than the
PSTH model because the maximum likelihood analysis of the parametric
IP model is more statistically ef�cient than the histogram (method of mo-
ments) estimate obtained from the PSTH (Casella & Berger, 1990). That is,
the IP model �t by maximum likelihood uses all the data to estimate the
conditional intensity function at all time points, whereas the PSTH anal-
ysis uses only spikes in a speci�ed time bin to estimate the �ring rate in
that bin. The additional improvement of the IMI model over the IP is due
to the fact that the former represents temporal dependence in the spike
train.

3.2 An Analysis of Hippocampal Place Cell Recordings. As a second
example of using the time-rescaling theorem to develop goodness-of-�t
tests, we analyze the spiking activity of a pyramidal cell in the CA1 region
of the rat hippocampus recorded from an animal running back and forth on
a linear track. Hippocampal pyramidal neurons have place-speci�c �ring
(O’Keefe & Dostrovsky, 1971);a given neuron �res onlywhen the animal is in
a certain subregion of the environment termed the neuron’s place �eld. On a
linear track, these �elds approximately resemble one-dimensional gaussian
surfaces. The neuron’s spiking activity correlates most closely with the an-
imal’s position on the track (Wilson & McNaughton, 1993). The data series
we analyze consists of 691 spikes from a place cell in the CA1 region of the
hippocampus recorded from a rat running back and forth for 20 minutes on
a 300 cm U-shaped track. The track was linearized for the purposes of this
analysis (Frank, Brown, & Wilson, 2000).

There are two approaches to estimating the place-speci�c �ring maps of
a hippocampal neuron. One approach is to use maximum likelihood to �t
a speci�c parametric model of the spike times to the place cell data as in
Brown, Frank, Tang, Quirk, and Wilson (1998) and Barbieri, Quirk, et al.
(2001). If x(t) is the animal’s position at time t, we de�ne the spatial function
for the one-dimensional place �eld model as the gaussian surface

s (t) D exp
»

a ¡ b (x (t) ¡ m )2

2

¼
, (3.2)

where m is the center of place �eld, b is a scale factor, and expfag is the
maximum height of the place �eld at its center. We represent the spike time
probability density of the neuron as either an inhomogeneous gamma (IG)



The Time-Rescaling Theorem 337

model, de�ned as

f (uk | uk¡1, h )

D
ys (uk )
C (y )

µZ uk

uk¡1

ys (u) du
¶y ¡1

exp
»

¡
Z uk

uk¡1

ys(u) du
¼

, (3.3)

or as an inhomogeneous inverse gaussian (IIG) model, de�ned as

f (uk | uk¡1, h )

D
s(uk)

µ
2p

hR uk

uk¡1
s(u) du

i3
¶ 1

2

exp

8
><

>:
¡

1
2

±R uk

uk¡1
s (u) du ¡ y

²2

y 2
R uk

uk¡1
s(u) du

9
>=

>;
, (3.4)

where y > 0 is a location parameter for both models and h D (m , a, b, y )
is the set of model parameters to be estimated from the spike train. If we
set y D 1 in equation 3.3, we obtain the IP model as a special case of
the IG model. The parameters for all three models—the IP, IG, and the
IIG—can be estimated from the spike train data by maximum likelihood
(Barbieri, Quirk, et al., 2001). The models in equations 3.3 and 3.4 are Markov
so that the current value of either the spike time probability density or
the conditional intensity (rate) function depends on only the time of the
previousspike. Because of equation 2.2, specifying the spike time probability
density is equivalent to specifying the conditional intensity function. If we
let Oh denote the maximum likelihood estimate of h , then the maximum
likelihood estimate of the conditional intensity function for each model can
be computed from equation 2.2 as

l(t | Ht, Oh ) D
f (t | uN (t) , Oh )

1 ¡
R t

uN (t)
f (u | uN (t) , Oh ) du

. (3.5)

for t > uN (t) . The estimated conditional intensity from each model may
be used in the time-rescaling theorem to assess model goodness of �t as
described in Section 2.1.

The second approach is to compute a histogram-based estimate of the
conditional intensity function by using either spatial smoothing (Muller &
Kubie, 1987; Frank et al., 2000) or temporal smoothing (Wood, Dudchenko,
& Eichenbaum, 1999) of the spike train. To compute the spatial smooth-
ing estimate of the conditional intensity function, we followed Frank et al.
(2000) and divided the 300 cm track into 4.2 cm bins, counted the number
of spikes per bin, and divided the count by the amount of time the animal
spends in the bin. We smooth the binned �ring rate with a six-point gaus-
sian window with a standard deviation of one bin to reduce the effect of
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running velocity. The spatial conditional intensity estimate is the smoothed
spatial rate function. To compute the temporal rate function, we followed
Wood et al. (1999) and divided the experiment into time bins of 200 msec
and computed the rate as the number of spikes per 200 msec.

These two smoothing procedures produce histogram-based estimates
of l(t) . Both are histogram-based estimates of Poisson rate functions be-
cause neither the estimated spatial nor the temporal rate functions make
any history-dependence assumption about the spike train. As in the analy-
sis of the SEF spike trains, we again use the KS and Q-Q plots to compare
directly goodness of �t of the �ve spike train models for the hippocampal
place cells. The IP, IG, and IIG models were �t to the spike train data by max-
imum likelihood. The spatial and temporal rate models were computed as
described. The KS and Q-Q plotgoodness-of-�t comparisonsare in Figure 2.

The IG model overestimates at lower quantiles, underestimates at inter-
mediate quantiles, and overestimates at the upper quantiles (see Figure 2A).
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The IP model underestimates the lower and intermediate quantiles and
overestimates the upper quantiles. The KS plot of the spatial rate model is
similar to that of the IP model yet closer to the 45-degree line. The temporal
rate model overestimates the quantiles of the true probability model of the
data. This analysis suggests that the IG, IP, and spatial rate models are most
likely oversmoothing this spike train, whereas the temporal rate model un-
dersmooths it. Of the �ve models, the one that is closest to the 45-degree
line and lies almost entirely within the con�dence bounds is the IIG. This
model disagrees only with the experimental data near quantile 0.80. Because
all of the models with the exception of the IIG have appreciable lack of �t
in terms of the KS plots, the �ndings in the Q-Q plot analyses are almost
identical (see Figure 2B). As in the KS plot, the Q-Q plot for the IIG model is
close to the 45-degree line and within the 95% con�dence bounds with the
exception of quantiles near 0.80. These analyses suggest that IIG rate model
gives the best agreement with the spiking activity of this pyramidal neuron.
The spatial and temporal rate function models and the IP model have the
greatest lack of �t.

3.3 Simulating a General Point Process by Time Rescaling. As a sec-
ond application of the time-rescaling theorem, we describe how the the-
orem may be used to simulate a general point process. We stated in the
Introduction that the time-rescaling theorem provides a standard approach
for simulating an inhomogeneous Poisson process from a simple Poisson

Figure 2: Facing page. (A) KS plots of the parametric and histogram-based model
�ts to the hippocampal place cell spike train activity. The parametric models
are the inhomogeneous Poisson (IP) (dotted line), the inhomogeneous gamma
(IG) (thin, solid line), and the inhomogeneous inverse gaussian (IIG)(thick, solid
line). The histogram-based models are the spatial rate model (dashed line) based
on 4.2 cm spatial bin width and the temporal rate model (dashed and dotted line)
based a 200msec time bin width. The 45-degree solid line represents exact agree-
ment between the model and the experimental data, and the 45-degree thin, solid
lines are the 95% con�dence bounds based on the KS statistic, as in Figure 1. The
IIG model KS plot lies almost entirely within the con�dence bounds, whereas
all the other models show signi�cant lack of �t. This suggests that the IIG model
gives the best description of this place cell data series, and the histogram-based
models agree least with the data. (B) Q-Q plots of the IP (dotted line), IG (thin,
solid line), and IIG (thick, solid line) spatial (dashed line) temporal (dotted and
dashed line) models. The 95% local con�dence bounds (thin dashed lines) are
computed as described in Figure 1. The �ndings in the Q-Q plot analyses are
almost identical to those in the KS plots. The Q-Q plot for the IIG model is close
to the 45-degree line and within the 95% con�dence bounds, with the exception
of quantiles near 0.80. This analysis also suggests that IIG rate model gives the
best agreement with the spiking activity of this pyramidal neuron. The spatial
and temporal rate function models and the IP model have the greatest lack of �t.
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process. The general form of the time-rescaling theorem suggests that any
point process with an integrable conditional intensity function may be sim-
ulated from a Poisson process with unit rate by rescaling time with respect
to the conditional intensity (rate) function. Given an interval (0, T], the sim-
ulation algorithm proceeds as follows:

1. Set u0 D 0; Set k D 1.

2. Draw tk an exponential random variable with mean 1.

3. Find uk as the solution to tk D
R uk

uk¡1
l (u | u0, u1, . . . , uk¡1 ) du.

4. If uk > T, then stop.

5. k D k C 1

6. Go to 2.

By using equation 2.3, a discrete version of the algorithm can be constructed
as follows. Choose J large, and divide the interval (0, T] into J bins each of
width D D T/ J. For k D 1, . . . , J draw a Bernoulli random variable u¤

k with
probability l(kD | u¤

1, . . . , u¤
k¡1 )D , and assign a spike to bin k if u¤

k D 1, and
no spike if u¤

k D 0.
While in many instances there will be faster, more computationally ef�-

cient algorithms for simulating a point process, such as model-based meth-
ods for speci�c renewal processes (Ripley, 1987) and thinning algorithms
(Lewis & Shedler, 1978; Ogata, 1981; Ross, 1993), the algorithm above is sim-
ple to implement given a speci�cation of the conditional intensity function.
For an example of where this algorithm is crucial for point process simu-
lation, we consider the IG model in equation 3.2. Its conditional intensity
function is in�nite immediately following a spike if y < 1. If in addition, y
is time varying (y D y (t) < 1 for all t), then neither thinning nor standard
algorithms for making draws from a gamma probability distribution may
be used to simulate data from this model. The thinning algorithm fails be-
cause the conditional intensity function is not bounded, and the standard
algorithms for simulating a gamma model cannot be applied because y is
time varying. In this case, the time-rescaling simulation algorithm may be
applied as long as the conditional intensity function remains integrable as
y varies temporally.

4 Discussion

Measuring how well a point process model describes a neural spike train
data series is imperative prior to using the model for making inferences. The
time-rescaling theorem states that any point process with an integrable con-
ditional intensity function may be transformed into a Poisson process with
a unit rate. Berman (1983) and Ogata (1988) showed that this theorem may
be used to develop goodness-of-�t tests for point process models of seismo-
logic data. Goodness-of-�t methods for neural spike train models based on
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time-rescaling transformations but not the time-rescaling theorem have also
been reported (Reich, Victor, & Knight, 1998; Barbieri, Frank, Quirk, Wilson,
& Brown, 2001). Here, we have described how the time-rescaling theorem
may be used to develop goodness-of-�t tests for point process models of
neural spike trains.

To illustrate our approach, we analyzed two types of commonlyrecorded
spike train data. The SEF data are a set of multiple short (400 msec) series of
spike times, each measured under identical experimental conditions. These
data are typically analyzed by a PSTH. The hippocampus data are a long
(20 minutes) series of spike time recordings that are typically analyzed with
either spatial or temporal histogram models. To each type of data we �t
both parametric and histogram-based models. Histogram-based models are
popularneural data analysis toolsbecause of the ease with which they can be
computed and interpreted. These apparent advantages do not override the
need to evaluate the goodness of �t of these models. We previously used
the time-rescaling theorem to assess goodness of �t for parametric spike
train models (Olson et al., 2000; Barbieri, Quirk, et al., 2001; Ventura et al.,
2001). Our main result in this article is that the time-rescaling theorem can be
used to evaluate goodness of �t of parametric and histogram-based models
and to compare directly the accuracy of models from the two classes. We
recommend that before making an inference based on either type of model,
a goodness-of-�t analysis should be performed to establish how well the
model describes the spike train data. If the model and data agree closely,
then the inference is more credible than when there is signi�cant lack of �t.
The KS and Q-Q plots provide assessments of overall goodness of �t. For the
models �t by maximum likelihood, these assessments can be applied along
with methods that measure the marginal value and marginal costs of using
more complex models, such as Akaikie’s information criterion (AIC) and
the Bayesian information criterion (BIC), in order to gain a more complete
evaluation of model agreement with experimental data (Barbieri, Quirk, et
al., 2001).

We assessed goodness of �t by using the time-rescaling theorem to con-
struct KS and Q-Q plots having, respectively, liberal and conservative con-
�dence bounds. Together, the two sets of con�dence bounds help character-
ize the range of agreement between the model and the data. For example, a
modelwhose KSplot lies consistently outside the 95% KS con�dence bounds
(the IP model for the hippocampal data) agrees poorly with the data. On
the other hand, a model that is within all the 95% con�dence bounds of the
Q-Q plots (the IMI model for the SEF data) agrees closely with the data. A
model such as the IP model for the SEF data, that is, within nearly all the
KS bounds, may lie outside the Q-Q plot intervals. In this case, if the lack
of �t with respect to the Q-Q plot intervals is systematic (i.e., is over a set of
contiguous quantiles), this suggests that the model does not �t the data well.

As a second application of the time-rescaling theorem, we presented an
algorithm for simulating spike trains from a point process given its condi-
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tional intensity (rate) function. This algorithm generalizes the well-known
technique of simulating an inhomogeneous Poisson process by rescaling a
Poisson process with a constant rate.

Finally, to make the reasoning behind the time-rescaling theorem more
accessible to the neuroscience researchers, we proved its general form using
elementary probability arguments. While this elementary proof is most cer-
tainly apparent to experts in probability and point process theory (D. Brill-
inger, personal communication; Guttorp, 1995) itsdetails, to our knowledge,
have not been previously presented. The original proofs of this theorem use
measure theory and are based on the martingale representation of point pro-
cesses (Meyer, 1969; Papangelou, 1972; Br Âemaud, 1981; Jacobsen, 1982). The
conditional intensity function (see equation 2.1) is de�ned in terms of the
martingale representation. Our proof uses elementary arguments because it
is based on the fact that the joint probability density of a set of point process
observations (spike train) has a canonical representation in terms of the con-
ditional intensity function. When the joint probability density is represented
in this way, the Jacobian in the change of variables between the original spike
times and the rescaled interspike intervals simpli�es to a product of the re-
ciprocals of the conditional intensity functions evaluated at the spike times.

The proof also highlights the signi�cance of the conditional intensity
function in spike train modeling; its speci�cation completely de�nes the
stochastic structure of the point process. This is because in a small time in-
terval, the product of the conditional intensity function and the time interval
de�nes the probability of a spike in that interval given the historyof the spike
train up to that time (see equation 2.3). When there is no history dependence,
the conditional intensity function is simply the Poisson rate function. An
important consequence of this simpli�cation is that unless history depen-
dence is speci�cally included, then histogram-based models, such as the
PSTH, and the spatial and temporal smoothers are implicit Poisson models.

In both the SEF and hippocampusexamples, the histogram-based models
gave poor �ts to the spike train. These poor �ts arose because these mod-
els used few data points to estimate many parameters and because they
do not model history dependence in the spike train. Our parametric mod-
els used fewer parameters and represented temporal dependence explicitly
as Markov. Point process models with higher-order temporal dependence
have been studied by Ogata (1981, 1988), Brillinger (1988), and Kass and
Ventura (2001) and will be considered further in our future work. Paramet-
ric conditional intensity functions may be estimated from neural spike train
data in any experiments where there are enough data to estimate reliably a
histogram-based model. This is because if there are enough data to estimate
many parameters using an inef�cient procedure (histogram/method of mo-
ments), then there should be enough data to estimate a smaller number of
parameters using an ef�cient one (maximum likelihood).

Using the K-S and Q-Q plots derived from the time-rescaling theorem,
it is possible to devise a systematic approach to the use of histogram-based
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models. That is, it is possible to determine when a histogram-based model
accurately describes a spike train and when a different model class, temporal
dependence, or the effects of covariates (e.g., the theta rhythm and the rat
running velocity in the case of the place cells) should be considered and the
degree of improvement the alternative models provide.

In summary, we have illustrated how the time-rescaling theorem may be
used to compare directly goodness of �t of parametric and histogram-based
point process models of neural spiking activity and to simulate spike train
data. These results suggest that the time-rescaling theorem can be a valuable
tool for neural spike train data analysis.

Appendix

A.1 Maximum Likelihood Estimation of the IMI Model. To �t the IMI
model, we choose J large, and divide the interval (0, T] into J bins of width
D D T/ J. We choose J so that there is at most one spike in any bin. In this
way, we convert the spike times 0 < u1 < u2 < , . . . , < un¡1 < un · T into a
binary sequence u¤

j , where u¤
j D 1 if there is a spike in bin j and 0 otherwise

for j D 1, . . . , J. By de�nition of the conditional intensity function for the IMI
model in equation 3.1, it follows that each u¤

j is a Bernoulli random variable
with the probability of a spike at jD de�ned as l1 ( jD | h )l2 ( jD ¡u¤

N ( jD ) | h )D .
We note that this discretization is identical to the one used to construct
the discretized version of the simulation algorithm in Section 3.3. The log
probability of a spike is thus

log(l1 ( jD | h ) ) C log(l2 ( jD ¡ u¤
N ( jD ) | h )D ) , (A.1)

and the cubic spline models for log(l1 ( jD | h ) ) and log(l2 ( jD ¡ u¤
N ( jD ) | h ) )

are, respectively,

log(l1 ( jD | h ) ) D
3X

lD1

hl ( jD ¡ j1 ) l
C

Ch4 ( jD ¡j2 )3
C C h5 ( jD ¡ j3) 3

C (A.2)

log(l2 ( jD ¡ u¤
N ( jD ) | h ) ) D

3X

lD1

hlC5 ( jD ¡ u¤
N ( jD ) ¡c 1 ) l

C

C h9 ( jD ¡ u¤
N ( jD ) ¡c 2 ) 3

C , (A.3)

whereh D (h1, . . . , h9 ) and the knots are de�ned asjl D lT/4 for l D 1, 2, 3 and
c l is the observed 100l/3 quantile of the interspike interval distribution of
the trial spike trains for lD 1, 2. We have for Section 3.1 that hIP D (h1, . . . , h5)
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and hIMI D (h1, . . . , h9) are the coef�cients of the spline basis elements for the
IP and IMI models, respectively.

The parameters are estimated by maximum likelihood with D D 1 msec
using the gam function in S-PLUS (MathSoft, Seattle) as described in Chap-
ter 11 of Venables and Ripley (1999). The inputs to gam are the u¤

j s, the time
arguments jD and jD ¡u¤

N ( jD ) , the symbolic speci�cation of the spline mod-
els, and the knots. Further discussion on spline-based regression methods
for analyzing neural data may be found in Olson et al. (2000) and Ventura
et al. (2001).
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